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CLOSED-LOOP SEPARATION CONTROL USING OSCILLATORY FLOW EXCITATION

BRIAN G. ALLAN �, JER-NAN JUANG†, DAVID L. RANEY ‡, AVI SEIFERT§, LATUNIA G. PACK¶, AND DONALD E. BROWNk

Abstract. Design and implementation of a digital feedback controller for a flow control experiment was performed.

The experiment was conducted in a cryogenic pressurized wind tunnel on a generic separated configuration at a chord

Reynolds number of 16 million and a Mach number of 0:25. The model simulates the upper surface of a 20% thick

airfoil at zero angle-of-attack. A moderate favorable pressure gradient, up to 55% of the chord, is followed by a

severe adverse pressure gradient which is relaxed towards the trailing edge. The turbulent separation bubble, behind

the adverse pressure gradient, is then reduced by introducing oscillatory flow excitation just upstream of the point of

flow separation. The degree of reduction in the separation region can be controlled by the amplitude of the oscillatory

excitation. A feedback controller was designed to track a given trajectory for the desired degree of flow reattachment

and to improve the transient behavior of the flow system. Closed-loop experiments demonstrated that the feedback

controller was able to track step input commands and improve the transient behavior of the open-loop response.

Key words. active flow control, experimental, fluid mechanics, separation control, feedback, closed-loop
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1. Introduction. Experiments conducted by Seifert et al. [6, 7, 8] have shown that the introduction of oscillatory

flow excitation into a separated flow region can fully reattach the flow or reduce the degree of flow separation. These

experiments were performed on various airfoils at low and high Reynolds numbers. They demonstrated that the lift can

be significantly enhanced when introducing periodic excitation upstream of the separated flow region. This enhance-

ment is achieved by exciting the flow at frequencies that generate 2�4 spanwise coherent vortices over the length of

the separated region. This periodic excitation increases the momentum transfer across the shear-layer, enhancing its

resistance to flow separation due to curvature and adverse pressure gradients. The experiments conducted by Seifert

and Pack [8, 9] also demonstrate that there is a range in which the response of the flow is proportional and even linear

to the magnitude of the periodic excitation. These flow experiments have been conducted in an open-loop, or man in

the loop, fashion. The goal of the present research is to add feedback control to the experimental setup used by Seifert

and Pack [8]. This controller will then vary the magnitude of the oscillatory excitation in order to achieve a desired

degree of flow attachment characterized by a surface pressure gradient.

2. Experimental Setup. The experiment was conducted in the 0.3-meter Transonic Cryogenic Wind Tunnel at

NASA Langley Research Center. This tunnel is a fan driven, closed loop system, with a 0:33m by 0:33m test cross

section and uses gaseous nitrogen (GN2) as the test medium. The tunnel operates at stagnation pressures ranging from

1:2bar up to 6bar and total temperatures from 78K up to 327K [4, 5]. A fully automatic control system maintains
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FIG. 2.1.Hump configuration.

the test conditions, providing a high level of repeatability.

2.1. Hump Model. The test model simulates the upper surface of a 20% thick airfoil that is a variation on the

Glauert Glas II airfoil [8]. The model contour generates a mild favorable pressure gradient untilx=c= 0:55. This is

followed by a severe adverse pressure gradient that is relaxed towards the trailing edge as shown in Fig. 2.1. Without

control, the flow separates at the slope discontinuity,x=c� 0:66. Two alternative blowing slot locations are available:

x=c= 0:59 and 0:64 (both shown on Fig. 2.1). The position of the upstream slot was selected so it would be upstream of

the expected position of a shock wave. All of the experiments conducted in this investigation used the downstream slot

atx=c= 0:64. The slots were about 0:25% chord wide (0:50mm�20%), and allowed an almost tangential downstream

introduction of momentum (the slots are inclined at 30o to the surface because of manufacturing considerations, see

Fig. 2.1).

