
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

NASA/CR-2000-210110
ICASE Report No. 2000-19

A Reduced Order Model of the Linearized
Incompressible Navier-Stokes Equations for the
Sensor/Actuator Placement Problem

Brian G. Allan
ICASE, Hampton, Virginia

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

April 2000

Prepared for Langley Research Center
under Contract NAS1-97046



A REDUCED ORDER MODEL OF THE LINEARIZED INCOMPRESSIBLE NAVIER-STOKES

EQUATIONS FOR THE SENSOR/ACTUATOR PLACEMENT PROBLEM

BRIAN G. ALLAN �

Abstract. A reduced order modeling approach of the Navier-Stokes equations is presented for the design of a

distributed optimal feedback kernel. This approach is based on a Krylov subspace method where significant modes

of the flow are captured in the model. This model is then used in an optimal feedback control design where sensing

and actuation is performed on the entire flow field. This control design approach yields an optimal feedback kernel

which provides insight into the placement of sensors and actuators in the flow field. As an evaluation of this approach,

a two-dimensional shear layer and driven cavity flow are investigated.
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1. Introduction. Experimental results using micro actuators and sensors have demonstrated that active flow

control has the potential to increase the performance of high-lift wings, cavity noise, and other flow systems [13, 18, 5].

Placement of these micro actuators and sensors can have a dramatic effect on the performance of the flow control

system. The location of the sensors and actuators is complicated by the distributed nature of the nonlinear flow

equations and the dynamics of the closed-loop system. The goal of this investigation is to identify the spatial regions

of the flow where sensing and actuation are favorable under feedback control.

By assuming control and sensing everywhere in the flow field, a distributed optimal feedback kernel can be

computed. Evaluation of this feedback kernel shows spatial regions of the flow field which are more significant,

in terms of actuation and sensing, than other regions of the flow field [11]. By identifying these regions of the

flow, the search space for the placement of sensors and actuators can be reduced. This methodology does not give

exact locations for point actuators/sensors and should be considered as a prefilter to a point actuator/sensor location

placement problem.

Calculation of the optimal feedback gains requires a finite dimensional approximation to the infinite dimensional

Riccati equations. The cost of computing this finite dimensional Riccati solution is orderN3 whereN is the number of

states in the finite dimensional approximation to the dynamical system. Since the number of states needed to resolve

a flow field can become very large, the cost of computing a solution to the Riccati equations can grow prohibitively

expensive. However, this cost can be reduced by developing a reduced order model which contains significant dynam-

ics of the flow system. To generate this reduced order model, the linearized incompressible Navier-Stokes equations

are projected onto a Krylov subspace. This reduced order model is then incorporated into an optimal feedback control

design. To evaluate this methodology a two-dimensional shear flow and a driven cavity flow problem are investigated.

2. Governing Equations. This section describes the equations governing the dynamics of a viscous flow in

two-dimensions. In this investigation the incompressible Navier-Stokes equation are represented in vorticity stream

function form. This form of the Navier-Stokes equation was chosen over the primitive variable form, i.e. velocity and

pressure, because it has a reduced number of unknowns with no incompressibility condition. A disadvantage to the
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vorticity stream function form is that the no-slip boundary conditions produce two boundary conditions on the stream

function and none for vorticity [16].

2.1. Two-Dimensional Navier-Stokes Equations.This investigation considers a two-dimensional square do-

main D with a boundary∂D. The governing equations are the incompressible Navier-Stokes equations. These

equations can be expressed in a vorticity stream function form. This form is achieved by taking the curl of the

nondimensional momentum equation and substituting the definition of vorticity and stream function. The vorticity

stream function form of the incompressible Navier-Stokes equations is then expressed as

∂ω
∂t

=�(u �∇)ω+
1
Re

∇2ω in D

∇2ψ =�ω in D

u= ub on ∂D

(2.1)

whereω, ψ, andu are the dimensionless scalar vorticity, stream function, and velocity vector respectively. Note that

the velocity at the boundary must satisfy a compatibility condition which follows from the integration of the continuity

equation over the domainD. Integrating the continuity equation overD, applying the divergence theorem, and using

the velocity boundary condition, results in Z
D

∇ �u=
I

∂D
ub �n= 0(2.2)

wheren is the unit vector normal to∂D [16]. The scalar vorticity fieldω is thez-component of the vorticity vector

ω= ∇�u which is given by

ω = êz � (∇�u)(2.3)

where the velocity vectoru(x; t) = (u;v) andêz is the unit vector normal to thexy plane. The stream functionψ is

defined such that

u=
∂ψ
∂y

; v=�

∂ψ
∂x

(2.4)

This definition of the stream function produces a velocity field which exactly satisfies the incompressibility condition

∇ �u= 0 for two-dimensional flows. The relation between the stream function and velocity vector can also be written

in the compact formu= ∇ψ� êz.

2.2. Linearized Navier-Stokes Equations.The optimal feedback control design in this investigation is base on

linear quadratic regulator (LQR) theory. Since the LQR control design is based on classical linear dynamic system

theory, the nonlinear governing equations in Eq. (2.1) can not be used for the feedback control design. Therefore the

equations in Eq. (2.1) are linearized about a desired base flow state where it is assumed that the flow is stabilized by the

controller resulting in small perturbations about the base flow. These linearized Navier-Stokes equations describe the

linear evolution of small perturbations about a given base flow field. It is desired that this base flow field be a steady

state solution to the nonlinear governing equations. By making the base flow a steady state solution to the nonlinear

equations, the time derivative of the base flow will drop out when the equations are linearized.

