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A REDUCED ORDER MODEL OF THE LINEARIZED INCOMPRESSIBLE NAVIER-STOKES
EQUATIONS FOR THE SENSOR/ACTUATOR PLACEMENT PROBLEM
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Abstract. A reduced order modeling approach of the Navier-Stokes equations is presented for the design of a
distributed optimal feedback kernel. This approach is based on a Krylov subspace method where significant modes
of the flow are captured in the model. This model is then used in an optimal feedback control design where sensing
and actuation is performed on the entire flow field. This control design approach yields an optimal feedback kernel
which provides insight into the placement of sensors and actuators in the flow field. As an evaluation of this approach,
a two-dimensional shear layer and driven cavity flow are investigated.
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1. Introduction. Experimental results using micro actuators and sensors have demonstrated that active flow
control has the potential to increase the performance of high-lift wings, cavity noise, and other flow systems [13, 18, 5].
Placement of these micro actuators and sensors can have a dramatic effect on the performance of the flow control
system. The location of the sensors and actuators is complicated by the distributed nature of the nonlinear flow
equations and the dynamics of the closed-loop system. The goal of this investigation is to identify the spatial regions
of the flow where sensing and actuation are favorable under feedback control.

By assuming control and sensing everywhere in the flow field, a distributed optimal feedback kernel can be
computed. Evaluation of this feedback kernel shows spatial regions of the flow field which are more significant,
in terms of actuation and sensing, than other regions of the flow field [11]. By identifying these regions of the
flow, the search space for the placement of sensors and actuators can be reduced. This methodology does not give
exact locations for point actuators/sensors and should be considered as a prefilter to a point actuator/sensor location
placement problem.

Calculation of the optimal feedback gains requires a finite dimensional approximation to the infinite dimensional
Riccati equations. The cost of computing this finite dimensional Riccati solution isldfdehereN is the number of
states in the finite dimensional approximation to the dynamical system. Since the number of states needed to resolve
a flow field can become very large, the cost of computing a solution to the Riccati equations can grow prohibitively
expensive. However, this cost can be reduced by developing a reduced order model which contains significant dynam-
ics of the flow system. To generate this reduced order model, the linearized incompressible Navier-Stokes equations
are projected onto a Krylov subspace. This reduced order model is then incorporated into an optimal feedback control
design. To evaluate this methodology a two-dimensional shear flow and a driven cavity flow problem are investigated.

2. Governing Equations. This section describes the equations governing the dynamics of a viscous flow in
two-dimensions. In this investigation the incompressible Navier-Stokes equation are represented in vorticity stream
function form. This form of the Navier-Stokes equation was chosen over the primitive variable form, i.e. velocity and
pressure, because it has a reduced number of unknowns with no incompressibility condition. A disadvantage to the
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vorticity stream function form is that the no-slip boundary conditions produce two boundary conditions on the stream
function and none for vorticity [16].

2.1. Two-Dimensional Navier-Stokes EquationsThis investigation considers a two-dimensional square do-
main D with a boundarydD. The governing equations are the incompressible Navier-Stokes equations. These
equations can be expressed in a vorticity stream function form. This form is achieved by taking the curl of the
nondimensional momentum equation and substituting the definition of vorticity and stream function. The vorticity
stream function form of the incompressible Navier-Stokes equations is then expressed as
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wherew, Y, andu are the dimensionless scalar vorticity, stream function, and velocity vector respectively. Note that
the velocity at the boundary must satisfy a compatibility condition which follows from the integration of the continuity
equation over the domald. Integrating the continuity equation ovBr, applying the divergence theorem, and using
the velocity boundary condition, results in
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wheren is the unit vector normal tdD [16]. The scalar vorticity fieldv is the z-component of the vorticity vector
w= 0 x u which is given by

(2.3) w=2&-(0xu)

where the velocity vectau(x,t) = (u,v) and&; is the unit vector normal to they plane. The stream functiap is
defined such that
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This definition of the stream function produces a velocity field which exactly satisfies the incompressibility condition
0-u = 0 for two-dimensional flows. The relation between the stream function and velocity vector can also be written
in the compact fornu = Oy x &,.

(2.4)

2.2. Linearized Navier-Stokes Equations.The optimal feedback control design in this investigation is base on
linear quadratic regulator (LQR) theory. Since the LQR control design is based on classical linear dynamic system
theory, the nonlinear governing equations in Eq. (2.1) can not be used for the feedback control design. Therefore the
equationsin Eq. (2.1) are linearized about a desired base flow state where it is assumed that the flow is stabilized by the
controller resulting in small perturbations about the base flow. These linearized Navier-Stokes equations describe the
linear evolution of small perturbations about a given base flow field. It is desired that this base flow field be a steady
state solution to the nonlinear governing equations. By making the base flow a steady state solution to the nonlinear
equations, the time derivative of the base flow will drop out when the equations are linearized.