2.2. Oscillatory Blowing Valve. A rotating, siren type, valve was used to generate pressure oscillations inside the

model cavity. The oscillatory blowing valve was capable of generating frequencies up to 800Hz, and for safety reasons

was rated to 300psi. GN2 was supplied to the valve by converting a portion of the liquid nitrogen (LN2) available for

operating the tunnel using an ambient temperature vaporizer. The use of ambient temperatureGN2 simplified the valve

design. A pressure regulator was used to control theGN2 entering the valve and the variable speed drive of the valve

motor was used to control the frequency of the pressure oscillations. The oscillatory blowing valve was attached to

the right tunnel plenum door at the center of rotation of the turntable (Fig. 2.2). The outlet of the oscillatory blowing

valve was connected to the backside of the model cavity. The 76:2mm inner diameter pipe, exiting the oscillatory

blowing valve, was converted to a rectangular cross section and then split into five square diverging ducts that fit into

the 330mmby 25:4mmentrance to the model cavity. Seven suction ports were positioned between and around the five

square ducts at the exit of the manifold. These ports were connected to the left side tunnel boundary-layer removal

system. The digital valves of the left side boundary-layer removal system were used to control the steady flow rate out

of the manifold shown in Fig 2.2. This flow is driven by the tunnel static pressure which is higher than the ambient

pressure. Any relevant combination of steady and oscillatory excitation could be generated with this type of control.

Steady suction or steady blowing could be applied in a similar manner by holding the oscillatory blowing valve in the

fully open position and varying the inlet or the exhaust mass flow rates.
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FIG. 2.2.Experimental setup.

2.3. Instrumentation. The model surface pressures were measured at 60 locations by the facility data acquisition

system. Normal force, moment, and form-drag were calculated from these measurements. Turbine flow meters on the

inlet of the oscillatory blowing valve and on the exhaust side of the model cavity (through the manifold) were used to

measure the flow volume entering and exiting the model cavity. The volume flow rate measurements were combined

with temperature and pressure measurements to determine the mass flux entering and exiting the model cavity (see Fig.

2.2). The steady mass flux in or out of the slot could be determined by subtracting the two mass fluxes. A dynamic

pressure transducer, flush-mounted in the model cavity, was used to measure the pressure fluctuations produced by

the oscillatory blowing valve. A Thermocouple was installed inside the cavity to allow (using also the tunnel static

pressure) calculation of theGN2 density in the cavity. The normalized cavity pressure fluctuation,ρ0=ρ∞, were shown

to be directly related to the excitation unsteady momentum,<cµ>, that is the leading control authority of the periodic

excitation when using optimal frequencies [9].

2.4. Closed-Loop System.The block diagram in Fig. 2.3 represents the setup of the experimental closed-loop

system in the laboratory. This diagram shows the interconnection between the PC, actuator, and sensors. The amplitude

of the control jet can be modulated using the PC which sends an IEEE pressure command,Pi , to the mensor unit.

The mensor unit then outputs a pressure equal toPi , to the dome pressure regulator, which supplies theGN2 to the

oscillatory blowing valve. Figure 2.3 shows how the digital exhaust valve is controlled by the PC which sends a second

IEEE command, ˙mec, to the digital exhaust valve. This IEEE command is received by a unit which will open and close

a desired combination of solenoid valves equalizing the mass flow rate entering and exiting the cavity of the model.

The pressure gradient,dCP=dx, was measured using a differential pressure transducer. This sensor measured the

pressure difference between stations,x=c= 0:952 and 0:489. This pressure gradient is used to characterize the degree

of flow reattachment on the hump model and will be referred to as the pressure recovery parameter. The output voltage

from the transducers are sent to a low pass filter, amplified, and then sampled by the DSP board on the PC. The signal

from the dynamic pressure sensor, inside the cavity of the hump model, is passed through a RMS to DC converter

and then amplified before being sampled by the DSP board. The DSP board samples these two signals at a rate of

100Hz. This data can either be uploaded as raw sampled data to the PC or averaged over a desired length of time and

then uploaded to the PC. In the closed-loop experiments conducted here, the sampled data was averaged over a 0:5s
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FIG. 2.3.Block diagram of experimental system.

interval and then uploaded at every second from the DSP board to the PC.