This perturbation of the flow variables about some base flow state can be expressed as

ω̃(x; t) = Ω(x)+ εω(x; t)

ψ̃(x; t) = Ψ(x)+ εψ(x; t)

ũ(x; t) = U(x)+ εu(x; t)

(2.5)
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where the flow states̃ω, ψ̃, andũ satisfy equations in Eq. (2.1) andε is some ’small’ parameter. The perturbed states

are represented by the variablesω, ψ, andu and the base flow byΩ, Ψ, andU= (U;V). Here the base flow states are

assumed to be steady state solutions and are not function of time.

Substituting Eq. (2.5) into Eq. (2.1) and considering the terms which are ofO(ε0) results in the equations,

0=�(U �∇)Ω+
1
Re

∇2Ω in D

∇2Ψ =�Ω in D

U= Ub on ∂D

(2.6)

These equations are the nonlinear steady state incompressible viscous flow equations. The desired flow state which is

to be stabilized by the optimal feedback controller must satisfy the equations in Eq. (2.6). Considering now only the

terms which are ofO(ε) gives the equations,

∂ω
∂t

=�(U �∇)ω� (u �∇)Ω+
1
Re

∇2ω in D

∇2ψ =�ω in D

u= ub on ∂D

(2.7)

These equations describe the linear evolution of the perturbed flow state about the base flow state. The nonlinear term

(u �∇)ω is of O(ε2) and is dropped from above equations.

The equations in Eq. (2.7) can be rewritten in the following conservative form,

∂ω
∂t

=�∇ � (ωU)�∇ � (Ωu)+
1
Re

∇2ω in D

∇2ψ =�ω in D

u= ub on ∂D

(2.8)

where the fact that the base flow velocity and the perturbed flow velocity satisfy the continuity equations∇ �U= 0 and

∇ �u= 0 has been used.

2.3. Boundary Conditions. The physical boundary conditions on the velocityu at a wall result in two boundary

conditions on the stream functionψ. These two boundary conditions are derived by separating the normal and tangen-

tial components of the velocityu at the boundary. Quartapelle (1993) shows that the boundary conditionuj∂D = ub

results in the two boundary conditions

ψj∂D = a(2.9a)

∂ψ
∂n

�
�
�
�
∂D

= b(2.9b)

wherea(s; t) =
R s

s1
n(ξ) �ub(ξ; t)dξ andb= �τ �ub. The variables is a coordinate along the boundary∂D ands1 is

any fixed point along the boundary. The vectorτ is a unit vector tangential to the boundary. For the flows considered

in this investigation, the variablea(s; t) = 0.

The two boundary conditions used in this investigation are periodic and no-slip nonporous walls. On the no-slip

walls the Dirichlet boundary condition in Eq. (2.9a) was used to solve the Poisson equation for the stream function.

The Neuman boundary condition Eq. (2.9b) for the stream function was used to solve the vorticity transport equation

by deriving a Dirichlet boundary condition for vorticity.
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3. Control Problem. The classical theory of control systems was developed for systems governed by finite

dimensional ordinary differential equations (ODE), also known as lumped parameter systems. In this investigation the

governing equations for fluid dynamics are partial differential equations (PDE) where the state of the system lies in

some infinite dimensional function space. A system of this type is also known as a distributed parameter system where

the states and control inputs are distributed spatially [10]. This section describes the LQR feedback control problem

for the infinite dimensional system and its finite dimensional approximation.

3.1. Infinite Dimensional Problem. The distributed control applied to the flow takes the form of a spatially

distributed body forcef(x; t). The torque generated by the body force, normal to thexy plane, is given byg =

(∇� f) � êz. This distributed control torqueg(x; t) appears on the right-hand side of the linearized vorticity transport

equation.

∂ω
∂t

=�NUω�NΩu+
1
Re

Lω+g in D

Lψ =�ω in D

ψj∂D = a;

∂ψ
∂n

�
�
�
�
∂D

= b on ∂D

(3.1)

These PDEs are now written in an abstract form which is conducive to the optimal feedback control design. Treating

this distributed parameter system as an evolution ODE, Eq. (3.1) can be written as

ω̇ = Aω+Bg

ω(x;0) = ω0

(3.2)

whereω̇ = dω(�; t)=dt andA andB are infinite dimensional operators. The operatorB for the system given in Eq. (3.1)

is just the identity but is included for completeness. Given a flow fieldω, the action of the operatorA onω is

Aω =�∇ � (ωU)�∇ � (Ωu)+
1
Re

∇2ω(3.3)

where the velocityu is an explicit function of the stream functionψ, which is an implicit function of vorticityω.

The control inputg is computed by using the stateω(x; t) in the following way

g(x; t) =
Z

D
K(x;ξ)ω(ξ; t)dξ(3.4)

whereK(x;ξ) is the distributed feedback kernel. Therefore the control inputg, at a positionx, is given by an integral

over the entire domain of the distributed gainK multiplied by the current vorticity field.

The goal of this control design is to find a feedback kernelK which produced an optimal control inputgopt. In

order to define what optimal means, consider the following quadratic equation

J(ω0;g) =
Z ∞

0
[hω(ξ; t);Q(ξ)ω(ξ; t)i+ hg(ξ; t);R(ξ)g(ξ; t)i]dt(3.5)

whereQ(x) andR(x) are weighting functions and the notation< �; �> represents an inner product over the domainD.

The term optimal is now defined as the control input which minimizes the quadratic cost functionJ. By minimizing

J, the perturbations in the vorticity from the desired stateΩ are minimize and the needed control inputg is also

minimized.

