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ENTROPY ANALYSIS OF KINETIC FLUX VECTOR SPLITTING SCHEMES

FOR THE COMPRESSIBLE EULER EQUATIONS ∗

SHIUHONG LUI† AND KUN XU‡

Abstract. Flux Vector Splitting (FVS) scheme is one group of approximate Riemann solvers for the
compressible Euler equations. In this paper, the discretized entropy condition of the Kinetic Flux Vector
Splitting (KFVS) scheme based on the gas-kinetic theory is proved. The proof of the entropy condition
involves the entropy definition difference between the distinguishable and indistinguishable particles.
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1. Introduction. There are many numerical approaches to the solution of the Euler equations. Go-
dunov and Boltzmann schemes are two of them [4]. Broadly speaking, Godunov scheme is based on the
Riemann solution in the gas evolution stage, and the Boltzmann scheme uses the microscopic particle distri-
bution function as the basis to construct the fluxes. While the construction methodology is different between
the Godunov and kinetic schemes, both first order schemes can be written in the framework of the 3−point
conservative methods.

There are mainly two kinds of gas-kinetic schemes, and the differences are in the governing equations
in the gas evolution stage. One of the well-known kinetic schemes is called KFVS which is based on the
collisionless Boltzmann equation [9, 10], and the other is based on the collisional BGK model [15]. By
combining the dynamical effects from the gas evolution stage and projection stage, the real governing equation
for both KFVS and BGK schemes are physically the same except the particle collision time τ in the BGK
scheme is replaced by the CFL time step ∆t in the KFVS scheme [14].

The previous paper [11] analyzed the positivity property, such as positive density and pressure, for the
gas-kinetic scheme. In this sequel, we analyze the entropy condition for the first order KFVS schemes.

2. Preliminaries. We consider the one dimensional Euler equations of gas dynamics:




ρt +mx = 0,
mt + (mU + p)x = 0,
Et + (EU + pU)x = 0,

(2.1)

where ρ is the density, U the velocity, m = ρU the momentum, E = 1
2ρU

2 + ρe the energy per unit mass, e
the internal energy density, p the pressure. We assume that the gas is a γ-law gas, i.e., p = (γ−1)ρe. In order
to obtain the approximate solution for the above equations, the gas-kinetic scheme solves the Boltzmann
equation in the gas evolution stage.
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The Boltzmann equation in the 1-D case is [6]

ft + ufx = Q(f, f),

where f is the gas-distribution function, u the particle velocity, and Q(f, f) the collision term. The collision
term is an integral function which accounts for the binary collisions. In most cases, the collision term can
be simplified and the BGK model is the most successful one [1],

Q(f, f) = (g − f)/τ,

where g is the equilibrium state and τ the collision time. For the Euler equations, the equilibrium state g is
a Maxwellian,

g = ρ

(
λ

π

)K+1
2

e−λ((u−U)2+ξ2),(2.2)

where ξ is a K dimensional vector which accounts for the internal degrees of freedom, such as molecular
rotation and vibrations, and ξ2 = ξ21 + ξ22 + ...+ ξ2K . Note that K is related to the specific heat ratio γ,

K = (3− γ)/(γ − 1).

Monotonic gas has γ = 5/3, and diatomic gas has γ = 1.4. The lower limit of γ is 1, which corresponds
to an infinite number of internal degrees of freedom. For example, γ = 103/101 is equivalent to K = 100,
which gives 98 internal degrees of freedom for the molecule. In the equilibrium state, λ is related to the gas
temperature T

λ =
m

2kT
,

where m is molecular mass and k the Boltzmann constant.
The connection between the distribution function f and macroscopic flow variables is

(ρ,m,E)T =
∫
ψαfdudξ,

where dξ = dξ1dξ2...dξK and

ψα = (1, u,
1
2
(u2 + ξ2))T

are the moments of density ρ, momentumm and total energyE. The fluxes for the corresponding macroscopic
variables are

(Fρ, Fm, FE)T =
∫
uψαfdudξ.(2.3)

The conservation principle for mass, momentum and energy during the course of particle collisions requires
Q(f, f) to satisfy the compatibility condition∫

Q(f, f)ψαdudξ = 0, α = 1, 2, 3.