3. System Model. A linear system model was developed for the feedback control design process. The actual

system has some nonlinear effects which are neglected in the linear system model but will be incorporated in a non-

linear model. The nonlinear model will be used to evaluate the feedback controller developed from the linear system

model.

3.1. Continuous System Model.The dynamics of the flow system were modeled by lumping the system com-

ponents into two separate systems as shown in Fig. 3.1. The first system models the dynamic response from the IEEE

command,Pi�Ps, to the RMS pressure fluctuations in the cavity,p0=ρ∞. This system will represent the dynamics

of the actuator system. The second system represents the dynamic response of the flow system and models the re-

sponse of the pressure recovery parameter,dCP=dx, to the cavity RMS pressure fluctuations,p0=ρ∞. Both systems are

modeled using a simple second-order damped system. The second-order model was chosen since the dynamics of the

experimental system are unknown and the dynamics of most mechanical systems can be approximated by this type

of general model. If the second-order model is determined to be insufficient a model of increased complexity can be

used.

The dynamics of the actuator system are modeled by the simple second-order system

d2

dt2

�
p0(t)
ρ∞

�
=�2ζ1ωn1

d
dt

�
p0(t)
ρ∞

�
�ω2

n1

�
p0(t)
ρ∞

�
+ω2

n1 [m1(Pi �Ps)�b1](3.1)

whereζ1 is the damping ratio andωn1 the natural undamped frequency. The constantsm1 and b1 are the slope

and intercept of the linear fit to the steady-state data ofp0=ρ∞ as a function ofPi�Ps. The steady-state relation

(p0=ρ∞)ss= f ([Pi�Ps]ss), is then approximated by the linear fit�
p0

ρ∞

�
ss
= m1(Pi�Ps)ss+b1(3.2)

where(p0=ρ∞)ssand(Pi�Ps)ss are the steady-state values of(p0=ρ∞) and(Pi�Ps) respectively. Similarly, the dynamic

response of the pressure recovery parameter,dCP=dx, to the cavity pressure fluctuations,p0(t)=ρ∞, is modeled by the

second-order system

d2

dt2

�
dCP(t)

dx

�
=�2ζ2ωn2

d
dt

�
dCP(t)

dx

�
�ω2

n2

�
dCP(t)

dx

�
+ω2

n2

�
m2

p0(t)
ρ∞

�b2

�
(3.3)
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The constantsm2 andb2 are the slope and intercept of the linear fit to the steady-state data fordCP=dx as a function

of p0=ρ∞. The steady-state function(CP)ss= g([p0=ρ∞]ss) is then approximated by the linear fit

(dCP=dx)ss= m2(p
0=ρ∞)ss+b2(3.4)

Next, define the state vectorx = [x1;x2;x3;x4]
T = [p0=ρ∞; d=dt(p0=ρ∞); dCP=dx; d=dt(dCP=dx)]T . Using this state

vector, Eq. 3.1 and Eq. 3.3 can be expressed as

d
dt

2
66664

x1

x2

x3

x4

3
77775=

2
66664

0 1 0 0

�ω2
n1 �2ζ1ωn1 0 0

0 0 0 1

0 0 �ω2
n2 �2ζ2ωn2

3
77775

2
66664

x1

x2

x3

x4

3
77775+

2
66664

0 0

ω2
n1m1 0

0 0

0 ω2
n2m2

3
77775
"

Pi�Ps

p0=ρ∞

#
+

2
66664

0

�ω2
n1b1

0

�ω2
n2b2

3
77775(3.5)