The LQR problem for the infinite dimensional system is stated as

min
g(x;t)

J(ω(x;0);g(x; t))(3.6)
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subject to the system in Eq. (3.2). The optimal control inputgopt(x; t) which minimizes Eq. (3.6) is given by

gopt(x; t) =
Z

D
�R�1B�Π ω(ξ; t)dξ(3.7)

whereB� is the adjoint ofB andΠ is the nonnegative self-adjoint solution to the steady state, infinite dimensional,

algebraic Riccati equation (ARE)

A�Π+ΠA�ΠBR�1B�Π+Q= 0(3.8)

A solution Π exists for Eq. (3.8) if the pair(A;B) is stabilizable and the pair(A;C) is detectable [4]. These two

conditions are satisfied since actuation and sensing are performed everywhere in the flow field. From Eq. (3.7) it can

be seen that the optimal feedback kernelKopt is given by

Kopt =�R�1B�Π(3.9)

3.2. Finite Dimensional Approximation. A finite dimensional approximation to the infinite dimensional feed-

back kernelK is made using a finite difference method. In this approximation it is desired that the feedback kernel

KN
! K, in an appropriate sense, asN ! ∞. The computational issues associated with this problem have been

addressed by Banks et al. [2] and Gibson [8].

The finite dimensional approximation to Eq. (3.5) is expressed as

ω̇N = ANωN+BgN

ωN(0) = ωN
0

(3.10)

whereωN is a vector containing the spatially discrete values of the vorticity field andB is the identity matrix. The

matrixB has been included in this investigation for completeness.

The approximation to the quadratic cost function in Eq. (3.2) becomes

JN(ωN
0 ;gN) =

Z ∞

0

�

ωN(t);QNωN(t)

�
+



gN(t);RNgN(t)

��
dt(3.11)

whereQN andRN are now matrices which weight the state vectorωN and the control inputgN respectively.

The finite dimensional control problem is stated as

min
gN

JN(ωN
0 ;gN)(3.12)

subject to the governing equations in Eq. (3.10). The optimal control input which minimizes Eq. (3.12) is given by

gN
opt(t) =�(R

N)�1BN�ΠNωN(t)(3.13)

whereΠN is the solution to the finite dimensional ARE

AN�ΠN+ΠNAN
�ΠNBN(RN)�1BN�ΠN+QN = 0(3.14)

As in the infinite dimensional case, a solutionΠN exists for Eq. (3.14) if the pair(AN
;BN) is stabilizable and the pair

(AN
;CN) is detectable [4]. This is easily satisfied since actuation and sensing are performed everywhere in the flow

field.

Equation Eq. (3.13) shows that the finite dimensional approximation to the optimal feedback gainKopt is

KN
opt =�(R

N)�1BN�ΠN(3.15)

Note that the finite dimensional approximationKN to the infinite dimensional feedback controlK is dependent on the

approximation to the ARE solutionΠN and the adjointBN�. In this study, theBN matrix is IN�N which means that the

approximationKN is primarily dependent on the approximationΠN.
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4. Reduced Order Model. The computational cost of solving Eq. (3.14) is on the order ofN3 floating-point

operations (flops), whereN is the number of states. For two dimensional flows the number of flow states, for a

computational simulation, can range anywhere from 104 to 105. For a simple two dimensional flow problem, say

N = 104, the cost would be on the order of 1012 flops. For a larger two dimensional flow problem, sayN = 105,

the computational cost would increase by a factor of 1000, to 1015 flops. For three dimensional flows the number of

states can range from 105 to 106. Thus, the cost of solving the ARE can grow prohibitively expensive, even for two

dimensional flow problems.

The computational cost can be reduced significantly by using a Chandrasekhar system approach [3]. The only

draw back to the Chandrasekhar system is that the number of inputs must be much smaller than the number of states

in order to significantly reduce the cost of solving the Riccati equation. Since the number of inputs for this problem

are equal to the number of states, a different approach needs to be taken.

Another way to reduce the cost, and the approach taken here, is to develop a reduced order model of the system

given in Eq. (3.10). This reduced order model has a smaller number of states which reduces the cost of solving the

Riccati equation in the LQR control design. Since the goal is to approximate the infinite dimensional LQR feedback

gain,Kopt, a reduced order model which gives a good approximation should be chosen. It would also be desirable for

the approximation to the infinite dimensional gain to converge in some reasonable way as the number of states in the

reduced model increase.

4.1. Krylov Space Method. Most model reduction methods for feedback control systems use a Hankel-norm

approach. This approach calculates Hankel singular values based on the controllability and observability of a given

system. The advantage of this approach is that theH∞ norm of the modeling error is bounded by the sum of the Hankel

singular values not retained in the reduced order model. The draw back it that the cost of this approach is of orderN3.

In this study a Krylov based method is used to project Eq. (3.10) onto a reduced Krylov subspace which includes the

leading modes of the larger system. This approach is significantly cheaper than the Hankel-norm approach but does not

take into account the controllability and observability of the closed-loop system. It can be argued, that since actuation

and sensing is performed everywhere in the flow field, that the leading modes of the homogeneous system are the

dominant modes for the closed-loop system. If the matrixBN had some structure other than identity and sensing was

not performed everywhere, then the leading modes of the homogeneous system are not necessarily the most dominant

modes (modes with the largest real part) for the closed-loop system.

