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EFFICIENT SYMBOLIC STATE-SPACE CONSTRUCTION FOR

ASYNCHRONOUS SYSTEMS�

GIANFRANCO CIARDOy, GERALD L�UTTGENz, AND RADU SIMINICEANUy

Abstract. Many state-of-the-art techniques for the veri�cation of today's complex embedded systems

rely on the analysis of their reachable state spaces. In this paper, we develop a new algorithm for the

symbolic generation of the state space of asynchronous system models, such as Petri nets. The algorithm

is based on previous work that employs Multi-valued Decision Diagrams (MDDs) for e�ciently storing sets

of reachable states. In contrast to related approaches, however, it fully exploits event locality which is a

fundamental semantic property of asynchronous systems. Additionally, the algorithm supports intelligent

cache management and achieves faster convergence via advanced iteration control. It is implemented in the

tool SMART, and run-time results for several examples taken from the Petri net literature show that the

algorithm performs about one order of magnitude faster than the best existing state-space generators.
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1. Introduction. The high complexity of today's embedded systems requires the application of rigorous

mathematical techniques to testify to their proper behavior. Many of these techniques, including model

checking [8], rely on the automated construction of the reachable state space of the system under consideration.

However, state spaces of real-world systems are usually very large, sometimes too large to �t in a workstation's

memory. One contributing factor to this problem is the concurrency inherent in many embedded systems,

such as speci�ed by Petri nets [20]. In fact, the size of the state space of an asynchronous, concurrent system

is potentially exponential in the number of its parallel components. Consequently, many research e�orts in

state-exploration techniques have concentrated on the e�cient exploration and storage of very large state

spaces. In the literature, two principal research directions are considered, which di�er from each other by

whether sets of states are stored explicitly or symbolically.

Explicit techniques represent the reachable state spaces of systems by trees, hash tables, or graphs, where

each state corresponds to an entity of the underlying data structure [3, 6, 10, 13]. Thus, the memory needed

to store the state space of a system is linear in the number of the system's states, which in practice limits

these techniques to fairly small systems having at most a few million states. However, since state spaces are

encoded explicitly in their natural form, minimization techniques with respect to behavioral equivalences [12]

or partial-order techniques [11] may be applied to reduce the sizes of state spaces further. Explicit techniques

prove especially advantageous if one is interested in the numerical analysis of Markov processes de�ned over

such state spaces [16].
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Symbolic techniques allow one to store reachability sets in sublinear space. Most symbolic approaches

use Binary Decision Diagrams (BDDs) as data structure for e�ciently representing Boolean functions [1],

into which state spaces can be mapped. The advent of BDD-based techniques pushed the manageable sizes

of state spaces to about 1020 states [4]. In the Petri net community, BDDs were �rst applied by Pastor et

al. [22] for the generation of the reachability sets of safe Petri nets and, subsequently, e�cient encodings

for other classes of Petri nets into BDDs were investigated [21]. Recently, symbolic state-space generation

for Petri nets has been signi�cantly improved [19]. The approach taken in [19] does not rely on BDDs, but

is based on the more general concept of Multi-valued Decision Diagrams (MDDs) [15]. MDDs essentially

represent integer functions and allow one to e�ciently encode the state of an entire subnet of a Petri net

using only a single integer variable, where the state spaces of the subnets are built by employing traditional

techniques. Experimental results reported in [19] show that this approach enables the representation of even

larger state spaces of size 1060 and even 10600 states for particularly regular nets. However, the time needed

to generate some of these state spaces ranges from several minutes for the dining philosophers [22], with

1000 philosophers, to several hours for the Kanban system [6], with an initial token count of 75 tokens. Thus,

while symbolic techniques are able to store larger and larger state spaces, state-space generation shifts from

a memory-bound to a time-bound problem.

The objective of this paper is to improve on the time e�ciency of symbolic state-space generation

techniques for a particular class of systems, namely asynchronous systems. This class is especially interesting

since it includes many embedded software systems. Our approach exploits the concept of event locality, or

interleaving, inherent in asynchronous systems. In Petri nets, for example, event locality means that only

those sub-markings belonging to the subnets a�ected by a given transition need to be updated when the

transition �res. Whereas event locality has been investigated in explicit state-space generation techniques [5],

it has been largely ignored in symbolic techniques. Only the MDD-based approach presented in [19] touches

on event locality, but it exploits this concept only super�cially. In particular, this approach does not

support direct jumps to the part of the MDD corresponding to the submarkings that need to be updated

when a transition �res. Similarly, it does not consider jumping out of the MDD upon �nishing a local

update of the data structure. The present paper develops a new algorithm for building the reachable

state spaces of asynchronous systems, which is based on the algorithm described in [19]. Like [19], it uses

MDDs for representing state spaces; unlike [19], it fully exploits event locality. Moreover, it introduces

an intelligent mechanism for cache management, and also achieves faster convergence by �ring events in

a speci�c, prede�ned order. The new algorithm is implemented in the tool SMART [5] and is applied to

explore the reachable state spaces of a suite of well-known Petri net models. It turns out that this algorithm

is about one order of magnitude faster than the one presented in [19]. Remarkably, this improvement is

mainly achieved by exploiting event locality and induces only a small overhead regarding space e�ciency.

The remainder of this paper is organized as follows. The next section provides some background material

regarding structured state spaces and MDDs. Secs. 3 and 4 focus on several conceptual issues, based on

the notion of event locality, which are essential for deriving our new MDD-based algorithm in two variants.

Details of the variants are presented in Sec. 5, while Sec. 6 discusses some performance results. Secs. 7

and 8 refer to related work and present our conclusions as well as directions for future work, respectively.

Finally, Appendices A{C contain the detailed pseudo code of our algorithm, while Appendix D illustrates

the algorithm step-by-step for a small example system.
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2. Structured State Spaces and Multi-valued Decision Diagrams. This section gives a brief

introduction and de�nes some notation regarding structured state spaces and multi-valued decision diagrams.

2.1. Structured State Spaces. We choose to specify �nite-state asynchronous systems by Petri nets,

noting that, however, the concepts and techniques presented in this paper are not limited to this choice.

Thus, we interchangeably use the notions net and system, subnet and sub-system, transition and event,

marking and (global) state, as well as sub-marking and local state.

Consider a Petri net with a �nite set P of places, a �nite set E of events, and an initial marking s0 2 N
jPj .

The interleaving semantics of Petri nets [20] de�nes how the �ring of an event e can move the net from some

state s to another state s0. We denote the set of successor states, or \next states," which are reachable

from state s via event e by N (e; s). If N (e; s) = ;, event e is disabled in s; otherwise, it is enabled. For

Petri nets, N is essentially a simple encoding of the input and output arcs; thus, N (e; s) contains at most

one element. For other formalisms, however, N (e; s) might contain several elements. We are interested in

exploring the set S of reachable states of the net under consideration. S is formally de�ned as the smallest

set that (i) contains the initial state s0 of the net and (ii) is closed under the \one-step reachability relation,"

i.e., if s 2 S, then N (e; s) � S, for any event e de�ned in the net.

As in [19], our encoding of the state space of a Petri net requires us to partition the net into K subnets

by splitting its set of places P into K subsets PK ;PK�1; : : : ;P1. This implies a partition of a global state s

of the net into K local states, i.e., s has the form (sK ; sK�1; : : : ; s1). The partition of P must satisfy a

fundamental product-form requirement, which is also needed in Kronecker approaches for computing the

solution of structured Markov models [7]. The product form demands for function N to be written as the

cross-product of K local next-state functions, i.e., N (e; s) = NK(e; sK)�NK�1(e; sK�1)�� � ��N1(e; s1) for

all e 2 E and s 2 S. Furthermore, in practice, each subnet should be small enough such that its reachable

local state space Sk = fsk;0; sk;1; : : : ; sk;Nk�1g can be e�ciently computed by traditional techniques, where

Nk 2 N is the number of reachable states in subnet k. Note that this might require the explicit insertion of

additional constraints, for example expressed through implicit places, to allow for the correct computation

of Sk in isolation. In reality, one may use a small superset of the \true" Sk, e.g., obtained by employing

p-invariants [20]. Once Sk has been built, we can identify it with the set f0; 1; : : : ; Nk � 1g. Moreover, a

set S of global states can then be encoded by the characteristic function

fS : f0; : : : ; NK � 1g � f0; : : : ; NK�1 � 1g � � � � � f0; : : : ; N1 � 1g �! f0; 1g

de�ned by f(sK ; sK�1; : : : ; s1) = 1 if and only if (sK ; sK�1; : : : ; s1) 2 S. Such characteristic functions can

be stored and manipulated e�ciently, as suggested in the following sections.

2.2. Multi-valued Decision Diagrams. Multi-valued Decision Diagrams [15], or MDDs for short,

are data structures for e�ciently representing integer functions of the form

f : f0; : : : ; NK � 1g � f0; : : : ; NK�1 � 1g � � � � � f0; : : : ; N1 � 1g �! f0; : : : ;M � 1g

where K;M 2 N and Nk 2 N, for K � k � 1. When M = 2 and Nk = 2, for K � k � 1, function f is

a Boolean function, and MDDs coincide with the better known Binary Decision Diagrams (BDDs) [1, 2].

Another special case, where M = 2, are the characteristic functions mentioned in the previous section.

Traditionally, integer functions are often represented by value tables or decision trees. Fig. 2.1, left-hand

side, shows the decision tree of the minimum function min(a,b,c), where the variables a, b, and c are taken
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from the set f0; 1; 2g. Hence, K = 3 and N1 = N2 = N3 =M = 3. Each internal node, which is depicted by

an oval, is labeled by a variable and has arcs directed towards its three children. The i-th branch corresponds

to the case where the variable of the node under consideration is assigned value i. Moreover, all nodes at a

given level of the tree are labeled by the same variable, i.e., all paths through the tree have the same variable

ordering, which in our example is a < b < c. Leaf nodes, depicted by squares, are labeled by either 0, 1,

or 2. Each path from the root to a leaf node corresponds to an assignment of the variables to values. The

value of the leaf in a given path is the value of the function with respect to the assignment for this path.
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Fig. 2.1. Representation of min(a,b,c) as decision tree (left) and as MDD (right)

An MDD is a representation of a decision tree as directed acyclic graph, where identical subtrees are

merged. More precisely, MDDs are reduced decision trees which do not contain any non-unique or redundant

node. A node is considered to be non-unique if it is a replica of another node, and to be redundant if all its

children are identical. Together with a �xed variable ordering, these two requirements ensure that MDDs

provide a canonical representation of integer functions [15]. Note that the elimination of redundant nodes

implies that arcs can skip levels. For example, the arc labeled with 0 connecting node a to leaf node 0 in

Fig. 2.1, right-hand side, skips levels b and c. This means that the value of the function is 0, whenever a is 0.

MDD representations can be exponentially more compact than their corresponding value tables or decision

trees. However, the degree of compactness depends on the chosen variable ordering.

2.3. Data Structures for MDDs. We organize MDD nodes in levels ranging from K, at the top,

to 1, at the bottom. Additionally, there is the special level 0, which contains either or both leaf nodes

corresponding to the values 0 and 1, indicating whether a state is reachable or not. In practice, however,

there is no need to store these nodes explicitly. The addresses of the nodes at a given level are stored within

a hash table, to provide fast access to them and to simplify detection of non-unique nodes. Hence, we have

K hash tables which together represent an MDD. We also refer to this data structure as unique table. Each

node at level k consists of an array of Nk node addresses, which contain the arcs to the children of the node.

Since we enforce the reducedness property, we use the value of this array to compute the hash value of the

node. In the following, we let mddNode denote the type of nodes and mddAddr the type of addresses of

nodes. Note that we could also use a single unique table for representing MDDs, but this would require us to

store the level of a node as part of mddNode ; furthermore, the level-wise organization of our data structures

will prove very useful for the purposes of this paper. For notational simplicity, we often write hlvl ; indi for

the node q stored in the lvl -th unique table at position ind , and q!dw [i] for the i-th child of q. Finally, we

use nodes h0; 0i and h0; 1i to indicate the Boolean values 0 and 1 at level 0, respectively.
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Table 2.1

\Union" operation on MDDs

Union(in p : mddAddr ; in q : mddAddr ) : mddAddr

1. if p = h0; 1i or q = h0; 1i return h0; 1i; � deal with the base cases �rst

2. if p = h0; 0i or p = q return q;

3. if q = h0; 0i return p;

4. k (Max(p:lvl; q:lvl); � maximum of the levels of p and q

5. if LookUpInUC (k; p; q; r) then return r; � if found in the union cache, the result is returned in r

6. r ( CreateNode (k); � otherwise, the union needs to be computed in r

7. for i = 0 to Nk � 1 do � for the i-th child do...

