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PROOF-TERM SYNTHESIS ON DEPENDENT-TYPE SYSTEMS VIA EXPLICIT

SUBSTITUTIONS

CÉSAR MUÑOZ∗

Abstract. Typed λ-terms are used as a compact and linear representation of proofs in intuitionistic
logic. This is possible since the Curry-Howard isomorphism relates proof trees with typed λ-terms. The
proofs-as-terms principle can be used to check a proof by type checking the λ-term extracted from the
complete proof tree. However, proof trees and typed λ-terms are built differently. Usually, an auxiliary
representation of unfinished proofs is needed, where type checking is possible only on complete proofs. In
this paper we present a proof synthesis method for dependent-type systems where typed open terms are
built incrementally at the same time as proofs are done. This way, every construction step, not just the
last one, may be type checked. The method is based on a suitable calculus where substitutions as well as
meta-variables are first-class objects.

Key words. proof synthesis, higher-order unification, explicit substitutions, dependent types, lambda-
calculus

Subject classification. Computer Science

1. Introduction. Thanks to the proofs-as-terms paradigm, a method of proof synthesis consists in
finding a term of a given type. Since the set of λ-terms is enumerable, a complete method for proof synthesis
in a framework where type checking is decidable consists in enumerating and type checking all the terms.
Of course, this method is impractical for implementations. A smart enumeration of terms must take typing
information and properties of the λ-calculus into account. In [38], Zaionc presents an algorithm for proof
construction in the propositional intuitionistic and classical logics via the simply-typed λ-calculus, and Dowek
shows in [12, 13] a complete term enumeration algorithm for the type systems of the Barendregt’s cube.

Although the Curry-Howard isomorphism relates proofs with terms, proof construction and term syn-
thesis do not necessarily go in the same direction. A natural deduction proof, for example, is driven by a
bottom-up procedure, while term synthesis procedures go in a top-down manner. For instance, to prove a
proposition B by Modus-Ponens, we assume A→ B and A as hypotheses, and then we continue recursively
trying to prove these two propositions. Eventually, we will get the axioms and the proof is finished. In
contrast, to synthesize a term of type B, we start with the axioms to set up the variables, and then go down
to the conclusion where the final term has the form (M N) with M a term of type A→ B and N a term of
type A.

These two different construction mechanisms, bottom-up proof construction and top-down term syn-
thesis, coexist in some theorem provers based on the proof-as-term paradigm. For example, in the proof
assistant system Coq [3] proofs under construction, also called incomplete proofs, are represented as proof-
trees. When the proof is done, a λ-term, that is, a complete proof-term, is synthesized. The soundness of
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the system relies on the type checker, which is a very small piece of code. However, if something goes wrong
with the proof-tree construction, for example because a procedure manipulating a proof-tree is bugged, the
problem is detected when the type checking of the complete proof-term takes place. That means, at the very
last step of the proof-term synthesis.

A uniform representation of complete and incomplete proofs allows to identify the proof construction
and term synthesis mechanisms. Furthermore, if such a representation supports an effective type-checking
procedure, type inconsistencies can be detected during the whole process of the proof-term construction.
In [28], Magnusson proposes an extension to the λ-calculus with place-holders and explicit substitutions to
represent incomplete proofs. Her ideas were implemented in the theorem prover Alf [2], but a complete
meta-theoretical study of the system and its properties is missing.

A term with place-holders is called an open term. Since several place-holders can appear in an open
term, it is convenient to name them. In the λ-calculus with de Bruijn indices, named place-holders are just
variables of the free-algebra of terms. In order to distinguish place-holders from variables of the λ-calculus,
the former are called meta-variables. As a convention in this paper, meta-variables are written with the last
uppercase letters of the alphabet: X,Y, . . ..

The open term λx:A.Y , can be seen as a proof-term of A → B provided that there exists a term of
type B in the right context to replace Y . By using this replacement mechanism, also called instantiation,
an incomplete proof becomes a complete one. In contrast to substitution of variables in the λ-calculus,
instantiation of meta-variables is a first-order substitution that does not care about capture of variables. In
the previous example the instantiation of Y with x results in the term λx:A.x, while the substitution of x
for Y in λx:A.Y results in λz:A.x. Notice that unless A and B represent the same type, the resulting terms
in both cases may be ill-typed.

As pointed out in [28, 15], open terms in the λ-calculus reveal new challenges. Assume, for example,
that an open term is involved in a β-redex. The β-rule can create substitutions applied to meta-variables
that cannot be effective while the meta-variables are not instantiated. In this case, a notation for suspended
substitutions should be provided. Since the λσ-calculus of explicit substitutions was introduced in [1], several
other variants of explicit substitutions calculi have been proposed; among others [1, 36, 26, 23, 6, 27, 11, 24,
30, 18, 32]. The study of explicit substitution calculi showed up to be more complicated than that of the
λ-calculus. For some of the explicit substitution calculi, questions about confluence, normalization and type
checking are still open.

In [31, 33], we propose a variant of λσ, called λΠL, for dependent-type theories like λΠ [20] and the
Calculus of Constructions [8, 9]. The λΠL-calculus is confluent and weakly normalizing on well-typed
expressions. The λΠL-system does not enjoy confluence on the full set of open expressions, that is, λΠL is
no longer confluent when meta-variables on the sort of substitutions are considered, and it does not preserve
strong normalization, that is, arbitrary reductions on well-typed expressions may not terminate. However,
we claim in this paper that the λΠL-calculus is suitable as a framework to represent incomplete proof-terms
in a constructive logic.

In this paper we describe a proof-term synthesis method for λΠ and the Calculus of Construction via the
λΠL-calculus. The method uses the incomplete proof-term paradigm proposed in [33]. It is strongly inspired
by that proposed by Dowek in [12, 13] for the Cube of Type Systems. In contrast to Dowek’s method,
our method combines both the bottom-up approach for proof construction, and the top-down synthesis of
terms. In other words, proof-terms are synthesized at the same time that proofs are constructed. Since type
checking is decidable in λΠL, the soundness of the proof construction can be guaranteed step by step. From
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a practical point of view, implementation errors in procedures manipulating incomplete-proofs are detected
by the type checker at any moment during the proof-construction process. The type checker of λΠL is still
simple. In fact, we have implemented it, in the object-oriented functional language OCaml, in about 50
lines. We have also implemented a higher-order unification algorithm for ground expressions. The soundness
of the whole implementation relies in the small piece of code corresponding to the type checker.

The rest of this section gives an overview to the dependent-type systems in which we are interested,
the λP -calculus and the Calculus of Constructions, and to the λσ-calculus of explicit substitutions. For a
more comprehensive explanation on both subjects, we refer to [20, 9] and [1]. In Section 2, we present the
λΠL-calculus and its dependent-type systems. In Section 3, we describe our method of proof synthesis. The
soundness and completeness of the method are proved in Section 4. The last section presents related work
and summarizes this work.

1.1. Dependent-type systems. The Dependent Type theory, namely λP [20], is a conservative ex-
tension of the simply-typed λ-calculus. It allows a finer stratification of terms by generalizing the function
space type. In fact, in λP , the type of a function λx:A.M is Πx:A.B where B (the type of M) may depend
on x. Hence, the type A→ B of the simply-typed λ-calculus is just a notation in λP for the product Πx:A.B
where x does not appear free in B.

From a logical point of view, the λP -calculus allows representation of proofs in the first-order intu-
itionistic logic using universal quantification. Via the types-as-proofs principle, a term of type Πx:A.B is a
proof-term of the proposition ∀x:A.B.

Terms in λP can be variables: x, y, . . ., applications: (M N), abstractions: λx:A.M , products: Πx:A.B,
or one of the sorts: Type,Kind.1 Notice that terms and types belong to the same syntactical category.
Thus, Πx:A.B is a term, as well as λx:A.M . However, terms are stratified in several levels according to
a type discipline. For instance, given an appropriate context of variable declarations, λx:A..M : Πx:A..B,
Πx:A..B : Type, and Type : Kind. The term Kind cannot be typed in any context, but it is necessary since
a circular typing as Type : Type leads to the Girard’s paradox [19].

Typing judgments in λP have the form

Γ `M : A

where Γ is a context of variable declarations, that is, a set of type assignments for free variables. We use the
Greek letters Γ,∆ to range over contexts. Since types may be ill-typed, typing judgments for contexts are
also necessary. The notation

` Γ

captures that types in Γ are well-typed. The λP -type system is given in Figure 1.1.
The Calculus of Constructions [8, 9] extends the λP -calculus with polymorphism and constructions of

types. It is obtained by replacing the rules (Prod) and (Abs) as shown in Figure 1.2.
In a higher-order logic, as λP or the Calculus of Constructions, it may happen that two types syntactically

different are the same module β-conversion. The rule (Conv) uses the equivalence relation ≡β which is defined
as the reflexive and transitive closure of the relation induced by the β-rule:
(λx:A.M N) - M [N/x]. We recall that M [N/x] is just a notation for the atomic substitution of the free
occurrences of x in M by N , with renaming of bound variables in M when necessary.

1The names Type and Kind are not standard, other couples of names used in the literature are: (Set, Type), (Prop, Type)

and (∗,tu).
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(Empty)` {}

Γ ` A : s
s ∈ {Kind,Type}
x is a fresh variable

(Var-Decl)` Γ ∪ {x : A}

` Γ (Type)Γ ` Type : Kind

` Γ
(x : A) ∈ Γ

(Var)Γ ` x : A

Γ ` A : Type
x does not appear in Γ

Γ ∪ {x : A} ` B : s
s ∈ {Kind,Type}

(Prod)Γ ` Πx:A.B : s

Γ ` A : Type
x does not appear in Γ
Γ ∪ {x : A} `M : B
Γ ∪ {x : A} ` B : s
s ∈ {Kind,Type}

(Abs)Γ ` λx:A.M : Πx:A.B

Γ `M : Πx:A.B
Γ ` N : A

(Appl)Γ ` (M N) : A[N/x]

Γ `M : A
Γ ` B : s

s ∈ {Kind,Type}
A ≡β B (Conv)Γ `M : B

Fig. 1.1. The λP -system

x does not appear in Γ
Γ ∪ {x : A} ` B : s
s ∈ {Kind,Type}

(Prod)Γ ` Πx:A.B : s

x does not appear in Γ
Γ ∪ {x : A} `M : B
Γ ∪ {x : A} ` B : s
s ∈ {Kind,Type}

(Abs)Γ ` λx:A.M : Πx:A.B

Fig. 1.2. The rules (Prod) and (Abs) of the Calculus of Constructions

1.2. Explicit substitutions. The λσ-calculus [1] is a first-order rewrite system with two sorts of
expressions: terms and substitutions. Well-formed expressions in the λσ-calculus are defined by the following
grammar.

