
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

NASA/CR-1999-209000
ICASE Interim Report No. 35

The Krigifier: A Procedure for Generating
Pseudorandom Nonlinear Objective Functions
for Computational Experimentation

Michael W. Trosset
The College of William and Mary, Williamsburg, Virginia

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

February 1999

Prepared for Langley Research Center
under Contract NAS1-97046

THE KRIGIFIER: A PROCEDURE FOR GENERATING PSEUDORANDOM

NONLINEAR OBJECTIVE FUNCTIONS FOR COMPUTATIONAL

EXPERIMENTATION

Michael W. Trosset1

Abstract. Comprehensive computational experiments to assess the performance of algorithms for numer-

ical optimization require (among other things) a practical procedure for generating pseudorandom nonlinear

objective functions. We propose a procedure that is based on the convenient �ction that objective functions

are realizations of stochastic processes. This report details the calculations necessary to implement our pro-

cedure for the case of certain stationary Gaussian processes and presents a speci�c implementation in the

statistical programming language S-PLUS.

Key words. kriging, stochastic process, nonlinear programming, numerical optimization, computational

experiments

Subject Classi�cation. Applied and Numerical Mathematics

1. Introduction. It is widely accepted that the performance of algorithms for numerical optimization

should be established in fact as well as in theory. Factual evidence includes the anecdotal experiences of

users, but it should also include (as do other empirical sciences) the results of carefully designed experiments.

Unfortunately, it is not at all clear how to design meaningful computational experiments for numerical

optimization. This report attempts to address that concern.

Individuals who study numerical optimization often recommend speci�c algorithms for speci�c applica-

tions. Typically, such recommendations are based partly on theory, partly on knowledge that the recom-

mended algorithm has performed well on other, related applications. The latter rationale implicitly assumes

that the relevant population of applications has been su�ciently well sampled to warrant making predictions

about the new application in question. Is this usually the case?

Computational experiments designed to assess the performance of algorithms for numerical optimization

have traditionally used a small number of canonical test problems. Most of these problems were created

or discovered because they exhibit some special sort of pathology. Thus, the fundamental premise of most

computational experiments for numerical optimization is the following: the performance of an algorithm in

typical situations can be inferred from its performance in certain pathological situations. Sadly, this premise

seems dubious at best.

Consider, for example, the simplex algorithm(s) for linear programming. In theory, the computational

complexity of these algorithms is exponential; in practice, they invariably perform as if their complexity was

polynomial. This discrepancy between worst-case and average-case performance had led some researchers

to initiate theoretical studies of expected simplex performance on some simple populations of randomly

generated linear programs. Although realistic distributions of linear programs undoubtedly render theoretical

investigations intractable, one might still study empirical simplex performance on such populations.

1Department of Mathematics, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795 (email:

trosset@math.wm.edu). This research was supported by the National Aeronautics and Space Administration, under NASA

Contract No. NAS1-97046, while the author was in residence at the Institute for Computer Applications in Science and Engi-

neering (ICASE), NASA Langley Research Center, Hampton, VA 23681-2199. The name \krigi�er" was suggested by Robert

Michael Lewis, with whom the author had many helpful conversations.

1

As di�cult as it may be to randomly generate plausible linear programs, it seems far more di�cult to

randomly generate plausible nonlinear programs. This report addresses one facet of the problem of generating

random nonlinear programs, viz. the problem of generating random nonlinear objective functions.

2. Basic Concepts. Originally developed by geostatisticians, kriging is a procedure for optimally

interpolating a �nite number of observed values of a realization of a speci�ed stochastic process. (In case the

stochastic process is an unspeci�ed member of a speci�ed parametric family of stochastic processes, kriging is

preceded by estimation of the unspeci�ed parameters.) The function f̂ obtained by kriging values y1; : : : ; yn

observed at locations x1; : : : ; xn is the expected value of the process, conditional on the process behaving

as observed at x1; : : : ; xn. Thus, f̂ can be regarded as a smoothed realization of the process and, ceteris

parabis, the degree of smoothing depends on how many values were observed: as more and more values are

kriged, f̂ looks more and more like an actual realization.

As described in [1], the design and analysis of computer experiments is predicated on the �ction that the

output from an expensive deterministic computer simulation resembles a realization of a stochastic process.

We emphasize that this narrative is entirely �ctional, convenient because it suggests plausible designs and

analyses; nevertheless, simulations of complex physical phenomena often produce approximation, rounding,

and truncation errors that contaminate the idealized output. Such deterministic noise can indeed resemble a

realization of a stochastic process, so that it seems perfectly reasonable to synthesize inexpensive functions

that approximate expensive simulation outputs by generating realizations of a stochastic process and adding

each realization to a prescribed trend.