Substitutingp0=ρ∞ = x1 for the input term results in

ẋ =

2
66664

0 1 0 0

�ω2
n1 �2ζ1ωn1 0 0

0 0 0 1

ω2
n2m2 0 �ω2

n2 �2ζ2ωn2

3
77775

| {z }
A

x+

2
66664

0

ω2
n1m1

0

0

3
77775

| {z }
B

(Pi�Ps)+

2
66664

0

�ω2
n1b1

0

�ω2
n2b2

3
77775

| {z }
f

(3.6)

Definingu= Pi�Ps, the equation above can be expressed in the matrix form

ẋ = Ax+Bu+ f(3.7)

where the vectorf is a drift (or bias) term. The output vectory = [y1;y2]
T is defined as

y =

"
p0=ρ∞

dCp=dx

#
=

"
1 0 0 0

0 0 1 0

#
x =Cx(3.8)

The drift termf can be removed by considering the steady-state solution to Eq. 3.7

0= Axss+Buss+ f(3.9)

whereuss andxss are the steady-state input and state vectors respectively. A new state variablex̂ is now defined as

x̂ = x�xss(3.10)

Substituting this relation into Eq. 3.7 and using Eq. 3.9 results in

˙̂x = Ax̂+Bv(3.11)
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wherev= u�uss. Using the definition of̂x, the output equation fory becomes

y = Cx̂+Cxss

= ŷ+Cxss
(3.12)

whereŷ =Cx̂. The new system without the drift term can be summarized as

˙̂x = Ax̂+Bv

ŷ =Cx̂
(3.13)

where

x = x̂+xss

y = ŷ+Cxss

u= v+uss

(3.14)

The system in Eq. 3.13 is expressed as the simplified block,P, shown in Fig. 3.2 whereP has one inputv and two

outputs ˆy1 andŷ2. This linear system without the drift term can now be used in the feedback control design.

3.2. Discrete System Model.Sampling of the analog voltages from the pressure transducers was done digitally,

making our control system discrete. In order to account for the discrete sampling in our controller, a discrete control

design was performed. To design our controller in the discrete domain, the continuous system given in Eq. 3.13 was

converted to a discrete system using a zero-order hold.

x̂d(k+1) = Adx̂d(k)+Bdvd(k)

ŷd(k) =Cdx̂d(k)
(3.15)

The discrete state variable is defined as,x̂d(k) = x̂(kT), whereT is the sampling period. Using a zero-order hold on

the input, the matricesAd andBd are given by

Ad = eAT

Bd = (Ad� I)A�1B
(3.16)

whereCd =C andA is assumed invertible [3].

The parameters for theA andB matrices were determined using steady-state and dynamic open-loop experimental

data. The experimental data used to determine the steady-state parameters are shown in Figs. 3.3 and 3.4. Figure 3.3

shows the experimental data for the steady-state relationship between the IEEE commandPi, minus the static wind

tunnel pressurePs, to the cavity pressure fluctuationsp0 divided by the free stream densityρ∞. This figure shows that

the linear fit represents the experimental data reasonably well, forPi�Ps above 5. BelowPi�Ps= 5, the cavity pressure

fluctuations do not respond to the lowPi input. Notice that some of the experimental data points do not fall on the

linear fit. This will result in steady-state errors in our linear model near these points. Fig. 3.4 shows the experimental

data for the steady-state relation between the cavity pressure fluctuations and the pressure recovery parameter,dCP=dx.
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TABLE 3.1

Dynamic parameters for system model.

m1 55.77

b1 -288.2

ωn1 0.5000

η1 0.3400

m2 4:956�10�4

b2 1:781

ωn2 80.00

η2 1.000

This figure shows a change in the gain for values ofp0=ρ∞ < 400. The linear fit is made to the data abovep0=ρ∞ = 400

as the controller will typically be operating at cavity pressures fluctuations in this range. The steady-state gains for the

linear system are given by the parametersm1, b1, m2, andb2 shown in Table 3.1.