This perturbation of the flow variables about some base flow state can be expressed as

W(x,t) = Q(X) + €w(x,t)
(2.5) D(x,t) = P(x) +ep(x,t)

a(x,t) = U(X) + eu(x,t)



where the flow state®, (s, andi satisfy equations in Eq. (2.1) amds some 'small’ parameter. The perturbed states
are represented by the variabtes), andu and the base flow b@, W, andU = (U,V). Here the base flow states are
assumed to be steady state solutions and are not function of time.

Substituting Eq. (2.5) into Eq. (2.1) and considering the terms which #@¢s8j results in the equations,
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These equations are the nonlinear steady state incompressible viscous flow equations. The desired flow state which is
to be stabilized by the optimal feedback controller must satisfy the equations in Eq. (2.6). Considering now only the
terms which are 0D (¢) gives the equations,
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These equations describe the linear evolution of the perturbed flow state about the base flow state. The nonlinear term
(u-D)wis of O(g?) and is dropped from above equations.
The equations in Eq. (2.7) can be rewritten in the following conservative form,
0w
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where the fact that the base flow velocity and the perturbed flow velocity satisfy the continuity equatibes0 and
-u =0 has been used.

2.3. Boundary Conditions. The physical boundary conditions on the velocitgt a wall result in two boundary
conditions on the stream functidn These two boundary conditions are derived by separating the normal and tangen-
tial components of the velocity at the boundary. Quartapelle (1993) shows that the boundary condjgigr= uy
results in the two boundary conditions

(2.92) Wop = a
|
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wherea(s,t) = fssl n(€) - up(&,t)d§ andb = —1-up. The variablesis a coordinate along the boundatp ands, is
any fixed point along the boundary. The vectas a unit vector tangential to the boundary. For the flows considered
in this investigation, the variabks,t) = 0.

The two boundary conditions used in this investigation are periodic and no-slip nonporous walls. On the no-slip
walls the Dirichlet boundary condition in Eq. (2.9a) was used to solve the Poisson equation for the stream function.
The Neuman boundary condition Eq. (2.9b) for the stream function was used to solve the vorticity transport equation
by deriving a Dirichlet boundary condition for vorticity.



3. Control Problem. The classical theory of control systems was developed for systems governed by finite
dimensional ordinary differential equations (ODE), also known as lumped parameter systems. In this investigation the
governing equations for fluid dynamics are partial differential equations (PDE) where the state of the system lies in
some infinite dimensional function space. A system of this type is also known as a distributed parameter system where
the states and control inputs are distributed spatially [10]. This section describes the LQR feedback control problem
for the infinite dimensional system and its finite dimensional approximation.

3.1. Infinite Dimensional Problem. The distributed control applied to the flow takes the form of a spatially
distributed body forcd(x,t). The torque generated by the body force, normal toxpelane, is given byg =
(O x f)-&. This distributed control torqug(x,t) appears on the right-hand side of the linearized vorticity transport
equation.
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These PDEs are now written in an abstract form which is conducive to the optimal feedback control design. Treating
this distributed parameter system as an evolution ODE, Eq. (3.1) can be written as

®=Aw+ Bg
(3.2)
0(X,0) = o

wherew = dw(-,t)/dt andA andB are infinite dimensional operators. The oper&dor the system given in Eq. (3.1)
is just the identity but is included for completeness. Given a flow figlthe action of the operatéronwis

(3.3) Aw= —D-(wU)—D-(Qu)+RieDZw

where the velocity is an explicit function of the stream functiadn which is an implicit function of vorticityw.
The control inpuy is computed by using the stat#x,t) in the following way

(3.4) g0 t) = [ KOx )l )0k

whereK(x, €) is the distributed feedback kernel. Therefore the control igpat a positiorx, is given by an integral
over the entire domain of the distributed g&immultiplied by the current vorticity field.

The goal of this control design is to find a feedback keieVhich produced an optimal control inpgdpt. In
order to define what optimal means, consider the following quadratic equation

(3.5) J(wo,9) = /0oo [(W(&,1), QE)w(&; 1)) +(a(&,1),R(E)g(&,1))] dt

whereQ(x) andR(x) are weighting functions and the notatian, - > represents an inner product over the doniain
The term optimal is now defined as the control input which minimizes the quadratic cost fuh.cBynminimizing
J, the perturbations in the vorticity from the desired st@t@re minimize and the needed control inguis also
minimized.

The LQR problem for the infinite dimensional system is stated as

(3.6) minJ(w(x,0),9(x,t))
g(x.t)



subject to the system in Eq. (3.2). The optimal control irgt(x,t) which minimizes Eq. (3.6) is given by

(3.7) Gopt(X,1) = /D ~RIB'M w(E,t)dE

whereB* is the adjoint ofB and[1 is the nonnegative self-adjoint solution to the steady state, infinite dimensional,
algebraic Riccati equation (ARE)

(3.8) AT +NA-MNBR B MN+Q=0

A solution N exists for Eqg. (3.8) if the paifA,B) is stabilizable and the pa{A,C) is detectable [4]. These two
conditions are satisfied since actuation and sensing are performed everywhere in the flow field. From Eq. (3.7) it can
be seen that the optimal feedback ketkgl is given by

(3.9) Kopt = —R BN

3.2. Finite Dimensional Approximation. A finite dimensional approximation to the infinite dimensional feed-
back kerneK is made using a finite difference method. In this approximation it is desired that the feedback kernel
KN — K, in an appropriate sense, Bs— «. The computational issues associated with this problem have been
addressed by Banks et al. [2] and Gibson [8].