Terms M,N ::= 1 | (M N) | λM |M [S]
Substitutions S, T ::= id | ↑ |M · S | S ◦ T

The λσ-calculus is presented in Figure 1.3.

In λσ, free and bound variables are represented by de Bruijn indices. They are encoded by means of the

constant 1 and the substitution ↑. We write ↑n as a shorthand for

n-times︷ ︸︸ ︷
↑ ◦ . . . ◦ ↑. We overload the notation i to
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(λM N) −→ M [N · id] (Beta)
(M N)[S] −→ (M [S] N [S]) (Application)
(λM)[S] −→ λM [1 · (S ◦ ↑)] (Lambda)
M [S][T ] −→ M [S ◦ T ] (Clos)
1[M · S] −→ M (VarCons)
M [id] −→ M (Id)
(S1 ◦ S2) ◦ T −→ S1 ◦ (S2 ◦ T ) (Ass)
(M · S) ◦ T −→ M [T ] · (S ◦ T ) (Map)
id ◦ S −→ S (Idl)
S ◦ id −→ S (Idr)
↑ ◦ (M · S) −→ S (ShiftCons)
1 · ↑ −→ id (VarShift)
1[S] · (↑ ◦ S) −→ S (SCons)

Fig. 1.3. The λσ-calculus [1]

represent the λσ-term corresponding to the index i, i.e.,

i =

{
1 if i = 1
1[↑n] if i = n+ 1.

An explicit substitution denotes a mapping from indices to terms. Thus, id maps each index i to the
term i, ↑ maps each index i to the term i+ 1, S ◦ T is the composition of the mapping denoted by T with
the mapping denoted by S (notice that the composition of substitution follows a reverse order with respect
to the usual notation of function composition), and finally, M · S maps the index 1 to the term M , and
recursively, the index i+ 1 to the term mapped by the substitution S on the index i.

2. A Framework to Represent Incomplete Proof-Terms. The important elements of our frame-
work are: explicit substitutions, open terms, and dependent types. A simply-typed version of λσ on open
terms has been studied in [15]. In [31, 33], we propose the λΠL-calculus which is a dependent-typed version
of a variant of λσ. The λΠL-calculus is confluent and weakly normalizing on well-typed terms.

As usual in explicit substitution calculi, expressions of λΠL are structured in terms and substitutions.
The λΠL-calculus admits meta-variables only on the sort of terms.

The set of well-formed expressions in λΠL is defined by the following grammar:

Natural numbers n ::= 0 | n+ 1
Meta-variables χ ::= X | Y | . . .
Sorts s ::= Kind | Type
Terms A,B,M,N ::= 1 | s | ΠA.B | λA.M |

(M N) |M [S] | χ
Substitutions S, T ::= ↑n |M ·A S | S ◦ T

An expression in λΠL is ground if it does not contain meta-variables. A ground expression is also pure
if it does not contain explicit substitutions (other than those representing de Bruijn indices).
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(λA.M N) −→ M [N ·A ↑0] (Beta)
(λA.M)[S] −→ λA[S].M [1 ·A (S ◦ ↑1)] (Lambda)
(ΠA.B)[S] −→ ΠA[S].B[1 ·A (S ◦ ↑1)] (Pi)
(M N)[S] −→ (M [S] N [S]) (Application)
M [S][T ] −→ M [S ◦ T ] (Clos)
1[M ·A S] −→ M (VarCons)
M [↑0] −→ M (Id)
(M ·A S) ◦ T −→ M [T ] ·A (S ◦ T ) (Map)
↑0 ◦ S −→ S (IdS)
↑n+1 ◦ (M ·A S) −→ ↑n ◦ S (ShiftCons)
↑n+1 ◦ ↑m −→ ↑n ◦ ↑m+1 (ShiftShift)
1 ·A ↑1 −→ ↑0 (Shift0)
1[↑n] ·A ↑n+1 −→ ↑n (ShiftS)
Type[S] −→ Type (Type)

Fig. 2.1. The λΠL-rewrite system

In dependent-type systems, object terms and type terms are in the same syntactical category. In this
paper, for readability, we use the uppercase letters A,B, . . . to denote type terms, that is, terms of type
(kind) Type or Kind, and M,N, . . . to denote object terms, that is, terms of type A where A is a type term.

The equivalence relation ≡λΠL is defined as the symmetric and transitive closure of the relation induced
by the rewrite system in Figure 2.1. As usual, we denote by

λΠL
∗
- the reflexive and transitive closure of

λΠL.

The system ΠL is obtained by dropping the rule (Beta) from λΠL. As shown by Zantema [40], the
ΠL-calculus is strongly normalizing.

Lemma 2.1. The ΠL-calculus is terminating.

Proof. See [33]. The proof uses the semantic labeling technique [39].

The set of normal-forms of an expression x (term or substitution) is denoted by (x)↓ΠL
.

The λΠL-calculus, just as λσ, uses the composition operation to achieve confluence on terms with
meta-variables. The rules (Idr) and (Ass) of λσ are not necessary in λΠL.

We adopt the notation i as a shorthand for 1[↑n] when i = n + 1. In contrast to λσ, ↑n is not a
shorthand but an explicit substitution in λΠL. Indeed, ↑0 replaces id and ↑1 replaces ↑. In general, ↑n

denotes the mapping of each index i to the term i+ n. Using ↑n, the non-left-linear rule (SCons) of λσ,
which is responsible of confluence and typing problems [11, 5, 33], can be dropped of the λΠL-calculus.
Notice that we do not assume any meta-theoretical property on natural numbers. They are constructed with
0 and n+ 1. Arithmetic calculations on indices are embedded in the rewrite system.

A context in λΠL is a list of types. The empty context is written ε. A context with head A and rest Γ
is written A.Γ. In that case, A is the type of the index 1, the head of Γ (if Γ is not empty) is the type of
the index 2, and so on. In a dependent-type theory with de Bruijn indices, the order in which variables are
declared in a context is important. In fact, in the context A.Γ, the indices in A are relative to Γ.

The type of a substitution is a context. This choice seems natural since substitutions denote mapping
from indices to terms, and contexts are list of types. In fact, if the type of a substitution S is the context
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A.∆, the type of the term mapped by the substitution S on the index 1 is A, and so for the rest of indices.

2.1. Meta-variables. As we have said, meta-variables are first-class objects in λΠL. Just as variables,
they have to be declared in order to keep track of possible dependences between terms and types.

A meta-variable declaration has the form X: ΓA, where Γ and A are, respectively, a context and a type
assigned to the meta-variable X. The pair (Γ, A) is unique (modulo ≡λΠL) for each meta-variable. This
requirement is enforced by the type system.

A list of meta-variable declarations is called a signature. We use the Greek letter Σ to range over
signatures. The empty signature is written ε. A signature with head X: ΓA and rest Σ is written X: ΓA. Σ.
We overload the notation Σ1. Σ2 to write the concatenation of the signatures Σ1 and Σ2.

The order of the meta-variable declarations is important. In a signature
X1: Γ1A1. . . . . Xn: ΓnAn, the type Ai and the context Γi, 0 < i ≤ n, may depend only on meta-variables
Xj , i < j ≤ n. The indices in Ai are relative to the context Γi.

The main operation on meta-variables is instantiation. The instantiation of a meta-variable X with a
term M in an expression y (term or substitution) replaces all the occurrences of X in y by M .

Definition 2.2 (Instantiation). The instantiation of a meta-variable X with a term M in an expression
y, denoted y{|X/M |}, is defined by induction over the structure of y as follows.

• s{|X/M |} = s, if s ∈ {Kind,Type}.
• 1{|X/M |} = 1.
• X{|X/M |} = M .
• Y {|X/M |} = Y , if Y 6= X.
• (ΠA.B){|X/M |} = ΠA{|X/M |}.B{|X/M |}.
• (λA.N){|X/M |} = λA{|X/M |}.N{|X/M |}.
• (N1 N2){|X/M |} = (N1{|X/M |} N2{|X/M |}).
• (N [S]){|X/M |} = N{|X/M |}[S{|X/M |}].
• ↑n{|X/M |} = ↑n.
• (N ·A S){|X/M |} = N{|X/M |} ·A{|X/M |} S{|X/M |}.
• (S ◦ T ){|X/M |} = S{|X/M |} ◦ T{|X/M |}.

Application of instantiations extends to context and signatures, that is, Γ{|X/M |} and Σ{|X/M |}, in the
obvious way. In the case of signatures, the application Σ{|X/M |} also removes the declaration of X in Σ, if
any.

In contrast to substitution of variables, instantiation of meta-variables allows capture of variables. More-
over, instantiations are not first-class objects, i.e., the application of an instantiation is atomic and external
to the λΠL-calculus.

2.2. Type annotations. Type annotations in substitutions are introduced with the rules (Beta),
(Lambda), and (Pi), and then propagated with the rule (Map). They can also be eliminated with the rules
(VarCons), (ShiftCons), and (Shift0). Notice that the type annotation that is propagated by the rule (Map):

(M ·A S) ◦ T - M [T ] ·A (S ◦ T )

is A, not A[T ]. Type annotations in substitutions act as remainder of types when substitutions are distributed
under abstractions and products. As shown in [33], they are necessary to preserve typing in λΠL-reductions.