Figure 3.5 shows the hump model pressure distribution with and without control. The baseline pressure distribu-

tion, given by thePi �Ps = 0 line, shows a large separation bubble downstream of the slot. For the baseline pressure

distribution, the pressure recovery parameter,dCP=dx, is equal to 0:77. Applying periodic excitation (Pi �Ps > 0)

decreases the size of the separation bubble, as shown by the pressure distribution in Fig. 3.5. ThePi �Ps = 10 line

shows an increase in the pressure recovery parameter,dCP=dx, of 1:6, as compared to 0:77 given by the baseline

pressure distribution. IncreasingPi �Ps to 20, produces adCP=dx value of 1:85, indicating a further size reduction of

the separation bubble.

Figures 3.6 through 3.9 show the open-loop responses of the experimental system to four differentPi�Ps step

input commands. These open-loop responses were used to determine the dynamic parameters in Table 3.1 so that

the linear model response would match the experimental results. By changing the values ofωn1, ζ1, ωn2, andζ2

the dynamic characteristics of the linear system model could be fitted to the data. The open-loop experimental data

showed that the actuator system was much slower than the response of the flow system. The frequency response of the

flow was fixed atωn2 = 80 with a damping ratio ofζ2 = 1. The parametersωn1 andζ1 were then adjusted to fit the

experimental data. The oscillations in the experimental data fordCP=dxwere not modeled by the linear model. These

small oscillations are believed to be produced by small fluctuations in the wind tunnel test conditions.

Figure 3.6 shows a comparison of the experimental data to the linear model response to a step input fromPi�Ps=

10 to 15. Here the linear model over predicts the initial steady-state cavity pressure fluctuations and pressure recovery

parameter forPi�Ps = 10 and under predicts the cavity pressure fluctuations at the final steady-state atPi�Ps = 15.

This steady-state offset is a result of the linear fit to the steady-state data. Figure 3.6 does show a good fit to the

dynamic response of the experimental system for the cavity pressure fluctuations. The comparison for the pressure
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recovery parameter shows good agreement for the transient and the mean steady-state values. Figure 3.7 shows a good

prediction of the open-loop dynamics but under predicts the cavity pressure fluctuations. This under prediction by the

model is again due to the linear fit of the steady-state experimental data. Figure 3.3 shows that the two experimental

points atPi�Ps = 15 and 17 are slightly higher than the linear fit. This difference then shows up in the open-loop

simulations as an offset. Figure 3.8 shows a slight over prediction of the steady-state pressure recovery parameter but

does capture the dynamics of the step input. Figure 3.9 shows that the model has an offset in both the cavity pressure

fluctuations and pressure recovery parameter. This offset is due to an error in the steady-state prediction as can be seen

in the linear fit to the steady-state data in Figs. 3.3 and 3.4 forPi�Ps = 25. Overall the linear model does a fair job

of predicting the dynamic response of the experimental system and has a slight offset in the steady-state gains of the

system.

Using the parameters in Table 3.1 the matricesA andB, for the continuous system in Eq. 3.6, are given as

A=

2
66664

0 1:0 0 0

�0:25 �0:34 0 0

0 0 0 1

1:798 0 �6400 �160

3
77775 B=

2
66664

0

13:943

0

0

3
77775(3.17)

Using a sample period ofT = 1:0s, the matricesAd andBd for the discrete system, using Eq. 3.15, are

Ad =

2
66664

0:89030 0:81292 0 0

�0:20323 0:61391 0 0

2:5158�10�4 2:2401�10�4 0 0

�5:6003�10�5 1:7536�10�4 0 0

3
77775 Bd =

2
66664

6:1180

11:334

1:6407�10�3

3:1240�10�3

3
77775(3.18)

Note that since the sampling frequency is much lower than the frequency of the flow system, theAd matrix results

in the last two columns being zero. Since the sampling frequency is so low these states could be excluded but been

included for completeness. Future actuators will have an improved response in the high frequency range where the

inclusion of the flow dynamics will be necessary.

