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ROBUST MULTIGRID ALGORITHMS FOR THE INCOMPRESSIBLE NAVIER-STOKES

EQUATIONS�

RUBEN S. MONTEROy AND IGNACIO M. LLORENTEz

Abstract. Anisotropies occur naturally in CFD where the simulation of small scale physical phenomena,

such as boundary layers at high Reynolds numbers, causes the grid to be highly stretched leading to a slow

down in convergence of multigrid methods. Several approaches aimed at making multigrid a robust solver

have been proposed and analyzed in literature using the scalar di�usion equation. However, they have

been rarely applied to solving more complicated models, like the incompressible Navier-Stokes equations.

This paper contains the �rst published numerical results of the behavior of two popular robust multigrid

approaches (alternating-plane smoothers combined with standard coarsening and plane implicit smoothers

combined with semi-coarsening) for solving the 3-D incompressible Navier-Stokes equations in the simulation

of the driven cavity and a boundary layer over a 
at plate on a stretched grid. The discrete operator is

obtained using a staggered-grid arrangement of variables with a �nite volume technique and second-order

accuracy is achieved using defect correction within the multigrid cycle. Grid size, grid stretching and

Reynolds number are the factors considered in evaluating the robustness of the multigrid methods. Both

approaches yield large increases in convergence rates over cell-implicit smoothers on stretched grids. The

combination of plane implicit smoothers and semi-coarsening was found to be fully robust in the 
at plate

simulation up to Reynolds numbers 106 and the best alternative in the driven cavity simulation for Reynolds

numbers above 103. The alternating-plane approach exhibits a better behavior for lower Reynolds numbers

(below to 103) in the driven cavity simulation. A parallel variant of the smoother, tri-plane ordering, presents

a good trade-o� between convergence and parallel properties.

Key words. plane implicit smoothers, symmetric coupled Gauss-Seidel, robust multigrid, defect correc-

tion, Navier-Stokes

Subject classi�cation. Applied and Numerical Mathematics

1. Introduction. Multigrid techniques are generally accepted as fast and e�cient methods for solving

many types of partial di�erential equations, and particularly elliptic problems whose discretization results

in a K-matrix [24]. For this kind of problems, basic point-wise iterative methods, like Gauss-Seidel or

damped Jacobi, are good smoothers, and multigrid methods exhibit an optimal complexity (work is linearly

proportional to the number of unknowns), optimal memory requirements, and good parallel e�ciency and

scalability in parallel implementations [11].

However the e�ciency of the multigrid methods degenerates dramatically in presence of anisotropies.

It is well known that in the resolution of the Poisson equation the convergence factor of the multigrid

method tends to one as the anisotropies are increased [1]. Typically these anisotropies might occur when

the coe�cients of the discrete operator vary throughout the domain or when stretched grids are used.
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This anisotropic condition occurs naturally in the �eld of Computational Fluid Dynamics (CFD) where the

simulation of small scale physical phenomena, such as boundary layers at high Reynolds numbers, causes

the grid to be highly stretched leading to a slow down in convergence.

In some situations, when the source of the anisotropy is known beforehand, a block implicit smoother

can be used to improve the e�ciency of the multigrid algorithm. Usually this is done by applying a implicit

solver in the directions of strong coupling, as states Brandt's fundamental block relaxation rule [1]. This

technique is common practice in CFD. Thomas, Diskin and Brandt [20] have demonstrated the e�ciency

of the distributive smoothing scheme with line solvers applied to high Reynolds number simulations when

the grid stretching is normal to the body. The bene�ts of plane relaxation are shown by Oosterlee in [17]

for simulations of the 3-D incompressible Navier-Stokes equations over grids with non-unitary aspect ratios.

Also a combination of line implicit techniques and semi-coarsening has been successfully used by Mavriplis

in [4] and [5] to solve high Reynolds number 2-D and 3-D viscous 
ows over anisotropic unstructured meshes.

However, in a general situation the nature of the anisotropy is not known beforehand, so there is no

way of knowing which of the variables are coupled. Moreover, if the problem is solved on a stretched

grid or the equation coe�cients di�er from each other throughout the domain (computational and physical

anisotropy respectively) the values of the coe�cients and their relative magnitudes vary for di�erent parts of

the computational domain. In such cases the multigrid techniques based on point- or plane-wise smoothers

combined with full coarsening fail to smooth error components with the consequent deterioration of the

multigrid convergence factor.

Several approaches aimed at making multigrid a robust solver have been proposed in literature. One

popular approach is to use standard coarsening combined with an alternating-direction implicit smoother

[19, 10, 12, 19]. This solution consists in exploring all the possibilities in order to develop a robust smoother,

i.e. use alternating-line relaxation in 2-D and alternating-plane relaxation in 3-D. Another approach to

dealing with anisotropic problems is to combine an implicit smoother with an appropriate semi-coarsening

procedure [6, 18]. This is rather popular in literature and overcomes some parallelization problems that can

be found in the alternating-plane smoothers [13]. For example, a simple way to avoid using an alternating-

plane smoother is to use semi-coarsening in one direction and relaxation in a �xed plane (e.g. combine

xy-plane relaxation with Z semi-coarsening). Other intermediate alternatives that combine plane, line or

point relaxations with partial and full coarsening have also been presented in multigrid literature [14, 16].

Some of these robust multigrid approaches have also been tested for the e�cient resolution of the 2-

D Navier-Stokes equations. The alternating-direction line smoother has been investigated for the solution

of the incompressible 2-D Navier-Stokes equations in [21, 15]. However, to the authors' knowledge, the

robust multigrid algorithms have never been applied to the resolution of the 3-D incompressible Navier-

Stokes equations. The aim of this work is to present a thorough study of the application of two common

robust multigrid algorithms (alternating-plane smoothers combined with standard coarsening and plane

smoothers combined with semi-coarsening) to the resolution of the 3-D Navier-Stokes equations on single-

block structured grids.