Consider the homogeneous solution to Eq. (3.10),

ωN(t) = T(t)ωN
0(4.1)

whereT(t) = eANt is aC0-semigroup. Equation (4.1) can also be written as,

ωN(k∆t+∆t) = T(k∆t+∆t)ωN
0

= T(∆t)T(k∆t)ωN
0

= T(∆t)ωN(k∆t)

ωk+1 = T(∆t)ωk

(4.2)

whereωk = ωN(k∆t) and the superscriptsN have been dropped for convenience. Using a Krylov method, the action

of the semigroup operatorT(∆t) can be approximated by a reduced Krylov subspace. Akth-dimensional Krylov

subspace, given an operatorT(∆t) and a vectorv, is defined as

K k(T;v) = spanfv;Tv;T2v; :::;Tk�1vg(4.3)
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This Krylov subspace is generated using the ARPACK software package which uses an Arnoldi/Lanczos scheme with

implicit restarts [19]. The orthonormal basis for the Krylov subspace is generated by following the Arnoldi Process [1].

v j = w j=jjw j jj

w j+1 = Tw j �
k

∑
m=1

vm(vm;Tv j)

(4.4)

The vectorsvj for j = 1;2; :::;k are computed using a given starting vectorw1. The resultingN�K vectorV =

(v1;v2; :::;vk) is known as a Ritz Vector whereV 2 K k(T;w1). Note that the generation of the Krylov subspace only

requires the action ofT on a given vector and not the explicit matrixT. As shown in Eq. (4.2) the action ofT on a

given vector is just the advancement of the vector, or in this case the vorticity field, by one time step∆t.

Equation (4.4) can be restated in the standard matrix form of the Arnoldi decomposition as

TV =VH+wk+1eT
k(4.5)

wherewk+1eT
k is a remainder term. The matrixH is aK�K upper Hessenberg matrix. The operatorVVT is aN�N

projection operator onto the Krylov subspace andVTV is theK�K identity matrix.

The action of the semigroup operatorT can be approximated by projecting it onto a Krylov subspace

T �VVTTVVT �VHVT(4.6)

whereH �VTTV for smallwk+1eT
k . Diagonalizing the matrixH yields

H = EΛE�1(4.7)

whereΛ is a diagonal matrix of eigenvalues andE is a matrix whose columns are the corresponding eigenvectors.

The Krylov subspace is generated by using implicit restarts which keep the leading eigenvalues of theT semigroup

operator. Using the definition ofT(∆t) = eA∆t and Eq. (4.6) an approximation to the operatorA results in

T(∆t) = eA∆t � VHVT

= VEΛE�1VT
(4.8)

Solving forA produces

A � VE
log(Λ)

∆t
E�1VT

A = VHrVT

(4.9)

whereHr = E log(Λ)E�1=∆t.

4.2. Control Problem. Projection of theNth dimensional system in Eq. (3.10) onto akth dimensional Krylov

subspace results in the reduced system

ż= Hrz+BrgN

z(0) = z0

(4.10)

whereBr =VT and the aggregated state vectorz is defined as

z=VTωN(4.11)
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Thus, the state vectorωN has been approximated by another state vectorz, constrained to stay in the Krylov subspace

given by the basisV. The vorticity state vector is then approximated asω �Vz.

The system in Eq. (4.10) is now used to compute an approximation to the the desired optimal feedback gainKN

given in Eq. (3.13). Using the Krylov subspaceV the cost function in Eq. (3.11) results in

J(z0;gN) =

Z ∞

0

�
hz(t);Qrz(t)i+



gN(t);RrgN(t)

��
dt(4.12)

whereRr = RN andQr =VTQNV. The control problem defined in Eq. (3.12) for the reduced system becomes

min
gN

J(z0;gN)(4.13)

subject to the governing equations in Eq. (4.10). The optimal control input for this problem is

gN
opt(t) =�R�1

r B�r Πrz(t)(4.14)

where the(k�k) matrix,Πr , is the solution to the finite dimensional ARE

H�

r Πr +ΠrHr �ΠrBrR�1
r B�r Πr +Qr = 0(4.15)

Using Eq. (4.11) and Eq. (4.13), the approximation to the desired feedback gainKN becomes

KN ��R�1
r VΠrV

T(4.16)

where the adjointB�r =V.

5. Numerical Method. The calculation ofT(∆t) on a given vector is achieved by computing a time accurate

solution to the linearized Navier-Stokes equations described in Eq. (2.8). A solution to Eq. (2.8) is computed using a

semi-implicit finite difference scheme. This scheme approximates the spatial derivatives using a second-order central

difference method for the viscous term and a third-order upwind scheme for the convection terms. These equations

are then solved using a multigrid acceleration method with Gauss-Seidel relaxation.

5.1. Time Discretization. The governing equations in Eq. (2.8) are discretized in time using an explicit up-

winding scheme on the convection terms and a implicit Crank-Nicolson scheme on the diffusive term. This scheme is

locally second-order accurate in space and first-order in time. The discretization of Eq. (2.8) has the form

ωn+1
i; j �ωn

i; j

∆t
=�∇h � (Ωun)i; j �∇h � (ωnU)i; j +

1
2Re

∇2h
�

ωn+1
i; j +ωn

i; j

�

∇2hψn
i; j =�ωn

i; j

(5.1)

whereωn
i; j =ω(ih; jh;n∆t). The operators∇h, and∇2h

are discrete approximations to the operators∇ and∇2, respec-

tively. The discretized vorticity transport equations in Eq. (5.1) can now be expressed as
�

I �
∆t

2Re
∇2h

�
ωn+1

i; j = ωn
i; j �∇h � (Ωun)i; j �∇h � (ωnU)i; j +

1
2Re

∇2hωn
i; j(5.2)

The nonlinear Navier-Stokes equations in Eq. (2.1) are similarly discretized by replacingΩ with ωn andU with un

in the equation above. The steady state solution to the nonlinear equations in Eq. (2.1) are used in the linearized

Navier-Stokes equation for the base flow field.