In the 1-D case, the entropy condition for the Boltzmann equation is

∂H

∂t
+
∂G

∂x
≤ 0,
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where the entropy density is

H =
∫
f ln fdudξ

and the corresponding entropy flux is

G =
∫
uf ln fdudξ.

The first-order numerical conservative scheme can be written as

Wn+1
j = Wn

j + σ(Fnj−1/2 − Fnj+1/2),

where Wj = (ρj ,mj , Ej)T is the cell averaged conservative quantities, Fnj+1/2 is the corresponding fluxes
across the cell interface, and σ = ∆t/∆x. For the 1st-order gas-kinetic scheme, the numerical fluxes across
cell interface depend on the gas distribution function fnj+1/2 via (2.3). The discretized entropy condition for
the above 3-point method is

Hn+1
j ≤ Hn

j +
∆t
∆x

(Gnj−1/2 −Gnj+1/2),(2.4)

where Hj =
∫
fj ln fjdudξ is the cell averaged entropy density and Gj+1/2 =

∫
ufj+1/2 ln fj+1/2dudξ is the

entropy flux across a cell interface. In this paper, we prove the above inequality for the KFVS scheme. Since
the KFVS scheme assumes an equilibrium distribution inside cell j at the beginning of each time step, Hn

j

becomes

Hn
j =

∫
gnj ln gnj dudξ

= ρnj ln ρnj + ρnj
K + 1

2
(ln

λnj
π
− 1). (with the equilibrium distribution in Eq.(2.2))(2.5)

Since at the beginning of each time step, the gases in the cells j−1, j, and j+1 are basically distinguishable,
the updated flow variables Wn+1

j inside cell j at time step n+1 are composed of three distinguishable species
from cells j − 1, j, and j + 1. So, the total entropy density Hn+1

j is the addition of the entropy of different
species.

It is very difficult get a rigorous proof of the discretized entropy condition (2.4) for the nonlinear hy-
perbolic system. The difficulty is mostly in the interaction between numerical gas from different cells. The
update of the entropy in each cell is a complicated function of all flow variables including the ones from the
surrounding cells. Since the entropy condition only tells us the possible direction for a system to evolve, it
does not point out exactly which way to go. So, in order to analyze the entropy condition for the discretized
scheme, we design a “physical path” for the gas system to evolve. With the same initial and final conditions
for the mass, momentum and energy inside each cell, the proof of the entropy condition becomes the proofs
of the entropy-satisfying solution in each section of the physical path. Fortunately, for the KFVS scheme, we
can design such a physical process. To show (2.4), we use results in statistical mechanics about the definition
of entropy for distinguishable and indistinguishable particles.

3. KFVS Scheme. In this section we consider the kinetic flux-splitting scheme (i.e. collisionless
scheme) proposed by Pullin [10] and Deshpande [2]. The scheme uses the fact that the Euler equations
(2.1) are the moments of the Boltzmann equation when the velocity repartition function is Maxwellian. As
numerically analyzed in [7], the flux function of the KFVS scheme is almost identical to the FVS flux of
van Leer [13]. In Section 3.1 we briefly recall the collisionless scheme. In Section 3.2 we prove the entropy
condition for KFVS under the standard CFL condition. The positivity of the KFVS scheme has been
analyzed in [3, 9, 11].
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3.1. Numerical scheme. In order to derive the collisionless Boltzmann scheme, we need to construct
the numerical fluxes across each cell interface. We suppose that the initial data (ρ(x),m(x), E(x)) are
piecewise constant over the cells Cj = [xj−1/2, xj+1/2]. At each time level, once ρj ,mj and Ej are given, the
corresponding Uj and λj can be obtained by the following formulae:

m = ρU, E =
1
2
ρU2 +

K + 1
4λ

ρ.(3.1)

Let

gj = ρj

(
λj
π

)K+1
2

e−λj((u−Uj)
2+ξ2)(3.2)

be a Maxwellian distribution in the cell Cj . The corresponding distribution function at the cell interface is
defined by

f(xj+1/2, t, u, ξ) =

{
gj , if u > 0
gj+1, if u < 0.