The robustness of a smoother is de�ned as its ability to e�ciently solve a wide range of problems. In

this sense the de�nition of robustness is qualitative and has to be de�ned more precisely by setting up a set

of suitable test problems. Traditionally, the above mentioned approaches have shown to be robust smoothers

for the anisotropic di�usion equation. In the present context we will characterize the multigrid algorithms as

robust if the solution of the governing system of equations can be attained in a �xed amount of work units

(time to compute the system metrics in the �nest level) independent of the grid size, grid stretching factor
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and Reynolds number. This is equivalent to saying that the convergence factor of the multigrid algorithm

is independent of the grid size, stretching and Reynolds number. We will also refer to this property as

textbook multigrid convergence (TMC). We believe that the achievement of a textbook multigrid convergence

rate through increasing the work and memory requirements per cycle is the �rst step to achieving textbook

multigrid e�ciency (TME). Opposed to TMC the TME, de�ned by Brandt in [1], �xes the computational

work to solve the problem to ten or less work units.

This paper is organized as follows: The numerical scheme used by our simulations is described in Section

2. Details of the implementation of the multigrid algorithm used in this work will be presented in Section 3.

Numerical results are obtained in Section 4 for two common benchmarks in CFD; the driven cavity and the


ow over a 
at plate. In this section, the robustness of the alternating-plane smoothers combined with full

coarsening and plane smoothers combined with semi-coarsening will be investigated. The paper ends with

some conclusions in Section 5.

2. The Primitive Equations. The dimensionless steady-state incompressible Navier-Stokes equations

in the absence of body forces may be written as:

(u � r)u = �rp+
1

Re
�u;

r � u = 0;(2.1)

where u 2 <3 = (u; v; w) is the non dimensional velocity �eld and p is the dimensionless pressure. Re is the

Reynolds number de�ned as Re = U1�L
�

, where U1 is a characteristic velocity, L a characteristic length and

� the kinematic viscosity.

2.1. Discretization. In order to obtain the discrete expression of the non-linear system (2.1), the

solution domain is divided into a �nite set of control-volumes (CV). In the present work we will use an

orthogonally structured grid where each control volume will be an hexahedron, as in left-hand chart in �gure

2.1. The variables are stored in a staggered way, i.e. the velocities are evaluated in the faces of the CV and

the pressure �eld at the center of each CV. Staggered discretization has the bene�ts of stability properties

and leads to a natural discrete form of the continuity equation [7, 9].
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Fig. 2.1. Placement of the unknowns in the CV (left-hand chart). Control Volume where the u-momentum equation is

integrated (right-hand chart).

The procedure carried out to discretize the umomentum equation will now be described with some detail.
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In a staggered arrangement of unknowns each equation is integrated in its own CV. The u-momentum CV

is built surrounding the uijk variable, displaced from the CV of the continuity equation, as in right-hand

chart in �gure 2.1. In the following, we will refer to the dimensions of this CV 
 as �X;�Y;�Z. So we

can write the u-momentum equation for a generic node uijk in its integral form as :Z



uru dV = �

Z



rp dV +
1

Re

Z



�u dV:(2.2)

The convective term in the momentum equation using the Gauss theorem is rewritten as:Z



uru dV =

Z
@


u(u � n) dS =
X
k

Z
@
k

u(u � n) dS; k = e;w; s; n; t; b:(2.3)

The last integral in (2.3) is easily approximated applying the midpoint rule. Providing the value of the

function in the middle of the face results in the leading truncation term being O(h2). Thus, to preserve this

accuracy the interpolation of the 
uxes at the CV faces has to be at least of second-order. This is assured by

using a parabolic interpolation for the velocities and linear interpolation for the mass 
uxes. Moreover, for

non-uniform grids the 
uxes are not computed at the middle of the CV. So, assuming a stretched geometric

grid of the form hk+1 = �hk with � as the grid stretching factor, the integral approximation will have a

truncation error O((� � 1)h) +O(h2). Taking these considerations into account integral (2.3) is written as:X
k

Z
@
k

u(u � n) dS �
X
k

mkuk; k = e;w; s; n; t; b;(2.4)

where the mass 
uxes mk have been de�ned as
R
@
k

u � n dS and can be evaluated with the following

expressions:

me =
uijk + ui�1jk

2
�Y�Z; mw =

uijk + ui+1jk

2
�Y�Z;

ms =
vijk�xi + vi�1jk�xi+1

2
�Z; mn =

vij+1k�xi + vi�1j+1k�xi+1
2

�Z;

mb =
wijk�xi + wi�1jk�xi+1

2
�Y; mt =

wijk+1�xi + wi�1jk+1�xi+1
2

�Y;

with �xi+1 = xi+1jk � xijk and �xi = xijk � xi�1jk . The velocity at the CV face is interpolated by �tting

a parabola to the values of the velocity at three consecutive nodes: the two nodes located on either side

of the surface of interest, plus the adjacent node in the upstream direction. In this work we will use the