The finite dimensional approximation to Eq. (3.5) is expressed as

Y = ANV + BgN
w'(0) = wh
wherewN is a vector containing the spatially discrete values of the vorticity fieldBigithe identity matrix. The

matrix B has been included in this investigation for completeness.
The approximation to the quadratic cost function in Eq. (3.2) becomes

311) Mied ") = [ (60, 0) + (&0, RGN 0)]

whereQN andRN are now matrices which weight the state veatrand the control inpug respectively.
The finite dimensional control problem is stated as

(3.10)

(3.12) min JN(af, g")
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subject to the governing equations in Eq. (3.10). The optimal control input which minimizes Eq. (3.12) is given by

(3.13) gp(t) = —(RY) 1BV N (1)
wherelN is the solution to the finite dimensional ARE
(3.14) ANTIN 4 NAN - BN (RY) BN N+ QY =0

As in the infinite dimensional case, a solutidff exists for Eq. (3.14) if the paitAN,BV) is stabilizable and the pair
(AN, CN) is detectable [4]. This is easily satisfied since actuation and sensing are performed everywhere in the flow
field.

Equation Eqg. (3.13) shows that the finite dimensional approximation to the optimal feedbal gasn

(3.15) Koo = —(RY) BN N

Note that the finite dimensional approximatié to the infinite dimensional feedback contkois dependent on the
approximation to the ARE solutioiiN and the adjoinBN". In this study, thé8N matrix isInxn Which means that the
approximatiorkN is primarily dependent on the approximatial.



4. Reduced Order Model. The computational cost of solving Eq. (3.14) is on the ordeXdfloating-point
operations (flops), wherl is the number of states. For two dimensional flows the number of flow states, for a
computational simulation, can range anywhere frorfi tt01°. For a simple two dimensional flow problem, say
N = 10%, the cost would be on the order of ®(flops. For a larger two dimensional flow problem, $éy= 10°,
the computational cost would increase by a factor of 1000, 18 fléps. For three dimensional flows the number of
states can range from 4@ 1. Thus, the cost of solving the ARE can grow prohibitively expensive, even for two
dimensional flow problems.

The computational cost can be reduced significantly by using a Chandrasekhar system approach [3]. The only
draw back to the Chandrasekhar system is that the number of inputs must be much smaller than the number of states
in order to significantly reduce the cost of solving the Riccati equation. Since the number of inputs for this problem
are equal to the number of states, a different approach needs to be taken.

Another way to reduce the cost, and the approach taken here, is to develop a reduced order model of the system
given in Eq. (3.10). This reduced order model has a smaller number of states which reduces the cost of solving the
Riccati equation in the LQR control design. Since the goal is to approximate the infinite dimensional LQR feedback
gain,Kopt, a reduced order model which gives a good approximation should be chosen. It would also be desirable for
the approximation to the infinite dimensional gain to converge in some reasonable way as the number of states in the
reduced model increase.

4.1. Krylov Space Method. Most model reduction methods for feedback control systems use a Hankel-norm
approach. This approach calculates Hankel singular values based on the controllability and observability of a given
system. The advantage of this approach is thatkh@orm of the modeling error is bounded by the sum of the Hankel
singular values not retained in the reduced order model. The draw back it that the cost of this approach is\f order
In this study a Krylov based method is used to project Eq. (3.10) onto a reduced Krylov subspace which includes the
leading modes of the larger system. This approach is significantly cheaper than the Hankel-norm approach but does not
take into account the controllability and observability of the closed-loop system. It can be argued, that since actuation
and sensing is performed everywhere in the flow field, that the leading modes of the homogeneous system are the
dominant modes for the closed-loop system. If the ma&Mhad some structure other than identity and sensing was
not performed everywhere, then the leading modes of the homogeneous system are not necessarily the most dominant
modes (modes with the largest real part) for the closed-loop system.

Consider the homogeneous solution to Eq. (3.10),

(4.1) WM(t) = T(t)wh
whereT (t) = Altis aCp-semigroup. Equation (4.1) can also be written as,

oN(KAt +A) = T(kAt+At)w)

= T(A)T(kAt)w)
(4.2)
= T(At)wN(kAL)

Wt = T(A)wK

wherew* = wN(kAt) and the superscripts have been dropped for convenience. Using a Krylov method, the action
of the semigroup operatdf(At) can be approximated by a reduced Krylov subspacek"Alimensional Krylov
subspace, given an operafofAt) and a vectov, is defined as

(4.3) K k(T,v) =span{v,Tv,T?v,..., Tk v}



This Krylov subspace is generated using the ARPACK software package which uses an Arnoldi/Lanczos scheme with
implicit restarts [19]. The orthonormal basis for the Krylov subspace is generated by following the Arnoldi Process [1].