(3.3)

Using the formulae (2.3), we obtain the numerical fluxes




Fρ,j+1/2

Fm,j+1/2

FE,j+1/2


 = ρj




Uj

2 erfc(−√λjUj) + 1
2
e
−λj U2

j√
πλj(

U2
j

2 + 1
4λj

)
erfc(−√λjUj) + Uj

2
e
−λjU2

j√
πλj(

U3
j

4 + K+3
8λj

Uj

)
erfc(−√λjUj) +

(
U2

j

4 + K+2
8λj

)
e
−λjU2

j√
πλj


(3.4)

+ρj+1




Uj+1
2 erfc(

√
λj+1Uj+1)− 1

2
e
−λj+1U2

j+1√
πλj+1(

U2
j+1
2 + 1

4λj+1

)
erfc(

√
λj+1Uj+1)− Uj+1

2
e
−λj+1U2

j+1√
πλj+1(

U3
j+1
4 + K+3

8λj+1
Uj+1

)
erfc(

√
λj+1Uj+1)−

(
U2

j+1
4 + K+2

8λj+1

)
e
−λj+1U2

j+1√
πλj+1


 ,

where the complementary error function, which is a special case of the incomplete gamma function, is defined
by

erfc(x) =
2√
π

∫ ∞

x

e−t
2
dt.

Using the above numerical fluxes, we are able to update ρj ,mj, Ej with the standard conservative formula-
tions: 


ρ̃j

m̃j

Ẽj


 =




ρj

mj

Ej


+ σ




Fρ,j−1/2 − Fρ,j+1/2

Fm,j−1/2 − Fm,j+1/2

FE,j−1/2 − FE,j+1/2


 ,(3.5)

where W̃j = Wn+1
j and

σ =
∆t
∆x

,

with ∆t the stepsize in time, and ∆x the mesh size in space. The scheme can be viewed as consisting of the
following three steps (although it is not typically implemented this way):
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ALGORITHM (KFVS Approach)

1. Given data {ρnj , Unj , Enj }, compute {λnj } using (3.1).
2. Compute the numerical flux {Fρ,j+1/2, Fm,j+1/2, FE,j+1/2} using (3.4).
3. Update {ρnj ,mn

j , E
n
j } using (3.5). This gives {ρn+1

j ,mn+1
j , En+1

j }.
3.2. Entropy analysis. The analysis of entropy condition for the KFVS scheme has attracted some

attention in the past years. In [2], Deshpande stated the entropy condition in the smooth flow regions. In
[5], Khobalatte and Perthame gave a proof of the maximum principle entropy condition for a gas kinetic
scheme with a specific equilibrium distribution and a piecewise constant entropy function. In [8], an entropy
inequality is introduced for a special distribution function. In this section, for the first time, we show that at
the discretized level, the KFVS scheme satisfies the entropy condition with the exact equilibrium Maxwellian
distribution.

With the same initial and final mass, momentum and energy densities in Eq.(3.5), we can design a
physical path for the flow updating process. The proof of the entropy condition is based on the entropy-
satisfying solution in each section of the evolving path.

In the first step, we consider the case when there is only gas flowing out from cell Cj . This gives

W ∗ =




ρ∗j
m∗
j

E∗j


 =




ρj

mj

Ej


+ σ



∫
u<0

ugjdudξ −
∫
u>0

ugjdudξ∫
u<0 u

2gjdudξ −
∫
u>0 u

2gjdudξ∫
u<0

u
2 (u2 + ξ2)gjdudξ −

∫
u>0

u
2 (u2 + ξ2)gjdudξ


 .(3.6)