4. Feedback Control Design.A feedback controller was designed for this system using a simple proportional-

integral-derivative (PID) controller. The advantage of using a PID controller is that it can be tuned to give good

performance results where only the dominate system time constants are known [2].

Figure 4.1 shows a block diagram of a basic PID feedback controller for a continuous closed-loop system. This

figure shows the output,y(t), being subtracted from the desired output,ydes(t), to produce an error signal,e(t). Given

8



the error signal,e(t), the input,u(t), can be computed by

u(t) = KPe(t)+KI

Z t

0
e(t)dt+KD

de(t)
dt

(4.1)

The constantKP can be adjusted to vary the amount of proportional feedback for the controller. Likewise, the constants

KI andKD are used to vary the degree of integral gain and derivative gain respectively.

Increasing the proportional gain will typically reduce the steady-state error and settling time of the closed-loop

system. However, largeKP values usually produces instability in the closed-loop system. For most systems, there is

an upper limit on the gainKP in order to achieve a well-damped, stable response. This upper limit onKP may still

result in unacceptable steady-state errors, putting a limit on how much the steady-state errors can be reduced using

proportional feedback alone.

To improve the steady-state accuracy, without needing a large proportional gain, integral control can be used.

Integral control will reduce or eliminate steady-state errors at the cost of reduced transient response performance.

When the steady-state error is small, the proportional gain times the error will produce a small control input, assuming

that the proportional gain can not be arbitrarily large. This small input from proportional feedback alone, will typically

be too small to change the steady-state error. Integral gain on the other hand, will integrate the small error over time,

producing an increasing control input until the system responds. This input from the integral gain will eventually

reduce or eliminate the steady-state error. Like the proportional gain, the integral gain,KI , also has an upper limit in

order to achieve a well-damped, stable response.

Derivative control can be added to increase the damping and increase the stability of the closed-loop system. Since

the derivative of the error represents the slope of the error,e(t), the derivative feedback is essentially an anticipatory

type of control. Normally, if the slope of the error is large, an overshoot will subsequently occur. The derivative

control can be used to predict an overshoot by measuring the slope of the error and making a proper correcting effort

before the overshoot actually occurs.

4.1. Discrete PID Controller. The PID controller was implemented using a computer which resulted in the need

for a digital controller. To account for the discrete nature of the digital controller in the control design, the controller

was designed in the discrete domain.

Approximation of the continuous integral controller was done using a trapezoidal method. LetgI (kT) be the

numerical approximation to the integral of the error att = kT, wheregI (0) = 0. Using the trapezoidal method,gI (kT)

can be written as

gI (kT) = gI [(k�1)T]+
T
2
[e(kT)+e((k�1)T)](4.2)

Taking thez-transform on both sides of Eq. 4.2 results in the transfer function

MI (z) =
GI (z)
E(z)

=
T(z+1)
2(z�1)

(4.3)

whereMI (z) is a discrete transfer function from the error to the integral of error. The discrete approximation to the

derivative was made using a backward difference method. LetgD(kT) be the approximation to the derivative of the

error att = kT resulting in

gD(kT) =
1
T
fe(kT)�e[(k�1)T]g(4.4)

Taking thez-transform on both sides of Eq. 4.4 results in the transfer function

MD(z) =
GD(z)
E(z)

=
z�1
Tz

(4.5)
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whereMD(z) is a discrete transfer function from the error, to the derivative of the error. Combining the proportional,

integral, and derivative controllers, results in the transfer function from the error,E(z), to the control inputU(z)

becomes

H(z) =
U(z)
E(z)

= KP+KIMI (z)+KDMD(z)(4.6)

whereH(z) is the discrete transfer function for the PID controller from the error signal to the control input. Substituting

Eq. 4.3 and 4.5 and simplifying results in

H(z) =

�
KP+

TKI

2
+

KD

T

�
z2+

�
�KP+

TKI

2
�

2KD

T

�
z+

KD

T
z(z�1)

(4.7)

Figure 4.2 shows a block diagram of the transfer function in Eq. 4.7.