QUICK formulation of Hayase et al. [8], that can be seen as a defect-correction scheme based on the upwind

di�erence approximation :

ue =

(
uijk + S+e (u � n)e > 0;

ui+1jk + S�e (u � n)e < 0;
uw =

(
uijk + S+w (u � n)w > 0;

ui�1jk + S�w (u � n)w < 0;
un =

(
uijk + S+n (u � n)n > 0;

uij+1k + S�n (u � n)n < 0;

us =

(
uijk + S+s (u � n)s > 0;

uij�1k + S�s (u � n)s < 0;
ut =

(
uijk + S+t (u � n)t > 0;

uijk+1 + S�t (u � n)t < 0;
ub =

(
uijk + S+b (u � n)b > 0;

uijk�1 + S�b (u � n)b < 0;

The defect-correction source terms S+ and S� are calculated within the multigrid cycle using the current

approximation whenever a discrete evaluation of the residual is needed. So the algebraic coe�cients for the

convection terms can be written as:

Lc
e = min(0;me); Lc

w = min(0;mw); Lc
n = min(0;mn);

Lc
s = min(0;ms); Lc

t = min(0;mt); Lc
b = min(0;mb);

Lc
p = �(Lc

e + Lc
n + Lc

s + Lc
b + Lc

t + Lc
w):(2.5)
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The expression for Lc
p has been obtained using the continuity equation over the CV 
, which in its

discrete form is:

me +mw +mn +ms +mt +mb = 0:

Using the Gauss theorem in the di�usive part of the momentum equation (2.3) and the midpoint rule

to approximate the resulting surface integral we get:Z
@


ru � n dS �

��
@u

@x

�
e

�

�
@u

@x

�
w

�
�Sx +

��
@u

@y

�
n

�

�
@u

@y

�
s

�
�Sy +

��
@u

@z

�
t

�

�
@u

@z

�
b

�
�Sz :(2.6)

The derivatives in the above expression are evaluated with a central di�erence scheme :

Ld
e =

�Y�Z

Re(xi+1jk � xijk)
; Ld

w =
�Y�Z

Re(xijk � xi�1jk)
; Ld

n =
�X�Z

Re(yij+1k � yij�1k)
;

Ld
s =

�X�Z

Re(yij+2k � yijk)
; Ld

t =
�Y�X

Re(zijk+1 � zijk�1)
; Ld

b =
�Y�X

Re(zijk+2 � zijk)
;

Ld
p = �(Ld

e + Ld
n + Ld

s + Ld
b + Ld

t + Ld
w):(2.7)

Finally treating the pressure as a surface force the volume integral in (2.2) can be expressed as a

surface integral, as in (2.8). Again this is evaluated using the midpoint rule approximation, in this case no

interpolation is needed for the pressure due to the staggered arrangements of unknowns as can be seen in

right-hand chart in �gure 2.1.

�

Z
@


p i � n dS � (pw � pe) �Sx i = (1; 0; 0):(2.8)

Now, we can write the algebraic equation for a generic velocity node uijk as:

Lu
wui�1jk + Lu

nui+1jk + Lu
suij�1k + Lu

t uijk+1 + Lu
buijk�1 + Lu

puijk + Lp
ppijk + Lp

wpi�1jk = Fijk :(2.9)

The coe�cients multiplying the velocity u are obtained as the sum of the di�usive and convective part,i.e.

Lu
l = Lc

l + Ld
l with l = e; w; n; s; b; t and those multiplying the pressure are obtained directly from (2.8).

An Equivalent expression may be obtained for the v and w momentum equation and can be derived by

symmetry from the above equations.

The continuity equation can be easily approximated due to the fact that all velocities are known within

the surface of the volume.Z



r � u dV � (ue � uw)�Y�Z + (vn � vs)�X�Z + (wt � wb)�X�Y:(2.10)

The above expressions are valid for CV's inside the domain and must be modi�ed in order to satisfy the

boundary conditions. The discretization of the boundary conditions are performed by mirroring the cells

adjacent to the boundary. The new variables outside the solution domain are extrapolated invoking the

boundary condition at each boundary. With these modi�cations of the algebraic equations the system of

non-linear equations to be solved can be presented in a matrix form as:0
BBBB@

Lh
u 0 0 Lh

p

0 Lh
v 0 Lh

p

0 0 Lh
w Lh

p

Lh
m Lh

m Lh
m 0

1
CCCCA

0
BBBB@

u

v

w

p

1
CCCCA =

0
BBBB@

fu

fv

fw

fp

1
CCCCA ;(2.11)

where the source terms fu, fv, fw and fp in the right-hand side of the system (2.11) include the discretization

of the boundary conditions and the contribution of the QUICK scheme.

5



3. The Multigrid Method. A sequence of grids 
l(l = 1; :::;M) is used in the full multigrid (FMG)

scheme [1] where 
1 is the �nest target grid and the rest of the grids are obtained by applying cell-centered

coarsening. The computations are initiated in the coarsest grid, once the discrete system is solved the

solution is transferred to the next �ner level. The prolongated solution is then used as an initial guess for

the multigrid method in that level, this procedure is repeated until the �nest grid is reached. The goal of

this algorithm is to reduce the algebraic error to below the discretization error in just one FMG cycle.