2.3. η-conversion. In this paper we consider a calculus without η-conversion. Although, extensional
versions of explicit substitution calculi have been studied for ground terms [24], work is necessary to under-
stand the interaction of the η-rule with explicit substitutions, dependent types, and meta-variables.
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(Empty)` ε; ε

Σ; Γ ` A : s
s ∈ {Kind,Type}

(Var-Decl)` Σ;A.Γ

` Σ; Γ
X is a fresh meta-variable

(Meta-Var-Decl1)` X: ΓKind. Σ

Σ; Γ ` A : s
s ∈ {Kind,Type}

X is a fresh meta-variable
(Meta-Var-Decl2)` X: ΓA. Σ

Fig. 2.2. Valid signatures and contexts

2.4. Dependent types. In λΠL, we consider typing assertions having one of the following forms:

` Σ; Γ

to capture that the context Γ is valid in the signature Σ,

Σ; Γ `M : A

to capture that the term M has type A (the type M has the kind A) in Σ; Γ, and

Σ; Γ ` S . ∆

to capture that the substitution S has the type ∆ in Σ; Γ. The scoping rules for variables and meta-variables
are as follows. Contexts Γ, ∆, and expressions M,A, S may depend on any meta-variable declared in the
respective signature Σ. Indices in M , A and S are relative to their respective context Γ.

Typing rules for signatures, contexts, and expressions are all mutually dependent. Valid signatures and
contexts are defined by the typing rules in Figure 2.2.

Valid λΠL-expressions the λP -system are defined by the typing rules in Figure 2.3. In the case of the
Calculus of Constructions, the rules (Prod), (Abs), and (Cons) are modified as indicated in Figure 2.4.
Finally, conversion rules, on both systems, are defined in Figure 2.5.

In the following, we use ` Σ, ` Γ, Γ `M : A, and Γ ` S . ∆ as shorthands for ` Σ; ε, ` ε; Γ, ε; Γ `M : A,
and ε; Γ ` S . ∆, respectively.

In this paper, unless otherwise stated, a judgment like Σ; Γ ` M : A refers to the setting of λΠL in the
Calculus of Constructions. However, the main properties of λΠL hold in both the Calculus of Constructions
and the λP -system. We prove in [31, 33] that λΠL satisfies, among others, the following properties (for the
sake of simplicity we show the properties only for typed terms, but they hold in the same way for typed
substitutions):

Proposition 2.3 (Sort soundness). If Σ; Γ ` M : A, then either A = Kind, or Σ; Γ ` A : s, where
s ∈ {Kind,Type}.

Proposition 2.4 (Type uniqueness). If Σ; Γ `M : A and Σ; Γ `M : B, then A ≡λΠL B.
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` Σ; Γ (Type)Σ; Γ ` Type : Kind
` Σ;A.Γ (Var)

Σ;A.Γ ` 1 : A[↑1]

Σ; Γ ` A : Type
Σ;A.Γ ` B : s
s ∈ {Kind,Type}

(Prod)Σ; Γ ` ΠA.B : s

Σ; Γ ` A : Type
Σ;A.Γ `M : B
Σ; Γ ` ΠA.B : s
s ∈ {Kind,Type}

(Abs)Σ; Γ ` λA.M : ΠA.B

Σ; Γ `M : ΠA.B

Σ; Γ ` N : A
(Appl)

Σ; Γ ` (M N) : B[N ·A ↑0]

Σ; Γ ` S . ∆
Σ; ∆ `M : A
Σ; ∆ ` A : s

s ∈ {Kind,Type}
(Clos)Σ; Γ `M [S] : A[S]

Σ; Γ ` S . ∆
Σ; ∆ ` A : Kind

(Clos-Kind)Σ; Γ ` A[S] : Kind

` Σ; Γ
X: ∆A ∈ Σ
∆ ≡λΠL Γ

(Meta-Var)Σ; Γ ` X : A

` Σ; Γ (Id)
Σ; Γ ` ↑0 . Γ

` Σ;A.Γ
Σ; Γ ` ↑n . ∆

(Shift)
Σ;A.Γ ` ↑n+1 . ∆

Σ; Γ ` S . ∆1

Σ; ∆1 ` T . ∆2 (Comp)Σ; Γ ` T ◦ S . ∆2

Σ;Γ `M : A[S]
Σ; Γ ` S . ∆

Σ; ∆ ` A : Type
(Cons)Σ; Γ `M ·A S . A.∆

Fig. 2.3. Valid expressions

Σ;A.Γ ` B : s
s ∈ {Kind,Type}

(Prod)Σ; Γ ` ΠA.B : s

Σ;A.Γ `M : B
Σ;A.Γ ` B : s
s ∈ {Kind,Type}

(Abs)Σ; Γ ` λA.M : ΠA.B

Σ; Γ `M : A[S]
Σ; Γ ` S . ∆
Σ; ∆ ` A : s

s ∈ {Kind,Type}
(Cons)Σ; Γ `M ·A S . A.∆

Fig. 2.4. The modified rules (Prod), (Abs), and (Cons)
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Σ; Γ `M : A
Σ; Γ ` B : s

s ∈ {Kind,Type}
A ≡λΠL B (Conv)Σ; Γ `M : B

Σ; Γ ` S . ∆1

` Σ; ∆2

∆1 ≡λΠL ∆2 (Conv-Subs)Σ; Γ ` S . ∆2

Fig. 2.5. Conversions

Proposition 2.5 (Subject reduction). If M
λΠL

∗
- N and Σ; Γ `M : A, then Σ; Γ ` N : A.

Proposition 2.6 (Soundness). If Σ; Γ ` M : A, Σ; Γ ` N : B and M ≡λΠL N , then there exists a
path of well-typed reductions between A and B.

Proposition 2.7 (Weak normalization). If Σ; Γ `M : A, then M is weakly normalizing; therefore, M
has at least one λΠL-normal form.

Proposition 2.8 (Church-Rosser). If M1 ≡λΠL M2, Σ; Γ ` M1 : A, and Σ; Γ ` M2 : A, then M1 and
M2 are λΠL-joinable, i.e., there exists M such that M1

λΠL
∗
- M and M2

λΠL
∗
- M .

Corollary 2.9 (Normal forms). The λΠL-normal form of a well-typed λΠL-term always exists, and
it is unique. If M is a well-typed term, we denote by (M)↓λΠL

its λΠL-normal form.

The following proposition states the conditions that guarantee the soundness of instantiation of meta-
variables in λΠL.

Proposition 2.10 (Instantiation lemma). Let M be a term such that Σ1; Γ `M : A, and Σ a signature
having the form Σ2. X: ΓA. Σ1,

1. if ` Σ; ∆, then ` Σ{|X/M |}; ∆{|X/M |},
2. if Σ; ∆ ` N : B, then

Σ{|X/M |};∆{|X/M |} ` N{|X/M |} : B{|X/M |}, and
3. if Σ; ∆1 ` S . ∆2, then Σ{|X/M |};∆1{|X/M |} ` S{|X/M |} . ∆2{|X/M |}.

Finally, the next property justifies the use of λΠL to build proof-terms in a constructive logic based
on a dependent-type system. It states that when the signature is empty, λΠL types as many terms as the
λ-calculus does.

Proposition 2.11 (Conservative extension). Let M,A be pure terms in λΠL, and Γ be a context
containing only pure terms. Then, Γ ` M : A in λΠL if and only if Γ ` M : A in the respective dependent-
typed version of the λ-calculus (modulo de Bruijn indices translation).

3. A Proof Synthesis Method in λΠL. We introduce the basic ideas of our technique with an
example. For readability, when discussing examples we use named variables and not de Bruijn indices.
Nevertheless, we recall that our formalism uses a de Bruijn nameless notation of variables.

Assume a context with the following variable declarations

bool : Type,
nat : Type,
f : nat→ nat→ bool,
g : (nat→ bool) → nat,
not : bool→ bool,
eq : bool→ bool→ Type,
h : Πp:(nat→ bool) → bool.Πx:nat→ bool.(eq (p x) (not (p (f (g x))))).
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We address the problem of finding terms X and Y such that X : (eq Y Y ) and Y : bool. This problem
happens to be a paraphrasing of a formulation given in [14] of the famous Cantor’s theorem that there is
not surjection from a set (in this case nat) to its power set (formed by the elements of type nat→ bool). It
can be solved, for example using Dowek’s method, by enumerating all the terms Y of type bool, and then
the terms of type (eq Y Y ).

However, by combining proof construction and term synthesis we can do better. Instead of looking
directly for Y , we could claim to know it, and try to find a term of type (eq Y Y ). Then, we use the typing
information available for eq to guide the proof-term synthesis.

In our framework, we assume two meta-variable declarations Y : bool and X : (eq Y Y ). Notice that
the meta-variable Y appears in the type of X. In fact, in contrast to the simply-typed λ-calculus, in a
dependent-typed calculus meta-variables may appear in types and in contexts. Typing rules for open terms
should take into account these considerations.

A solution to X and Y is a couple of ground terms M , A such that when X is instantiate with M and
Y with A, it holds M : (eq A A) and A : bool.

By looking at the context of variables, we notice that a possible instantiation for X should use the
variable h. Since we do not know the right arguments p and x to apply h, we declare new meta-variables
Xp : (nat→ bool) → bool and Xx : nat→ bool, and proceed to instantiate X with (h Xp Xx).

At this stage of the development, we have the following situation. Three meta-variables to solve: Y : bool,
Xp : (nat → bool) → bool, and Xx : nat → bool, and the incomplete proof-term (h Xp Xx) of type
(eq Y Y ). However, there is something wrong. The type given by the type system to the term (h Xp Xx)
is (eq (Xp Xx) (not (Xp (f (g Xx))))), which is not convertible to (eq Y Y ). In fact, we should have been
more careful with the instantiation of X with (h Xp Xx). Since two syntactically different types can become
equal via instantiation of meta-variables and β-reduction, we can instantiate a meta-variable with a term of
different type, but we have to keep track of a set of disagreement types. In our case, if we want to instantiate
X with (h Xp Xx), we have to add the constraint (eq (Xp Xx) (not (Xp (f (g Xx))))) ≡λΠL (eq Y Y ) to the
disagreement set.