The second step is to consider the inflow from adjacent cell Cj−1,

Ŵ =




ρ̂j

m̂j

Êj


 = σ



∫
u>0

ugj−1dudξ∫
u>0 u

2gj−1dudξ∫
u>0

u
2 (u2 + ξ2)gj−1dudξ


 .(3.7)

In the third step, the inflow from adjacent cell Cj+1 is considered,

W̄ =




ρ̄j

m̄j

Ēj


 = σ



− ∫

u<0
ugj+1dudξ

− ∫u<0 u
2gj+1dudξ

− ∫
u<0

u
2 (u2 + ξ2)gj+1dudξ


 .(3.8)

The fourth step is to include particle collisions to let W ∗, Ŵ and W̄ in the above equations to exchange
momentum and energy inside cell j and to form the individual equilibrium states W ∗′, Ŵ ′ and W̄ ′ with a
common velocity and temperature,

W̃ =




ρ̃j

m̃j

Ẽj


 =




ρ∗j
m∗
j

E∗j


+




ρ̂j

m̂j

Êj


+




ρ̄j

m̄j

Ēj




=




ρ∗j
m∗
j
′

E∗j
′


+




ρ̂j

m̂′
j

Ê′j


+




ρ̄j

m̄′
j

Ē′j


 .(3.9)

During the above collisional phase, the individual mass, total momentum and energy are unchanged. It
can be verified that (ρ̃j , m̃j , Ẽj) obtained by (3.9) are exactly the same as those obtained by using (3.5).
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In terms of updating conservative variables, the above four stages form the complete KFVS scheme. The
entropy density Hn+1

j at time n+ 1 inside cell Cj is the sum of the individual entropy of different species.
Suppose that the CFL condition

σ ≤ 1
maxj (|Uj |+ cj)

(3.10)

is satisfied, where cj =
√
γ/2λj is the local speed of sound. It has been shown in [11] that the positivity

conditions are precisely satisfied for the flow variables ρ∗j ≥ 0 and ρ∗jE
∗
j − 1

2 (m∗
j )

2 ≥ 0, as well as ρ̃j ≥ 0 and
ρ̃jẼj − 1

2 (m̃j)2 ≥ 0.
In the following, we prove that the discretized entropy condition is satisfied in the above four physical

processes. As a result, the whole numerical path in the flow updating scheme satisfies the entropy condition
(2.4).

Lemma 3.1. Assume that the CFL condition is satisfied. If ρj ≥ 0 and ρjEj ≥ 1
2m

2
j , then the entropy

condition is satisfied in the updating process for (ρ∗j ,m
∗
j , E

∗
j ).

Proof. We need to show that∫ ∞

−∞
g∗j ln g∗jdudξ ≤

∫ ∞

∞
gj ln gjdudξ + σ

[∫
u<0

ugj ln gjdudξ −
∫
u>0

ugj ln gjdudξ
]
.(3.11)

We use the following relations to express the ∗ states in terms of the j states.

ρ∗j = ρj − σρj

{
1
2
Ujαj + βj

}
,

m∗
j = mj − σρj

{(
U2
j

2
+

1
4λj

)
αj + Ujβj

}
,

E∗j = Ej − σρj

{(
U3
j

4
+
K + 3
8λj

Uj

)
αj +

(
U2
j

2
+
K + 2
4λj

)
βj

}
,

where

αj = erfc
(
−√λjUj)− erfc

(√
λjUj

)
; βj =

e−λjU
2
j√

πλj
.(3.12)

The equilibrium state g∗j has an Maxwellian distribution which corresponds to the macroscopic densities
(ρ∗j ,m

∗
j , E

∗
j ).