Due to the non-linearity of the problem a Full Approximation Scheme (FAS) [1] is used to solve each level

in the FMG cycle. The following iterative algorithm represents a FAS V(
1,
2)-cycle to solve the nonlinear

system Lu = f on 
1 where 
1 and 
2 represent the number of pre-smoothing and post-smoothing iterations

respectively:

step 1 (Pre-smoothing ): Apply 
1 iterations of the smoothing method to L1u1 = f1

FOR l=1 TO L Restriction Part

step 2: Compute the residual rl�1 = f l�1 � Ll�1ul�1

step 3: Restriction of the residual rl = Rl
l�1r

l�1

step 4: Restriction of the solution ulold = I ll�1u
l�1

step 5: Compute the metrics of level l Ll(ulold)

step 6: Calculate the new right-hand side f l = rl + Llulold

step 7 (Pre-smoothing ): Apply 
1 iterations of the smoothing method to Llul = f l

FOR l=L-1 TO 1 Prolongation Part

step 8: Correction of the current approximation ul = ul + P l+1
l (ul+1 � ul+1old )

step 9: Compute the metrics of level l Ll(ul)

step 10 (Post-smoothing ): Apply 
2 iterations of the smoothing method to Llul = f l

In steps 5 and 9 the metrics of the system are computed over the current grid, which includes the

computation of the correction terms from the QUICK scheme and also the linearization of the system based

on the actual solution. Note that the metrics of the system are also updated within the smoothing process

in steps 7 and 10 as explained subsequently in Section 3.1. The operators Rl
l�1 and P l+1

l in steps 3 and 8

are used to transfer data (solution and residuals) between two di�erent grids; from the coarser level to the

current (prolongation) or from the �ner to the current level (restriction), respectively.

These transfer operators are dictated by the staggered arrangement of unknowns and the coarsening

procedure used. The prolongation and restriction operators are volume-weighted trilinear interpolation in

the case of standard coarsening. For the semi-coarsening approach the velocity component parallel to the

coarsened direction is restricted using injection, the other variables are restricted using volume-weighted

linear interpolation in lines parallel to the coarsened direction. The prolongation operator in this case is

volume-weighted linear interpolation. Note that for semi-coarsening the velocity component parallel to the

coarsened direction is treated in a vertex-centered way, while the rest of the variables are transferred as

cell-centered.

In the following experiments F-cycles will be used (see �gure 3.1) to solve each level of the FMG

algorithm. F-cycles have been reported to be more e�cient for rotating problems [15] at the expense of their

parallel properties [4]. The coarsest level is �xed as coarse as possible, and it will be solved with 5 iterations

6



of the smoothing process.
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Fig. 3.1. Scheme of an F-cycle F(
1,
2) where 
0 represents the number of iterations of the smoother performed to solve

the coarsest level

3.1. Smoothing Process. One of the most important parts of a multigrid algorithm is the smoothing

process. Several smoothers for the Navier-Stokes equations problem were studied in literature. These ap-

proaches fall into two categories: (1) coupled smoothing [22, 17, 21] (where the momentum and continuity

equation are satis�ed simultaneously), and (2) distributive smoothing [20, 3] (where the momentum equa-

tions are solved in a �rst step, and then the velocities and pressures are corrected in order to satisfy the

continuity equation). In situations where the coe�cients vary through the control volume (e.g. stretched

grids, strong recirculating 
ows,...) coupled smoothing has advantages over the distributive approach be-

cause the linearized momentum and continuity equations are solved simultaneously [22, 9]. However the

computational cost of the coupled method is much higher than that of the distributive. Note that a (small)

matrix has to be inverted in each CV. Moreover, every velocity component is updated essentially twice since

it updates all the variables involved in a CV simultaneously (see right-hand chart in �gure 2.1).

In particular, we have chosen a cell-implicit Symmetric Coupled Gauss Seidel (SCGS) method as the

base smoother because of its higher stability and rapid convergence. This smoother was introduced by Vanka

[22] and previously considered in other work [21]. Considering the CV ijk, the momentum equations for the

six cell faces together with the continuity equation for the control-volume can be expressed as:

X
jmj+jnj+jpj<1

Luw
i+m;j+n;k+pui+m;j+n;k+p + Luw

pi
pijk + Luw

pi�1
pi�1jk = fuijk ;

X
jmj+jnj+jpj<1

Lue
i+m;j+n;k+pui+m;j+n;k+p + Lue

pi
pi+1jk + Lue

pi�1
pijk = fui+1jk;

X
jmj+jnj+jpj<1

Lvs
i+m;j+n;k+pvi+m;j+n;k+p + Lvs

pj
pijk + Luv

pj�1
pij�1k = fvijk;

X
jmj+jnj+jpj<1

Lvn
i+m;j+n;k+pvi+m;j+n;k+p + Lvn

pj
pij+1k + Lvn

pj�1
pijk = fvij+1k ;

X
jmj+jnj+jpj<1

Lwb

i+m;j+n;k+pwi+m;j+n;k+p + Lwb
pk
pijk + Lwb

pk�1
pijk�1 = fwijk ;

X
jmj+jnj+jpj<1

Lwt

i+m;j+n;k+pwi+m;j+n;k+p + Lwt
pk
pijk+1 + Lwt

pk�1
pijk = fwijk+1;

(ui+1jk � uijk)�Y�Z + (vij+1k � vijk)�X�Z + (wijk+1 � wijk)�X�Y = fmijk :

(3.1)

This set of equations for the CV is linearized by computing the mass 
uxes, Lu;v;w, with the current

values of the velocity �eld. De�ning the residuals ru;v;w and the corrections �u = un+1�un, etc. the system
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(3.1) can be arranged in a block structure as follows:0
BBBBBBBBBBB@

Luw
ijk 0 0 0 0 0 Luw

pi

0 Lue
i+1jk 0 0 0 0 Lue

pi�1

0 0 Lvs
ijk 0 0 0 Lvs

pj

0 0 0 Lvn
ij+1k 0 0 Lvn

pj�1

0 0 0 0 Lwb
ijk 0 Lwb

pk

0 0 0 0 0 Lwt
ijk+1 Lwt

pk�1

��Y�Z �Y�Z ��X�Z �X�Z ��X�Y �X�Y 0

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

�uijk

�ui+1jk

�vijk

�vij+1k

�wijk

�wijk+1

�pijk

1
CCCCCCCCCCCA

=

0
BBBBBBBBBBB@

ruijk

rui+1jk

rvijk

rvij+1k

rwijk

rwijk+1

rmijk

1
CCCCCCCCCCCA
:

(3.2)