8. if k > p:lvl then u( Union(p; q!dw [i]); � p is at a lower level than q

9. else if k > q:lvl then u( Union(p!dw [i]; q); � q is at a lower level than p

10. else u( Union(p!dw [i]; q!dw [i]); � p and q are at the same level

11. SetArc(r; i; u); � make u the i-th child of r

12. r ( CheckNode(r); � if r is unique and non-redundant, store it in the unique table

13. InsertInUC (k; p; q; r); � record the result of this union in the union cache

14. return r; � return MDD representing the \union" of p and q

2.4. The Union Operation on MDDs. An essential operation for generating reachable state spaces

is the binary union on sets. Since in our context all sets are represented as MDDs, an algorithm is needed

which takes two MDDs as parameters and returns a new MDD, representing the union of the sets represented

by its arguments. This algorithm, which is very similar to the one used in [19], that in turn is adapted from

a BDD-based algorithm [2], is shown in Table 2.1. It recursively analyzes the argument MDDs, when

descending from the maximum level k of the argument MDDs to the lowest level 0, and builds the result

MDD, when �nishing the recursions by ascending from level 0 to level k. Note that the maximum of the

levels of the argument MDDs is the highest level the result MDD can have.

The base cases of the recursive function Union are handled in Lines 1{3, where the MDDs h0; 0i and h0; 1i

encode the empty set and the full set, respectively. If k > 0, a union cache is used to check whether the union

of the arguments p and q has been computed previously. If so, the result stored in the cache is returned.

Otherwise, a new MDD node at level k is created whose i-th child is determined by recursively building the

union of the i-th child of p and the i-th child of q, for all 0 � i � Nk (cf. Lines 7{11). However, one needs

to take care of the fact that some child might not be explicitly represented, namely if it is redundant (cf.

Lines 8 and 9). Finally, to ensure that the resulting MDD is reduced, node r is checked by calling function

CheckNode(r). If r is redundant, then CheckNode destroys r and returns r's child, and if r is equivalent to

another node r0 having the same children, then CheckNode destroys r and returns r0. Otherwise, CheckNode

inserts node r in the unique table and returns it. Note that the algorithm in Table 2.1 can be easily adapted

for computing many other binary operations, such as intersection, by modifying Lines 1{3 accordingly.

2.5. MDD-based State-space Construction. Table 2.2 shows a naive, iterative, and MDD-based

algorithm to build the reachable state space of a system represented by a Petri net. As explained earlier, the

state space is encoded as a characteristic function, so a global state s = (sK ; sK�1; : : : ; s1) is stored over the

K levels of the MDD, one substate per level. Please recall that this requires us to partition Petri nets into

subnets. While this can in principle be done automatically, it is still an open problem how to e�ciently �nd

\good" partitions, i.e., those that lead to small MDD representations of reachable state spaces. We refer the

reader to [19] for a detailed discussion of issues regarding partitioning.
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Table 2.2

Iterative state-space generation

MDDgeneration(in m : array[1; : : : ; K] of int) : mddAddr

1. for k = 1 to K do ClearUT (k); � clear unique table

2. q ( SetInitial(m); � build and return MDD representing the initial state

3. repeat � start state-space exploration

4. for k = 1 to K do ClearUC (k); � clear union cache

5. for k = 1 to K do ClearFC (k); � clear �ring cache

6. mddChanged ( false; � true if MDD changes in this iteration

7. foreach event e do Fire(e; q;mddChanged ) � �re event e and add newly reached states to MDD

8. until mddChanged = false; � keep iterating until �xed point is reached

9. return q; � return MDD representing the reachable state space

The semantics of the Petri net under study is encoded in procedure Fire (cf. Table 2.2), which updates

the MDD rooted at q according to the �ring of event e by appropriately applying the Union operation shown

above. For e�ciency reasons, it also makes use of another cache, which we refer to as �ring cache. The

procedure additionally updates a 
ag mddChanged, if the �ring of e added any new reachable states. After

�rst clearing the unique table, the initial markingm of the Petri net under consideration is stored as an MDD

via procedure SetInitial. The algorithm then proceeds iteratively. In each iteration, every enabled Petri net

transition is �red, and the potentially new states are added to the MDD. This is done until the MDD does

not change, i.e., until no more reachable states are discovered. Finally, the root node q, representing the

reachable state space of the Petri net, is returned.

3. The Concept of Event Locality. Our improvements for the MDD-based generation of reachable

state spaces rely on the notion of event locality, which asynchronous systems inherently obey.

Event locality, which is sometimes also referred to as interleaving, is de�ned via the concept of in-

dependence of events from subnets. An event e is said to be independent of the k-th subnet of the

net under consideration, or independent of level k, if sk = s0k for all s = (sK ; sK�1; : : : ; s1) 2 S and

s0 = (s0K ; s
0
K�1; : : : ; s

0
1) 2 N (e; s), i.e., if Nk(e; �) is the identity function. Otherwise, e depends on the k-th

subnet, or on level k. If an event depends only on a single level k, it is called a local event for level k; other-

wise, it is a synchronizing event [19]. We let First(e) and Last(e) denote the maximum and minimum levels

on which e depends. Hence, e is independent of every level k satisfying K � k > First(e) or Last(e) > k � 1,

while e might or might not depend on any level k strictly between First(e) and Last(e). For asynchronous

systems in particular, the range of a�ected levels, First(e) � Last(e) + 1, is usually signi�cantly smaller

than K for most events e. We assume that all local events for level k are merged into a single macro event lk

satisfying Nk(lk; s) =df

S
e2E:First(e)=Last(e)=kNk(e; s) for all s 2 S. This convention does not only simplify

notation, but also improves the e�ciency of our state-space generation algorithm.

Our aim is to de�ne MDD manipulation algorithms that exploit the concept of event locality. Since

an event e a�ects local states stored between levels First(e) and Last(e), �ring e only causes updates of

MDD nodes between these levels, plus possibly at levels higher than First(e), but only when a node at level

First(e) becomes redundant or non-unique, and possibly levels lower than Last(e), but only until recursive

Union calls stop creating new nodes. To bene�t from this observation, we need to be able to access MDD

nodes by \jumping in the middle" of an MDD, namely to level First(e), rather than always having to start

manipulating MDDs at the root, as is done in traditional approaches, including [19]. This is the reason why
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we partition the unique table, which stores MDDs, into a K-dimensional array of lists of nodes. However,

two problems need to be addressed when one wants to access an MDD directly at some level First(e). We

treat them separately in the following two sections.

1

Explicit nodes need to be inserted in order

Last(e)

First(e)

to deal with implicit roots at level First(e).

p

q
q

p’

implicit root

p

p’

Fig. 3.1. Illustration of event locality and the problem of implicit roots

3.1. Implicit Roots. When one wants to explore an MDD from level First(e), all nodes at this level

should intuitively play the role of root nodes. However, some of them might not be represented explicitly,

since redundant nodes are not stored. This happens whenever there is a node p at a level higher than First(e)

pointing to a node q at a level k satisfying First(e) > k � Last(e). This situation is illustrated in Fig. 3.1,

left-hand side. Conceptually, we have to re-insert these \implicit roots" at level First(e) when we explore and

modify the MDD due to the �ring of event e. There are two approaches for doing this. The �rst approach

stores a bag (multiset) of upstream arcs in each node q, corresponding to the downstream arcs pointing to q.

In other words, for each i such that p!dw [i] = q, there is an occurrence of p in the bag of q's upstream arcs.

Implicit roots can then be detected by scanning each node stored in the unique tables for levels First(e) + 1

through Last(e), and checking whether the node possesses one or more upstream arcs to a node at a level

above First(e). If so, an implicit root, i.e., a redundant node, is inserted at level First(e). Note that at

most one implicit root needs to be inserted per node, regardless of how many arcs reach it; in our example,

the arcs from both p and p0 are re-routed to the same new implicit root. These redundant nodes will be

deleted after �ring event e, if they are still redundant. Thus, the �rst approach preserves the reducedness

property of MDDs. Our second approach, keeps all unique redundant nodes, so that downstream arcs in the

resulting MDD exist only between subsequent levels. Then, the nodes at level First(e) are exactly all the

nodes from which we need to start exploring the underlying MDD when �ring event e. Please note that this

slight variation of MDDs still possesses the fundamental property of being a canonical representation.

We refer to the two variants of our algorithm as upstream-arcs approach and forwarding-arcs approach;

the choice for the phrase \forwarding-arcs" will become clear in the next section. The latter approach,

when compared to the former, eliminates the expensive need to search for implicit roots. However, both

approaches have some memory penalty potentially associated with them, the former for the storage of the
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upstream arcs, which can in the worst case double the space requirements, and the latter because of the

preservation of redundant nodes. We have implemented both approaches, and experimental results show

that these memory overheads are compensated by a smaller peak number of MDD nodes, when compared

to the approach in [19].

3.2. In-place Updates. Once all nodes at level First(e), explicit as well as implicit, are detected, one

can update the MDD to re
ect that the �ring of event e may lead to new, reachable states. Our routine

Fire implementing this update is described in detail in Sec. 5.1. It heavily relies on the Union operation, as

presented in Table 2.1, i.e., new MDD nodes are created and appropriately inserted, as needed. However,

there is one important di�erence with respect to existing approaches. Our Fire operation stops creating

new MDD-nodes as soon as it reaches level First(e) when backtracking from recursive calls. At this level

our algorithm just links the new sub-MDDs at the appropriate positions in the original MDD, in accordance

with the concept of event locality. The only di�culty with the in-place update of some node p arises when it

becomes redundant or non-unique. In the former case, p must be deleted and its incoming arcs be re-directed

to its unique child node q. In the latter case, p must be deleted and its incoming arcs be re-directed to the

replica node q. In the upstream-arcs approach, this is trivial since p knows its parents.

In the forwarding-arcs approach, we keep redundant nodes; thus, we eliminate p only if it becomes non-

unique. However, we do not have upstream arcs. Instead of scanning all the nodes in level First(e) + 1 to

search for arcs to p, which is a costly operation, we mark p as deleted and set a forwarding arc from p to q.

The next time a node accesses p, it will update its own pointer to p, so that it points to q instead. Since node q

itself might be marked as deleted later on, forwarding chains of nodes can arise. In our implementation, the

nodes in these chains are deleted only after all the events at level First(e) have been �red and before nodes

at the next higher level are explored.

It is important to note that, although these in-place updates change the meaning of MDD-nodes at higher

levels, they do not jeopardize the correctness of our algorithm. This is due to the interleaving semantics of

asynchronous systems (cf. Sec. 5.3). Rather than performing in-place updates, existing approaches reported

in the literature create an MDD encoding the set of global states reachable from the current states in the

state space by �ring event e. This is a K-level MDD, i.e., it is expensive to build compared to our sub-MDD,

especially when MDDs are tall and the e�ect of e is restricted to a small range of levels.

Summarizing, it is the notion of event locality for asynchronous systems that allows us to drastically

improve on the time e�ciency of MDD-based state-space generation techniques. Exploiting locality, we can

jump in and out of the \middle" of MDDs, thereby exploring only those levels that are a�ected by the event

under investigation. While the approach reported in [19] also claims to exploit locality, it only considers

some simpli�cations and improvements of MDD manipulations in the case of local events. However, it does

not support localized modi�cations of MDDs { neither for synchronizing events, nor for local events.

4. Improving Cache Management and Iteration Control. The concept of event locality also

paves the road towards signi�cant improvements in cache management and iteration control, which we

present next. An e�cient cache management as well as an e�cient organization of the iteration control are

of utmost importance for the performance of MDD-based algorithms for state-space generation.