Thus, the goal is not to find any ground instantiation for the meta-variables, but one that reduces the
disagreement set to a set of trivial equations of the form M = M , where M is a ground term.

If the original proposition holds, eventually we will instantiate all the meta-variables in such a way that
the disagreement set is also solved. A possible solution to our example is

Xx = λy:nat.(not (f y y)),
Xp = λx:nat→ bool.(x (g λy:nat.(not (f y y)))),
Y = (not (f (g λy:nat.(not (f y y))))), and
X = (h λx:nat→ bool.(x (g λy:nat.(not (f y y)))) λy:nat.(not (f y y))).

That solution was found by our prototype in 209 rounds (including back-tracking steps). Each round corre-
sponds to the instantiation of one meta-variable or the simplification of the disagreement set. This number
contrasts with the 1024 rounds that it took our algorithm to find the same solution by first enumerating all
the terms of type bool.

The method to solve a set of meta-variables and a disagreement set can be summarized as:

1. Take a meta-variable X to solve. Because eventually, all the meta-variables have to be solved, any
of them can be chosen. However, as we will explain later, some typing properties guide the choice
of an appropriate meta-variable to solve.

2. By using the type information, propose a term M , probably containing new meta-variables, to
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instantiate X.
3. Declare the new meta-variables appearing in M , and add to the disagreement set the typing con-

straints necessary to guarantee the soundness of the instantiation.
4. Simplify the disagreement set. If a typing constraint is unsatisfiable, backtrack to step 2. Restore

the disagreement set to that point.
5. Stop if all the meta-variables are solved and the disagreement set contains only trivial equations.

Otherwise, call recursively the procedure.

Our method improves Dowek’s method in three ways:

• Proof construction and term synthesis are combined in a single method. Therefore, proof assistant
systems based on the proofs-as-terms paradigm can use our framework to represent uniformly proof
under construction and proof-terms.

• The first-order setting of the λΠL-calculus eliminates most of the technical problems related to the
higher-order aspects of the λ-calculus.

• In Dowek’s method, variables, and not meta-variables, are used to represent place-holders. Since,
these variables should range over all the set of well-typed terms, the type system where the proof
synthesis method is described allows variable declarations where the original type system does not.
That type system introduces some technical nuisances [12, 13]. In our framework this is not necessary.
Meta-variables and variables have different declaration rules. In particular, meta-variables can be
typed in sorts where variables cannot (see rules (Meta-Var-Decl1), (Meta-Var-Decl1), and (Var-
Decl)).

3.1. The λΠL-calculus with constraints. As we have seen in the informal description of the method,
instantiation of meta-variables may need the resolution of a disagreement set. Indeed, the disagreement set
is maintained in an extended kind of signatures called constrained signatures.

Definition 3.1 (Constrained signatures). A constraint M 'Γ N relates two terms M,N , and a
context Γ. A constrained signature is a list containing meta-variable declarations and constraint declarations.
Formally, they are defined by the following grammar:

Constrained signatures Ξ ::= ε | X: ΓA. Ξ |M 'Γ N. Ξ

Notice that constraints are declared together with meta-variables. This way, the type system may enforce
that a constraint uses only meta-variables that have already been declared in a signature.

Definition 3.2 (Equivalence modulo constraints). Let Ξ be a constrained signature; we define the
relation ≡Ξ as the smallest equivalence relation compatible with structure such that

1. if M ≡λΠL N , then M ≡Ξ N , and
2. if M 'Γ N ∈ Ξ, then M ≡Ξ N .

We extend the λΠL-calculus to deal with constraints.

Definition 3.3 (λΠL-with constraints). The type system λΠL with constraints is defined as λΠL in
Section 2, where we denote typing judgments by |∼ Ξ, |∼ Ξ; Γ and Ξ; Γ |∼M : A, we add the rule

Ξ; Γ |∼M1 : A
Ξ; Γ |∼M2 : A

(Constraint)|∼M1 'Γ M2. Ξ
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and we replace the rules (Conv), (Conv-Subs), and (Meta-Var) by

Ξ; Γ |∼M : A
Ξ; Γ |∼ B : s

s ∈ {Kind,Type}
A ≡Ξ B (Conv)Ξ; Γ |∼M : B

Σ; Γ |∼ S . ∆
|∼ Σ; ∆′

∆ ≡Ξ ∆′
(Conv-Subs)Σ; Γ |∼ S . ∆′

` Σ; Γ
X: ∆A ∈ Σ

∆ ≡Ξ Γ
(Meta-Var)Σ; Γ ` X : A

As expected, a constrained signature Ξ is said to be valid if it holds |∼ Ξ.
The λΠL-calculus with constraints does not satisfy most of the typing properties of λΠL given in Sec-

tion 2. In particular, it is not normalizing (not even weakly). For instance, the non-terminating term
(λx:A.(x x) λx:A.(x x)) can be typed in a constrained signature containing A ' A→ A.

However, we can prove the following properties.
Lemma 3.4. Let Ξ be a valid constrained signature and Σ be the signature where we have removed all

the constraints of Ξ,
1. (a) if ` Σ; Γ, then |∼ Ξ; Γ,

(b) if Σ; Γ `M : A, then Ξ; Γ |∼M : A, and
(c) if Σ; Γ ` S . ∆, then Ξ; Γ |∼ S . ∆; and

2. if Ξ does not contain constraints, i.e., Σ = Ξ, then
(a) if |∼ Ξ; Γ, then ` Σ; Γ,
(b) if Ξ; Γ |∼M : A, then Σ; Γ `M : A, and
(c) if Ξ; Γ |∼ S . ∆, then Σ; Γ ` S . ∆.

Proof. By simultaneous induction on the typing derivations.
According to Lemma 3.4, if Ξ′ is a prefix of a signature Ξ, and it does not contain constraints, the set of

expressions that are typeable in Ξ′ satisfies the properties given in Section 2; in particular, these expressions
have a λΠL-normal form (Corollary 2.9). This is no longer true if Ξ′ contains constraints. We exploit this
fact to simplify constrained signatures. Indeed, we define the λΠL-normal form of a constrained signature,
with respect to the largest prefix which does not contain a constraint. We will see later that constrained
signatures in λΠL-normal form allow us to prune the search space of solutions to meta-variables.

Definition 3.5 (Normal form of a constrained signature). Let Ξ be a valid constrained signature, the
λΠL-normal form of Ξ, denoted by (Ξ)↓λΠL

, is defined by structural induction on Ξ.
1. (ε)↓λΠL

= ε,
2. Ξ has the form X: ΓA. Ξ′ or M 'Γ N. Ξ′

• if Ξ′ contains constraints,

(X: ΓA. Ξ′)↓λΠL
= X: ΓA. (Ξ′)↓λΠL

(M 'Γ N. Ξ′)↓λΠL
= M 'Γ N. (Ξ′)↓λΠL

,

• if Ξ′ does not contain constraints,

(X: ΓA. Ξ′)↓λΠL
= X: (Γ)↓λΠL

(A)↓λΠL
. (Ξ′)↓λΠL

(M 'Γ N. Ξ′)↓λΠL
= (Ξ′)↓λΠL

, if (M)↓λΠL
= (N)↓λΠL

(M 'Γ N. Ξ′)↓λΠL
= (M)↓λΠL

'(Γ)↓λΠL
(N)↓λΠL

. (Ξ′)↓λΠL
, otherwise.
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The λΠL-normal form of a constrained signature preserves typing.
Lemma 3.6. Let Ξ be a valid constrained signature,
1. |∼ Ξ; Γ if and only if |∼ (Ξ)↓λΠL

; Γ,
2. Ξ; Γ `M : A if and only if (Ξ)↓λΠL

; Γ |∼M : A, and
3. Ξ; Γ ` S . ∆ if and only if (Ξ)↓λΠL

; Γ |∼ S . ∆.
Proof. By simultaneous induction on the typing derivations.

3.2. The problem. A constrained signature can be seen as a list of goals to be solved. Informally
speaking, to solve a signature means to find ground instantiations for all the meta-variables in a way that
all the constraints are reduced to trivial equations.

Definition 3.7 (Parallel instantiation). A parallel instantiation of a constrained signature Ξ is a
function ΨΞ from meta-variables of Ξ to terms. As usual, the function ΨΞ is extended to be applied to
arbitrary expressions. When Ξ can be inferred from the context, we simply write Ψ.

Definition 3.8 (Solution). Let Ξ be a valid constrained signature, we say that a parallel instantiation
Ψ is a solution to Ξ if and only if

1. for any constraint M 'Γ N ∈ Ξ, we have Ψ(Γ) ` Ψ(M) : A, Ψ(Γ) ` Ψ(N) : A and Ψ(M) ≡λΠL

Ψ(N), and
2. for any meta-variable declaration X: ΓA ∈ Ξ, we have Ψ(Γ) ` Ψ(X) : Ψ(A).

In this case we say that Ξ is a solvable signature. Furthermore, if for all meta-variables X in Ξ, Ψ(X) is a
λΠL-normal form, we say that Ψ is a normal solution to Ξ.

Notice that according to the previous definition, if Ψ is a solution to a constrained signature Ξ, for all
meta-variables X in Ξ, Ψ(X) is a ground term. If Ψ is also normal, then Ψ(X) is pure.

Definition 3.9 (Equivalent solutions). Let Ψ1, Ψ2 be solutions to a valid constrained signature Ξ.
They are said to be equivalent, denoted Ψ1 ≡λΠL Ψ2, if and only if for all X in Ξ, Ψ1(X) ≡λΠL Ψ2(X).