The discretized equation in Eq. (5.2) can be expressed in the form

Mωn+1 = b(5.3)
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whereb is the right hand side of Eq. (5.2) andM the discrete operator(I �∆t=2Re ∇2h
). SinceM is a large and

sparse matrix, the solution forωn+1 favors an iterative method. To accelerate the iterative method, a multigrid routine

which uses Gauss-Seidel relaxation is used. Likewise the solution to the Poisson equation in Eq. (5.1) is solved using

an iterative method with multigrid acceleration.

5.2. Spatial Discretization. The Laplacian operator∇2 is discretized using a standard second-order central dif-

ference scheme and has the form

∇2hωn
i; j =

ωn
i+1; j �2ωn

i; j +ωn
i�1; j

∆x2 +
ωn

i; j+1�2ωn
i; j +ωn

i; j�1

∆y2(5.4)

The first order derivatives in the linear convection terms are evaluated using a four-point upwind scheme. Thex

derivative component for the term∇h � (Ωun)i; j , for u� 0, is approximated by the upwind scheme

∂(Ωu)i; j

∂x
= q

�(Ωu)i+1; j +3(Ωu)i; j �3(Ωu)i�1; j +(Ωu)i�2; j

3∆x
+

2(Ωu)i+1; j � (Ωu)i�1; j

2∆x
+O(∆x2)(5.5)

where the parameterq controls degree of modification to the central difference term [6]. Ifq= 0:5 then the scheme

in Eq. (5.5) becomes an upwind scheme ofO(∆x3). If q= 0 then the scheme is reduced to a second-order central

difference scheme. The central difference approximation for the linear convection term has good accuracy but will

produce oscillations when themesh Pecletnumber (β = u dx Re) becomes greater than 2. The upwind scheme will

reduce these oscillations forβ > 2 but at a cost of reduced accuracy. This reduced accuracy is a result of artificial

diffusivity added by the upwind scheme. Therefore, a switch is used which setsq= 0 whenβi; j < 2 andq= 0:5 when

βi; j � 2. This switch results in a scheme which has better accuracy at lowmesh Pecletnumbers than a straight upwind

scheme, yet retains the advantages of an upwind scheme for large Mesh Peclet numbers.

5.3. Boundary Conditions. The boundary condition for the no-slip walls are computed using Jensen’s formula-

tion [9] attributed to Jensen by Roache [17]. This formulation, also known as Briley’s formulation and was used by

Pearson [14] and Ghia et al. [7].

Jensen’s formulation computes a boundary value for the vorticity by taking a Taylor series expansion of the stream

function normal to the wall. Jensen’s formula is given by

ω0; j =
7ψ0; j �8ψ1; j +ψ2; j

2h2 �
3u0; j

h
+O

�
h2�(5.6)

This boundary condition is claimed by [9, 17, 14, 7] to beO(h2) for the vorticity at the boundary. It has been shown

in [20] that this formulation can be thought of as anO(h3) approximation to the Neuman boundary condition on the

stream function in Eq. (2.9b) rather than aO(h2) boundary condition for vorticity. If Eq. (5.6) is rewritten as

h
3

ω0; j =
7ψ0; j �8ψ1; j +ψ2; j

6h
�u0; j +O

�
h3�(5.7)

then the limh!0 recovers the equation(∂ψ=∂n)j0; j =�u0; j . This is consistent with Eq. (2.9b), which is the equation

being modeled. Therefore the condition on the vorticity at the boundary can be thought of as anO(h3) approximation

to Eq. (2.9b) instead of anO(h2) boundary condition for vorticity. Spotz used Jensen’s formula using a compact 4th

order method and showed that this formula resulted in anO(h3) approximation.

5.4. Driven Cavity Problem. A numerical simulation of the driven cavity problem, using the full nonlinear

Navier-Stokes equations in Eq. (2.1), is used to give a measure of validation for the proposed numerical method. The

driven cavity problem is a typical two-dimensional model problem that is used to evaluate and compare numerical

methods for incompressible viscous flows. Most notable are the steady state results published by Ghia et al. [7].
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FIG. 5.3. A contour plot of the steady state vorticity field for

the driven cavity problem at Re=1000.

The driven cavity problem, shown in Fig. 5.1, has a top wall which moves at a nondimensional velocity of

UTop= 1. The moving wall induces the flow as a result of the viscous forces generated at the moving wall. The steady

state solution is then computed on a uniform grid which has 129 grid points in both thex andy directions. A steady

state flow field is found by simply marching the impulsively started cavity in time, until a satisfactory steady state

solution is achieved. Its interesting to note that this problem has two singularities at the top two corners where the top

moving wall meets the two stationary side walls. The impact from these singularities are considered to be small since

the grid is relatively fine.

Figure 5.2 and 5.3 show the stream lines and vorticity contours for the steady state solution atRe= 1000. The

stream lines in Fig. 5.2 show two recirculation zones at the bottom corners of the cavity. The size and location of these

recirculation zones compare very well the numerical results given by Ghia et al. [7]. The minimum stream function

was computed to beξmin = 0:117985 and compared very well to the minimum stream function,ξmin = 0:117929,

computed by Ghia. The location of the center of the main vortex is computed to be atx = (0:5312;0:5625) as

compared tox = (0:5313;0:5625) reported by Ghia. The contour plot of the vorticity field in Fig. 5.3 also compares
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al. [7] at Re=100;400;1000;3200.

very well with the results from Ghia.