After some algebra,∫ ∞

−∞
g∗j ln g∗jdudξ −

∫ ∞

−∞
gj ln gjdudξ − σ

[∫
u<0

ugj ln gjdudξ −
∫
u>0

ugj ln gjdudξ
]

= ρjF,

where

F =
{(

1− σ

2
(Ujαj + 2βj)

)(
(K + 2) ln

(
1− σ

2
(Ujαj + 2βj)

)
− K + 1

2
lnh1

)
− σ

2
βj

}
,

h1 = 1− σλj
K + 1

(Ujαj + 2βj)
(
U2
j +

K + 1
2λj

)
− σλj
K + 1

(
1− σ

2
(Ujαj + 2βj)

){(
U2
j +

K + 3
2λj

)
Ujαj+(

2U2
j +

K + 2
λj

)
βj

}
+

2σλj
K + 1

{(
U2
j +

1
2λj

)
αjUj + 2U2

j βj

}
−

2σ2λj
K + 1

{(
U2
j

2
+

1
4λj

)
αj + Ujβj

}2

.
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The goal is to show that F ≤ 0 for all positive σ up to the CFL limit. We can reduce the number of
parameters by one by introducing the non-dimensional number z =

√
λjUj which is equivalent to the local

Mach number in cell j. We also replace the parameter σ by c ∈ (0, 1] (CFL number) which is defined by:

σ =
c
√
λj

|z|+√γ/2 .(3.13)

Let

φ =
αj z

2
+
e−z

2

√
π

= erf(z) z +
e−z2

√
π
,

ψ =
e−2z2

π
+ z erf(z)

e−z2

√
π
− erf(z)2

2
,

d =
c

|z|+√γ/2 .
Then

F = (1− dφ)
[
ln(1− dφ)− K + 1

2
lnh
]
− e−z

2
d

2
√
π

where

h = 1− d

(K + 1)(1− dφ)2

(
e−z

2

√
π
− dψ

)
.

We now proceed to show that F = F (z,K, c) ≤ 0, where the arguments of the function are related to
Mach number, gas constant, and CFL number, respectively. First note that F is an even function of z and
hence we can restrict to the case z ≥ 0. By a direct calculation, dφ/dz = erf(z) > 0 for z > 0 and thus φ is
minimum at z = 0 where it equals 1/

√
π. This shows that φ is a positive function.

Next we show that 1− dφ is positive and less than one. Since both d and φ are positive, it is clearly less
than one. To show that it is positive, it is sufficient to show this for c = 1. Noting that e−z

2
/
√
π ≤ 1/

√
2,

we have

0 <
1√
2
− e−z2

√
π

z + 1√
2

<
z + 1√

2
− erf(z)z− e−z2√

π

z + 1√
2

≤ 1− dφ.

Now

e−z
2

√
π
− dψ =

e−z
2

√
π

[
1− d

(
erf(z)z +

e−z2

√
π

)]
+
d

2
erf(z)2

=
e−z

2

√
π

(1 − dφ) +
d

2
erf(z)2 > 0.

From the above, 0 < h < 1.
The key observation is that for any fixed K and z, F attains its maximum at c = 0 or c = 1. To show

this, we explicitly compute the second derivative of F with respect to c,

F ′′ =
d′2φ2

1− dφ
+

(K + 1)(1− dφ)h′2

2h2
+

d′2erf(z)2

2h(1− dφ)3
,

where ′ denotes differentiation with respect to c. Since F ′′ > 0, F is maximum at c = 0 or c = 1 as claimed.
Hence if F is negative at these values of c, then we can conclude that F is a negative function.
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The first term in the Taylor series expansion of F for small c is

F = −dφ+O(c2)

and hence F is negative for all small c. We now restrict to the CFL limit c = 1.

In Figure 4.1, we plot F for |z| ≤ 100 and 2 ≤ K ≤ 100. It is clear that F is a negative function.

We now examine the asymptotic behaviour of F for large values of z. For c ∈ (0, 1) and large |z|,

F = (1− c) ln(1− c) +
c

|z|
√
γ

2
(ln(1− c) + 1) +O

(
1
|z|2

)
.

Hence F < 0 for large |z|.
In paper [11], the positivities for both ρ∗j ≥ 0 and ρ∗jE

∗
j − m∗

j
2

2 ≥ 0 under the CFL condition have been
proved. So, a distribution function f∗ with f∗ ≥ 0 for the state (ρ∗j ,m

∗
j , E

∗
j ) can be constructed.