To know whether or not a valid constrained signature is solvable is undecidable in the general case. In
particular, it requires to decide the existence of solutions for constraints having the form (X M1 . . . Mi) '
(Y N1 . . . Nj), whereX and Y are meta-variables, and to solve the inhabitation problem in a dependent-type
system. Those problems are known to be undecidable [29, 4].

Some kinds of signatures can be trivially discharged.
Remark 1. If a valid constrained signature Ξ is solvable, then there exists a normal solution to Ξ.
Definition 3.10 (Failure signature). Let Ξ be the λΠL-normal form of a valid constrained signature;

we say that Ξ is a failure signature if it contains a constraint relating two ground terms in λΠL-normal form
which are not identical.

Remark 2. Failure signatures are not solvable.
The Cantor’s theorem example can be described in our formalism as follows. Let Γ =

h : Πp:(nat→ bool) → bool.Πx:nat→ bool.(eq (p x) (not (p (f (g x))))).
eq : bool→ bool→ Type. not : bool→ bool.

g : (nat→ bool) → nat. f : nat→ nat→ bool. bool : Type. nat : Type,
and Ξ = X: Γ(eq Y Y ). Y : Γbool, the following parallel instantiation Ψ is a solution to Ξ:

Ψ(Y )=(not (f (g λy:nat.(not (f y y)))))
Ψ(X)=(h λx:nat→ bool.(x (g λy:nat.(not (f y y)))) λy:nat.(not (f y y))).

In the process of finding that solution, we have first solved the constrained signature Ξ′ =
X 'Γ (h Xp Xx). (eq (Xp Xx) (not (Xp (f (g Xx))))) 'Γ (eq Y Y ).
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Xx: Γnat→ bool. Xp: Γ(nat→ bool) → bool. X: Γ(eq Y Y ). Y : Γbool,
which has the solution

Ψ′(Xp)=λx:nat→ bool.(x (g λy:nat.(not (f y y))))
Ψ′(Xx)=λy:nat.(not (f y y))
Ψ′(Z) =Ψ(Z), otherwise.

It can be verified that, for example, Ψ′((eq (Xp Xx) (not (Xp (f (g Xx))))) ≡λΠL Ψ′(eq Y Y ).
In the rest of this section, we describe a method to find a solution to a constrained signature via

refinement steps. In the example above, Ξ′ is a refinement of Ξ, and thus, a solution to Ξ can be deduced
from a solution to Ξ′.

3.3. The construction steps: Elementary graftings. We want to solve a constrained signature via
successive instantiation of meta-variables. Each one of these instantiations is called an elementary grafting.2

Definition 3.11 (Grafting). A grafting is an instantiation of a meta-variable, with possibly new dec-
larations of meta-variables and constraints. Let X be a meta-variable, M be a term, and Ξ′ be a constrained
signature, the grafting of X with M in Ξ′ is denoted by {|X/Ξ′M |}.

Valid graftings (in Ξ) are defined by the following typing rule,

|∼ Ξ
Ξ = Ξ2. X: ΓA. Ξ1

Ξ′. Ξ1; Γ |∼M : A
|∼ Ξ2. Ξ′. Ξ1

(Grafting)
Ξ |∼ {|X/Ξ′M |}

In the previous definition, Ξ′ contains only the additional meta-variables and constraints that are nec-
essary to type M . However, Ξ2. Ξ′. Ξ1 is a conservative extension of Ξ, i.e., all the expressions that are
typeable in Ξ, are typeable in Ξ2. Ξ′. Ξ1, too. In particular, it holds |∼ Ξ′. Ξ1.

The grafting {|X/Ξ′M |} can be applied to an expression or a context in the same way as the instantiation
{|X/M |}. However, only valid grafting can be applied to constrained signatures. Let Ξ be a valid constrained
signature, the application of the grafting {|X/Ξ′M |} to Ξ, instantiates the meta-variable X with M in Ξ, and
installs Ξ′ in the right place of Ξ.

Definition 3.12 (Application of grafting). Let Ξ = Ξ2. X: ΓA. Ξ1 such that Ξ |∼ {|X/Ξ′M |},

Ξ{|X/Ξ′M |} = (Ξ2. Ξ′. Ξ1){|X/M |}.

The application of a valid grafting preserves typing.
Lemma 3.13. Let Ξ be a valid constrained signature such that Ξ |∼ {|X/Ξ′M |},
1. if |∼ Ξ; Γ, then |∼ Ξ{|X/Ξ′M |}; Γ{|X/M |},
2. if Ξ; Γ |∼M : A, then Ξ{|X/Ξ′M |}; Γ{|X/M |} |∼M{|X/M |} : A{|X/M |}, and
3. if Ξ; Γ |∼ S . ∆, then Ξ{|X/Ξ′M |}; Γ{|X/M |} |∼ S{|X/M |} . ∆{|X/M |}.

Proof. By induction on the typing derivations. The proof uses Proposition 2.10.
The reduction to λΠL-normal form of a constrained signature preserves its valid graftings.

2In Dowek’s method, they are called elementary substitutions.
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Lemma 3.14. Let Ξ be a valid constrained signature, Ξ |∼ {|X/Ξ′M |} if and only if (Ξ)↓λΠL
|∼ {|X/Ξ′M |}.

Proof. We show that Ξ |∼ {|X/Ξ′M |} implies (Ξ)↓λΠL
|∼ {|X/Ξ′M |}. The other direction is similar. By

Lemma 3.6, (Ξ)↓λΠL
is a valid constrained signature. By Definition 3.5, Ξ and (Ξ)↓λΠL

declare exactly the
same meta-variables, then, by hypothesis, meta-variables declared in Ξ′ are not in Ξ. Since Ξ has the form
Ξ′

2. X: ΓA
′. Ξ′

1, (Ξ)↓λΠL
has the form Ξ2. X: ΓA. Ξ1, where

1. Ξ′. Ξ′
1; Γ |∼M : A′, and

2. Ξ1 = (Ξ′
1)↓λΠL

, A = (A′)↓λΠL
.

From (1) and (3), Ξ′. Ξ′
1; Γ |∼M : A. Therefore, by Lemma 3.6 and (3), Ξ′. Ξ1; Γ |∼M : A.

In our Cantor’s theorem example we verify that

Ξ |∼ {|X/Ξ′(h Xp Xx)|},

where Ξ = X: Γ(eq Y Y ). Y : Γbool, and Ξ′ =
(eq (Xp Xx) (not (Xp (f (g Xx))))) 'Γ (eq Y Y ).
Xx: Γnat→ bool. Xp: Γ(nat→ bool) → bool.

In fact, Ξ′ contains meta-variables which are not already declared in Ξ (thus, Ξ′ can be safely installed in
Ξ), X is declared in Ξ, and

Ξ′. Y : Γbool |∼ (h Xp Xx) : (eq Y Y ).

Then, by Definition 3.11,

Ξ |∼ {|X/Ξ′(h Xp Xx)|}.

Given a constrained signature, the choice of the next meta-variable to solve is crucial. Since properties
like confluence and normalization are available for any typeable expression in a prefix of a constrained
signature without constraints, meta-variables in those prefixes are very appropriate to solve in the first
place. The next property states that such variables exist.

Lemma 3.15. Let Ξ be the λΠL-normal form of a valid constrained signature such that Ξ 6= ε and Ξ is
not a failure signature. Then, Ξ has the form Ξ2. X: ΓA. Ξ1, where

1. Ξ1 does not contain constraints, and
2. ` X: ΓA. Ξ1.

Proof. The constrained signature Ξ is not empty, then it has at least one element. Assume that the first
element is a constraint M 'Γ N . By hypothesis and Lemma 3.6, |∼ Ξ. Hence, it holds that |∼ M 'Γ N .
By inversion of rule (Constraint), Γ |∼ M : B and Γ |∼ N : B. Since M,N,B are well-typed without
meta-variables, they are ground, and by Lemma 3.4, it holds that Γ ` M : B and Γ ` N : B. Since Ξ is
a signature in λΠL-normal form, M and N are not identical. But this is not possible because Ξ is not a
failure context. Therefore, the first element of Ξ is not a constraint, and thus, Ξ has the form Ξ2. X: ΓA. Ξ1,
where Ξ1 does not contain constraints. By the typing rules, we have |∼ X: ΓA. Ξ1, and thus, by Lemma 3.4,
` X: ΓA. Ξ1.

The type of a meta-variable gives enough information to guess a valid grafting. Assume, for example,
that a meta-variable X has a type A. If A = Kind, then by inversion of the type rule (Type), X may be
instantiate with Type. But also, by inversion of the rule (Prod), X may be instantiate with the term Πx:Z.Y
where Z is a new meta-variable of type one of the sorts {Kind,Type}, and Y is a new meta-variable of type
A (notice that Y should be declared in a context where the variable declaration x : Z exists). This case also
applies if A = Type.
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If A is a product, i.e., A = Πx:A1.A2, by inversion of the rule (Abs), we can instantiate X with the term
λx:A1.Y where Y is a new meta-variable of type A (declared in a context where the variable declaration
x : A1 exists).

In any case, and by inversion of the rule (Appl), it is always possible to instantiate X with the term
(Y Z), where Y is a meta-variable of type Πx:YB .YA, Z is a meta-variable of type YB, YB is a meta-variable
of one of the sorts {Kind,Type}, YA is a meta-variable with the same type as A (declared in a context where
the variable declaration x : YB exists), and the constraint A ' YA[Z ·YB

↑0] is added to the constrained
signature. However, since we are interested in solutions modulo ≡λΠL , any normal instantiation of Y has
the form (n M1 . . . Mi) where n is a variable. Using this remark, we simplify the current case by using
the variables of the context where the meta-variable X has been declared. Assume a variable declaration
n : Πx1:A1.. . .Πxj :Aj .B1. The meta-variable X can be instantiated with the term (n X1 . . . Xi) of type
B2, where i ≤ j, X1, . . . ,Xi are new meta-variables of the right type (according to the type of n), and the
constraint A ' B2 is added to the constrained signature. We call this case imitation, because it is very
similar to the imitation rule of higher-order unification algorithms [22].