Figure 5.4 shows the horizontal velocity profiles,v, aty= 0:5 for Re=100;400;1000; and 3200. These velocity

profiles are compared to the velocity profiles reported by Ghia et al. [7]. Likewise the vertical velocity profiles for

u at x= 0:5 are shown in Fig. 5.5 and then compared to the numerical data given by Ghia. These two figures show

good agreement between the current results and the data from the Ghia paper. Note that a 129�129 grid was used for

all the Reynolds number cases except for theRe= 3200 case where a 257�257 grid was used as was done by Ghia.

Based on these results a measure of validation has been shown for the proposed numerical method for the calculation

of steady state flows.

6. Results. Application of the distributed feedback control design is now applied to an unstable shear layer

problem and a stable driven cavity problem. The computed eigenvalues and eigenvectors for the bounded shear layer

flow will be compared to eigenvalues and eigenvectors from an Orr-Sommerfeld analysis. This comparison will

provide a measure of validation for the reduced order model.

6.1. Shear Flow Problem. The method described above is now applied to a two-dimensional bounded shear

layer problem as shown in Fig. 6.1. In this problem there are two layers of parallel fluid traveling in opposite directions.

At the intersection of these two flows is a shear layer which has a hyperbolic tangent velocity profile. The large velocity

gradient in the shear layer results in a large concentration of vorticity. This type of flow pattern is inviscidly unstable

to small disturbances. The base flow field for this problem is described by the equations
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~U(x;y) = [U(y);0] = [U0 tanh(y=b);0]

Ω(x;y) =
sech2(y=b)

b

(�1�x�1;�1�y�1)(6.1)

whereb = 1=30, Re= 100 and the flow is periodic in thex direction. The Reynolds number for the shear layer

problem is typically defined using the characteristic lengthb, which determines the width of the shear layer. The

Reynolds number for the shear layer is defined as

Re=
U0b

ν
(6.2)

whereU0 is the nondimensional characteristic velocity andν the kinematic viscosity of the fluid. TheU(y) profile is

shown in Fig. 6.1 where the boundaries moving walls with a no-slip boundary condition.

The velocity profile for this problem represents an exact solution to the steady state inviscid flow equations.

However it does not exactly satisfy the steady state equations for the incompressible viscous flow. The unsteadiness,

in this base flow, is due to the viscous diffusion term which wants to diffuse the high concentration of vorticity in

the shear layer. This causes the vorticity layer to spread out and diffuse away from the center region. In practice this

viscous diffusion effect is overlooked in the formulation of the linear stability problems. [15]

6.1.1. Reduced Order Model.Using the shear layer base flow field given in Eq. (6.1), a Krylov basis vector

V of dimensionK = 201 was constructed to form the reduced order model in Eq. (4.10). These vectors were found

using the ARPACK software package where the top 201 eigenvectors with the largest real part were computed. This

program starts by generating a large Krylov subspace of 600 Ritz vectors. It then performs an implicit restart which

removes unwanted Ritz vectors and then generates new Ritz vectors, replacing the discarded vectors. This process

is repeated until the desired number of leading eigenvectors has converged. For this problem, 2735Tω operations

(time steps) were computed by the flow solver. The finite difference approximation was made using 64 grid points

in the streamwise direction and 128 grid points in the cross stream direction. Figure 6.2 shows the convergence of

the ARPACK routine where an implicit restart was performed at the start of a new iteration. The convergence rate is

dependent on the number of desired eigenvectors, the size of the Krylov subspace chosen, and the size of the time step.

The top 201 eigenvalues, with the largest real parts, are shown in Fig. 6.3. These eigenvalues are compared to the

eigenvalues computed from an Orr-Sommerfeld stability analysis using the spectral method presented by Orszag[12].

The numerical method used by Orszag was derived for the stability of plane Poiseuille flow which was then modified

for the shear layer problem. The comparison between the eigenvalues shows how the Krylov method was able to com-
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looking for the top201eigenvectors with the largest real parts.

pute the eigenvalues of the shear layer problem reasonably well. From this figure it can be seen, that the eigenvalues

start to degrade as the imaginary parts become larger and as the real parts of the eigenvalues become increasingly

negative. The reduced accuracy of the eigenvalues in these areas show the limitations of the finite difference approxi-

mation and the computation of the eigenvalues using the Krylov time stepping method. As the imaginary and negative

real parts of the eigenvalues increase, so do the spatial oscillations of the eigenvectors. Therefore the spatial resolution

of the finite difference method governs how many of the eigenvectors can be resolved accurately. For the shear layer

problem, the number of modes that can be resolve are sufficient our investigation.

A sample of the eigenvectors computed using the Krylov method and the Orr-Sommerfeld analysis are shown in

Fig. 6.4. A Fast Fourier Transform (FFT) was taken of the eigenvectors, generated by the Krylov method. This FFT

showed that the eigenvectors have one dominant wave number in thex direction. Therefore the eigenvectors can be

expressed in the form

V(x;y) = v̂(y)eiσx(6.3)

where Fig. 6.4 is showing the function ˆv(y) for four different eigenvectors. Figure 6.4a shows the most unstable

eigenvector for the shear flow problem. This mode has a wave number ofσ=2π and shows the form of the instability

of the shear layer. This eigenvector compares very well to the eigenvector computed using the Orr-Sommerfeld spectral

analysis. This unstable mode is the easiest mode to capture using this Krylov method since it grows very fast. The

other eigenvectors in Fig. 6.4b throughd are stable modes. The eigenvectors shown in Fig. 6.4b andd both have

wave numbersσ=π and the eigenvector in Fig. 6.4d a wave number ofσ=2π. These modes compare very well with

the corresponding eigenvector from the Orr-Sommerfeld analysis. This comparison shows a measure of validation

in computing the leading eigenvectors and eigenvalues using the Krylov method. This comparison also shows that

the eigenvalues start to degrade in accuracy for eigenvalues with increasing wave numbers and negative real parts.