Next we show that entropy increases in the second step where gas moves into cell Cj from its neighboring
cells. It is sufficient to show only the case when gas from the left cell Cj−1 moves into cell Cj . Denote the
quantities after one time step by (ρ̂j , m̂j , Êj). See (3.7).

Before proving the entropy condition in the above process, from Jensen’s inequality, it can be shown
that ρ̂j ≥ 0 and ρ̂jÊj − m̂2

j

2 ≥ 0, which means that the state (ρ̂j , m̂j , Êj) satisfies the positivity condition.
So, a gas distribution function f̂ with f̂ ≥ 0 can also be obtained from this state.

Lemma 3.2. Assume that ρ̂j , m̂j, Êj are computed by (3.7). With the CFL condition, the entropy
condition is satisfied in the process to obtain (ρ̂j , m̂j , Êj).

Proof. After some algebra, we have∫ ∞

−∞
ĝj ln ĝjdudξ − σ

∫
u>0

ugj−1 ln gj−1dudξ =
1
2
ρj−1

c

|z|+√γ/2F,
where

F = φ


ln

(
cφ

2(|z|+√γ/2)
)

+ (K + 1) ln
φ√

φ2 + ψ
K+1


+

e−z
2

2
√
π
,

φ = z erfc(−z) +
e−z

2

√
π
,

ψ =
e−2z2

π
+ z erfc(−z)e

−z2
√
π
− erfc(−z)2

2
.

The goal is to show that the entropy condition is satisfied or equivalently, F (z,K, c) ≤ 0. As previously,
we have introduced the non-dimensional number z =

√
λj−1Uj−1 and the number c is as defined in (3.13)

but with j changed to j − 1. First note that φ > 0 for all real values of z. To show this, note that
dφ/dz = erfc(−z) > 0 and thus the minimum of φ occurs at z = −∞ where φ = 0. Hence it is apparent that
among the possible values of c ∈ (0, 1], F is maximum at c = 1. Thus it is sufficient to demonstrate that
F ≤ 0 for c = 1. We shall assume this value of c for the remainder of this proof so that F is now a function
of K and z.

It can be shown that ψ is negative for all z. Now for a fixed z, the term

ln

(
φ

2(|z|+√γ/2)
)

8



in F is maximum when γ = 1 or K = ∞. The second term

(K + 1) ln


 φ√

φ2 + ψ
K+1




is a decreasing function of K. This can be shown by taking its derivative with respect to K and it is

D = −1
2

ln(1 + y) +
1
2

y

1 + y
,

where

y =
ψ

(K + 1)φ2
.

Note that −1 < y < 0. The derivative D can be shown to be negative for all y ∈ (−1, 0). Thus the second
term achieves its maximum at K = 2. Hence we conclude that

F < φ

[
ln
(

φ

2(|z|+√
.5)

)
− 3

2
ln
(

1 +
ψ

3φ2

)]
+
e−z

2

2
√
π
≡ G(z).

For z ∈ (0,∞), Gz < 0 and since G(0) = −.5775 · · ·, we have shown that G < 0 on [0,∞). For z < 0, G is
maximum at z = −∞. As z → −∞, the first term of the asymptotic expansion of G is

G ≈ −3e−z
2
ln |z|

2
√
πz2

and so it is a negative function for z < 0. Thus we conclude that F is negative and thus the entropy condition
is satisfied. We have finished the proof of the lemma.

We plot F (z,K) in Figure 4.2.
As a result, we have ∫ ∞

−∞
ĝj ln ĝjdudξ ≤ σ

∫
u>0

ugj−1 ln gj−1dudξ.(3.14)