A more implicit version of the system (3.2) that includes o�-diagonal elements in the �rst six rows is

also possible, this is equivalent to considering implicitly in the equations (3.1) all the unknowns involved in

the control-volume. However the convergence factor is similar and the system is more expensive to solve

than the system of equations (3.2) [21]. The system (3.2) is easily solved by Gaussian elimination and then

the velocity components and the pressure of the CV are updated using under-relaxation:

un+1 = un + !u�u;

pn+1 = pn + !p�p:(3.3)

The under-relaxation technique has the e�ect of adding a pseudo-time dependent term in the equations.

In the following simulations the under-relaxation factor for the pressure, !p, has been �xed to 1.0, while the

under-relaxation factor for the velocities, !u, is strongly problem dependent and has to be set empirically.

The optimum value of !u is a function of the Reynolds number, the grid size and also depends on whether the

convection scheme is �rst (upwind) or second order (QUICK) accurate. This is a drawback of this smoother,

since a simulation has to be tuned in order to �nd out the best under-relaxation factor. As �gure 3.2 shows

the e�ciency of the method can be dramatically worsened with a bad choice of !u.
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Fig. 3.2. Number of �ne grid cycles required to converge a driven cavity simulation with Re=500 on a 16x16x16 uniform

grid as a function of the relaxation parameter !u.

3.2. Plane Implicit Smoothers. Implicit solvers have been widely considered in previous work as a

cure to eliminating all the high-frequency errors in the presence of strong anisotropies. Taking advantage of

the relatively small 1-D problem size, these implicit line smoothers are based on an exact solver. However

the 3-D counterpart does not present this possibility, since the 2-D problem size is no longer small enough

to consider using an exact solver. Furthermore a direct exact solver for the planes is not needed, as has
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been shown in [10] for the 3-D Poisson equation and in [17] for the incompressible Navier-Stokes equations.

This consideration drastically reduces the computational cost of the overall algorithm compared to that of

an \exact" plane solver. However this inexact solution of the planes does not decrease the convergence of

the multigrid algorithm [17, 10], i.e. solving the plane beyond a precision threshold does not improve the

convergence rate. Note that the plane implicit smoother has to damp high oscillating error components in

the plane rather than solving a 2-D problem exactly.

In the present work, the planes will be approximately solved with a 2-D multigrid algorithm consisting

of one FAS F(1,1) cycle. The same kind of anisotropies found in the 3-D problem may appear in the 2-D

system. Thus a robust multigrid algorithm is, again, completely necessary. For the 2-D system the same

robust algorithms will be considered, i.e. an alternating-line smoother combined with full coarsening and a

line-implicit smoother combined with semi-coarsening. One 1-D FAS F(1,1) cycle will be applied to solve

the lines, the smoother in this case being SCGS as described in the previous section.

The coupled philosophy of the SCGS will be applied in the line and plane solvers. The plane smoother

relaxes simultaneously the momentum and continuity equations of the cells included in the plane, and hence

all velocity components and pressures contained within the plane will be updated at the same time. Let us

consider for example an xy plane, de�ning the vector Xk that accommodates the variables for a whole plane

of cells:

XT
k = (u;v;w;w+;p);u = uijk ;v = vijk ;w = wijk ;w

+ = wijk+1 ;p = pijk; 8i; j 2 [0; n] k = const:

The equation system for the plane in terms of residuals and corrections is:

Lk �Xk = Rk;(3.4)

where Rk = fk � LkXk is the residual of the kth plane and �Xk = Xn+1
k � Xn

k is the increment of the

solution. The system of equations (3.4) is built into the smoothing process as follows. When solving the kth

plane, the metrics in that plane are linearized using the current solution. Also the second-order correction for

the convective term is recomputed. With these new metrics the residual Rk for the kth plane is calculated.

De�ning a speci�c ordering of the planes, many types of plane smoothers can be easily constructed. It

is important to note that with the second order operator, the right-hand side of the system (3.4) depends

on the values of the plane k, k � 1 and/or k � 2 depending on the direction of the velocity. Thus a parallel

implementation can not be constructed based on a regular zebra ordering (left-hand chart in �gure 3.3). In

order to avoid these dependencies a tri-plane smoother could be applied [15] (right-hand chart in �gure 3.3)

Grid stretching is commonly used in grid generation to pack points into regions with large solution

gradients while avoiding an excess of points in more benign regions (for example in the simulation of viscous


ows at high Reynolds number to resolve boundary layers). The convergence of multigrid based on point

smoothing and full coarsening deteriorates dramatically when highly stretched grids are used. In some

situations, when the direction of the anisotropies is known beforehand, the multigrid convergence can be

improved using an implicit smoother in the direction normal to the stretching. However, if the stretched

grid generates aspect ratios whose relative magnitudes vary for di�erent parts of the computational domain

the multigrid techniques based on plane-wise smoothers combined with full coarsening fail to smooth error

components. Other remedies should be used to achieve a robust solver, the two most common alternatives

being:

� Robust multigrid smoothing process with standard coarsening. If the coarser grids are built by dou-

bling the mesh size in all coordinates direction, sweeps of the planes in the three directions are

9



First Sweep

Second Sweep

First Sweep

Second Sweep
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No dependencies

Dependencies

Fig. 3.3. Standard zebra ordering of planes (left-hand chart). Planes relaxed concurrently in a tri-plane smoother (Right-

hand chart).

needed to achieve robustness ((y,z)-plane smoothing sweep! (x,z)-plane smoothing sweep! (x,y)-

plane smoothing sweep). From here on, this approach will be referred as alternating-plane smoothers

(APS). Several versions of this method can be developed depending on the sweep ordering: sym-

metric alternating-plane smoother (S-APS), lexicographic alternating-plane smoother (L-APS) and

tri-plane alternating-plane smoother (Tri-APS).