4.1. Intelligent Cache Management. The technique of in-place updates introduced in Sec. 3.2 allows

us to enhance the e�ciency of the union cache. In related work regarding state-space generation using decision
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diagrams, including [19], the lifetime of the contents of the union cache cannot span more than one iteration,

since the root of any MDD is deleted and re-created whenever additional reachable states are incorporated in

the MDD. In other words, any change in an MDD node, i.e., in its dw -array of pointers, is really implemented

as a deletion followed by an insertion.

In contrast, in our approach the \wave" of changes towards the root, caused by �ring an event e, is

stopped at level First(e), where only a pointer is updated. This permits some union cache entries to be

reused over several iterations, until the referred nodes are either changed or deleted. For this purpose, MDD

nodes in our implementation have two status bits attached, namely a cached 
ag and a dirty 
ag. Instead of

thoroughly cleaning up the union cache after each iteration, we can now perform a selective purging according

to the above 
ags. More precisely, if an MDD node associated with a union cache entry is not deleted and

if the copies present in the cache are not stale, the result may be kept in the union cache and reused later

on. Experimental studies show us that the rate of reusability of union cache entries averages about 10% and

that the overall performance of our algorithm can be improved by up to 13% when employing this idea.

Additionally, we devise a second optimization technique for the union cache, which is based on prediction

and is conceptually very similar to associative caches studied in the �eld of computer architecture. Our

prediction relies on the fact that if Union(p; q) returns r, then also Union(p; r) and Union(q; r) will return r.

Thus, these two additional results can be memorized in the cache, immediately after storing the entry for

Union(p; q). Experiments indicate that this heuristics speeds-up our algorithm by up to 12%. The reason

for such a signi�cant improvement is the following. Assume we are exploring the �ring of event e in node p

at level k, and assume j 2 Nk(e; i). Then, the set of states encoded by the MDD rooted at p! dw [i]

needs to be added to the set of states encoded by the MDD rooted at p!dw [j]. Let r be the result of

Union(p!dw [i]; p!dw [j]), which becomes the new value of p!dw [j]. At the next iteration, and assuming

that p has not been deleted, we explore event e in node p again and, consequently, �nd out that e is enabled in

local state i. Hence, we need to perform the update p!dw [j]( Union(p!dw [i]; p!dw [j]) again. However,

if p has not changed, Union(p!dw [i]; p!dw [j]) is identical to Union(p!dw [i]; r) = r. By having cached r at

the previous iteration, we can avoid computing this union, even if it was never explicitly computed before.

4.2. Advanced Iteration Control. Event locality also allows us to reduce the number of iterations

needed for generating reachable state spaces. Existing MDD-based algorithms for Petri nets [19, 22] �re

events in some arbitrary order within each iteration, as indicated in Line 7 of function MDDgeneration in

Table 2.2. In our version of MDDgeneration, however, we presort events according to function First(�). Our

algorithm then starts at level 1 and searches for the states that can be reached from the initial state by

�ring all events e satisfying First(e) = 1 and Last(e) � 1, i.e., the macro event l1. When reaching level k,

our algorithm �nds all states that can be added to the current state space by �ring all events e satisfying

First(e) = k and Last(e) � 1, i.e., the local macro event lk at level k and all synchronizing events that a�ect

only level k and any level below. Moreover, in our implementation, we repeatedly �re each event at level k,

as long as it is enabled and as long as �ring it adds new states.

This speci�c sequence of �ring events is essential for the correctness and e�ciency of the implementation

of our cache management. By working from the bottom levels to the top levels, we can clear the union and

�ring caches more selectively, thus, extending the lifetime of cache entries. Moreover, the access pattern to

the caches is more regular and, thereby, contributes to higher hit ratios. Our �ring sequence also enables

delayed node deletion which allows for e�cient collection and removal of non-unique and disconnected nodes,

especially in the forwarding-arcs approach.
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In [19], repeatedly �ring events is only applied for local events, which are relatively inexpensive to

process, while synchronizing events are still �red only once and in no particular order. We stress that while

the new iteration control means that our iterations are potentially more expensive than those in [19], they

are also potentially fewer. More precisely, our algorithm generates state spaces in at most as many iterations

as the maximum synchronizing distance of any reachable state s, which is de�ned in [19] as the minimal

number of synchronizing events required to reach s from the initial state, without counting local events.

5. Details of the New Algorithm. In this section, we present some important details on both variants

of our new MDD-based algorithm. We �rst illustrate how to update MDDs in response to �ring an event.

We then discuss the data structures used and, �nally, argue why the algorithm is correct. Please note that

the complete pseudo code of the algorithm is included in the �rst three sections of the appendix.

1 1

<5,1>

<4,1>

Current state space:

<3,1>

<2,1> <2,0>

<3,0>

<1,0>

<3,2>

<5,1>

<4,1>

New state space:

<1,0>

<2,0>

<3,0>

<4,0>

<5,0>

<6,0> <6,0>

<5,0>

<4,0>

<2,1>

(*,*,3,0,0,*)      (*,*,0,1,1,*)= {(0,0,*,0,0,0,), (3,1,0,0,0,0)}S S = {(0,0,*,0,0,0), (0,0,0,1,1,0),(3,1,0,0,0,0)}e

Union

<4,2>

curr next

Event    enabled by <4,0>:e

Fig. 5.1. Example of an MDD-modi�cation in response to �ring an event

5.1. Illustration of MDD-based Firing of Events. At each iteration of our algorithm, enabled

events are �red to discover additional reachable states, which are then added to the MDD representing the

currently-known portion of the reachability set of the Petri net under study. Function Fire(e; �; �) implements

this behavior with respect to event e. Fig. 5.1 illustrates, by means of a small example, how Fire works.

The example net is partitioned into six subnets, each of them having four possible local states, numbered

from 0 to 3. Hence, our MDD has six levels, and each MDD node has four downstream arcs; here, we do

not draw node h0; 0i, nor any arc to it. Let the current state space, depicted on the left in Fig. 5.1, be

Scurr = f(0; 0; �; 0; 0; 0); (3; 1; 0; 0; 0; 0)g, where \�" stands for any local state. Assume further that event e is

enabled in every state of the form (�; �; 3; 0; 0; �) and that the new state reached when �ring e is (�; �; 0; 1; 1; �),

i.e., First(e) = 4 and Last(e) = 2. Hence, if the net is in a global state described by local state 3 at level 4

and local state 0 at levels 3 and 2, event e can �re and the local states of the a�ected subnets are updated

to 0, 1, and 1, respectively.

Exploiting event locality, our search for enabling sequences starts directly at level First(e) = 4. The

sub-MDDs rooted at this level are searched to match the enabling pattern of e. At level 4, only the MDD

rooted at h4; 0i contains such a pattern, along the path h4; 0i
3
�!h3; 0i

0
�!h2; 0i

0
�!h1; 0i. Then, our algorithm
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generates a new MDD rooted at node h4; 2i, representing the set of substates for levels 4 through 1 that

can be reached from h4; 0i via e. This MDD is depicted in Fig. 5.1 in the middle. Note that only nodes

at levels First(e) through Last(e) might have to be created, since those below Last(e) can simply be linked

to existing nodes, such as node h1; 0i in our example. Indeed, in our implementation, even node h4; 2i is

actually not allocated, since we explore it one child at a time. This MDD corresponds to all states of the

form (�; 0; 1; 1; �), where � is any substate leading to node h4; 0i and where � is a substate reachable from

the 0-th arc of node h2; 0i. In our example, � and � can only be the substates (0; 0) and (0), respectively.

In other words, the set of states to be added by �ring e in node h4; 0i is Sadd = f(0; 0; 0; 1; 1; 0)g. Finally,

the 0-th downstream arc of node h4; 0i is updated to point to the result of the union of the MDDs rooted at

nodes h3; 0i and h3; 1i, which is stored in an MDD rooted at the new node h3; 2i, as depicted on the right in

Fig. 5.1. Hence, the resulting state space Snext is f(0; 0; �; 0; 0; 0); (0; 0; 0; 1; 1; 0); (3; 1; 0; 0; 0; 0)g, as desired.

Note that our version of Fire(e) is much more e�cient than the one in [19]. In particular, it exploits the

locality of e and, therefore, operates on smaller MDDs. This is important since the complexity of the Union

operation is proportional to the number of nodes in its operand MDDs.

5.2. Implementation Details. MDD nodes store not only the addresses of their children, but also

Boolean 
ags for garbage collection and intelligent cache management, as well as information speci�c to the

upstream-arcs approach and to the forwarding-arcs approach.

In our implementation, nodes are stored using one heap array per MDD level. The pages of the heap

array are created only upon request and accommodate dynamic deletion and creation of nodes. Therefore,

existing nodes may not be stored contiguously in memory. For fast retrieval, we maintain a doubly-linked

list of nodes. Upon deletion, a node is moved to the back of the list, thereby, allowing for garbage collection

(but not garbage removal) in constant time.

The unique table, the union cache, and the �ring cache are organized as arrays of hash tables, i.e.,

one hash table per level. For the unique table, the hash key of a node is determined using the values in

its dw-array. For the union cache, the addresses of the two MDD nodes involved in the union are used to

determine the hash key. Together with the Boolean cached and dirty 
ags, this allows us to reuse union

cache entries across iterations without danger of accessing stale values. Finally, the hash key for �ring cache

entries is determined using only the address of the MDD node to which the �ring operation is applied. Note

that the identity of the event is implicit, since the �ring cache is cleared when moving from one event to

the next. The alternative approach, i.e., allowing the co-existence of entries referring to di�erent events in

the cache, would require a larger cache with a key based on a pair of MDD node and event. However, this

would not bring enough bene�ts, since the major cost of processing the �ring of an event lies in the Union

operations, and these can indeed be cached across operations.

For the upstream-arcs approach, MDD nodes include the addresses of their parents, which we store in

a bag. Our implementation uses a dynamic data structure for bags, rather than a static data structure,

since the number of parents of a node is not known in advance and may be very large, in the range of

several thousand nodes. While this memory overhead is still acceptable, the approach also puts a burden on

time e�ciency, since each update of a downstream arc must be re
ected by an update of the corresponding

upstream arc. Moreover, the bag of some node q only stores the address of parents p, as well as the number

of indexes i such that p!dw [i] = q, but not the indexes themselves. Thus, a linear search in the array p!dw

must be performed to �nd these indexes. The alternative, namely storing these indexes in q, would require

even more memory overhead.
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Regarding the forwarding-arcs approach, time e�ciency is improved by allowing redundant nodes to be

represented explicitly. As a consequence, MDD nodes do not need to store bags of parents' addresses, but

simply a counter indicating the number of incoming arcs [19]. When this counter reaches zero, it indicates

that the node has become disconnected and can be deleted. Experiments show that the memory overhead of

this approach, due to the storage of redundant nodes and the delayed deletion of non-unique nodes, is about

the same as the memory overhead of the upstream-arcs approach. However, the forwarding-arcs approach is

more time-e�cient, as con�rmed by the results in Sec. 6.

5.3. Correctness of the Algorithm. First of all, it is easy to see that our algorithm terminates for

�nite-state systems, since each iteration adds new states to the reachability set under construction. The

partial correctness of our algorithm is based on the interleaving semantics of asynchronous systems, which

formally states the following.

Let S be the set of global reachable states for the system under consideration, and let

s = (sK ; sK�1; : : : ; s1) 2 S be arbitrary. Moreover, let e be an event enabled in s and

s0 = (s0K ; s
0
K�1; : : : ; s

0
1) the global state reached by �ring it. By the principle of event

locality we know that sk = s0k for all k satisfyingK � k > First(e) or Last(e) > k � 1. Then

we may conclude ŝ =df (rK ; : : : ; rFirst(e)+1; s
0
First(e); : : : ; s

0
Last(e); rLast(e)�1; : : : ; r1) 2 S, for

all global states r = (rK ; rK�1; : : : ; r1) 2 S.

This interleaving principle is directly implemented in our algorithm in form of local MDD explorations

and in-place updates of MDD nodes. In fact, the global state ŝ mentioned above is implicitly inserted in

our MDD whenever state s0 is. There is no need to compute ŝ explicitly, as is done in related explicit and

symbolic approaches to state-space generation. This observation is the key for improving on the performance

of traditional state-space generators.