Similarly, we have ∫ ∞

−∞
ḡj ln ḡjdudξ ≤ −σ

∫
u<0

ugj+1 ln gj+1dudξ.(3.15)

for the particles coming from the cell j + 1 on the right hand side.
After all terms of (ρ∗,m∗, E∗), (ρ̂, m̂, Ê), (ρ̄, m̄, Ē) are obtained, the flow variables in each cell Cj

are updated according to Eq.(3.9). Since positivity is satisfied for each species (ρ∗,m∗, E∗), (ρ̂, m̂, Ê) and
(ρ̄, m̄, Ē), the distribution functions g∗, ĝ, ḡ satisfy the conditions g∗ ≥ 0, ĝ ≥ 0, ḡ ≥ 0. In the collisional
step, different species with its individual identification W ∗, Ŵ and W̄ are mixed to form equilibrium states
g∗′, ĝ′ and ḡ′ with a common velocity U and temperature λ. In the collisional process, the individual mass,
total momentum and energy are conserved, and the individual equilibrium states become

g∗′ = ρ∗
(
λ

π

)K+1
2

e−λ((u−U)2+ξ2),

ĝ′ = ρ̂

(
λ

π

)K+1
2

e−λ((u−U)2+ξ2),(3.16)
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ḡ′ = ρ̄

(
λ

π

)K+1
2

e−λ((u−U)2+ξ2),

where λ and U are determined from the total momentum and energy conservations Eq.(3.9),

(ρ∗ + ρ̂+ ρ̄)U = m∗ + m̂+ m̄

and

(ρ∗ + ρ̂+ ρ̄)(
1
2
U2 +

K + 1
4λ

) = E∗ + Ê + Ē.

Lemma 3.3. The collision stage from (g∗, ĝ, ḡ) to (g∗′, ĝ′, ḡ′) satisfies the entropy condition.
Proof. Since

g∗ ≥ 0 , ĝ ≥ 0 , ḡ ≥ 0,

and the individual mass, total momentum and energy conservations are satisfied, we have∫
g∗′ ln g∗′dudξ +

∫
ĝ′ ln ĝ′dudξ +

∫
ḡ′ ln ḡ′dudξ −

∫
g∗ ln g∗dudξ −

∫
ĝ ln ĝdudξ −

∫
ḡ ln ḡdudξ

=
∫

(g∗′ − g∗) ln g∗′dudξ +
∫
g∗ ln(g∗′/g∗)dudξ +

∫
(ĝ′ − ĝ) ln ĝ′dudξ +

∫
ĝ ln(ĝ′/ĝ)dudξ

+
∫

(ḡ′ − ḡ) ln ḡ′dudξ +
∫
ḡ ln(ḡ′/ḡ)dudξ

=
∫
g∗ ln(g∗′/g∗)dudξ +

∫
ĝ ln(ĝ′/ĝ)dudξ +

∫
ḡ ln(ḡ′/ḡ)dudξ

≤
∫
g∗(g∗′/g∗ − 1)dudξ +

∫
ĝ(ĝ′/ĝ − 1)dudξ +

∫
ḡ(ḡ′/ḡ − 1)dudξ

=
∫

(g∗′ − g∗)dudξ +
∫

(ĝ′ − ĝ)dudξ +
∫

(ḡ′ − ḡ)dudξ

= 0.

In conclusion, we have∫
g∗′ ln g∗′dudξ +

∫
ĝ′ ln ĝ′dudξ +

∫
ḡ′ ln ḡ′dudξ ≤

∫
g∗ ln g∗dudξ +

∫
ĝ ln ĝdudξ +

∫
ḡ ln ḡdudξ.(3.17)

Once we have g∗′, ĝ′ and ḡ′, the total entropy of the distinguishable particle system inside cell Cj is

H ′ =
∫
g∗′ ln g∗′dudξ +

∫
ĝ′ ln ĝ′dudξ +

∫
ḡ′ ln ḡ′dudξ,(3.18)

and the total distribution function is

g = g∗′ + ĝ′ + ḡ′

= ρ∗
(
λ

π

)K+1
2

e−λ((u−U)2+ξ2) + ρ̂

(
λ

π

)K+1
2

e−λ((u−U)2+ξ2) + +ρ̄
(
λ

π

)K+1
2

e−λ((u−U)2+ξ2)(3.19)

= (ρ∗ + ρ̂+ ρ̄)
(
λ

π

)K+1
2

e−λ((u−U)2+ξ2).