Conceptually, the krigi�er comprises the following steps:

1. The user speci�es an underlying trend, e.g. a quadratic function.

2. The user speci�es a stochastic process, e.g. a stationary Gaussian process.

3. A �nite number of points, x1; : : : ; xn, are chosen at which the stochastic process will be observed.

These points can be speci�ed by the user or randomly generated by the krigi�er.

4. The krigi�er generates y1; : : : ; yn, the values of the stochastic process at x1; : : : ; xn.

5. The krigi�er interpolates y1; : : : ; yn to obtain a noise term.

6. The trend and noise terms are added to produce an objective function.

The next section describes each of these steps.

3. ComputationalDetails. This section describes precisely how the krigi�er generates a pseudorandom

nonlinear objective function; an implementation in the statistical programming language S-PLUS is provided

in the following section.

1. Trend. A function trend(x) is speci�ed by the user. This might be a constant, e.g. trend(x) = 0, but

it seems more sensible to induce some underlying structure appropriate for nonlinear optimization, perhaps

by specifyng a convex quadratic function.

2

2. Stochastic Process. A stochastic process is speci�ed by the user. The process should be one from

which it is reasonably easy to generate a realization. We have experimented with stationary Gaussian

processes with covariance functions of the form

c(s; t) = �2r(s; t); (1)

where �2 is the constant variance of the process at any point (the process is homoschedastic) and the

correlation function is of the form

r(s; t) = �(ks � tk) (2)

(the process is isotropic). Speci�cally, we have experimented with

�(u) = exp(��u�) (3)

for � = 2 and � = 1. The former choice results in smooth (C1) interpolations that seem better suited

to generating \nice" objective functions; the latter choice results in jagged interpolations that seem better

suited to simulating numerical noise.

3. Selected Sites. The user must specify n, the number of sites at which the stochastic process will be

observed. The locations of the sites can be chosen by any method whatsoever. In our experiments, we have

speci�ed a rectangle and drawn x1; : : : ; xn from a uniform distribution on the rectangle.

4. Observed Values. Assume that the speci�ed stochastic process is of the form described above. Given

x1; : : : ; xn, let

R = [r(xi; xj)]

be the n � n matrix of interpoint correlations. We need to generate y = (y1; : : : ; yn)0 by sampling from an

n-variate normal distribution with covariance matrix �2R. To do so, we exploit the fact that

Theorem 1 If z � N (0; I), then Az � N (0; AA0).

First, we generate n standard univariate normal random variates, z1; : : : ; zn. Next, assuming that R is

positive semide�nite, let R = UDU 0 be its singular value decomposition. Then, letting z = (z1; : : : ; zn)0,

Theorem 1 tells us to set

y = �UD1=2U 0z:

5. Interpolation. We interpolate by kriging. Assuming that R is invertible, de�ne v by the square system

of linear equations Rv = y. The information needed to de�ne the interpolating function is contained in

x1; : : : ; xn, v, and the correlation function r(�; �).

Given x, let

r(x) =

2
664

r(x1; x)
...

r(xn; x)

3
775 :

Then the interpolating function is

noise(x) = v0r(x):

3

6. Additive Noise. The proposed pseudorandom objective function is

f(x) = trend(x) + noise(x):

4. An Implementation in S-PLUS. This section exhibits S-PLUS functions that perform the calcula-

tions detailed in Section 3. The function krigify, exhibited in Figure 1, produces the information needed to

de�ne the noise term in the pseudorandom objective function f . The function f.rand, exhibited in Figure 2,

evaluates f , which is constructed by adding the noise to a user-speci�ed quadratic trend.

function(a,b,n,alpha,theta,sigma2)

{

#

[a,b] is a p-dimensional rectangle;

n is the number of sites to be selected;

alpha, theta, sigma2 are parameters of an isotropic

stationary Gaussian process.

#

tol <- 1e-007

p <- length(a)

X <- matrix(runif(n*p,min=a,max=b), byrow=T, nrow=n, ncol=p)

R <- matrix(0, nrow=n, ncol=n)

for (i in 2:n) {

for (j in 1:i) {

R[i,j] <- exp(-theta * (vecnorm(X[i,]-X[j,]))^alpha)

}

}

R <- R + t(R) + diag(n)

Rsvd <- svd(R)

d <- Rsvd$d[Rsvd$d >= tol]

k <- length(Rsvd$d) - length(d)

d <- c(1/sqrt(d), rep(0,times=k))

y <- matrix(rnorm(n,sd=sqrt(sigma2)), ncol=1)

v <- Rsvd$u %*% diag(d) %*% t(Rsvd$u) %*% y

return(list(X=X, v=v))

}

Figure 1: The S-PLUS function krigify.