The imitation case, as it has been described before, is not complete. In a polymorphic type system,
as the Calculus of Constructions, if the type of a term M is Πx:A.B, where B is not a product, the type
of (M N) may still be a product. That is, the number of arguments of M is not bounded by the number
of products in its type. Take for example the context O : nat. nat : Type. P : Πx:Type.x. In this context,
(P nat) : nat, (P (nat → nat) O) : nat, (P (nat → nat → nat) O O) : nat, . . . . In fact, for any natural
number i > 0, there exist M1, . . . ,Mi such that (P M1 . . . Mi) : nat.

The fact that the number of arguments of a term is not fixed by its type is called splitting [21]. Splitting
raises some technical problems in higher-order unification algorithms and so, in proof-synthesis methods [13].

Given the valid judgment Σ; Γ ` M : Πx1:A1.. . .Πxi:Ai.B, where B is not a product, for any j > 0,
there exists a term N having the form (M X1; . . . Xj) such that it is well-typed in a constrained signature
extending Σ. The term N is called an imitation of M of grade j. Furthermore, if j > i, (j− i) is the splitting
grade of N . Otherwise, the splitting grade of N is 0. We describe a method to build imitations of arbitrary
splitting grade.

Definition 3.16 (Imitation with splitting). Let Σ be a signature, without constraints, in λΠL-normal
form, M be a term such that Σ; Γ ` M : A, and Σ; Γ ` A : s where s ∈ {Kind,Type}. For i ≥ 0, the set of
imitations of M of grade i, denoted [Σ; Γ `M : A]i, is a set of judgments in λΠL with constraints defined
by induction on i as follows.

• If i = 0, then {Σ; Γ |∼M : A}.
• If i > 0, then for all Ξ; Γ |∼ N : B in [Σ; Γ `M : A]i−1, we consider the union of the following set

of judgments,3

– If B has the form ΠA1 .A2, then

{Ξ′. Ξ; Γ |∼ N ′ : B′| Ξ′ = X: ΓA1,

X is a fresh meta-variable,
N ′ = (N X),
B′ ∈ (A2[X ·A1 ↑

0])↓ΠL
}

3We recall that ΠL is strongly normalizing (Lemma 2.1).
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– Otherwise — this is the case of splitting,

{Ξ′. Ξ; Γ |∼ N ′ : B′| Ξ′ = B 'Γ ΠY1 .Y2. X: ΓY1. Y2: Y1.Γs2. Y1: Γs1,

X, Y1, Y2 are fresh meta-variables,
s1 ∈ {Kind,Type},
s2 = s,

N ′ = (N X),
B′ ∈ (Y2[X ·Y1 ↑

0])↓ΠL
}

We verify that judgments in the set [Σ; Γ `M : A]i are valid.
Lemma 3.17. Let Σ be a signature in λΠL-normal form, M be a term such that Σ; Γ ` M : A, and

Σ; Γ ` A : s where s ∈ {Kind,Type}. For i ≥ 0, the elements of [Σ; Γ `M : A]i are valid judgments.
Proof. By induction on i. The base case holds by Lemma 3.4. At the induction step we use the rules

(Appl), (Conv), and the fact that the reduction to ΠL-normal form preserves the type.
We formally define the elementary graftings.
Definition 3.18 (Elementary graftings). Let Ξ be the λΠL-normal form of a valid constrained signature

such that Ξ 6= ε and Ξ is not a failure signature. We choose a meta-variable X in Ξ, i.e., Ξ = Ξ2. X: ΓA. Ξ1,
such that ` X: ΓA. Ξ1. Such a meta-variable exists by Lemma 3.15. We define the following graftings by
case analysis on A (the cases are not disjoint):

1. A = Kind. We consider the grafting {|X/εType|}.
2. A ∈ {Kind,Type}. For any s ∈ {Kind,Type}, we consider the grafting {|X/Ξ′ΠZ .Y |}, where Z, Y are

fresh meta-variables, and Ξ′ = Y : Z.ΓA. Z: Γs.
3. A = ΠA1 .A2. We consider the grafting {|X/Ξ′λA1 .Y |}, where Y is a fresh meta-variable, and Ξ′ =

Y :A1.ΓA2.
4. Ξ1; Γ ` A : s1, s1 ∈ {Kind,Type}. For all variables n in the context Γ, i.e., 1 ≤ n ≤ |Γ|, such that

Ξ1; Γ ` n : B (B is a λΠL-normal form), and for i ≥ 0, we consider all the graftings

{|X/A'ΓA′. Ξ′M |}

where Ξ′. Ξ1; Γ |∼M : A′ is in [Ξ1; Γ ` n : B]i.
All the graftings considered above form the set of elementary graftings of the meta-variable X in Ξ.
Due to the splitting rule, the set of elementary graftings of one meta-variable is potentially infinite.

Some of the elementary graftings lead to failure signatures. An early detection of failure signatures allows
the pruning of the research space of valid graftings. This is why we use constrained signatures in λΠL-normal
form.

We verify that the elementary graftings are valid graftings.
Theorem 3.19 (Elementary graftings). Let Ξ be the λΠL-normal form of a valid constrained signature

such that Ξ 6= ε and Ξ is not a failure signature. If X is a meta-variable in Ξ such that it is well-typed
without constraints, then the elementary graftings of X are valid graftings in Ξ.

Proof. By Lemma 3.15, Ξ has the form Ξ2. X: ΓA. Ξ1. First, we verify that

|∼ Ξ1; Γ,(3.1)

A = Kind or Ξ1; Γ |∼ A : s, s ∈ {Kind,Type}.(3.2)

Then, we reason by case analysis on A, and we consider all the elementary graftings of X.
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• A = Kind. By using Eq. 3.1 with the rule (Type), we get Ξ1; Γ |∼ Type : Kind. Therefore,
Ξ |∼ {|X/εType|}.

• A ∈ {Kind,Type}. For any s′ ∈ {Kind,Type}, we consider the grafting {|X/Ξ′ΠZ .Y |}, where Y, Z are
fresh meta-variables, and Ξ′ = Y : Z.ΓA. Z: Γs

′. We consider two cases according to the form of s′.
– s′ = Kind. We have the derivation

Eq. 3.1 (Meta-Var-Decl1)|∼ Z: ΓKind. Ξ1

– s′ = Type. We have the derivation

Eq. 3.1 (Type)
Ξ1; Γ |∼ Type : Kind (Meta-Var-Decl2)|∼ Z: ΓType. Ξ1

In both cases,

|∼ Z: Γs
′. Ξ1.(3.3)

The derivation continues as follows

Eq. 3.3 (Meta-Var)
Z: Γs

′. Ξ1; Γ |∼ Z : s′ (Var-Decl)
|∼ Z: Γs

′. Ξ1;Z.Γ

Now, we consider two cases according to the form of A.
– A = Kind. We have the derivation

|∼ Z: Γs
′. Ξ1;Z.Γ (Meta-Var-Decl1)|∼ Y : Z.ΓKind. Z: Γs

′. Ξ1

– A = Type. We have the derivation

|∼ Z: Γs
′. Ξ1;Z.Γ (Type)

Z: Γs
′. Ξ1; Γ |∼ Type : Kind (Meta-Var-Decl2)|∼ Y : Z.ΓType. Z: Γs

′. Ξ1

In both cases,

|∼ Y : Z.ΓA. Z: Γs
′. Ξ1.(3.4)

But also

Eq. 3.4 (Meta-Var)
Y : Z.ΓA. Z: Γs

′. Ξ1;Z.Γ |∼ Y : A (Prod)
Y : Z.ΓA. Z: Γs

′. Ξ1; Γ |∼ ΠZY : A

Therefore, Ξ |∼ {|X/Ξ′ΠZ .Y |},
• A = ΠA1 .A2. We consider the grafting {|X/Ξ′λA1 .Y |}, where Y is a fresh meta-variable, and Ξ′ =
Y :A1.ΓA2. As in the previous case we have the derivation

Eq. 3.2
. . .

Ξ′. Ξ1;A1.Γ |∼ Y : A2 (Abs)
Ξ′. Ξ1 |∼ λA1 .Y : ΠA1 .A2

Therefore, Ξ |∼ {|X/Ξ′λA1 .Y |}.
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• For 1 ≤ n ≤ |Γ| such that Ξ1; Γ ` n : B (B is a λΠL-normal form), we consider all the graftings

{|X/A'ΓA′. Ξ′M |}

where Ξ′. Ξ1; Γ |∼M : A′ is in [Σ; Γ ` n : B]i, i ≥ 0. By Lemma 3.17,

Ξ′. Ξ1; Γ |∼M : A′,(3.5)

Ξ′. Ξ1; |∼ A′ : s.(3.6)

We also have

Eq. 3.5
Ξ′. Ξ1; Γ |∼ A : s Ξ′. Ξ1; Γ |∼ A′ : s (Constraint)

|∼ A 'Γ A
′. Ξ′. Ξ1 (Conv)

A 'Γ A
′. Ξ′. Ξ1; Γ |∼M : A.

Therefore, Ξ |∼ {|X/A'ΓA′. Ξ′M |}.

3.4. Splitting in λP . In a calculus without polymorphism, as λP , splitting is not possible. Thus,
in that case the number of applications of a variable is fixed by its type. In our version of λP using the
λΠL-calculus, splitting is still possible since we allow meta-variables of types and kinds.

However, some simplifications are still possible.
A term having the form (X[S] M1 Mi) or (X M1 Mi), i ≥ 0, where X is a meta-variable is said to be

flexible. A term having the form Type, Kind, or (n M1 Mi), i ≥ 0 is said to be rigid. Consider a term M such
that Ξ; Γ |∼M : ΠA1 . . .ΠAiB in λP . If B is a λΠL-normal form and it is not a product, it is either flexible
or rigid. If B is flexible, the number of applications of n depends on the actual parameters of M . If B is
rigid, the number of applications of M cannot be greater than i. In that case, we could consider imitations
of M only of grade j ≤ i, since their splitting grade is 0, the set of such imitations is finite (module renaming
of fresh meta-variables).