With the updated (ρ̃, m̃, Ẽ) inside cell Cj in Eq.(3.9), the total entropy Hn+1
j is composed of the sum of the

individual entropies of three species,

Hn+1
j = H ′

=
∫
g∗′ ln g∗′dudξ +

∫
ĝ′ ln ĝ′dudξ +

∫
ḡ′ ln ḡ′dudξ

= ρ∗ ln ρ∗ + ρ∗
K + 1

2
(ln

λ

π
− 1) + ρ̂ ln ρ̂+ ρ̂

K + 1
2

(ln
λ

π
− 1) + ρ̄ ln ρ̄+ ρ̄

K + 1
2

(ln
λ

π
− 1).(3.20)
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With the Lemma(3.1-3.3) and the total entropy of three species at step n+ 1, we have
Theorem 3.1. The entropy condition (2.4) is satisfied in the KFVS scheme.
Proof. From Equations (3.11), (3.14), (3.15), (3.17), and (3.19), the new total entropy for the three

species at cell j is

Hn+1
j = H ′

=
∫
g∗′ ln g∗′dudξ +

∫
ĝ′ ln ĝ′dudξ +

∫
ḡ′ ln ḡ′dudξ

≤
∫
g∗ ln g∗dudξ +

∫
ĝ ln ĝdudξ +

∫
ḡ ln ḡdudξ (Lemma 3.3)

≤ Hn
j +

∆t
∆x

(Gnj−1/2 −Gnj+1/2). (Add Eqns.(3.11), (3.14) and (3.15))

Remark: the flow variables Wn+1
j inside cell j at n+ 1 do consist of three distinguishable species.

For any numerical scheme, basically we are only remembering the conservative quantities inside each cell
and the entropy is a function of the conservative variables. However, beside this, the entropy concept is also
related to the information. For example, the entropy is different for a gas composed of one single color and
a gas composed of two different colors. Numerically, at the beginning of each time step, we divide the gas
into different cells. Consequently, the gases in different cells become distinguishable. For example, ρnj−1 can
be regarded as blue, ρnj as yellow and ρnj+1 as red. As a result, inside cell Cj at the end of time step n+ 1,
the gas ρn+1

j is composed of three species, i.e., red, yellow and blue, and the entropy Hn+1
j is the sum of the

entropies of the individual species. The distinguishable effect of particles is purely due to numerical artifacts
such as discretized space but they have a physical consequence. In order to remove the numerical effect at
time step n+ 1 inside cell Cj , we can numerically erase the different “colors” of the gas. More precisely, we
can remove the individual history of the gas inside cell Cj . As a result, the total density ρ̃ CANNOT keep
the information of the individual densities (ρ∗, ρ̂, ρ̄), and the equilibrium state Eq.(3.19) goes to

gn+1
j = ρ̃

(
λ

π

)K+1
2

e−λ((u−U)2+ξ2).

The corresponding entropy becomes

H =
∫
g̃ ln g̃dudξ

= ρ̃ ln ρ̃+ ρ̃
K + 1

2
(ln

λ

π
− 1).(3.21)

Note that for the same number of particles inside cell j at time n+1, there is quantitative differences in the
entropies between distinguishable (Eq.(3.20)) and indistinguishable (Eq.(3.21)) system. This phenomena is
related to the so-called Gibbs paradox [12].

The above post-process has no direct dynamical effect on the KFVS scheme in the updating of conserva-
tive variables, and has no effect on the proof of the entropy condition in this paper. We are perfectly allowed
to keep the individual species inside cell j at time n+1, and there is no need to take the above post-process
to erase different colors and make them indistinguishable in terms of the updating conservative variables.

4. Conclusion. The gas-kinetic scheme provides an approximate Riemann solution for the Euler equa-
tions. The entropy condition for the Kinetic Flux Vector Splitting is proved in this paper. Based on the
positivity and entropy analysis, we can conclude that the KFVS is one of the most robust schemes for CFD
applications.
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Fig. 4.1. Plot of F (z, K) at c = 1.
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