Vi =wj/|Iwill
(4.4 k
Wi =TWj— 3 Vm(Vm, TVj)
m=1

The vectorsy; for j = 1,2,...,k are computed using a given starting veatar. The resultingN xK vectorV =
(v1,V2,...,Vk) is known as a Ritz Vector wheké € K (T, w1). Note that the generation of the Krylov subspace only
requires the action of on a given vector and not the explicit matfix As shown in Eq. (4.2) the action dfon a
given vector is just the advancement of the vector, or in this case the vorticity field, by one tind¢. step

Equation (4.4) can be restated in the standard matrix form of the Arnoldi decomposition as

(4.5) TV =VH+ w18

wherewk+16{(r is a remainder term. The matri is aK xK upper Hessenberg matrix. The operat’ is aNxN
projection operator onto the Krylov subspace ¥ is theK xK identity matrix.
The action of the semigroup operafocan be approximated by projecting it onto a Krylov subspace

(4.6) T~VVITVV & VHVT
whereH ~ VTTV for smallw 16} . Diagonalizing the matrix yields
4.7) H=EAE™!

whereA\ is a diagonal matrix of eigenvalues akds a matrix whose columns are the corresponding eigenvectors.
The Krylov subspace is generated by using implicit restarts which keep the leading eigenvalue§ sethgroup
operator. Using the definition df(At) = " and Eq. (4.6) an approximation to the operakaesults in

TA) =M~ VHVT

(4.8)
= VEAE~WT
Solving forA produces
A~ VEIOiﬂE—lvT
(4.9) {
A = VHVT

whereH, = E log(A)E~1/At.

4.2. Control Problem. Projection of theN'" dimensional system in Eq. (3.10) ontkd dimensional Krylov
subspace results in the reduced system

(4.10)
2(0) =29

whereB, = VT and the aggregated state vectds defined as

(4.11) z=VTo\



Thus, the state vectosN has been approximated by another state vegtoonstrained to stay in the Krylov subspace
given by the basi¥. The vorticity state vector is then approximatedas Vz.

The system in Eq. (4.10) is now used to compute an approximation to the the desired optimal feedbitk gain
given in Eq. (3.13). Using the Krylov subspa¢dhe cost function in Eq. (3.11) results in

412 320,8") = [ (20, Q) + (&0, R 0)] dt

whereR, = RY andQ; =VTQNV. The control problem defined in Eq. (3.12) for the reduced system becomes
(4.13) rgg‘nJ(Zo,gN)

subject to the governing equations in Eq. (4.10). The optimal control input for this problem is

(4.14) gopi(t) = —RB{Miz(t)

where the(k x k) matrix, I;, is the solution to the finite dimensional ARE

(4.15) H:M +MH =M BRIBMN +Q =0

Using Eq. (4.11) and Eq. (4.13), the approximation to the desired feedbackK Ydiacomes

(4.16) KN~ -R-vnvT

where the adjoinB; = V.

5. Numerical Method. The calculation ofT (At) on a given vector is achieved by computing a time accurate
solution to the linearized Navier-Stokes equations described in Eq. (2.8). A solution to Eq. (2.8) is computed using a
semi-implicit finite difference scheme. This scheme approximates the spatial derivatives using a second-order central
difference method for the viscous term and a third-order upwind scheme for the convection terms. These equations
are then solved using a multigrid acceleration method with Gauss-Seidel relaxation.

5.1. Time Discretization. The governing equations in Eq. (2.8) are discretized in time using an explicit up-
winding scheme on the convection terms and a implicit Crank-Nicolson scheme on the diffusive term. This scheme is
locally second-order accurate in space and first-order in time. The discretization of Eq. (2.8) has the form

(qn—}—l_wn_ 1 h

)) L h n h n 2 n+1 n

=B = ghQu)i i — O (V)i i + — 0% (™ -
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wherew{ji = w(ih, jh,nAt). The operatorsl”, and2" are discrete approximations to the operafoend1?, respec-

tively. The discretized vorticity transport equations in Eq. (5.1) can now be expressed as

At 2h n+1_ . n h n h n 1 2h n
The nonlinear Navier-Stokes equations in Eq. (2.1) are similarly discretized by reglagiity " andU with u"
in the equation above. The steady state solution to the nonlinear equations in Eq. (2.1) are used in the linearized
Navier-Stokes equation for the base flow field.
The discretized equation in Eq. (5.2) can be expressed in the form

(5.3) Mw™t=b



whereb is the right hand side of Eq. (5.2) ahd the discrete operatdt — At/2Re Dzh). SinceM is a large and

sparse matrix, the solution fos™?! favors an iterative method. To accelerate the iterative method, a multigrid routine
which uses Gauss-Seidel relaxation is used. Likewise the solution to the Poisson equation in Eq. (5.1) is solved using
an iterative method with multigrid acceleration.