3.5. Putting everything together: The method. Given a constrained signature Ξ, we solve each
meta-variable by exploring the set of its elementary graftings. We can organize the search of elementary
graftings as follows.

Definition 3.20 (Search tree). Let Ξ be a valid constrained signature; we build a search tree of Ξ,
where nodes are labeled by constrained signatures in λΠL-normal form and edges by elementary graftings, in
the following way:

• The root is labeled by (Ξ)↓λΠL
.

• Nodes labeled by the empty signature or by failure signatures are leaves.
• If a node is labeled by a signature Ξ which is not empty or a failure signature, we choose a meta-

variable X in Ξ such that it is well-typed in a signature without constraints and for each elementary
grafting {|X/Ξ′M |} of X, we grow an edge labeled by this elementary signature to a new node labeled
by (Ξ{|X/Ξ′M |})↓λΠL

.
We claim that if there exists a node labeled by the empty signature in a search tree of Ξ, then Ξ is

solvable, and a solution can be found by composing sequentially all the elementary graftings along a path
in the search tree containing the node labeled by the empty signature. Conversely, if there exists a solution
to a constrained signature Ξ, it can be found, modulo ≡λΠL , in a search tree of Ξ. These two properties,
soundness and completeness, are proved in Section 4.
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A semi-algorithm to solve a valid constrained signature is to enumerate the nodes of a search tree to
find a leaf labeled by the empty signature. Notice that the enumeration must deal with infinite paths in the
tree, but also with infinite branching because the set of elementary graftings of a meta-variable is potentially
infinite.

Example 1 (Revisited Cantor’s theorem example). Let Γ be the context
h : Πp:(nat→ bool) → bool.Πx:nat→ bool.(eq (p x) (not (p (f (g x))))).
eq : bool→ bool→ Type. not : bool→ bool.

g : (nat→ bool) → nat. f : nat→ nat→ bool. bool : Type. nat : Type,
and Ξ = X: Γ(eq Y Y ). Y : Γbool. Find a solution to Ξ.

A search tree is built from the root Ξ (notice that it is a λΠL-normal form). Since Ξ does not contain
constraints, we can take any meta-variable of Ξ to solve. Let us choose the meta-variable X. The type of X is
neither a product nor a sort. Therefore, the only elementary graftings that are possible for this meta-variable
are those generated by the imitation step. We instantiate X with an imitation of grade 2 of the variable h
(no splitting takes place),

[Ξ; Γ ` h : Πp:(nat→ bool) → bool.Πx:nat→ bool.

(eq (p x) (not (p (f (g x)))))]2 =
{Ξ′. Ξ; Γ |∼ (h Xp Xx) : (eq (Xp Xx) (not (Xp (f (g Xx)))))|
Xx,Xp are fresh meta-variables,
Ξ′ = Xx: Γnat→ bool. Xp: Γ(nat→ bool) → bool}

We label an edge with the elementary grafting,

{|X/Ξ1(h Xp Xx)|},

where Ξ1 =
(eq (Xp Xx) (not (Xp (f (g Xx))))) 'Γ (eq Y Y ).
Xx: Γnat→ bool. Xp: Γ(nat→ bool) → bool.

This edge points to the constrained signature:
(eq (Xp Xx) (not (Xp (f (g Xx))))) 'Γ (eq Y Y ).
Xx: Γnat→ bool. Xp: Γ(nat→ bool) → bool.

Y : Γbool.

Notice that the meta-variable X is no longer in the signature. Instead, there are new meta-variables Xx and
Xp. At this stage, any meta-variable can be chosen. We solve the meta-variable Xx of type nat→ bool. An
elementary grafting of this meta-variable is

{|Xx/Ξ2λy:nat.Z|},

where Ξ2 = Z: y:nat. Γbool. We label a new edge with this elementary grafting. It points to the constrained
signature:

(eq (Xp λy:nat.Z) (not (Xp (f (g λy:nat.Z))))) 'Γ (eq Y Y ).
Z: y:nat. Γbool. Xp: Γ(nat→ bool) → bool.

Y : Γbool.
Eventually, after some iterations an empty signature is obtained. A solution can be found by composing

all the elementary graftings along the path of the search tree leading to the empty signature.
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4. Soundness and Completeness.

4.1. Soundness. We claim that if Ξ1
θ1
- Ξ2

θ2
- . . .

θn−1
- Ξn is a path of the search tree of a valid

constrained signature Ξ, such that Ξ1 = (Ξ)↓λΠL
and Ξn = ε, the sequential composition of the graftings

θ1, . . . , θn−1 results in a solution to Ξ.
The proof of this statement goes as follows. First, we describe which lists of grafting are valid with

respect to a valid constrained signature. These lists are called sequential graftings. Next, we characterize
the sequential graftings that lead to an empty signature. They are called derivations. The key points of the
proof are:

1. The sequential composition of the graftings in a derivation of Ξ is a solution to Ξ.
2. A path from the root of a search tree of Ξ leading to an empty signature is a derivation of Ξ.

The soundness theorem is a consequence of (1) and (2).
Definition 4.1 (Sequential grafting). A list ψ = 〈θ1, . . . , θi〉, i ≥ 0, of graftings is a sequential grafting

of a valid constrained signature Ξ if and only if
• ψ is the empty list, i.e., i = 0, or
• Ξ |∼ θ1 and 〈θ2, . . . , θi〉 is a sequential grafting of Ξθ1.

The application of ψ to Ξ, is defined as Ξψ = ((Ξθ1) . . .)θi. We overload this notation to apply sequential
graftings to expressions and contexts.

Definition 4.2 (Derivation). A sequential grafting ψ of a valid constrained signature Ξ is called a
derivation of Ξ if and only if (Ξψ)↓λΠL

= ε.
Remark 3. Failure signatures do not have derivations.
Definition 4.3 (Sequential composition). Let ψ be a sequential grafting of a valid constrained signature

Ξ. The sequential composition of ψ, denoted by ψ̃, is the parallel instantiation defined for all X in Ξ as
ψ̃(X) = Xψ.

The next propositions are proved at the end of this section. They are the key proving the soundness
theorem.

Proposition 4.4. If ψ is a derivation of a valid constrained signature Ξ, then ψ̃ — the sequential
composition of ψ— is a solution to Ξ.

Proposition 4.5. Let Ξ1
θ1
- Ξ2

θ2
- . . .

θn−1
- Ξn, n ≥ 0, be a path of a search tree of a valid

constrained signature Ξ such that Ξ1 = (Ξ)↓λΠL
, then the list of graftings ψ = 〈θ1, . . . , θn−1〉 is a sequential

grafting of Ξ, and for 0 < i ≤ n, Ξi = (Ξψ)↓λΠL
.

Theorem 4.6 (Soundness). Let (Ξ)↓λΠL

ψ
- ε be a path of a search tree of a valid constrained

signature Ξ, the sequential composition of ψ is a solution to Ξ.
Proof. By Proposition 4.5, ψ is a sequential grafting of Ξ, and ε = (Ξψ)↓λΠL

. Therefore, by Definition 4.2,
ψ is a derivation of Ξ. Finally, by Proposition 4.4, the sequential composition of ψ, i.e., ψ̃, is a solution to
Ξ.

The rest of this section is dedicated to the proof of Proposition 4.4 and Proposition 4.5.
First, we prove that sequential graftings preserve typing.
Lemma 4.7. Let ψ be a sequential grafting of a valid constrained signature Ξ,
1. if |∼ Ξ; Γ, then |∼ Ξψ; Γψ,
2. if Ξ; Γ |∼M : A, then Ξψ; Γψ |∼Mψ : Aψ, and
3. if Ξ; Γ |∼ S . ∆, then Ξψ; Γψ |∼ Sψ . ∆ψ.

Proof. We reason by induction on the length of the list ψ and Lemma 3.13.
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Proposition 4.4. If ψ is a derivation of a valid constrained signature Ξ, then ψ̃ is a solution to Ξ.
Proof. Since Ξ is a valid constrained signature, for any constraint M1 'Γ M2 and meta-variable decla-

ration X: ∆A in Ξ,

Ξ; Γ |∼M1 : B,(4.1)

Ξ; Γ |∼M2 : B,(4.2)

Ξ;∆ |∼ X : A.(4.3)

Because ψ is a sequential grafting of Ξ, and by Lemma 4.7,

Ξψ; Γψ |∼M1ψ : Bψ,(4.4)

Ξψ; Γψ |∼M2ψ : Bψ,(4.5)

Ξψ; ∆ψ |∼ Xψ : Aψ.(4.6)

By Lemma 3.6,

(Ξψ)↓λΠL
; Γψ |∼M1ψ : Bψ,(4.7)

(Ξψ)↓λΠL
; Γψ |∼M2ψ : Bψ,(4.8)

(Ξψ)↓λΠL
; ∆ψ |∼ Xψ : Bψ.(4.9)

By Definition 4.3, Γψ = ψ̃(Γ), ∆ψ = ψ̃(∆), M1ψ = ψ̃(M1), and M2ψ = ψ̃(M2). Since ψ is a derivation of
Ξ, (Ξψ)↓λΠL

= ε. Thus, M1 'Γ M2 is not in (Ξψ)↓λΠL
. Hence, (M1ψ)↓λΠL

and (M2ψ)↓λΠL
are identical

ground terms (otherwise the constraint could not be discharged). Therefore, ψ̃ is a solution to Ξ.
Lemma 4.8. For all valid constrained signature Ξ, ψ is a sequential grafting of Ξ if and only if ψ is a

sequential grafting of (Ξ)↓λΠL
.

Proof. By induction on the length of ψ. If ψ is the empty list, then the conclusion is trivial by
Definition 4.1. Otherwise, we use the induction hypothesis, and Lemma 3.14.