4.2. Discrete PID Control Design.The block diagram in Fig. 4.3 shows the closed-loop system with the discrete

PID controller,H(z), and the linear system model,P(z). The closed-loop system also includes an external disturbance,

w, which can be used to model the effects of the pressure oscillations created by small fluctuations in the wind tunnel

test conditions. The effects of these fluctuations can be seen in the open-loop experimental data in Figs. 3.6 through

3.9. The objectives of the control design is to track a desireddCP=dxcommand while minimizing the overshoot. Since

the actuators for this system were fairly slow, minimizing the effects of wind tunnel fluctuations was not possible and

therefore not a control objective. The response time of the controller was considered a secondary objective and was

relaxed in favor of smoother transient behavior.

Figure 4.4 shows a root locus plot in the z-plane for the poles of the discrete closed-loop system. The plot also

shows the lines of constant damping,ζ, and natural frequency,ωn, transformed from the s-plane to the z-plane. Poles

inside of the unit circle, in the z-pane, are stable and poles outside are unstable. The open-loop system has four poles

which are shown in Fig. 4.4 as open circles. The two high frequency poles in the s-plane are mapped to the origin,

since the sample frequency is well below the frequency of these poles. IncreasingKP while holdingKI =KD = 0,

moves the two low frequency open-loop poles to a higher natural frequency, while decreasing the damping ratio. The

closed-loop poles cross the unit circle atKP = 117 where larger values ofKP result in an unstable closed-loop system.

Increasing the integral gain,KI , while holdingKP =KD = 0, also moves the low frequency poles towards the unit

circle. At KI = 12:7, the poles cross the unit circle where larger values ofKI make the closed-loop system unstable.

The integral controller also introduces a fifth pole which moves along the real axis, from one to zero, asKI increases.

The time response of the closed-loop system, for increasing values ofKP andKI , are shown in Figs. 4.5 through

4.8. The figures show the response of the closed-loop system, where the controller is turned on att = 0 with a desired

dCP=dx= 1:8. Figures 4.5 and 4.6 show how using only proportional gain results in a significant steady-state error.

This error is a result of the constant control input needed in order for the system to reach the desired steady-state point.

Since the proportional gain is a product of the error, the error could never go to zero while generating the constant

control signal needed for the new steady-state point. By increasing the gainKP, the error is reduced only slightly at the

cost of reduced damping. This reduced damping effect can be explained by the root locus plot in Fig. 4.4 where the

closed-loop pole is moved closer to the unit circle asKP is increased. Figures 4.7 and 4.8 show the effect of only using

an integral controller for a step input command. These figures show how the integral controller dramatically reduces

the steady-state error as compared to theKD gain. Unlike the proportional gain, the integral gain is able to generate a

constant input signal in order to reach the new steady-state point. By increasingKI , the response time decreases but

at the cost of decreased damping. Like the proportional controller, increasingKI moves the two poles toward the unit

circle decreasing the damping for these poles.
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To improve the damping of the closed-loop system for high gains, derivative feedback gain can be added. However

this gain can cause problems when there is significant noise in the system as is the case here. The noise in the system

was shown in the open-loop experimental data in Figs. 3.6 through 3.9. As a result of the noise content in our system,

the derivative feedback gain was not used. However if minimizing the response time was the main control objective

then derivative feedback might be needed.

To see how theKP andKI gains are effected by the wind tunnel fluctuations, a Bode plot for the transfer function

between the disturbance input,w, and error,e, are plotted in Figs. 4.9 and 4.10. Figure 4.9 shows how increasing

theKI amplifies noise signals in the 0:03 to 0:1Hz range and remains fairly flat above 0:1Hz. This is good since the

large amplitude oscillations due to the wind tunnel noise fall in the 0:17 to 0:12Hz range. Figure 4.10 shows that

increasingKP will increase the error signal for noise in the 0:08 to 0:3Hz range. This means that using a proportional

gain will amplify the oscillations produced by the fluctuations in the wind tunnel test conditions. Therefore in order

not to amplify these oscillations, proportional gain was not used.