5.2. Spatial Discretization. The Laplacian operatdi? is discretized using a standard second-order central dif-
ference scheme and has the form

n n n n n
(5.4) e e N B Ve N e N B Vil S

The first order derivatives in the linear convection terms are evaluated using a four-point upwind scheme. The
derivative component for the terf - (QuM); j, foru > 0, is approximated by the upwind scheme
9(Qu); —(Qu)j g +3(Qu); j —3(Qu)i_g j+ (QU)i_o;  2(QU)iq j — (QU)i_y

_ 2
(5.5) = e + A +O(M)

where the parametercontrols degree of modification to the central difference term [6§ #f 0.5 then the scheme

in Eq. (5.5) becomes an upwind schemeQg\x®). If g = 0 then the scheme is reduced to a second-order central
difference scheme. The central difference approximation for the linear convection term has good accuracy but will
produce oscillations when theesh Peclehumber = u dx R¢ becomes greater than 2. The upwind scheme will
reduce these oscillations f@r> 2 but at a cost of reduced accuracy. This reduced accuracy is a result of artificial
diffusivity added by the upwind scheme. Therefore, a switch is used whicky setswhenf; ; < 2 andg = 0.5 when

Bi,j > 2. This switch results in a scheme which has better accuracy ahkesh Pecletumbers than a straight upwind
scheme, yet retains the advantages of an upwind scheme for large Mesh Peclet numbers.

5.3. Boundary Conditions. The boundary condition for the no-slip walls are computed using Jensen’s formula-
tion [9] attributed to Jensen by Roache [17]. This formulation, also known as Briley’s formulation and was used by
Pearson [14] and Ghia et al. [7].

Jensen'’s formulation computes a boundary value for the vorticity by taking a Taylor series expansion of the stream
function normal to the wall. Jensen’s formula is given by

_ TWo,j —8yyj+Y2; 3o
- 2h2 h

(5.6) o +0 (h?)
This boundary condition is claimed by [9, 17, 14, 7] toQ?) for the vorticity at the boundary. It has been shown
in [20] that this formulation can be thought of as @(h%) approximation to the Neuman boundary condition on the
stream function in Eq. (2.9b) rather tha@éh?) boundary condition for vorticity. If Eq. (5.6) is rewritten as

h o TWoj—81j+Waj

(5.7) 500, j oh

3 Up, | +0 (h3)

then the lim_,o recovers the equatio@y/on)|o,j = —uo,j. This is consistent with Eq. (2.9b), which is the equation
being modeled. Therefore the condition on the vorticity at the boundary can be thought d &8 aapproximation

to Eq. (2.9b) instead of a@ (h?) boundary condition for vorticity. Spotz used Jensen’s formula using a comijact 4
order method and showed that this formula resulted iB é@i¥) approximation.

5.4. Driven Cavity Problem. A numerical simulation of the driven cavity problem, using the full nonlinear
Navier-Stokes equations in Eq. (2.1), is used to give a measure of validation for the proposed numerical method. The
driven cavity problem is a typical two-dimensional model problem that is used to evaluate and compare numerical
methods for incompressible viscous flows. Most notable are the steady state results published by Ghia et al. [7].
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FIG. 5.2. Stream lines of the driven cavity problem at steady FIG. 5.3. A contour plot of the steady state vorticity field for
state for Re=1000. the driven cavity problem at Re=1000.

The driven cavity problem, shown in Fig. 5.1, has a top wall which moves at a nondimensional velocity of
Urtop= 1. The moving wall induces the flow as a result of the viscous forces generated at the moving wall. The steady
state solution is then computed on a uniform grid which has 129 grid points in boihathey directions. A steady
state flow field is found by simply marching the impulsively started cavity in time, until a satisfactory steady state
solution is achieved. Its interesting to note that this problem has two singularities at the top two corners where the top
moving wall meets the two stationary side walls. The impact from these singularities are considered to be small since
the grid is relatively fine.

Figure 5.2 and 5.3 show the stream lines and vorticity contours for the steady state sol&ena 4000. The
stream lines in Fig. 5.2 show two recirculation zones at the bottom corners of the cavity. The size and location of these
recirculation zones compare very well the numerical results given by Ghia et al. [7]. The minimum stream function
was computed to b&qyi, = 0.117985 and compared very well to the minimum stream funcfigi, = 0.117929,
computed by Ghia. The location of the center of the main vortex is computed tobe- 40.53120.5625 as
compared tox = (0.53130.5625) reported by Ghia. The contour plot of the vorticity field in Fig. 5.3 also compares
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FiG. 5.4. A comparison of the horizontal velocity profile, v, FiG. 5.5.A comparison of the vertical velocity profile, u, at the
at the centerline of the cavity,=0.5, with the profiles reported by centerline of the cavity, % 0.5 with the profiles reported by Ghia et
Ghia et al. [7] at Re=100,400,1000 320Q al. [7] at Re=100,400 1000 3200

very well with the results from Ghia.