To use krigify, it is necessary to specify a p-dimensional rectangle [a; b], the number n of sites to be

selected from [a; b], and the parameters (�; �; �2) of a stationary Gaussian process with an isotropic covariance

function of the form speci�ed by equations (1), (2), and (3). The sites x1; : : : ; xn are drawn from a uniform

distribution on [a; b].

Once the output from krigify has been saved, e.g. by the S-PLUS command

> noise <- krigify(a,b,n,alpha,theta,sigma2)

4

then it can be supplied to the pseudorandom objective function f whenever a function value is requested.

This is accomplished by the S-PLUS function f.rand, exhibited in Figure 2. The function f.rand has two

arguments, the x at which a function value f(x) is requested and a list of auxiliary parameter values that

specify f , and it returns f(x).

function(x,aux)

{

#

x is a p-dim vector at which f is to be evaluated;

aux is a list:

aux$beta0 is a scalar,

aux$beta1 is a px1 matrix,

aux$beta2 is a pxp matrix, and

aux$x0 is a p-dim vector that specify the quadratic trend;

aux$alpha & aux$theta specify the correlation function;

aux$X is an nxp matrix and

aux$v is an nx1 matrix outputted from krigify.

#

n <- nrow(X)

r <- matrix(nrow=n, ncol=1)

for (i in 1:n) {

r[i,1] <- exp(-aux$theta * (vecnorm(X[i,1]-x))^aux$alpha)

}

x <- matrix(x-aux$x0, nrow=length(x), ncol=1)

q <- aux$beta0 + t(aux$beta1) %*% x + t(x) %*% aux$beta2 %*% x

return(q + t(aux$v) %*% r)

}

Figure 2: The S-PLUS function f.rand.

To illustrate the use of krigify and f.rand, Figure 3 exhibits S-PLUS code for generating a pseudoran-

dom objective function f on [0; 1]2, evaluating f on a grid, and displaying the resulting function values in a

perspective plot.

5. Conclusions. We invite the reader to experiment with the krigi�er and discover parameter settings

useful for his or her applications. In our view, no amount of discussion can substitute for personal experience.

Nevertheless, the krigi�er does exhibit certain characteristics that deserve mention.

1. Suppose that trend(x) is constant so that f(x) = c + noise(x). By construction, noise(xi) = yi and

noise(x) tends to intermediate values of y for x 62 fx1; : : : ; xng. Hence, the global minimizer of f in

[a; b] will either equal or be near the global minimizer of f in the �nite set fx1; : : : ; xng. Because it

is generally quite di�cult to construct functions with multiple local minimizers and know the location

of the global minimizer, the krigi�er would appear to be especially useful for constructing global

optimization test functions.

5

> a <- c(0,0)

> b <- c(1,1)

> noise <- krigify(a,b,200,1,50,100)

> beta1 <- matrix(0,nrow=2,ncol=1)

> beta2 <- 100*diag(2)

> x0 <- c(0.3,0.4)

> aux <- list(beta0=50, beta1=beta1, beta2=beta2, x0=x0,

alpha=1, theta=50, X=noise$X, v=noise$v)

> x <- y <- (0:50)/50

> z <- matrix(nrow=51,ncol=51)

> for (i in 1:51) {

+ for (j in 1:51) {

+ z[i,j] <- f.rand(c(x[i],y[j]), aux)

+ }

+ }

> persp(x,y,z)

Figure 3: Using krigify and f.rand.

2. Our own experience with the krigi�er suggests that it is easier to construct functions with multiple

local minimizers in low-dimensional spaces than it is in high-dimensional spaces. To provide a heuristic

explanation of this phenomenon, suppose that fx1; : : : ; xng � [a; b] � <p form a rectangular grid. A

local minimizer will be induced at the grid point x if each of the random variates assigned to the 2p

grid points adjacent to x exceeds the random variate assigned to x. Obviously, the probability of this

occurring decreases as p increases. To the extent that realizations of stochastic processes are indeed

plausible models of objective functions, this insight suggests that functions of many variables may be

less likely to have multiple local minimizers than functions of few variables, an amusing reversal of the

curse of dimensionality.

REFERENCES

[1] J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn, Design and analysis of computer exper-

iments, Statistical Science 4 (1989), pp. 409{435 (includes discussion).

6