6. Experimental Studies. In this section, we present several performance results regarding the two

variants of our algorithm and compare them with the approach most closely related to ours, namely the one

reported in [19]. The variants of our algorithm are implemented in the Petri net tool SMART (Simulation

and Markovian Analyzer for Reliability and Timing) [5]. We apply the tool to the four Petri net models

also considered in [19], i.e., the dining philosophers, the slotted-ring system, the 
exible manufacturing

system (FMS), and the Kanban system. The former two models, originally taken from [22], are composed

of N identical safe subnets, i.e., each place contains at most one token at a time. The latter two models,

originally taken from [6], have a �xed number of places and transitions, but are parameterized by the

number N of initial tokens in certain places. The Petri nets for these systems are depicted in Fig. 6.1. To

use MDDs, we adopt the \best" partitions found in [19]: we consider two philosophers per level and one

subnet per level for the slotted-ring protocol, while we split the FMS and the Kanban system into 19 subnets

(each place in a separate subnet except for fP1M1;M1g, fP12M3;M3g, and fP2M2;M2g) and 4 subnets

(fpmX ; pbackX ; poutX ; pXg for X = 1; 2; 3; 4), respectively.

Table 6.1 presents several results for the two variants of our new algorithm, as well as the best-known

existing algorithm [19], obtained when running SMART on a 500 MHz Intel Pentium II workstation with

512 MB of memory and 512 KB cache. For each model and choice of N , we give the size of the state space

and the �nal number of MDD nodes, which is of course independent of the algorithm used. Then, for each

algorithm, we give the peak number of MDD nodes allocated during execution, the number of iterations,

and the CPU time. The peak number of MDD nodes and the number of iterations for the upstream-arcs and
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Fig. 6.1. Petri nets used in our experiments: dining philosophers (upper left), Kanban system (upper right), FMS (lower

left), and slotted-ring (lower right)

forwarding-arcs approaches coincide, except for the FMS and the Kanban system, where the peak number

reported should be increased by one for the forwarding-arcs approach. This implies that, even without

introducing redundant nodes, essentially all arcs already connect nodes between adjacent levels. Thus, in

our examples, the only memory overhead in the forwarding arcs approach is due to postponed node deletion.

For the models we ran, our new approach is up to one order of magnitude faster, and with few exceptions

uses fewer MDD nodes than the one in [19]. The improvement mainly arises from the structural changes

made to the core routine Fire , which re
ects the notion of event locality inherent in asynchronous systems.

Other improvements { most importantly our cache optimizations { contribute in average about 7{13%, and

up to 22% in total, to the overall improvement in time e�ciency. A comparison between the run-times for

the new algorithm and the ones for the algorithm in [19] indicates an increase factor in speed ranging from

approximately constant for the Kanban and FMS nets, to what appears to be almost linear (in N) for the

slotted-ring model and the dining philosophers. Moreover, the forwarding-arcs approach is slightly faster

than the upstream-arcs approach, except for the Kanban system on which we comment below. Since both
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Table 6.1

Performance results

Approach in [19] Our new approach

N jSj �nal peak # time peak # time (sec.)

nodes nodes it. (sec.) nodes it. upstr. fwd.

Philosophers 10 1:86 � 106 17 45 2 0.03 28 2 0.02 0.02

50 2:23 � 1031 37 285 2 0.82 168 2 0.15 0.13

100 4:97 � 1062 197 585 2 3.32 343 2 0.37 0.36

200 2:47 � 10125 397 1,185 2 13.76 693 2 1.22 1.20

300 1:23 � 10188 597 1,785 2 30.88 1,043 2 2.80 2.77

400 6:10 � 10250 797 2,385 2 60.25 1,393 2 4.52 4.40

500 3:03 � 10313 997 2,985 2 92.17 1,743 2 7.14 6.89

600 1:51 � 10376 1,197 3,585 2 121.94 2,093 2 9.33 8.93

700 7:48 � 10438 1,397 4,185 2 181.12 2,443 2 12.65 12.30

800 3:72 � 10501 1,597 4,785 2 245.76 2,793 2 16.88 16.06

900 1:85 � 10564 1,797 5,385 2 302.63 3,143 2 21.17 20.29

1,000 9:18 � 10626 1,997 5,985 2 382.04 3,493 2 26.10 24.94

Slotted ring 10 8:29 � 109 60 691 7 1.47 409 7 0.82 0.77

20 2:73 � 1020 220 4,546 12 33.32 2,328 12 12.74 12.22

30 1:04 � 1031 480 15,101 17 242.36 10,433 17 76.45 75.00

40 4:16 � 1041 840 37,066 22 1,073.64 25,374 22 297.07 293.15

50 1:72 � 1052 1,300 76,308 27 4,228.88 47,806 27 908.40 897.97

FMS 5 2:90 � 106 149 433 10 0.57 239 10 0.26 0.22

10 2:50 � 109 354 1,038 15 2.42 599 15 1.05 0.88

15 2:17 � 1011 634 1,868 20 6.27 1,109 20 2.83 2.20

20 6:03 � 1012 989 2,923 25 13.52 1,769 25 6.47 4.83

25 8:54 � 1013 1,419 4,203 30 26.49 2,579 30 13.01 9.12

50 4:24 � 1017 4,694 13,978 55 209.96 8,879 55 166.28 73.13

75 6:98 � 1019 9,844 29,378 80 980.20 18,929 80 484.93 299.34

100 2:70 � 1021 16,869 50,403 105 2,681.80 32,729 105 1,448.16 845.91

Kanban 5 2:55 � 106 7 47 11 0.08 55 4 0.05 0.05

10 1:01 � 109 12 87 21 1.26 155 4 0.66 0.76

15 4:70 � 1010 17 127 31 6.97 305 4 3.90 4.43

20 8:05 � 1011 22 167 41 24.64 505 4 15.11 16.76

25 7:68 � 1012 27 207 51 68.71 755 4 44.62 49.12

30 4:99 � 1013 32 247 61 161.49 1,055 4 113.99 123.67

40 9:94 � 1014 42 327 81 628.11 1,805 4 511.44 564.13

50 1:04 � 1016 52 407 101 1,681.96 2,755 4 1,586.32 1,492.21

variants of our new algorithm require signi�cantly fewer peak MDD nodes, where the Kanban system is

again an exception, our memory penalty is almost compensated.

The two models whose parameter N a�ects the height of the MDD, namely the dining philosophers and

the slotted-ring model, provide a good testbed for our ideas since they give rise to tall MDDs with a high

degree of event locality. For these models, the CPU times are up to 15 times faster than the ones for [19],

and, more importantly, the gap widens as we continue to scale-up the nets. The main reason for this is that

the number of explored nodes per event �red is much more contained in our approach, compared to [19].

14



When MDD heights are small, such as for the FMS and the Kanban system, our algorithm is still faster

than the one in [19], but the di�erence is not as impressive due to our increased book-keeping overhead.

Table 6.2

Timing results for the Kanban net with 16 levels (one place per level)

N 1 2 3 4 5 8 10 15 20

Approach in [19] (sec.) 0.77 2.42 6.45 14.02 25.07 111.80 233.93 1,021.53 3,324.78

Upstream-arcs approach (sec.) 0.20 0.46 0.69 1.16 1.80 5.32 9.54 29.50 73.49

Forwarding-arcs approach (sec.) 0.16 0.37 0.73 1.25 1.94 5.71 10.18 29.96 69.83

The results for the Kanban system are poor compared to the ones for our other examples, although

the number of iterations is reduced from 2 � N + 1 to 4 due to our advanced iteration control. There are

several reasons for this. First, splitting the Kanban net into only four subnets leads to an MDD with a

small depth, but a very large breadth. Clearly, any attempt to exploit locality in this case cannot have

much pay-o�. Second, our garbage-collection policy in the forwarding-arcs approach contributes to the

proliferation of deleted nodes, which are not truly destroyed until the end of the iteration. Combined with

the reduced number of iterations in our approach, the garbage collection bin grows too rapidly. Usually,

late node deletion is bene�cial, since doing garbage collection in bulks reduces the number of times nodes

are scanned for removal. However, in case of the Kanban system, we see how this can back�re. It is worth

noting that using a �ner and not particularly \good" partition of the Kanban net, with one place per level,

drastically changes the results, as shown in Table 6.2. We only need to scale-up the model to N = 20 to

see an improvement of about factor 50 with respect to [19]. This observation indicates that our algorithm

might be well-suited in cases when a good partitioning cannot be found automatically or by hand, e.g., due

to insu�cient heuristics.

Summarizing, our algorithm performs much better than [19] when Petri nets are partitioned into many

subnets, thereby leading to tall MDDs, as the exploitation of event locality becomes more bene�cial. The

memory overhead in our approach, which is due to larger-sized MDD nodes in case of the upstream-arcs

approach and to redundant and deleted, but not-yet-destroyed nodes, in case of the forwarding-arcs approach,

is almost accounted for in practice by the small peak number of MDD nodes.

7. Related Work. A variety of approaches for the generation of reachable state spaces of synchronous

and asynchronous systems have been suggested in the literature, where state spaces are represented either

in an explicit or in a symbolic way.

Explicit state-space generation techniques build the reachable state space of the system under consid-

eration by successively iterating its next-state function [3, 6, 10, 13]. To achieve space e�ciency, various

techniques have been introduced. Two techniques, namely multi-level data structures and merging common

bitvectors, deserve special mentioning. Multi-level data structures exploit the structure of the underlying

representation of the system under consideration, e.g., the approach reported in [6] and implemented in [5]

is based on a decomposition of a Petri net into subnets. As the name suggests, merging common bitvectors

aims at compressing the storage needed for each state { a bitvector { by merging common sub-bitvectors [3];

indeed, the result is somewhat analogous to the one obtained using BDDs. The latter technique is also suc-

cessfully used in automata-based model-checking tools [13]. While explicit methods still require space linear

in the number of states, they usually possess advantages for numerical state-space analyses, e.g., those based

on Kronecker algebra [7], which may directly work on data structures employed for explicit state storage.
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To avoid the problem of state-space explosion when building the explicit state space of concurrent,

asynchronous systems, researchers have developed three key techniques. (i) Compositional minimization

techniques build the state space of a concurrent system stepwise, i.e., parallel component by parallel com-

ponent, and minimize the state space of each intermediate system according to a behavioral congruence or

an interface speci�cation [12]. (ii) Partial-order techniques exploit the fact that several traces of an asyn-

chronous system may be equivalent with respect to the properties of interest [11]; thus, it is su�cient to

explore only a single trace of each equivalence class. (iii) Techniques exploiting symmetries in systems { such

as those with repeated sub-systems { can be used to avoid the explicit construction of symmetric subgraphs

of the overall state spaces [9]; colored Petri nets are also an example of this aspect [14].

Symbolic state-space generation techniques have traditionally focused on (synchronous) hardware sys-

tems rather than on (asynchronous) software systems [1, 4, 15, 17]. In the Petri net community, they were

�rst applied by Pastor et al. in [22]. This paper developed a BDD-based algorithm for the generation of the

reachability sets of safe Petri nets, by encoding each place of a net as a Boolean variable. The algorithm

is capable of generating state spaces of very large Petri nets within hours [24]. In recent work, Pastor and

Cortadella introduced a more e�cient encoding of Petri nets by exploiting place invariants [21]. However,

the underlying logic is still based on Boolean variables. In contrast, our work uses a more general version of

decision diagrams, namely MDDs [15, 19], by which the amount of information carried in a single node of a

decision diagram can be increased. In particular, MDDs allow for a straightforward encoding of arbitrary,

i.e., not necessarily safe, Petri nets. Since we have already compared our approach to related MDD-based

techniques in the previous sections, we refrain from a repetition of this comparison here.

8. Conclusions and Future Work. This paper presented a very e�cient new algorithm for building

the reachable state spaces of asynchronous systems. As in previous work [19], state spaces are symbolically

represented via Multi-valued Decision Diagrams (MDDs), which { unlike Binary Decision Diagrams { are able

to store complex information within a single node. However, in contrast to previous work, our algorithm fully

exploits event locality in asynchronous systems, integrates an intelligent cache management, and achieves

faster convergence via an advanced iteration control. Analytical results of examples well-known in the

Petri net community show that our algorithm is often about one order of magnitude faster than the one

introduced in [19] { which in turn improves on previous algorithms { with only a relatively small decrease in

space e�ciency. In summary, our approach successfully reduces the run-time penalty of related algorithms

when generating very large state spaces using symbolic storage techniques. To the best of our knowledge,

our algorithm is the �rst symbolic one taking advantage of event locality.