Figure 5.4 shows the horizontal velocity profilesaty = 0.5 for Re=100,400,100Q and 3200. These velocity
profiles are compared to the velocity profiles reported by Ghia et al. [7]. Likewise the vertical velocity profiles for
uatx = 0.5 are shown in Fig. 5.5 and then compared to the numerical data given by Ghia. These two figures show
good agreement between the current results and the data from the Ghia paper. Note that201@#d was used for
all the Reynolds number cases except forRee= 3200 case where a 25257 grid was used as was done by Ghia.
Based on these results a measure of validation has been shown for the proposed numerical method for the calculation
of steady state flows.

6. Results. Application of the distributed feedback control design is now applied to an unstable shear layer
problem and a stable driven cavity problem. The computed eigenvalues and eigenvectors for the bounded shear layer
flow will be compared to eigenvalues and eigenvectors from an Orr-Sommerfeld analysis. This comparison will
provide a measure of validation for the reduced order model.

6.1. Shear Flow Problem. The method described above is now applied to a two-dimensional bounded shear
layer problem as shown in Fig. 6.1. In this problem there are two layers of parallel fluid traveling in opposite directions.
At the intersection of these two flows is a shear layer which has a hyperbolic tangent velocity profile. The large velocity
gradient in the shear layer results in a large concentration of vorticity. This type of flow pattern is inviscidly unstable
to small disturbances. The base flow field for this problem is described by the equations
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FiG. 6.1.The velocity profile in the y direction for the shear layer problem.

U(xy) = [U(y),0] = [Uptaniy/b),0]

Q(xy) = secﬁéy/b)

(6.1) (-1<x<1,-1<y<1)

whereb = 1/30, Re= 100 and the flow is periodic in the direction. The Reynolds number for the shear layer
problem is typically defined using the characteristic lengtiwvhich determines the width of the shear layer. The
Reynolds number for the shear layer is defined as

(6.2) Re= Uab
whereUy is the nondimensional characteristic velocity anithe kinematic viscosity of the fluid. THe&(y) profile is
shown in Fig. 6.1 where the boundaries moving walls with a no-slip boundary condition.

The velocity profile for this problem represents an exact solution to the steady state inviscid flow equations.
However it does not exactly satisfy the steady state equations for the incompressible viscous flow. The unsteadiness,
in this base flow, is due to the viscous diffusion term which wants to diffuse the high concentration of vorticity in
the shear layer. This causes the vorticity layer to spread out and diffuse away from the center region. In practice this
viscous diffusion effect is overlooked in the formulation of the linear stability problems. [15]

6.1.1. Reduced Order Model.Using the shear layer base flow field given in Eq. (6.1), a Krylov basis vector
V of dimensionK = 201 was constructed to form the reduced order model in Eq. (4.10). These vectors were found
using the ARPACK software package where the top 201 eigenvectors with the largest real part were computed. This
program starts by generating a large Krylov subspace of 600 Ritz vectors. It then performs an implicit restart which
removes unwanted Ritz vectors and then generates new Ritz vectors, replacing the discarded vectors. This process
is repeated until the desired number of leading eigenvectors has converged. For this problefip2&5ations
(time steps) were computed by the flow solver. The finite difference approximation was made using 64 grid points
in the streamwise direction and 128 grid points in the cross stream direction. Figure 6.2 shows the convergence of
the ARPACK routine where an implicit restart was performed at the start of a new iteration. The convergence rate is
dependent on the number of desired eigenvectors, the size of the Krylov subspace chosen, and the size of the time step.
The top 201 eigenvalues, with the largest real parts, are shown in Fig. 6.3. These eigenvalues are compared to the
eigenvalues computed from an Orr-Sommerfeld stability analysis using the spectral method presented by Orszag[12].
The numerical method used by Orszag was derived for the stability of plane Poiseuille flow which was then modified
for the shear layer problem. The comparison between the eigenvalues shows how the Krylov method was able to com-
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FIG. 6.2.The convergence history of the Krylov vectors using the ARPACK software package. The Krylov subsp@feéetdrs and was
looking for the to201 eigenvectors with the largest real parts.

pute the eigenvalues of the shear layer problem reasonably well. From this figure it can be seen, that the eigenvalues
start to degrade as the imaginary parts become larger and as the real parts of the eigenvalues become increasingly
negative. The reduced accuracy of the eigenvalues in these areas show the limitations of the finite difference approxi-
mation and the computation of the eigenvalues using the Krylov time stepping method. As the imaginary and negative
real parts of the eigenvalues increase, so do the spatial oscillations of the eigenvectors. Therefore the spatial resolution
of the finite difference method governs how many of the eigenvectors can be resolved accurately. For the shear layer
problem, the number of modes that can be resolve are sufficient our investigation.