� Plane implicit smoothers combined with semi-coarsening. Instead of using standard coarsening the

coarse levels can be built by only coarsening along one direction. In order to achieve robustness a

plane implicit solver perpendicular to the coarsened direction is needed. Based on the coarsened di-

rection, we will refer to these approaches as X, Y or Z semi-coarsening (XSC, YSC, ZSC). Depending

on the order in which the planes are swept we can construct the following methods: symmetric Z

semi-coarsening (S-ZSC), lexicographic Z semi-coarsening(L-ZSC) and tri-plane Z semi-coarsening

(Tri-ZSC).

4. Numerical Experiments. Two di�erent 
ows have been chosen to test the robustness of the

multigrid algorithms described previously: the driven cavity and the 
ow over a 
at plate. These two cases

have been widely studied and used as benchmarking problems for CFD codes. Although the 
ow structure

are relatively simple, they exhibit some basic problems that prevent optimal multigrid e�ciencies from being

achieved [2], namely strong recirculating 
ows and boundary layers.

Let R be the L2-norm of the average residual of the system of equations (2.11) de�ned as:

R =

sP
((Ru

ijk)
2 + (Rv

ijk)
2 + (Rw

ijk)
2 + (Rc

ijk)
2)

4 �Nx �Ny �Nz

;(4.1)

where Ru, Rv , Rw, Rc are the residuals of the u, v, w momentum equations and continuity equation

respectively. The convergence criterion is based on R. When the �ne grid average residual decreases to

below 10�4 the calculations are terminated. This value is small enough to assure that the algebraic error

is below to the discretization error. Let R0 and Rn denote respectively the residual norms (as de�ned in

4.1) before the iterative process and after the convergence criterion is satis�ed. So the average convergence

factor is de�ned by:

�% = (
Rn

R0

)
1

n :(4.2)

4.1. Flow in a Driven Cavity. The numerical solution, which has been widely used for testing

numerical schemes, is that of a 
ow con�ned in a rectangular domain with the upper wall moving at a
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constant speed. The 
ow structure for low to moderate Reynolds numbers consists of a 3-D primary vortex

and two 3-D secondary vortexes at the bottom. The problem currently considered consists of a cube of

dimension L with the top wall moving at a velocity u. The Reynolds number of the 
ow based in these

quantities is Re = uL
�
. The boundary conditions are of Dirichlet type for the velocities on the six faces of

the computational domain, and no boundary conditions were necessary for the pressure.

Fig. 4.1. Grid used for the driven-cavity problem 32x32x32 (left-hand chart), and structure of the 3D primary vortex for

Re=103 (right-hand chart).

Simulations have been performed over three di�erent grids, each one uniform and stretched : 16x16x16,

32x32x32 and 64x64x64. The stretched grids were of the form hk+1 = �hk, the stretching factor being �

equal to 1.1 in all cases (see �gure 4.1 left-hand chart). The driven cavity problem is a rotating 
ow for which

standard multigrid schemes might have di�culties to converge. These di�culties were not experienced in

this work since a moderate Reynolds number was considered. However, the simulations result in a complex

re-circulating 
ow consisting of 3-D vortex structures as can be seen in �gure 4.1. The 
ow �eld is in good

qualitative agreement with previous 
ow calculations [23]. The pro�les at the center line of the cavity with

Re=103 on a 32x32x32 stretched grid can be seen in �gure 4.2.
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Fig. 4.2. The u velocity component pro�le at the center line of the cavity with Re=103 for �rst-order and second-order

accurate solutions over a 32x32x32 streched grid.

As mentioned in section 3.1 the convergence factor varies with the choice of the under-relaxation factor

for the velocity �eld. In table 4.1 the under-relaxation factors used in each simulation, as a function of the

Reynolds number and grid size, are shown for the di�erent multigrid cycle under study: symmetric SCGS,

11



tri-plane and symmetric APS, and tri-plane and symmetric ZSC.

Table 4.1

Under-relaxation factors for the driven-cavity simulation as a function of the grid size, Reynolds number and multigrid

cycle.

Grid

Reynolds Number 16x16x16 32x32x32 64x64x64

SCGS APS ZSC SCGS APS ZSC SCGS APS ZSC

102 0.6 0.6 0.5 0.5 0.6 0.6 0.5 0.6 0.5

103 0.4 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3

Figure 4.3 shows the L2-norm of the residual versus F(1,1)-cycles with a symmetric SCGS smoother for

several uniform grids and Reynolds numbers. The behavior of this smoother is quite good for low Reynolds

numbers (left-hand graph in �gure 4.3 for Reynolds number 102), the residual norm is reduced by between

four and �ve orders of magnitude in the �rst �ve cycles. However its e�ciency decreases as the problem

becomes more convective. The residual norm can not be reduced by four orders of magnitude in ten cycles

(right-hand graph in �gure 4.3 for Reynolds number 103). Furthermore, convergence could not be attained

over stretched grids with a cell-wise smoother like symmetric SCGS.
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Fig. 4.3. L2-norm of the residual versus F(1,1)-cycles with symmetric SCGS smoother for several uniform grids and

Reynolds numbers for the driven-cavity simulation.