The accuracy of the eigenvalues and eigenvectors can be improved by increasing the spatial resolution and by using

a numerical scheme of higher order. It was also seen that decreasing the time step could improve the accuracy of the

eigenvalues up to some limit. Further reduction of the time step beyond this limit did not increase the accuracy of the

eigenvalues.

6.1.2. LQR Control Design. The optimal feedback kernel for the reduced system was computed by minimizing

the quadratic cost function in Eq. (4.12). The weights for the cost function in Eq. (3.11) were set toR= I andQ= I .
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This resulted in the weights for Eq. (4.12)

Rr = I ; Qr =VTQV =VTV = I(6.4)

The ARE for the reduced system, given by Eq. (4.15), is then solved forΠr using the MATLAB software package.

This reduced system results in an ARE solution with 201 states, which is large for typical ARE problems, but is

significantly smaller than the 8192 states of the full system. Figure 6.5 shows the diagonal elements of the ARE

solutionΠr as a function of the mode number. The modes are the eigenvectors of the linearized flow equations and the

eigenvalueλi corresponds to theith mode whereRe(λi)�Re(λi+1). This figure shows how the first six modes, which

are unstable modes, result in the largest contribution to the feedback kernelKN and how the contribution decreases for

the higher mode numbers. This figure basically shows the convergence of the feedback kernel with respect to the size

of the reduced order system.

SubstitutingΠr into Eq. (4.16) results in the approximation to the finite dimensional feedback kernelKN. Using

the approximation toKN the optimal feedback control can be computed as

gN
opt(t) = KNωN(t)(6.5)

whereKN is a (8256�8256) matrix, gN
opt a (8256�1) column vector, andωN a (1�8256) row vector. It can be

seen from Eq. (6.5) that thenth column ofKN corresponds to the distributed control inputg for a disturbanceω = ên.

Similarly, themth row of KN correspond to the distributed feedback gain for the control input atgm. To illustrate

this idea Fig. 6.6 shows the distributed controlgN
opt given a unit disturbance at four different locations in the flow.

Figure 6.6a shows the point disturbance on the bottom wall and shows a local positive control near the point distur-

bance. Fig. 6.6b shows the disturbance just off the wall aty=�0:75 and shows the localized nature of this feedback

control. In Fig. 6.6c the disturbance is move closer to the shear layer. This figure shows the same type of localized

feedback control around the disturbance as before but with a large control force. The disturbance near the shear layer

also shows an interesting feedback control force which appears in the shear layer. The point disturbance is then moved

to the center of the shear layer as is shown in Fig. 6.6d. This distributed feedback control shows a pattern which is

similar to the unstable modes in the flow. This should be expected since the unstable modes were associated with the

largest feedback gains computed inΠr .

In an effort to quantify the spatial structure of the control effort a norm is defined in the following way

cn =

"
N

∑
m=1

(KN
m;n)

2

#1=2

(6.6)

wherecn is thenth element of a vector defining the control effort andc = (c1;c2; :::;cN). The idea is forcn to be

a measure of the control effort in anL2 norm sense for a point disturbance located atω = ên. Likewise the spatial

structure of the feedback gain can be evaluated by defining the norm

fm =

"
N

∑
n=1

(KN
m;n)

2

#1=2

(6.7)

wheref = ( f1; f2; :::; fN) is a vector describing the measure of the feedback effort. The value offm is anL2 norm of

the distributed feedback gain for actuation atgm. Note that the feedback kernel is symmetric since the weightR and

the matrixB are symmetric. Therefore the the vectorsc andf, which describe the control effort and feedback effort,

are equal.

A plot of the control effort at a constantx value, for the shear flow problem, is shown in Fig. 6.7. This figure

shows how the control effort, and consequently the feedback gain, is large in the shear region. This figure also shows

that the shear region would be most favorable for actuation and sensing as might be expected.
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6.2. Cavity Flow Problem. The second problem involved the design of a distributed feedback controller for a

driven cavity problem. Unlike the shear layer, the base flow field for the driven cavity was stable and satisfies the

finite difference approximation to the steady state flow equations. Since the flow is stable, the model will not contain

any unstable modes as was seen in the shear layer problem. This means that the cavity problem will not have a small

number of dominant modes in the reduced order model and feedback kernel as was seen in the shear layer problem.

6.2.1. Reduced Order Model.The base flow field for the cavity problem was the steady state flow field com-

puted in section 5.4 forRe= 1000. The vorticity for the base flow is shown in Fig. 5.3 and the stream function in

Fig. 5.2. Using this base flow field, a Krylov basis vectorV of dimensionK = 400 was constructed to form the reduced

order model of the linearized flow equations. Figure 6.8 show the convergence of the top eigenvalues with the largest

real parts. It took 50 implicit restarts and 15370Tω operations (time steps) by the flow solver in order for the top 400

modes to converge. The distribution of the top eigenvalues is shown in Fig. 6.9. A sample of the eigenvectors with the

largest real parts are shown in Fig. 6.10. This figure shows the real and imaginary parts of the eigenvectors. Notice

that some of the eigenvectors are real and do not have any imaginary parts.