A sample of the eigenvectors computed using the Krylov method and the Orr-Sommerfeld analysis are shown in
Fig. 6.4. A Fast Fourier Transform (FFT) was taken of the eigenvectors, generated by the Krylov method. This FFT
showed that the eigenvectors have one dominant wave number xdttection. Therefore the eigenvectors can be
expressed in the form

(6.3) V(xy) = 0(y)e™

where Fig. 6.4 is showing the functiorfy) for four different eigenvectors. Figure @&4hows the most unstable
eigenvector for the shear flow problem. This mode has a wave numbet 2ftand shows the form of the instability

of the shear layer. This eigenvector compares very well to the eigenvector computed using the Orr-Sommerfeld spectral
analysis. This unstable mode is the easiest mode to capture using this Krylov method since it grows very fast. The
other eigenvectors in Fig. G4hroughd are stable modes. The eigenvectors shown in Figy &ntid both have

wave numbers =Ttand the eigenvector in Fig. @4 wave number off = 21. These modes compare very well with

the corresponding eigenvector from the Orr-Sommerfeld analysis. This comparison shows a measure of validation
in computing the leading eigenvectors and eigenvalues using the Krylov method. This comparison also shows that
the eigenvalues start to degrade in accuracy for eigenvalues with increasing wave numbers and negative real parts.
The accuracy of the eigenvalues and eigenvectors can be improved by increasing the spatial resolution and by using
a numerical scheme of higher order. It was also seen that decreasing the time step could improve the accuracy of the
eigenvalues up to some limit. Further reduction of the time step beyond this limit did not increase the accuracy of the
eigenvalues.

6.1.2. LQR Control Design. The optimal feedback kernel for the reduced system was computed by minimizing
the quadratic cost function in Eq. (4.12). The weights for the cost function in Eq. (3.11) wereRsett@andQ = I.
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This resulted in the weights for Eq. (4.12)
(6.4) R=I, Q=VQu=VTv=|

The ARE for the reduced system, given by Eq. (4.15), is then solveld faising the MATLAB software package.
This reduced system results in an ARE solution with 201 states, which is large for typical ARE problems, but is
significantly smaller than the 8192 states of the full system. Figure 6.5 shows the diagonal elements of the ARE
solutionl, as a function of the mode number. The modes are the eigenvectors of the linearized flow equations and the
eigenvalue\; corresponds to thi! mode wherdRe\;) > Re(\i41). This figure shows how the first six modes, which
are unstable modes, result in the largest contribution to the feedback Kéraald how the contribution decreases for
the higher mode numbers. This figure basically shows the convergence of the feedback kernel with respect to the size
of the reduced order system.

Substituting, into Eq. (4.16) results in the approximation to the finite dimensional feedback k€¥nélsing
the approximation t&N the optimal feedback control can be computed as

(6.5) opt(t) = KN (1)

whereKN is a (8256x 8256) matrix, gh,; a (8256x 1) column vector, ando" a (1x8256) row vector. It can be
seen from Eq. (6.5) that thé" column ofKN corresponds to the distributed control ingufor a disturbances = &,.
Similarly, them™ row of KN correspond to the distributed feedback gain for the control inpgfatTo illustrate
this idea Fig. 6.6 shows the distributed conity@})t given a unit disturbance at four different locations in the flow.
Figure 6.& shows the point disturbance on the bottom wall and shows a local positive control near the point distur-
bance. Fig. 6.6 shows the disturbance just off the wallyat —0.75 and shows the localized nature of this feedback
control. In Fig. 6.6 the disturbance is move closer to the shear layer. This figure shows the same type of localized
feedback control around the disturbance as before but with a large control force. The disturbance near the shear layer
also shows an interesting feedback control force which appears in the shear layer. The point disturbance is then moved
to the center of the shear layer as is shown in Figd6his distributed feedback control shows a pattern which is
similar to the unstable modes in the flow. This should be expected since the unstable modes were associated with the
largest feedback gains computedin

In an effort to quantify the spatial structure of the control effort a norm is defined in the following way

N 1/2
(6.6) Ch= [Z (Kr'#,n)zl

m=1
wherec, is then™™ element of a vector defining the control effort ame: (c1,C2,...,cn). The idea is forc, to be
a measure of the control effort in 4n norm sense for a point disturbance locatedvat &,. Likewise the spatial
structure of the feedback gain can be evaluated by defining the norm

N 1/2
(6.7) fn = lz (Km,n)zl

n=1

wheref = (fq, fa, ..., fn) is a vector describing the measure of the feedback effort. The valfgisfanL, norm of
the distributed feedback gain for actuatiorgat Note that the feedback kernel is symmetric since the wegmd
the matrixB are symmetric. Therefore the the vectorandf, which describe the control effort and feedback effort,
are equal.

A plot of the control effort at a constamtvalue, for the shear flow problem, is shown in Fig. 6.7. This figure
shows how the control effort, and consequently the feedback gain, is large in the shear region. This figure also shows
that the shear region would be most favorable for actuation and sensing as might be expected.
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6.2. Cavity Flow Problem. The second problem involved the design of a distributed feedback controller for a
driven cavity problem. Unlike the shear layer, the base flow field for the driven cavity was stable and satisfies the
finite difference approximation to the steady state flow equations. Since the flow is stable, the model will not contain
any unstable modes as was seen in the shear layer problem. This means that the cavity problem will not have a small
number of dominant modes in the reduced order model and feedback kernel as was seen in the shear layer problem.