Regarding future work, we intend to parallelize our algorithm for shared-memory and distributed-

memory architectures. The idea is to map di�erent levels of MDDs to di�erent processors and, thereby,

to speed-up the state-space construction further while being able to store larger MDDs on distributed ar-

chitectures. Our algorithm is particularly suited for this kind of parallelization since all data structures are

already split according to levels. We believe that our approach promises to avoid the run-time penalties for

parallelization reported in the literature [18, 23, 25], especially regarding distributed-memory implementa-

tions on networks of workstations and PC clusters.
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Appendix A. Data Types and General Purpose Routines.

This section contains the de�nitions of the data types used in our pseudo code, as well as some general-

purpose routines for operating on these data types.

A.1. Data types. The data types employed by our algorithm are the following:

� The type level of levels is [1::K], where K is a positive integer constant encoding the number of

MDD levels. The constant N of type array[1::K] of int represents the branching degree of MDDs

for each level.

� The type event for events is integer, i.e., event names are encoded as integer values. Functions

First(e : event) : level and Last(e : event) : level return the index of the �rst and last level a�ected

by the corresponding event, respectively. Procedure PreprocessEvents() sorts the events according

to their �rst a�ected level, in increasing order. In the pseudo code, we also use the notation e0 < e

to indicate that e0 is smaller than e according to the order imposed by PreprocessEvents . Note that

all local events for level k are merged into a single macro event lk.

� The type mddNode(k : level ) for MDD nodes is a record type having the following �elds:

{ dw : array [0::(N [k]�1)] of mddAddr , which stores the N [k] downstream arcs for all K children

of the node under consideration.

{ up : bag of mddAddr , which stores upstream arcs.

{ cached : boolean , a 
ag indicating whether there exists a cache entry referring to this node.

{ dirty : boolean , a 
ag signaling in combination with cached whether the cached copies are stale.

� The mddAddr type is a \virtual" address of an MDD node, which is a pair hlvl ; indi represented by

a 32-bit integer. The �rst dlog2Ke bits of an address encode the level lvl of a node, the remaining

bits encode the position ind of the node within that level. In the pseudo code, S(p : mddAddr )

denotes the state space represented by the MDD rooted at p.

� The storage for \physical" MDD nodes is a vector T [1::K] of heap-arrays, one heap-array per level.

Upon request, memory for T is allocated dynamically by pages. We use a 1024 node page size. In

the pseudo code, the memory allocation and release procedures are denoted by AllocateMemory(k :

level ) : mddAddr and ReleaseMemory(p : mddAddr ), respectively. These nodes are also accessible

through a linked list which allows separate fast access to the deleted and the non-deleted nodes.

� The unique table (UT), UT [1::K], is an array of hash tables, one hash table per level, which store

pointers to unique MDD nodes. The hash key of an MDD node is computed solely over the values

of the dw -pointers.

� The union cache (UC), U [1::k], and �ring cache (FC), F [1::K], are hash tables that store the results

of already computed operations. A UC table entry has type (fp : mddAddr ; q : mddAddrg; r :

mddAddr ), while a FC table entry has type (p : mddAddr ; r : mddAddr ). Also, for the union cache,

if k = max(p:lvl ; q:lvl ), then the triplet is hashed in UC [k].

For all hash tables mentioned above, the size of a table is dynamic, i.e., insertions and deletions may re-

dimension it. If the number of elements reaches the size of the table, we enlarge the table to about twice

its current size (more precisely, to the next prime number larger than twice the current size). If the number

of elements is less than 1
4 th of the size of the table, we shrink the table to about half its current size (more

precisely, to the next prime number smaller than half the current size). The table size is not increased if it

is larger than a preset upper bound, and is not decreased if it is smaller than a preset lower bound.
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A.2. Routines for Managing the Unique Table.

� InsertInUT (in p : mddAddr ; out r : mddAddr ) : boolean

Searches UT [p:lvl ] for a node with the same pattern of downstream arcs as p!dw . If it is found, r

is set to the address of this node, and the function returns true. Otherwise, p is added to UT [p:lvl ],

r is left unchanged, and the function returns false .

� RemoveFromUT (in p : mddAddr )

Removes p from UT [p:lvl ].

� ClearUT (in k : level )

Clears all entries in UT [k].

A.3. Routines for Managing the Union Cache.

� LookUpInUC (in k : level ; in p : mddAddr ; in q : mddAddr ; out r : mddAddr )

Searches U [k] for an element of the form (fp; qg; �). If such a (fp; qg; x) is found, it sets r to x and

returns true. Otherwise, it leaves r unchanged and returns false . The result is independent of the

order in which the two parameters p and q are supplied.

� InsertInUC (in k : level ; in p : mddAddr ; in q : mddAddr ; in r : mddAddr )

Inserts (fp; qg; r) in U [k]. Given the logic of our algorithm, U [k] does not contain any element of the

form (fp; qg; �) and k = maxfp:lvl ; q:lvlg. The e�ect on U [k] is independent of the order in which

the two parameters p and q are supplied.

� RemoveFromUC (in k : level ; in p : mddAddr ; in q : mddAddr )

Removes the entry of the form (fp; qg; �) from U [k].

� ClearUC (in k : level )

Clears all entries in U [k].

A.4. Routines for Managing the Firing Cache.

� LookUpInFC (in k : level ; in p : mddAddr ; out r : mddAddr ) : boolean

Searches F [k] for an element of the form (p; �). If such a (p; x) is found, it sets r to x and returns

true. Otherwise, it leaves r unchanged and returns false .

� InsertInFC (in k : level , in p : mddAddr ; in r : mddAddr )

Inserts (p; r) in F [k]. Given the logic of our algorithm, F [k] does not contain any element of the

form (p; �) and k � p:lvl .

� ClearFC (in k : level)

Clears all entries in F [k].

A.5. Routines for Managing Sets and Bags. Sets of integers are implemented as queues. Elements

can be picked from the head (FIFO) and from the tail (LIFO) of a queue, according to the desired strategy.

� PickAnyElement(inout L : set of int) : int

Selects and removes an arbitrary element from set L, and returns it.

Bags of mddAddr are implemented as linked lists of pairs (mddAddr ; count). They are managed via the

following two functions:
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� AddElement(in p : mddAddr , in plus : int , inout b : bag)

If bag b contains p, the count of p is increased by plus . Otherwise, p is added with count plus to the

list of elements in b.

� RemoveElement(in p : mddAddr, in minus : int, inout b : bag)

If bag b contains p with count greater than or equal to minus, the routine subtracts minus from the

count of p, followed by the deletion of p in case the count becomes 0. Otherwise, b is left unchanged.

Often the symbols \2", \=", \ 6=", and \;" are also used in the context of bags, with their obvious meanings.

A.6. Routines for handling events.

� NewStates(in k : level , in e : event ; in i : int) : set of int

Returns the set of local states obtained by �ring event e, when e is enabled by local state i at level k.

Basically, this routine is the local next-state function for the subnet encoded in level k.

� IsIndependent(in k : level , in e : event) : boolean

An event e is independent of some level k when the �ring of e leaves level k unchanged. Note that

this property is di�erent from e being disabled.

A.7. Modi�cations for the Forwarding-arcs Approach. In the forwarding-arcs approach, the

record �eld up of node type mddNode is replaced by the following two �elds:

� in of type int , which stores the number of incoming arcs from the next higher level, and

� deleted of type boolean , which signals whether the node has been marked for deletion. If so, it is

redundant, and its unique forwarding arc is stored in dw [0].

Moreover, since downstream arcs do not skip levels, entries of U [k] and F [k] refer only to nodes at level k.

Thus, the level parameter k can be removed for routines LookUpInUC , InsertInUC , RemoveFromUC ,

LookUpInFC , and InsertInFC .
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Appendix B. Detailed Pseudo Code for the \Upstream-arcs" Variant.

MDDgeneration(in m : array[1::K] of int) : mddAddr

Generates the state space of a model with respect to the initial state m and returns the address of the MDD's root.

local k : level ;

local e : event ;

local q : mddAddr ;

local mddChanged : boolean ; � 
ag signaling whether more iterations are needed

1. for k = 1 to K do

2. ClearUT (k); � the UT is cleared only once at the beginning

3. for k = 1 to K � 1 do

4. ClearUC (k); � the UC is initialized here and later purged of out-of-date entries

5. ClearFC (k); � the FC is cleared here and at the end of each Fire

6. q ( SetInitial(m);

7. PreprocessEvents (); � sort events in increasing order regarding First(�)

8. repeat

9. mddChanged ( false; � true if any node of the MDD changes in this iteration

10. for k = 1 to K do

11. foreach event e satisfying First(e) = k do

12. Fire(e; q;mddChanged);

13. until mddChanged = false;

14. return q;

Fire(in e : event ; in s : mddAddr ; inout mddChanged : boolean)

Generates and inserts the states reachable from the currently known state space represented by s via event e. For any

node at level First(e), it calls FireFromFirst , which propagates work downstream by calling Union and FireRecursive .

Then, for any node at a level k, with First(e) > k � Last(e), having incoming downstream arcs from a level above

First(e), Fire creates a temporary redundant node at level First(e), and calls FireFromFirst on it. The dummy node

is removed at the end, if, after exploration, it is still redundant. This second phase must be performed after the �rst

one, to avoid re-exploring (formerly redundant) nodes just introduced. The 
ag mddChanged is passed through and

updated.

local k : level ;

local i : int ;

local p; q; r; d : mddAddr ;

local pHasDummy : boolean ; � signals if an implicit root has to be inserted

1. foreach p 2 T [First(e)] do � �re e starting at nodes in level First(e)

2. if FireFromFirst(e; p) then

3. mddChanged ( true ;

4. for k = Last(e) to First(e)� 1 do � check for downstream arcs skipping over First(e)

5. foreach p 2 T [k] do

6. pHasDummy ( false;

7. foreach q 2 p!up do

8. if q:lvl > First(e) then � downstream arc from q to p skips over First(e)

9. if not pHasDummy then

10. d( CreateNode(First(e); p); � insert a redundant node d at level First(e) pointing to p

11. InsertInUT (d; null);

12. pHasDummy ( true; � d is not in the UT, since it is a redundant node

13. for i = 0 to N [q:lvl ] do � �nd all downstream arcs from q to p and re-direct them to d

14. if q!dw [i] = p then

15. SetArc(q; i; d);

(to be continued on next page)
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(continued from previous page)

16. if pHasDummy then � if a redundant node has been created, explore it

17. if not FireFromFirst(e; d) then � if it is unchanged, it is still redundant...

18. RemoveFromUT (d); � ...remove d from the UT and...

19. CheckNode(d); � ...re-direct to p any arc that was re-directed to d, then delete d

20. for k = First(e)� 1 downto 1 do � must clean up in this order for this to work

21. foreach (fp; qg; r) 2 U [k] do

22. if (p!up = ;) or (q!up = ;) or (r:lvl > 0 and r!up = ;) � disconnected nodes...

23. or (p!dirty) or (q!dirty) or (r:lvl > 0 and r!dirty) then � ...and out-of-date entries...