Figure 4.4 shows the L2-norm of the residual versus F(1,1)-cycles with an alternating-plane smoother

combined with full coarsening (APS) for several grids and Reynolds numbers. The symmetric APS approach

(top graphs in �gure 4.4) converges the residual to below 10�4 in �ve cycles for both Reynolds numbers

(102 and 103). However, the tri-plane APS approach (bottom graphs in �gure 4.4) need eight cycles to

reduce the residual norm to below 10�4 for Reynolds number 103. It is interesting to note that the cost

per multigrid cycle with the symmetric ordering is about twice as large as that with the tri-plane ordering.

However convergence factor per work unit is better with the symmetric ordering of planes for low Reynolds

numbers and it is similar for both smoothers for Re = 103.

One of the drawbacks of the APS approach is its di�cult implementation in a parallel setting [13]. This

problem can be easily overcome using a plane smoother combined with semi-coarsening to ensure robustness.

The block implicit smoother used to converge the driven cavity simulation needs to be applied along the

sub-characteristics of the discrete operator for convection dominated problems in order to obtain the higher

e�ciency. For example, it was observed that the xz-plane sweeps seriously harm the smoothing, and so the
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Fig. 4.4. L2-norm of the residual versus F(1,1)-cycles with an alternating-plane smoother combined with full coarsening

(APS) for several grids and Reynolds numbers with a symmetric order of planes (top graphs) and a tri-plane ordering (low

graphs) for the driven cavity simulation.

Y semi-coarsening approach exhibits a poor behavior.

Figure 4.5 shows the L2-norm of the residual versus F(1,1)-cycles with an xy-plane implicit smoother

combined with Z semi-coarsening (ZSC) for several grids and Reynolds numbers. Although not shown, the

behavior exhibited by the XSC approach is similar to the one presented in the set of �gures 4.5 for ZSC. The

symmetric ZSC approach (top graphs in �gure 4.5) converges the residuals to below 10�4 in �ve cycles for

both Reynolds numbers (102 and 103). However, the tri-plane ZSC approach (bottom-charts in �gure 4.5)

is not able to reduce the residual norm below 10�4 in ten cycles for Reynolds number 103. As one might

expect, the time per cycle is twice as fast for the tri-plane ordering, although the convergence factor per

work unit is better with the symmetric ordering for all the cases.

Table 4.2 shows the average convergence factors obtained in the simulation of the driven cavity problem

for several uniform and stretched grids, Reynolds numbers and F(1,1) cycles. The convergence factor has been

proved to be independent of the grid size and stretching for the two robust approaches investigated, however

the convergence is not Reynolds number independent for the driven cavity simulation. The algorithms

exhibit the same behavior for low Reynolds numbers as when solving the Poisson equation, i.e. the residual

reduction per cycle is similar in both situations [10]. The convergence factor improves on stretched grids (as

in the fully elliptic case [10]), and as shown in table 4.2, it also improves for �ner grids. The convergence

factor for the APS approach is lower than for the SC approach and its cost per cycle is twice as low because

the F-cycle spends a lot of time on coarser levels. However its di�cult and low-e�ciency parallelization and

its di�culty to converge for Reynolds numbers higher than 103 might make the semi-coarsening approach

more attractive.
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Fig. 4.5. L2-norm of the average residual versus F(1,1)-cycles with an xy-plane implicit smoother combined with z semi-

coarsening (ZSC) for several grids and Reynolds numbers with a symmetric order of planes (top graphs) and a tri-plane

ordering (low graphs) for the driven cavity simulation.

Table 4.2

Average convergence factors obtained in the simulation of the driven cavity problem for several uniform (U) and stretched

(S) grids, Reynolds numbers and di�erent F(1,1) cycles.

Grid

32x32x32 64x64x64

S-APS S-ZSC Tri-APS Tri-ZSC S-APS S-ZSC Tri-APS Tri-ZSC

Re = 102 U 1.6 10�3 0.07 0.14 0.24 3 10�3 0.04 0.17 0.21

Re = 102 S 1.4 10�3 0.04 0.08 0.23 7 10�3 0.04 0.07 0.20

Re = 103 U 0.17 0.21 0.25 0.5 0.10 0.18 0.34 0.5

Re = 103 S 0.15 0.21 0.3 0.46 0.10 0.15 0.34 0.46

4.2. 3D Flat Plate Boundary Layer. We consider an square plate placed in the middle of the

solution domain. In the west face (x = 0) we de�ne the in
ow boundary with no angle of attack, and so

the east face will hold the out
ow condition. On the plate a no-slip boundary condition is imposed, and

symmetric condition is imposed elsewhere on the domain boundary. As the velocity gradient normal to the

wall is very high only in the boundary layer, the thin-layer approximation which only retains those terms

can be adopted. However in the following simulations the original form (2.1) of the Navier-Stokes equations

is solved.

In order to capture the viscous e�ects, the grid is highly stretched near the plate (see left-hand chart

in �gure 4.6). Moreover, the grid is re�ned near the plate edges to reduce the large discretization errors
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in those zones as advocated by Thomas et al. [20]. To ensure that a su�cient number of grid points will

lie inside the boundary-layer, the mesh space for a uniform mesh would impose too high a demand on the

computation. For example, approximating the boundary-layer thickness with � � 1p
Re

for Re = 104 we have

� � 0:01 which implies at least 102 grid points in a uniform grid which cannot be considered due to memory

limitations in a 3-D simulation. Thus for this model problem, no regular grids will be considered. The grids

are stretched in the z-direction using a geometric factor hk = �hk�1 with � = 1:3 for the 24x24x32 grid and

� = 1:1 for the 48x48x64 grid.