6.2.1. Reduced Order Model. The base flow field for the cavity problem was the steady state flow field com-
puted in section 5.4 foRe= 1000. The vorticity for the base flow is shown in Fig. 5.3 and the stream function in
Fig. 5.2. Using this base flow field, a Krylov basis vedtasf dimensiorK = 400 was constructed to form the reduced
order model of the linearized flow equations. Figure 6.8 show the convergence of the top eigenvalues with the largest
real parts. It took 50 implicit restarts and 15377@ operations (time steps) by the flow solver in order for the top 400
modes to converge. The distribution of the top eigenvalues is shown in Fig. 6.9. A sample of the eigenvectors with the
largest real parts are shown in Fig. 6.10. This figure shows the real and imaginary parts of the eigenvectors. Notice
that some of the eigenvectors are real and do not have any imaginary parts.

6.2.2. LQR Control Design. Using the reduced order system for the linearized cavity flow, the optimal feedback
kernel is then computed using an LQR control design approach. As in the shear layer problem, the Riccati solution
M to the ARE in Eq. (4.15) was computed which minimizes the cost function in Eq. (4.12). The weights for the cost
function in Eq. (3.11) are uniform and setRo= 1 andQ = | which results in the weight® = | andQ; = |. Figure
6.11 shows the diagonal elementsffgras a function of the mode number. This figure shows a similar decay rate for
the diagonal elements of the Riccati solutidnas compared to the shear flow problem.

The feedback kernédN can now be approximated by substituting the Riccati solution to the reduced system
My into Eq. (4.16). This results in @16641x 16641 feedback kernekKN where the approximation to the optimal
distributed controbf, is given by

(6.8) gopt(t) = KN (t)

Using this optimal feedback kernel, the distributed control for a point disturbance can be computed. Figure 6.12 shows
the approximation to the distributed control given a point disturbance at four different locations in the cavity. A point
disturbance on the bottom wall is shown in Fig @ %&th the resulting distributed control force. Figures G ifZough

d show the point disturbance in the interior of the cavity away from the effects of the wall. The distributed feedback
for these interior points show a smooth circular pattern around the disturbance. This figure also shows that the applied
control force is a maximum at the point disturbance and then decays as it moves away from the disturbance location.
It is interesting to see how the control force decays as it moves away from the location of the point disturbance.
Figure 6.1& shows a mesh plot of the distributed control shown in Fig 6.42d Fig 6.18 shows a plot of the
distributed control foy = 0.5. These figures illustrate how the control force decays from the point disturbance located
at(x,y) = (0.5,0.5).

The distributed control effort and feedback gain for the cavity problem is shown as a mesh plot in Fig. 6.14
and as a contour plot in Fig. 6.15. These two figures show how the distributed control effort and feedback gain are
concentrated in the center of the cavity. There are also some peaks near the center of the walls and one large peak
where the flow induced from the top moving lid impinges on the right stationary wall. The figure also shows that the
control effort is smaller at the corner of the cavity. Therefore sensing and actuation would be most favorable near the
center of the cavity, near the center of the wall, and on the top part of the right wall.

7. Conclusion. This study has demonstrated how a Krylov subspace method can be used to derive a reduced
order model of the linearized incompressible Navier-Stokes equations and applied to a two-dimensional shear flow
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and driven cavity problem. By assuming sensing and actuation everywhere in the flow field an optimal feedback
kernel can be found. This feedback kernel provides insight into the regions of the flow where the control effort is
‘large’ and where the feedback gain is ‘large’. This information can be used to isolate the regions of the flow field
where sensing and actuation are most favorable. This information also shows where one should be searching for the
best place to put actuators and sensor. This knowledge has the potential to reduce the search areas of the flow field for
the placement of actuators and sensors. In the shear layer case, the search area could be significantly reduced, where
as the driven cavity problem only showed a slight reduction in the search area was achieved.

The two-dimensional shear flow problem showed that sensing and actuation was most favorable in the shear layer
as might be expected. The driven cavity problem showed that a region in the center and parts of the walls were the
most favorable for the placement of sensors and actuators. It also showed that there was not a dominant region, as
in the shear layer problem, and that the corners of the cavity and a region near the walls were unfavorable for the
placement of sensors and actuators.

The advantage of this approach is that a simple time stepping vorticity stream function code could be used to
derive the linearized model of the incompressible Navier-Stokes equations. To improve on this approach, higher-order
spatial discretizations should be used to improve the spatial accuracy of the higher frequency modes. The drawback
to the time stepping approach used here is the convergence of the eigenvalues and eigenvectors. To solve this problem
a shift invert approach described by Sorensen [19] can be used but this requires an explicit representation of the flow
equations as oppose to the coupled vorticity stream function equations used here.

8. Acknowledgments. The author wishes to acknowledge the helpful discussions provided by Dr. Josip Lon-
caric.
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FiG. 6.12.This figure shows the spatial distribution of the applied contPb(>g for a unit disturbance which is shown by the black dot. In
these four figures the unit disturbance is moved along the y axis from the wall to the center of the shear layer.
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FiG. 6.15.A contour plot showing the control and feedback effort for the forced cavity problem.
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