24. RemoveFromUC (k; p; q); � ...are removed from the UC

25. foreach p 2 T [k] do � clear disconnected nodes at level k

26. DeleteDownstream (p);

27. for k = Last(e) to First(e)� 1 do � clear �ring caches at levels below First(e)

28. ClearFC (k);

FireFromFirst(in e : event ; in p : mddAddr ) : boolean

Fires event e starting from node p in the UT, satisfying p:lvl = First(e). It propagates work downstream by calling

Union and FireRecursive . It returns true , if node p was changed, and false, otherwise. If p changes, its address is

removed from the UT. Moreover, either the node itself is deleted, if it has become redundant, or p is re-inserted in

the UT (this allows for updating its hash value). If the node is removed, the change is propagated upstream using

CheckNode . If the node is not changed, p is left in the UT.

local L : set of int ;

local pHasChanged : boolean ; � 
ag signaling whether MDD with root p has changed

local f; u : mddAddr ;

local i; j : int ;

1. L ( LocalStatesToExplore(p; e); � get all the local states that potentially enable e

2. pHasChanged( false;

3. while L 6= ; do

4. i( PickAnyElement(L); � choose any element i in L and remove it from L

5. f ( FireRecursive(First(e)� 1; e; p!dw [i]); � this call returns p!dw [i] if e is local

6. if f 6= h0; 0i do � f = h0; 0i if and only if e could not �re

7. foreach j 2 NewStates(First(e); e; i) do � j is a local state reachable from i when �ring e

8. u( Union(f; p!dw [j]);

9. if u 6= p!dw [j] then � the �ring of e added new states

10. if not pHasChanged then � this is the �rst change to p in this call

11. RemoveFromUT (p); � p must be removed from the UT before changing it

12. pHasChanged ( true ; � remember not to remove p from the UT again

13. if NewStates (First(e); e; j) 6= ; then

14. AddElement(j;L); � j needs to be explored (possibly again)

15. SetArc(p; j; u);

16. if pHasChanged then

17. if p!cached then p!dirty ( true ; � cache entries referring to p are stale

18. CheckNode(p); � put back p into the UT, or delete it

19. return pHasChanged ;
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FireRecursive(in k : level ; in e : event ; in p : mddAddr ) : mddAddr

Returns the address of a node representing the set of states reachable from S(p) when event e occurs, ignoring the

dependency of e on levels above p:lvl . Function FireRecursive propagates work only downstream, since it only changes

a temporary node t in-place. The returned value is guaranteed to be in the UT, unless it is not h0; 1i or h0; 0i.

local L : set of int ;

local r; t; f : mddAddr ;

local atSameLevel : boolean ; � p:lvl = k ?

local i; j : int ;

1. if k < Last(e) then � the end of the recursion is reached

2. return p;

3. if p:lvl < k and IsIndependent(k; e) then � e does not depend on level k

4. return FireRecursive(k � 1; e; p); � continue at the next level

5. if LookUpInFC (k; p; r) then

6. return r;

7. t( CreateNode(k; h0; 0i); � create a temporary node t

8. if p:lvl < k then � at this point, e depends on k

9. atSameLevel ( false;

10. L ( LocalStatesEnablingEvent (k; e); � initialize the set L to all local states enabling e

11. else � k = p:lvl

12. atSameLevel ( true ;

13. L ( LocalStatesToExplore(p; e); � initialize the set L to all reachable local states enabling e

14. while L 6= ; do

15. i( PickAnyElement(L); � choose any element i in L and remove it from L

16. if atSameLevel then � �nd states reachable from p!dw [i] via e

17. f ( FireRecursive(k � 1; e; p!dw [i]);

18. else � nothing to explore here; move on to the next level

19. f ( FireRecursive(k � 1; e; p);

20. if f 6= h0; 0i then � f = h0; 0i if and only if e could not �re

21. foreach j 2 NewStates(k; e; i) do

22. u( Union(f; t!dw[j]);

23. if u 6= t!dw [j] then � the �ring of e in p!dw [i] added new states

24. if NewStates (k; e; j) 6= ; then � e is still enabled

25. AddElement(j;L); � j will have to be explored (possibly again)

26. SetArc(t; j; u);

27. t( CheckNode(t); � since t!up = ;, this cannot cause recursive deletes upstream

28. InsertInFC (k; p; t);

29. return t;

Union(in p : mddAddr ; in q : mddAddr ) : mddAddr

Returns the address r of the node representing S(p) [ S(q). It uses and updates the UC to speed-up computation.

The returned value is guaranteed to be in the UT, unless it is not h0; 1i or h0; 0i. Of course, r:lvl � Max(p:lvl ; q:lvl).

local k : level ;

local i : int ;

local r; u : mddAddr ;

1. if p = h0; 1i or q = h0; 1i return h0; 1i; � deal with special cases �rst

2. if p = h0; 0i or p = q return q;

3. if q = h0; 0i return p;

(to be continued on next page)
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4. k ( Max (p:lvl ; q:lvl);

5. if LookUpInUC (k; p; q; r) then � if found, result of the union is returned in r

6. return r;

7. r ( CreateNode (k; h0; 0i); � otherwise, the union is computed in r

8. for i = 0 to N [k] � 1 do

9. if k > p:lvl then � p is at a lower level than q

10. u( Union(p; q!dw [i]);

11. else if k > q:lvl then � q is at a lower level than p

12. u( Union(p!dw [i]; q);

13. else � p and q are at the same level

14. u( Union(p!dw [i]; q!dw [i]);

15. SetArc(r; i; u);

16. r ( CheckNode(r); � since r!up = ;, this cannot cause recursive deletes upstream

17. InsertInUC (k; p; q; r); � record the result of this union in the UC

18. if p 6= r then InsertInUC (k; p; r; r); � add predicted cache requests

19. if q 6= r then InsertInUC (k; q; r; r);

20. p!cached ; q!cached ; r!cached ( true ;

21. return r;

CheckNode(in p : mddAddr ) : mddAddr

Enforces the MDD properties for node p, which is not in the UT. It ensures that this node is neither redundant nor a

replica. If so, p is inserted in the UT. Otherwise, node p is disconnected from upstream nodes and deleted by calling

DeleteUpstream , which in turn calls CheckNode on these nodes, and so on. The recursion stops when a modi�ed

node does not have to be deleted. Function CheckNode returns the address of the node representing the set of states

initially described by p, and this address is guaranteed to be in the UT. As we allow a redundant root node, we treat

it as a special case.

local x : mddAddr ;

1. if p:lvl = K then � check special case

2. InsertInUT (p; null); � put the root node back into the UT

3. return p; � this allows for keeping the root node even if it is redundant

4. if p!dw [0] = p!dw [1] = � � � = p!dw [N [k]� 1] then � p is redundant; delete it and use its child

5. x( p!dw [0];

6. DeleteUpstream(p; x); � all downstream arcs pointing to p must now point to x

7. return x;

8. else if InsertInUT (p; x) then � p is a replica of x; delete it and use x instead

9. DeleteUpstream(p; x); � all downstream arcs pointing to p must now point to x

10. return x;

11. else

12. return p; � p is a distinct node and was inserted in the UT

DeleteUpstream(in o : mddAddr ; in n : mddAddr)

Changes any downstream arc pointing to the old node o, not present in the UT, so that it points to the new node n

instead, thus disconnecting node o. Then it deletes o. After changing the downstream arcs of any node p in the

upstream bag of o, it removes p from the UT and enforces the reducedness property on it by calling CheckNode , which

in turn may call DeleteUpstream .

local p : mddAddr ;

local i : int ;

(to be continued on next page)
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(continued from previous page)

1. foreach p 2 o!up do � check all nodes directly upstream

2. RemoveFromUT (p); � updated node will be deleted or re-inserted in the UT by CheckNode

3. for i = 0 to N [p:lvl ]� 1 do

4. if p!dw [i] = o then

5. SetArc(p; i; n); � this call does not need a downstream recursion

6. CheckNode(p); � enforce reducedness property

7. for i = 0 to N [o:lvl ] do

8. SetArc(o; i; h0; 0i); � disconnect node...

9. ReleaseMemory(o); � ...and kill it

SetArc(in p : mddAddr ; in i : int ; in n : mddAddr )

Sets the i-th downstream arc of node p to n, while maintaining consistency with the upstream arcs.

local o : mddAddr ;

1. o( p!dw [i]; � old node pointed by the downstream arc

2. p!dw [i] ( n; � re-direct downstream arc

3. if n:lvl 6= 0 then � no need to link h0; 0i or h0; 1i

4. AddElement(p; 1; n!up); � increase count of upstream arcs for the new node pointed to

5. if o:lvl 6= 0 then � no need to unlink h0; 0i or h0; 1i

6. RemoveElement (p; 1; o!up); � reduce count of upstream arcs for old node

DeleteDownstream (in p : mddAddr )

If node p has no incoming arcs, this routine removes p from the UT and deletes it, after having recursively examined

each of its downstream arcs.

local q : mddAddr ;

local i : int ;

1. if p!up = ; then

2. RemoveFromUT (p);

3. for i = 0 to N [p:lvl ] do

4. q ( p!dw [i];

5. SetArc(p; i; h0; 0i); � disconnect old downstream arc pointing to q

6. DeleteDownstream (q); � check if q still has incoming arcs

7. ReleaseMemory (p); � kill node p

SetInitial(in m : array [1::K] of int) : mddAddr

Constructs the MDD representing the initial state m of the model, and returns a pointer to the MDD's root.

local p; q : mddAddr ;

local k : int ;

1. q ( h0; 1i; � initialize q to node h0; 1i

2. for k = 1 to K do

3. p( CreateNode(k; h0; 0i);

4. SetArc(p;m[k]; q); � link new node, at level k, to the one below, at level k � 1

5. InsertInUT (p; null); � use null because p is known to be a new node

6. q ( p;

7. return q;
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CreateNode(in k : level ; in initial : mddAddr ) : mddAddr

Allocates a level-k node with all the entries in dw initialized to initial, up initialized to ;, 
ags cached and dirty

initialized to false, and returns its address. It also updates the bag of upstream arcs for node initial .

local p : mddAddr ;

local i : int ;

1. p( AllocateMemory(k);

2. p!up ( ;;

3. for i = 0 to N [k] � 1 do

4. p!dw [i]( initial;

5. if initial:lvl > 0 then

6. AddElement(p;N [k]; initial!up);

7. p!cached ; p!dirty ( false;

8. return p;

LocalStatesEnablingEvent (in k : level ; in e : event) : set of int

Returns the set of local states at level k which enable e.

local L : set of int ;

local i : int ;

1. L ( ;;

2. for i = 0 to N [k] � 1 do

3. if NewStates(k; e; i) 6= ; then � refer to the local next-state function of the underlying model

4. AddElement(i;L);

5. return L;

LocalStatesToExplore (in p : mddAddr ; in e : event) : set of int

Returns the set of local states at level p:lvl which (1) are currently reachable via the considered path from the root to p

and (2) enable e. If e is independent of level p:lvl , only Condition (1) is restrictive, since NewStates(p:lvl ; e; i) = fig,

i.e., all local states at this level enable e.

local L : set of int ;

local i : int ;

1. L ( ;;

2. for i = 0 to N [p:lvl ]� 1 do

3. if p!dw [i] 6= h0; 0i and NewStates(p:lvl ; e; i) 6= ; then

4. AddElement(i;L);

5. return L;
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Appendix C. Detailed Pseudo Code for the \Forwarding-arcs" Variant.

Routines SetInitial , LocalStatesEnablingEvent , and LocalStatesToExplore are as for the upstream-arcs approach.

The other routines are given here, including some new ones.

MDDgeneration(in m : array[1::K] of int) : mddAddr

Generates the state space of a model with respect to initial state m, and returns the address of the MDD's root.

local k : level ;

local q : mddAddr ;

local mddChanged : boolean ; � 
ag signaling whether more iterations are needed

1. for k = 1 to K do

2. ClearUT (k); � the UT is cleared only once at the beginning

3. for k = 1 to K � 1 do

4. ClearUC (k); � the UC is initialized here and later purged of out-of-date entries

5. for k = 1 to K � 1 do

6. ClearFC (k); � the FC is cleared here and at the end of each Fire

7. q ( SetInitial(m);

8. PreprocessEvents (); � sort events in increasing order regarding First(�)

9. repeat

10. mddChanged ( false; � true if any node changes in this iteration

11. Fire(l1); � �re the local macro event at level 1

12. for k = 2 to K do

13. DeleteForwarding(k); � eliminate non-unique nodes at level k

14. foreach event e satisfying First(e) = k do

15. Fire(e; q;mddChanged);

16. until mddChanged = false;

DeleteForwarding(in k : level)

Removes all nodes marked for deletion at level k�1 and destroys the corresponding forwarding chain, after appropriately

re-directing the downstream arcs from nodes at level k. This requires to remove these nodes from the UT and to check

them back in. Thus, this procedure might cause nodes at level k to become marked for deletion.

local p; u : mddAddr ;

local pHasChanged : boolean ; � 
ag signaling whether p has changed

local i : int ;

1. foreach p 2 T [k] do � eliminate forwarding arcs and nodes marked for deletion at level k � 1

2. pHasChanged ( false;

3. for i = 0 to N [k]� 1 do

4. if p!dw [i]:lvl > 0 then

5. u( UpdateArc(p; i); � update arc p!dw [i], in case it points to a node marked for deletion

6. if u 6= p!dw [i] then � p!dw [i] does point to a node marked for deletion

7. if pHasChanged = false then

8. RemoveFromUT (p); � p must be removed from the UT before changing it

9. pHasChanged ( true ; � remember not to remove p from the UT again

10. SetArc(p; i; u); � point p!dw [i] to the equivalent node not marked for deletion

11. if pHasChanged then

12. CheckNode(p); � this might mark p for deletion
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UpdateArc(in p : mddAddr , in i : int) : mddAddr

If q = p!dw [i] is not marked for deletion, q is returned. Otherwise, u is returned { where u is the \ultimate" node in

the forwarding chain { after (1) either re-directing q's forwarding arcs to u, so that further accesses to q will determine u

more e�ciently, or (2) deleting q, if one just followed the last arc reaching it (either downstream or forwarding).

local q; u : mddAddr ;

1. q ( p!dw [i];

2. if (q:lvl > 0) and q!deleted then

3. u( UpdateArc(q; 0); � the only arc pointing to q is followed...