Lemma 4.9. For all valid constrained signature Ξ, if ψ is a sequential grafting of (Ξ)↓λΠL
, then

((Ξ)↓λΠL
ψ)↓λΠL

= (Ξψ)↓λΠL
.

Proof. By induction on the length of ψ. The base case is trivial. At the induction step we use equational
reasoning on λΠL.

Proposition 4.5. For all n ≥ 0, if Ξ1
θ1
- Ξ2

θ2
- . . .

θn−1
- Ξn is a path of a search tree of a valid

constrained signature Ξ such that Ξ1 = (Ξ)↓λΠL
, the list of graftings ψ = 〈θ1, . . . , θn−1〉 is a sequential

grafting of Ξ, and for 0 < i ≤ n, Ξi = (Ξψ)↓λΠL
.

Proof. By induction on n. The base case is trivial. Assume that n > 0 and take ψ′ = 〈θ2, . . . , θi〉. By
construction, θ1 is an elementary grafting of a meta-variable in Ξ1. Thus, by Theorem 3.19, θ1 is a valid
grafting of Ξ1 and Ξ2 = (Ξ1θ1)↓λΠL

is well-defined. By induction hypothesis, ψ′ is a sequential grafting of
Ξ1θ1, and Ξi = (Ξ1〈θ1ψ′〉)↓λΠL

= (Ξ1ψ)↓λΠL
. By Definition 4.1, ψ is a sequential grafting of Ξ1 = (Ξ)↓λΠL

.
Therefore, by Lemma 4.8, ψ is a sequential grafting of Ξ, and by Lemma 4.9, Ξi = (Ξψ)↓λΠL

.
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4.2. Completeness. The completeness property states that if there is a solution Ψ to a constraint
signature Ξ, there exists a derivation ψ of Ξ, such that ψ̃ ≡λΠL Ψ. This claim is proved by induction on the
size of Ψ.

Definition 4.10 (Size of a pure term). The size of a pure term defined by induction over the structure
of terms is as follows.

• |s| = 1, if s ∈ {Kind,Type}.
• |n| = 1.
• |(M N)| = |M |+ |N |+ 1.
• |λA.M | = |A|+ |M |+ 1.
• |ΠA.B| = |A|+ |B|+ 1.

Definition 4.11 (Size of a parallel instantiation). Let Ψ be a parallel instantiation of a constrained
signature Ξ, the size of Ψ, denoted by |Ψ|, is the sum of the sizes of Ψ(X) for all X in Ξ.

Lemma 4.12. Let Ξ be a valid constrained signature in λΠL-normal form, if Ψ is a normal solution of
Ξ, then there exists a search tree of Ξ with a derivation ψ, such that ψ̃ ≡λΠL Ψ.

Proof. By induction on the size of ΨΞ.4 Since ΨΞ is a solution to Ξ, Ξ is not a failure signature. If Ξ = ε,
the empty list is a derivation of Ξ. Otherwise, take the first meta-variable declared in Ξ, namely X: ΓA.
This meta-variable exists by Lemma 3.15. Notice that A and Γ do not depend on any other meta-variable or
constraint. We reason by case analysis on M = ΨΞ(X). Since Ξ is a constrained signature in λΠL-normal
form and Ψ is a normal solution, M,A,Γ are ground λΠL-normal forms.

• M = Type. In this case, A = Kind. Consider the elementary grafting of X, θ = {|X/εType|}. Let
Ξ1 = (Ξθ)↓λΠL

, Ξ1 is well-defined by Lemma 3.13 and Theorem 3.19. We check that Ψ′
Ξ1

(X) =
ΨΞ(X), X ∈ Ξ1, is a normal solution of Ξ1, and that |Ψ′

Ξ1
| < |ΨΞ|.

• M = ΠA1 .A2. In this case, A ∈ {Kind,Type} and Γ ` A1 : s, s ∈ {Kind,Type}. Consider
the elementary grafting of X, θ = {|X/Ξ′ΠZ .Y |}, where Z, Y are fresh meta-variables, and Ξ′ =
Y : Z.ΓA. Z: Γs. Let Ξ1 = (Ξθ)↓λΠL

. We check that

Ψ′
Ξ1

(W ) =


A1 if W = Z

A2 if W = Y

ΨΞ(W ) otherwise

is a normal solution of Ξ1, and that |Ψ′
Ξ1
| < |ΨΞ|.

• M = λA1 .N . In this case, A ∈ ΠA1 .A2 and Γ ` N : A2. Consider the elementary grafting of X,
θ = {|X/Ξ′λA1 .Y |}, where Y is a fresh meta-variable, and Ξ′ = Y :A1.ΓA2. Let Ξ1 = (Ξθ)↓λΠL

. We
check that

Ψ′
Ξ1

(W ) =

{
A2 if W = Y

ΨΞ(W ) otherwise

is a normal solution of Ξ1, and that |Ψ′
Ξ1
| < |ΨΞ|.

• M = (n M1 . . . Mi). In this case, Γ ` n : B, B (in λΠL-normal form) is a product, Γ ` A : s, and
s ∈ {Kind,Type}. Consider the elementary grafting of X, θ = {|X/A'ΓA′. Ξ′(n X1 . . . Xi)|} where
Ξ′; Γ ` (n X1 . . . Xi) : A′ is in [Γ ` n : B]i. Let Ξ1 = (Ξθ)↓λΠL

. We check that

Ψ′
Ξ1

(W ) =

{
Mj if W = Xj , 0 < j ≤ i

ΨΞ(W ) otherwise

4In this proof, the index of Ψ is relevant.
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is a normal solution of Ξ1, and that |Ψ′
Ξ1
| < |ΨΞ|.

In all the cases |Ψ′
Ξ1
| < |ΨΞ|, then by induction hypothesis, there exists a search tree of Ξ1 with a derivation

ψ1, such that ψ̃1 ≡λΠL Ψ′
Ξ1

. Then, ψ = 〈θ, ψ1〉 is a derivation of Ξ. Since ΨΞ(X) = Ψ′
Ξ1

(Xθ), for all X ∈ Ξ,
ΨΞ(X) ≡λΠL X〈θ, ψ1〉 = Xψ. Therefore, ψ̃ ≡λΠL ΨΞ.

Theorem 4.13 (Completeness). Let Ξ be a valid constrained signature, if Ψ is a solution of Ξ, then
there exists a search tree of Ξ with a derivation ψ, such that ψ̃ ≡λΠL Ψ.

Proof. If Ψ is a solution of Ξ, by Lemma 3.6 and Definition 3.8, Ψ is a solution of (Ξ)↓λΠL
too. By

Remark 1, the parallel instantiation Ψ′(X) = (Ψ(X))↓λΠL
, X ∈ Ξ, is a normal solution of (Ξ)↓λΠL

. Hence,
by Lemma 4.12, there exists a search tree of (Ξ)↓λΠL

with a derivation ψ, such that ψ̃ ≡λΠL Ψ′. Therefore,
ψ̃ ≡λΠL Ψ. By Definition 3.20, a search tree of Ξ is a search tree of (Ξ)↓λΠL

.

5. Related Work and Summary. Automatic proof synthesis is at the basis of proof assistant systems.
A complete method for search of proof trees based on resolution and unification was formulated by Robinson
[37] for the first-order logic, and by Huet [21] for the higher-order logic. In type systems, higher-order
unification (HOU) algorithms are known for the simply-typed λ-calculus [22] and for the λΠ-calculus of
dependent types [17, 35].

For the cube-type systems, Dowek [12, 13] reformulates the unification procedure and generalizes it as
a method of term enumeration. Recently, Cornes [10] proposed an extension of Dowek’s method to the
Calculus of Constructions with Inductive Types.

Dowek, Hardin, and Kirchner [15] propose a first-order presentation of Huet’s HOU algorithm based on
explicit substitutions and typed meta-variables. This algorithm is generalized to solve higher-order equational
unification by Kirchner and Ringeissen [25], and restricted to the case of higher-order patterns by Dowek,
Hardin, Kirchner, and Pfenning in [16]. The algorithm for pattern unification via explicit substitutions has
been extended (without proof) to dependent types, and implemented in the Twelf system [34].

On the other hand, Briaud [7] shows how HOU can be considered as a typed narrowing in the λυ-calculus
of explicit substitutions. Magnusson [28] presents a unification algorithm in Martin-Löf’s type theory with
explicit substitutions. This algorithm solves first-order unification problems, but leaves unsolved the flexible-
flexible constraints.

Our main contribution is the presentation of Dowek’s method of proof synthesis in a suitable theory with
explicit substitutions and meta-variables. This way, proof-terms can be built incrementally as the proofs are
done, and each construction step is guaranteed by the type system.

Just as in [12, 13], the method presented here is sound and complete. Thus, it can be seen as a semi-
algorithm for ground higher-order unification in λP and the Calculus of Constructions. Although, the
implementation issues are out of the scope of this paper, a preliminary version of our method has been
implemented in OCaml, and it is electronically available by contacting the author.

The underlying theory of the method proposed here is the λΠL-calculus. We believe that the same ideas
can be applied to other formalisms satisfying at least the same typing properties as λΠL, that is, confluence,
weak-normalization, subject reduction, and instantiation lemma. The λΠL-calculus has some features that
are useful for our proof-synthesis method and they seem to be in unification issues:

• It is a finite first-order rewriting system. In particular, some properties as soundness and complete-
ness of the method are much simpler to prove.

• It uses general composition of substitutions and simultaneous substitutions. In [33], we discuss
efficiency improvements to the method based on these features.

• Since substitutions distribute under abstractions and products, normal forms have a simple charac-
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terization. For example, the normal form of a type has the form ΠA1 . . . .ΠAi .A where A is not a
product.

Finally, notice that λΠL does not handle the η-rule. Extensional versions of explicit substitution calculi
have been studied for ground terms [24]. However, work is necessary to understand the interaction with
dependent types and meta-variables.
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