6.2.2. LQR Control Design. Using the reduced order system for the linearized cavity flow, the optimal feedback

kernel is then computed using an LQR control design approach. As in the shear layer problem, the Riccati solution

Πr to the ARE in Eq. (4.15) was computed which minimizes the cost function in Eq. (4.12). The weights for the cost

function in Eq. (3.11) are uniform and set toR= I andQ= I which results in the weightsRr = I andQr = I . Figure

6.11 shows the diagonal elements forΠr as a function of the mode number. This figure shows a similar decay rate for

the diagonal elements of the Riccati solutionΠr as compared to the shear flow problem.

The feedback kernelKN can now be approximated by substituting the Riccati solution to the reduced system

Πr into Eq. (4.16). This results in a(16641�16641) feedback kernelKN where the approximation to the optimal

distributed controlgN
opt is given by

gN
opt(t) = KNωN(t)(6.8)

Using this optimal feedback kernel, the distributed control for a point disturbance can be computed. Figure 6.12 shows

the approximation to the distributed control given a point disturbance at four different locations in the cavity. A point

disturbance on the bottom wall is shown in Fig 6.12awith the resulting distributed control force. Figures 6.12b through

d show the point disturbance in the interior of the cavity away from the effects of the wall. The distributed feedback

for these interior points show a smooth circular pattern around the disturbance. This figure also shows that the applied

control force is a maximum at the point disturbance and then decays as it moves away from the disturbance location.

It is interesting to see how the control force decays as it moves away from the location of the point disturbance.

Figure 6.13a shows a mesh plot of the distributed control shown in Fig 6.12c and Fig 6.13b shows a plot of the

distributed control fory= 0:5. These figures illustrate how the control force decays from the point disturbance located

at (x;y) = (0:5;0:5).

The distributed control effort and feedback gain for the cavity problem is shown as a mesh plot in Fig. 6.14

and as a contour plot in Fig. 6.15. These two figures show how the distributed control effort and feedback gain are

concentrated in the center of the cavity. There are also some peaks near the center of the walls and one large peak

where the flow induced from the top moving lid impinges on the right stationary wall. The figure also shows that the

control effort is smaller at the corner of the cavity. Therefore sensing and actuation would be most favorable near the

center of the cavity, near the center of the wall, and on the top part of the right wall.

7. Conclusion. This study has demonstrated how a Krylov subspace method can be used to derive a reduced

order model of the linearized incompressible Navier-Stokes equations and applied to a two-dimensional shear flow
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and driven cavity problem. By assuming sensing and actuation everywhere in the flow field an optimal feedback

kernel can be found. This feedback kernel provides insight into the regions of the flow where the control effort is

‘large’ and where the feedback gain is ‘large’. This information can be used to isolate the regions of the flow field

where sensing and actuation are most favorable. This information also shows where one should be searching for the

best place to put actuators and sensor. This knowledge has the potential to reduce the search areas of the flow field for

the placement of actuators and sensors. In the shear layer case, the search area could be significantly reduced, where

as the driven cavity problem only showed a slight reduction in the search area was achieved.

The two-dimensional shear flow problem showed that sensing and actuation was most favorable in the shear layer

as might be expected. The driven cavity problem showed that a region in the center and parts of the walls were the

most favorable for the placement of sensors and actuators. It also showed that there was not a dominant region, as

in the shear layer problem, and that the corners of the cavity and a region near the walls were unfavorable for the

placement of sensors and actuators.

The advantage of this approach is that a simple time stepping vorticity stream function code could be used to

derive the linearized model of the incompressible Navier-Stokes equations. To improve on this approach, higher-order

spatial discretizations should be used to improve the spatial accuracy of the higher frequency modes. The drawback

to the time stepping approach used here is the convergence of the eigenvalues and eigenvectors. To solve this problem

a shift invert approach described by Sorensen [19] can be used but this requires an explicit representation of the flow

equations as oppose to the coupled vorticity stream function equations used here.

8. Acknowledgments. The author wishes to acknowledge the helpful discussions provided by Dr. Josip Lon-
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for the modes with increasing negative real parts.
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FIG. 6.6. This figure shows the spatial distribution of the applied control gN(x) for a unit disturbance which is shown by the black dot. In

these four figures the unit disturbance is moved along the y axis from the wall to the center of the shear layer.
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FIG. 6.7.A measure of the control effort and feedback gain.
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FIG. 6.8. The convergence history of the Krylov vectors using the ARPACK software package for the cavity problem. The Krylov subspace

had800vectors and was looking for the top400eigenvectors with the largest real parts.
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FIG. 6.9.Eigenvalues of the driven cavity problem for Re= 1000.
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FIG. 6.10.Real and imaginary parts of the top eigenvectors for the cavity problem.
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FIG. 6.11.The value of the diagonal elements forΠr for the cavity problem.
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FIG. 6.12.This figure shows the spatial distribution of the applied control gN(x) for a unit disturbance which is shown by the black dot. In

these four figures the unit disturbance is moved along the y axis from the wall to the center of the shear layer.
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FIG. 6.13.These two figures show the distributed control force gN(x) for a unit disturbance located at the center of the cavity. A mesh plot

showing the spatial distribution of the control force is shown in a and plot of gN(x) for y= 0:5 is shown in b.
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FIG. 6.14.A mesh plot showing the control and feedback effort for the forced cavity problem.
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FIG. 6.15.A contour plot showing the control and feedback effort for the forced cavity problem.
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