4. if q!in = 1 then

5. SetArc(p; 0; h0; 0i);

6. ReleaseMemory(q); � ...so q can �nally be deleted

7. SetArc(q; 0; u); � q cannot be deleted, but its forwarding arc can be set to the end of the chain

8. if q!in = 0 then

9. return u; � u is not marked for deletion

10. else

11. return q;

Fire(in e : event ; in q : mddAddr ; inout mddChanged : boolean)

Generates and inserts the states reachable from the current state space via event e. For any node at level First(e), it

calls FireFromFirst . The 
ag mddChanged is passed through and updated.

local k : level ;

local p; q; r : mddAddr ;

1. foreach p 2 T [First(e)] do � �re e starting at nodes in the �rst level a�ecting it

2. if FireFromFirst(e; p) then

3. mddChanged ( true ;

4. for k = First(e)� 1 downto 1 do � must clean up in this order for this to work

5. foreach (fp; qg; r) 2 U [k] do

6. if (p!up = ;) or (q!up = ;) or (r!up = ;) � disconnected nodes...

7. or (p!dirty) or (q!dirty) or (r!dirty) then � ...and out-of-date entries...

8. RemoveFromUC (k; p; q); � ...are removed from the UC

9. foreach p 2 T [k] do � clear disconnected nodes at level k

10. DeleteDownstream (p);

11. for k = Last(e) to First(e)� 1 do � clear �ring caches at levels below First(e)

12. F [k] ( ;;

FireFromFirst(in e : event ; in p : mddAddr ) : boolean

Fires event e starting from node p in the UT, satisfying p:lvl = First(e). It propagates work downstream by calling

Union and FireRecursive . It returns true if node p was changed, and false, otherwise. If the node changes, p is

removed from the UT. Moreover, whether node p is deleted, if it has become redundant, or p is re-inserted in the UT

(this allows for the hash value to be updated). If the node is removed, the change is recorded by CheckNode using a

forwarding arc. If the node is not changed, p is left in the UT.

local L : set of int ;

local pHasChanged : boolean ; � 
ag signaling whether p has changed

local f; u : mddAddr ;

local i; j : int ;

(to be continued on next page)
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(continued from previous page)

1. L ( LocalStatesToExplore(p; e); � get all the local states that potentially enable e

2. pHasChanged ( false;

3. while L 6= ; do

4. i( PickAnyElement(L); � choose any element i in L and remove it from L

5. f ( FireRecursive(e; p!dw [i]); � this call returns p!dw [i] if e is local

6. if f 6= h0; 0i then � f = h0; 0i if and only if e could not �re

7. foreach j 2 NewStates(First(e); e; i) do � j is a local state reachable from i when �ring e

8. u( Union(f; p!dw [j]);

9. if u 6= p!dw [j] then � the �ring of e added new states

10. if not pHasChanged then � this is the �rst change to p in this call

11. RemoveFromUT (p); � we must remove p from the UT before changing it

12. pHasChanged ( true ; � remember not to remove p from the UT again

13. if NewStates (First(e); e; j) 6= ; then � if e is still enabled...

14. AddElement(j;L); � ...j will have to be explored (possibly again)

15. SetArc(p; j; u);

16. if pHasChanged then

17. if p!cached then p!dirty ( true ; � cache entries referring to p are invalidated

18. CheckNode(p); � put p back into the UT, or delete it

19. return pHasChanged ;

FireRecursive(in e : event ; in p : mddAddr ) : mddAddr

Returns the address of a node representing the set of states reachable from S(p) when event e occurs, ignoring the

dependency of e on levels above p:lvl . FireRecursive propagates work only downstream, since it only changes a

temporary node t in-place. Because redundant nodes are preserved, the returned value is guaranteed to be in the UT

and at the same level as p, unless it is h0; 0i.

local L : set of int;

local r; t; f : mddADdr ;

local i; j : int ;

1. if p:lvl < Last(e) then � end of the recursion

2. return p;

3. if LookUpInFC (p:lvl ; p; r) then

4. return r;

5. r ( CreateNode (p:lvl; h0; 0i); � create a temporary node t

6. L ( LocalStatesToExplore(p; e); � initialize the set L to all reachable local states enabling e

7. while L 6= ; do

8. i( PickAnyElement(L); � choose any element i in L and remove it from L

9. f ( FireRecursive(e; p!dw [i]); � �nd states reachable from p!dw [i] via e

10. if f 6= h0; 0i then � f = h0; 0i if and only if e could not �re

11. foreach j 2 NewStates(p:lvl ; e; i) do

12. u( Union(f; r!dw [j]);

13. if u 6= r!dw [j] then � the �ring of e in p!dw [i] added new states

14. if NewStates (p:lvl ; e; j) 6= ; then

15. AddElement(j;L); � j will have to be explored (possibly again)

16. SetArc(r; j; u);

17. r ( CheckNode(r); � since t!up = ;, this cannot cause recursive deletes upstream

18. InsertInFC (p:lvl ; p; r);

19. return t;
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Union(in p : mddAddr ; in q : mddAddr ) : mddAddr

Returns the address r of the node representing S(p)[S(q), where p:lvl = q:lvl . It uses and updates the UC to speed-up

computation. Since redundant nodes are kept, the returned value is guaranteed to be in the UT and at the same level

of p and q, unless it is not h0; 0i.

local r; u : mddAddr ;

local i : int ;

1. if p = h0; 1i or q = h0; 1i return h0; 1i; � deal with special cases �rst

2. if p = h0; 0i and q = h0; 0i return h0; 0i;

3. if p = q return q;

4. if LookUpInUC (p:lvl ; p; q; r) then � if found, result of the union is returned in r

5. return r;

6. r ( CreateNode (p:lvl; h0; 0i); � otherwise, the union is computed in r

7. for i = 0 to N [p:lvl ]� 1 do

8. u( Union(p!dw [i]; q!dw [i]);

9. SetArc(r; i; u);

10. r ( CheckNode(r); � since r!up = ;, this cannot cause recursive deletes upstream

11. InsertInUC (p:lvl ; p; q; r); � record the result of this union in the UC

12. if p 6= r then InsertInUC (k; p; r; r); � add predicted cache requests

13. if q 6= r then InsertInUC (k; q; r; r);

14. p!cached ; q!cached ; r!cached ( true ;

15. return r;

CheckNode(in p : mddAddr ) : mddAddr

Ensures that p, which is not in the UT, is not a replica or a redundant node pointing to h0; 0i, and inserts p in the

UT. Otherwise, node p is deleted (if it has no incoming arcs) or it is marked for deletion and a forwarding arc is placed

in it. If it has incoming arcs, this can happen only when CheckNode is called from FireFromFirst , i.e., never when p

is a dummy pointing to h0; 0i. In any case, CheckNode returns the address of the node representing the set of states

initially described by p. This address is guaranteed to be in the UT, unless it is not h0; 0i.

local q : mddAddr ;

local i : int ;

1. if p!dw [0] = p!dw [1] = � � � = p!dw [N [p:lvl ]� 1] = h0; 0i then � this can happen only when p!in = 0

2. ReleaseMemory (p); � p is a dummy with downstream arcs pointing to h0; 0i, delete it

3. return h0; 0i;

4. else if InsertInUT (p; q) then � p is redundant, remove it, and use u instead

5. for i = 0 to N [p:lvl ] do

6. SetArc(p; i; h0; 0i); � disconnect old downstream arcs

7. if p!in = 0 then � p can now be deleted

8. ReleaseMemory(p);

9. else � deletion of p must be delayed

10. p!deleted ( true ; � mark p for future deletion

11. SetArc(p; 0; q); � record the forwarding arc

12. return q;

13. else

14. return p; � p is a distinct node and was inserted in the UT
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SetArc(in p : mddAddr ; in i : int ; in n : mddAddr )

Sets the i-th downstream arc of node p to n, while at the same time maintaining consistency with the incoming-arcs

count. If the incoming-arcs count of the old node p!dw [i] becomes 0, this node will be removed later.

local o : mddAddr ;

1. o( p!dw [i]; � old node pointed by downstream arc

2. p!dw [i] ( n; � re-direct downstream arc

3. if n:lvl 6= 0 then � no need to keep track of h0; 0i or h0; 1i

4. n!in ( n!in + 1; � increase count of upstream arcs for new node

5. if o:lvl 6= 0 then � no need to keep track of h0; 0i or h0; 1i

6. o!in ( o!in � 1; � reduce count of upstream arcs for old node

DeleteDownstream (in p : mddAddr )

If node p has no incoming arcs, this routine removes p from the UT and deletes it, after having recursively examined

each of its downstream arcs.

local q : mddAddr ;

local i : int ;

1. if p!in = 0 then

2. RemoveFromUT (p);

3. for i = 0 to N [p:lvl ] do

4. q ( p!dw [i];

5. if q:lvl > 0 then

6. SetArc(p; i; h0; 0i); � disconnect old downstream arc pointing to q

7. DeleteDownstream (q); � check if q still has incoming arcs

8. ReleaseMemory (p);

CreateNode(in k : level ; in initial : mddAddr ) : mddAddr

Allocates a level-k node with all the entries in dw initialized to initial , in initialized to zero, 
ags cached and dirty

initialized to false, and returns its address. It also updates the incoming-arcs count for node initial.

local p : mddAddr ;

local i : int ;

1. p( AllocateMemory(k);

2. p!in ( 0;

3. for i = 0 to N [k] � 1 do

4. p!dw [i]( initial;

5. if initial:lvl > 0 then

6. initial!in ( initial!in +N [k];

7. p!cached ; p!dirty ( false;

8. return p;
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Appendix D. An Illustration of the Algorithm.

In this section, we illustrate the upstream-arcs variant of our algorithm by means of a small example, namely

the Kanban net depicted in Fig. 6.1, upper right, with N = 1 for the initial marking.

D.1. Partitioning and Initialization. In order to apply our MDD-based approach, the Kanban net is

partitioned into four subnets, subnet 1 to subnet 4. Subnet i contains the places pi, pmi
, pbacki , and pouti . The

local macro event li�1 consists of transitions toki , tredoi , and tbacki { plus transition tout1 or tin4 where applicable

(cf. Fig. 6.1). Further, the system possesses two synchronizing events, tsynch1 23 and tsynch4 23, which we abbreviate

by s1 and s2, respectively.

0

2

3

1

p p

p p

back

out

m

Fig. D.1. Indexing of local states for the Kanban subnets

Given this partitioning, each subnet has four local states which we number 0 through 3 as show in Figure D.1.

In the sequel, we also abuse notation and write (I4; I3; I2; I1), where Ij � f0; 1; 2; 3g and 1 � j � 4, for the set

f(i4; i3; i2; i1) j i4 2 I4; i3 2 I3; i2 2 I2; i1 2 I1g. If Ij = f0; 1; 2; 3g, we write Ij = � for short.