Fig. 4.6. 48x48x32 grid used for the 
at-plate simulation (left-hand chart). Pressure contour lines and boundary layer

for Re = 104 (right-hand chart).

The solution is veri�ed by comparing the u-velocity in the middle of the plate with the Blasius analytical

solution for a 2-D plate (�gure 4.7). The little discrepancy near the layer edge is due to the highly stretched

grid used in this simulation. The second-order accuracy has been veri�ed using the solution in the three

�nest grids.
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Fig. 4.7. Simulation comparison with Blasius theory at the middle of the plate with Re = 104.

The multigrid cycle employed to solve each level of the FMG is a F(2,1) cycle. The under-relaxation

factors used in the simulations are shown in table 4.3. Depending on the problem, some plane sweep

directions may deteriorate the smoothing. The best smoothing rate was achieved with a combination of xy-

plane relaxation and z semi-coarsening (ZSC). We do not include results of the alternating-plane approach

or other semi-coarsening directions because of their poor behavior.
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Table 4.3

Under-relaxation factors for the 
at-plate simulation as a function of the grid size, Reynolds number and multigrid cycle.

Grid

Reynolds Number 24x24x32 48x48x64

L-ZSC Tri-ZSC L-ZSC Tri-ZSC

102 0.8 0.8 0.8 0.8

104 0.6 0.4 0.6 0.4

Figure 4.8 shows the L2-norm of the residual versus F(2,1)-cycles with lexicographic and tri-plane xy-

plane implicit smoothers combined with Z semi-coarsening (ZSC) for several grids and Reynolds numbers.

The residual norm is reduced by nearly �ve orders of magnitude in the �rst �ve cycles in all cases (note

that the reduction is of four orders of magnitude in the �rst two cycles for the 48x48x64 grid). In fact, the

full multigrid algorithm converges the solution to below the truncation error with one F(2,1) cycle per level.

The asymptotic convergence rate is equal to 0.19 which is close to that obtained for the Poisson equation

with the semi-coarsened approach [13].
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Fig. 4.8. L2-norm of the residual versus F(2,1)-cycles with lexicographic (top graphs) and tri-plane (bottom graphs)

xy-plane implicit smoothers combined with z semi-coarsening (ZSC) for several grids and Reynolds numbers.

Table 4.4 shows the average convergence factors obtained in the simulation of the 
at plate problem

for di�erent F(2,1) cycles and several stretched grids and Reynolds numbers. Although not included in this

report, experiments with Reynolds numbers up to 106 were performed. Convergence rates, independent of

the Reynolds number, the grid size and the stretching factor, were achieved for the resolution of the boundary

layer over a 
at plate. Since the 
ow is aligned with the grid, the results obtained with the lexicographic
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and tri-plane smoothers are very similar. Furthermore the time per multigrid cycle is very similar for both

smoothers (similar convergence per work unit). The parallel possibilities of tri-plane ordering make this

approach more attractive. Results obtained for �rst-order accuracy (without QUICK correction) are even

better. The residual norm is reduced by nearly �ve orders of magnitude in the �rst three cycles and the

asymptotic convergence rate is equal to 0.1.

Table 4.4

Average convergence factors obtained in the simulation of the 
at plate problem for several stretched grids, Reynolds

numbers and F(2,1) cycles.

Reynolds Number Grid

24x24x32 48x48x64

Tri-ZSC L-ZSC Tri-ZSC L-ZSC

Re = 102 0.07 0.04 0.09 0.02

Re = 104 0.13 0.09 0.08 0.03

5. Conclusions and Future Work. The robustness of two popular FAS multigrid algorithms (alternating-

plane smoothers combined with full coarsening and plane smoothers combined with semi-coarsening) has

been investigated through the solution of the incompressible 3-D Navier-Stokes equations. Convergence re-

sults have been obtained for two common benchmarks in CFD; the driven cavity and the 
ow over a 
at

plate. Robustness has been de�ned as the ability of the multigrid method to solve the model problem with

a convergence rate per work unit independent of grid size, stretching factor and Reynolds number (textbook

multigrid convergence).

The convergence factor has been shown to be independent of the grid size and stretching for the two

robust approaches investigated in the driven cavity simulation. What is more, the convergence rate improves

on stretched grids and for �ner grids. The convergence is not Reynolds number independent and in fact

the alternating-plane approach fails to converge for Reynolds numbers higher than 103. However, for lower

Reynolds numbers, its convergence and operation count per cycle is better than that exhibited by the

semi-coarsening approach. The di�cult parallel implementation of the alternating-plane smoother and its

di�culties in converging for high Reynolds numbers might make the semi-coarsening approach with tri-plane

smooth ordering more attractive.

The combination of xy-plane smoothing and Z semi-coarsening has been found to be the best choice for

the 
at plate simulation. Its convergence rate is independent of grid size, stretching and Reynolds number,

and the tri-plane variant exhibits similar properties to the lexicographic ordering and allows the parallel

implementation of the algorithm. The alternating-plane approach fails to converge in this case.

The semi-coarsening approach has been parallelized with the standard OpenMP directives for share-

memory parallel computing to exploit the parallelism in the smoother. Preliminary results show an e�ciency

of about 0.7 for 32 processors on a SGI Origin 2000 for a 48x48x64 grid. The next step will be to do a parallel

implementation based on MPI to guarantee its portability to distributed-memory systems and improve its

e�ciency. We intend to continue the work on robust smoothers for Navier-Stokes. In particular, we will

study the robustness of distributive smoothers for the driven cavity and the 
at plate simulations on highly

stretched grids.
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