Table D.1

Transitions of the example net.

macro event l1

� � � � � �

� � � � � �

� � � � � �

1 f2; 3g 2 1 3 0

macro event l2

� � � �

� � � �

1 f2; 3g 2 1

� � � �

macro event l3

� � � �

1 f2; 3g 2 1

� � � �

� � � �

macro event l4

0 1 1 f2; 3g 2 1

� � � � � �

� � � � � �

� � � � � �

syn. s1

� �

3 0

3 0

0 1

syn. s2

3 0

0 1

0 1

� �

The initial state (initial marking) of our net is (0; 0; 0; 0). Thus, the initially reachable states space S is

f(0; 0; 0; 0)g, which is represented by the MDD depicted in Fig. D.2, left-hand side. The net's transitions are schemat-

ically shown in the six tables of Table D.1, one table per event. Each column of a table contains an enabling pattern

of the considered event (on the left), i.e., a set of global states, and the global state resulting after the event �res (on

the right).

In the following, we show how the upstream-arcs variant of our algorithm constructs the reachable state space

of the Kanban net. Before the iterative work of the algorithm starts, the routine PreprocessEvents sorts the events

in the order l1 < l2 < l3 < s1 < l4 < s2, since First(l1) = 1, First(l2) = 2, First(l3) = First(s1) = 3, and

First(l4) = First(s2) = 4.
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D.2. First Iteration. In the �rst iteration, starting from the MDD representing the initial state, our algo-

rithm invokes the following routines:

1. Fire(l1), which attempts a FireFromFirst(l1; h1; 0i): unsuccessful, no local states enable l1.

2. Fire(l2), which attempts a FireFromFirst(l2; h2; 0i): unsuccessful, no local states enable l2.

3. Fire(l3), which attempts a FireFromFirst(l3; h3; 0i): unsuccessful, no local states enable l3.

4. Fire(s1), which attempts a FireFromFirst(s1; h3; 0i): unsuccessful, no local states enable s1.

The �rst enabled event is local macro event l4, as con�rmed by routine FireFromFirst(l4; h4; 0i) which �nds local state

0 enabling l4. Since NewStates(4; l4; 0) is f1g, the downstream pointers of node h4; 0i are updated to include the state

(1; 0; 0; 0) reached by �ring l4, i.e., h4; 0i:dw [1]( Union(h4; 0i:dw [0]; h4; 0i:dw [1]) = Union(h3; 0i; h0; 0i) = h3; 0i.

<4,0>

<3,0>

<2,0>

<1,0>

1 1

<3,0>

<4,0>

<2,0>

<1,0>

Fig. D.2. Iteration 1, event l4

However, the �ring of l4 is not exhausted, yet, since local state 1 on level 4 still enables l4. After repeating the

above exploration scheme three times, all downstream arcs of node h4; 0i point to node h3; 0i. Thus, the reachable

state space S discovered so far is updated to S [ f(f1; 2; 3g; 0; 0; 0)g = f(�; 0; 0; 0)g (cf. Fig. D.2, right-hand side).
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1

<3,0>

<4,0>

<2,0>

<1,0>

<2,1>

<3,2>

Fig. D.3. Iteration 1, event s2

Next, the synchronizing event s2 becomes enabled due to the sequence h4; 0i
3
�!h3; 0i

0
�!h2; 0i

0
�!h1; 0i (cf.

Fig. D.3). The routine FireFromFirst called with respect to node h4; 0i builds the MDD rooted at h3; 1i in a

series of FireRecursive calls:

1. FireRecursive(2; s2; h2; 0i) = h2; 1i and h2; 1i:dw [1] = h1; 0i

2. FireRecursive(3; s2; h3; 0i) = h3; 1i and h3; 1i:dw [1] = h2; 1i

In Fig. D.3, left-hand side, also a node h4; 1i is depicted, which is not actually created. The purpose of showing

it is to complete the representation of f(0; 1; 1; 0)g, which is the new state obtained by �ring s2. By calling Union

34



regarding nodes h3; 0i and h3; 1i = h3; 2i, the new state is added to S. Hence, S is updated to S [ f(0; 1; 1; 0)g =

f(�; 0; 0; 0); (0; 1; 1; 0)g. Moreover, node h3; 2i is linked as the 0-th successor of h4; 0i, in order to bind the new MDD

to the pattern enabling the �ring. Since the temporary MDD rooted at h3; 1i, which is used for computing the union,

is disconnected, it is removed by the next DeleteDownstream call, which concludes the �rst iteration.
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Fig. D.4. Iteration 2, event l2

D.3. Second Iteration. In the second iteration, local macro event l2 is detected to be enabled by local

state 1 in node h2; 1i. However, the exploration from node h2; 0i is still unsuccessful, since this node is unchanged.

Event l2 �res twice (cf. Fig. D.4, right-hand side) and adds local states 2 and 3 to node h2; 1i. Hence, the updated

reachable state space S is f(�; 0; 0; 0); (0; 1; f1; 2; 3g; 0)g.
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Fig. D.5. Iteration 2, event l3

Similarly, local macro event l3 is enabled by only one node at level 3, namely node h3; 2i. After �ring it twice

from node h3; 2i, the state space S becomes f(�; 0; 0; 0); (0; f1; 2; 3g; f1; 2; 3g; 0)g (cf. Fig. D.5).
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Fig. D.6. Iteration 2, event s1
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The new states added so far contribute to the enabling of synchronizing event s1. Its exploration, initiated at

level 3, �nds the sequence h3; 2i
3
�!h2; 1i

3
�!h1; 0i

0
�!h0; 1i. This path represents the set of states f(�; 3; 3; 0)g. In

the current state space, this pattern is part of only one global state, state f(0; 3; 3; 0)g. By �ring s1, the new state

f(0; 0; 0; 1)g is reached. Next, Union is invoked regarding the MDDs rooted at nodes h2; 1i and h2; 2i. The resulting

MDD, rooted at node h2; 3i, is linked as the 0-th successor of node h3; 2i (cf. Fig. D.6). Thus, the new state is

integrated in the state space. Hence, S = f(�; 0; 0; 0); (0; f1; 2; 3g; f1; 2; 3g; 0); (0; 0; 0; 1)g.
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Fig. D.7. Iteration 2, event l4

Exploration of local macro event l4 from the only node at level 4, node h4; 0i, reveals some new states that need

to be incorporated in our MDD. To do so, all the local states of node h4; 0i have to be searched. Since there exists a

transition from local state 0 to local state 1, as part of the macro event, node FireRecursive(3; l4; h4; 0i:dw [0]) = h3; 2i

has to be added to h4; 0i:dw [1], since NewStates(4; l4; 0) = f1g. Accordingly, the call Union(h3; 0i; h3; 2i) creates the

new node h3; 3i and sets its downstream pointers to Union(h3; 0i:dw [i]; h3; 2i:dw [i]), for 0 � i � 3. The results are

h2; 3i = Union(h2; 0i; h2; 3i), h2; 1i, h2; 1i, and h2; 1i, respectively. Node h3;i is then looked up in the unique table

and identi�ed as node h3; 2i, which is already hashed. Hence, Union(h3; 0i; h3; 2i) returns the address to node h3; 2i

and stores this result in the union cache. As a consequence, h4; 0i:dw [1] is set to point to node h3; 2i.

Next, local state 0 is explored, and l4 is found to remain enabled. The following calls subsequently set all the

downstream arcs of h4; 0i to h3; 2i. The steps are the same as illustrated before; the only exception is that the

result of Union(h3; 0i; h3; 2i) is looked up and found in the union cache, without being computed. When all four

downstream arcs of h4; 0i are updated, its old child h3; 0i becomes disconnected and has to be removed. The routine

DeleteDownstream will do this by scanning the branch all the way down to h1; 0i (cf. Fig. D.7). At the end of Fire(l4),

the discovered reachable state space is S = f(�; 0; 0; f0; 1g); (�; f1; 2; 3g; f1; 2; 3g; 0)g.
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Fig. D.8. Iteration 2, event s2

In the next step, event s2 is detected to be enabled; it can �re from h4; 0i
3
�!h3; 2i

0
�!h2; 3i

0
�!h1; 2i. Hence,

FireRecursive(3; s2; h3; 2i) builds the nodes representing the outcome of �ring s2, i.e., \: : :
0
�!h3; 3i

1
�!h2; 4i

1
�!h1; 2i."
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Then, Union(h3; 2i; h3; 3i) adds the result to the state space. The process of creating the sub-MDD rooted at h3; 4i

involves several recursive calls:

1. h3; 4i:dw [0] = Union(h2; 3i; h0; 0i) = h2; 3i, a hashed node

2. h3; 4i:dw [1] = Union(h2; 1i; h2; 4i) = h2; 5i, a new node

3. h3; 4i:dw [2] = Union(h2; 1i; h0; 0i) = h2; 1i, a hashed node

4. h3; 4i:dw [3] = Union(h2; 1i; h0; 0i) = h2; 1i, a hashed node

To complete the execution of FireFromFirst(s2; h4; 0i), node h3; 4i is linked to the MDD as 0-th child of node h4; 0i,

the node where the enabling pattern originated. The state space S now incorporates the new states f0; 1; 1; f0; 1gg,

i.e., S = f(�; 0; 0; f0; 1g); (�; f1; 2; 3g; f1; 2; 3g; 0); (0; 1; 1; f0; 1g)g. This completes the second iteration.
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Fig. D.9. Iteration 3, event l1

D.4. Third Iteration. As opposed to the �rst two iterations, event l1 is enabled in the third iteration. The

new node h1; 2i created in the previous phase has a non-zero pointer in local state 1. Event l1 can �re twice and sets

the last two downstream pointers of node h1; 2i to point to node h0; 1i. When the �ring is exhausted, node h1; 2i is

tested for redundancy. The routine CheckNode �nds that all the children of the node are equal and that the node

is not the root, i.e., it is a redundant. To eventually preserve the reducedness property of MDDs, CheckNode will in

turn call DeleteUpstream(h1; 2i; h0; 1i), which replaces all the occurrences of the redundant node with its only child.

More precisely, �rst the bag of upstream arcs of node h1; 2i is traversed, and then all the links from the parents are

re-directed to h0; 1i. Then, the disconnected node h1; 2i is deleted. The resulting MDD represents the state space

S = f(�; 0; 0; �); (0; f1; 2; 3g; f1; 2; 3g; �); (�; f1; 2; 3g; f1; 2; 3g; 0)g (cf. Fig. D.9).
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Fig. D.10. Iteration 3, events l2 and l3

Next to be examined are the local macro events l2 and l3. Both are enabled by a single node at the corresponding

level. As a result, the �rst links of nodes h2; 5i and h3; 4i are copied in the last two locations of the array of downstream
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pointers. The resulting MDD represents state space S = f(�; 0; 0; �); (0; f1; 2; 3g; f1; 2; 3g; �); (�; f1; 2; 3g; f1; 2; 3g; 0)g

(cf. Fig. D.10). Event s1 is then enabled by the sequences h3; 2i
3
�!h2; 1i

3
�!h1; 0i

0
�!h0; 1i and h3; 4i

3
�!h2; 5i

3;�
�!h0; 1i.

However, no new states need to be added, since the outcomes (3; 0; 0; 1) and (0; 0; 0; 1), respectively, are already

encoded in S. Thus, the MDD remains unchanged.
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Fig. D.11. Iteration 3, event l4

Finally, local event l4 can �re again from node h4; 0i. The last three of its downstream pointers are replaced by

the union of nodes h3; 2i and h3; 4i, which is node h3; 4i, since the sub-MDD rooted at node h3; 4i encodes a superset

of the set encoded by the sub-MDD rooted at node h3; 2i. With all of its upstream arcs removed from its bag, node

h3; 2i becomes disconnected and is deleted along with its descendants by a call of routine DeleteDownstream . The

purged MDD now stores the state space S = f(�; 0; 0; �); (�; f1; 2; 3g; f1; 2; 3g; �)g, and the third iteration is �nished

(cf. Fig. D.11).

D.5. Final State Space. In the fourth iteration, no new reachable states are detected. Hence, the algorithm

terminates and returns the root to the MDD representing the �nal state space. The �nal MDD is depicted in

Fig. D.12. Note that level 1 is empty; the dotted node is redundant.

1

Fig. D.12. Final MDD representing the complete reachable state space
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