5. Nonlinear Simulation. A nonlinear model of the experimental system was developed using the SIMULINK

toolbox which operates in the MATLAB computing environment [1]. This model includes the nonlinear effects of the

steady-state gains as shown in Figs. 3.3 and 3.4, as well as the limiters applied to the control input. This simulation also

accounted for the discrete time sampling and averaging of the pressure sensor signals by the DSP board. Figure 5.1

shows the main block diagram of the experimental system which simulates the closed-loop step response ofdCP=dx to

a step input command in the desireddCP=dxvalue. This simulation model was used to evaluate the feedback controller

after it was designed using the linear system model.

The discrete PID controller is shown as a single block in Fig. 5.1 with two inputs and one output. The contents of

this subblock are shown in Fig. 5.2 where the two inputs are subtracted to make an error signal which is then passed to

the proportional, integral, and derivative gains. These gains are summed up to make the control output signalPi�Ps.

ThePi�Ps signal is then passed through the discrete rate and saturation limiters shown in Fig. 5.3. These limiters were

used to keep the flow system in a safe operating range. The output from the limiters is then sent to the flow system

model shown in Fig. 5.4. This system models the nonlinear response of the actuator from the input signalPi�Ps, to

the output signaldCP=dx. A lookup table was used for the nonlinear steady-state gains and the dynamics of the system

were modeled using the second-order system described in section 3.

The closed-loop model shown in Fig. 5.1 uses the sensor measurement of the pressure recovery parameter,

dCP=dx, which is sampled by the DSP board. The DSP board samples voltage of the differential pressure trans-

ducer at a frequency of 100Hz. This signal is sampled and averaged over a time period of 0:5s. The averaged signal

is then sent to the discrete controller at a rate of 1Hz. The averaging procedure is modeled by the averaging block in

Fig. 5.1, which is shown in detail in Fig. 5.5. The system in Fig. 5.5 starts summing up the 100Hzsampled data when

given a trigger command. The trigger in Fig. 5.1 is a square wave which is on for 0:5sand then off for 0:5s.

Figures 5.6 through 5.9 show a comparison of four different open-loop step responses between the experiment,

linear system, and the nonlinear model. The nonlinear model shows a better prediction of the steady-state gains since

it is able to interpolate from the experimental data. An overall comparison of the dynamic response of the systems

show that the linear model and the nonlinear model are nearly identical as might be expected.

6. Results. Based on the PID discrete control design, it was predicted that using only integral control would best

meet the design objectives for the feedback controller. The linear simulations using the integral controller in Fig. 4.8,

showed the closed-loop response forKI = 5;6; and 7. Setting the integral gainKI = 6:946, the feedback controller

was then implemented on the experimental closed-loop system. The results from this experimental data are shown in

Fig. 6.1. The test was performed by setting the value ofPi �Ps = 10 and then turning on the controller att = 0 given

a desired pressure recovery parameter,dCP=dxdes= 1:9. The experimental data shows that the controller performed
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well and had very little overshoot and a good response time. Figure 6.1 also shows the predicted response of the linear

and nonlinear models. Both models were able to predict the experimental closed-loop response relatively well and the

transient response fordCP=dx was predicted very well by the linear model. The prediction by the nonlinear model

for thedCP=dx transient was good, but had a slightly larger overshoot than the experimental results. Both the linear

and nonlinear models showed larger oscillation in the cavity pressure fluctuationsp0=ρ∞ and inlet pressurePi �Ps as

compared to the experimental data. Figure 6.2 shows a comparison between the open-loop response and closed-loop

response for the experimental system. The open-loop response was performed by using a step input inPi �Ps using

the initial and final values given by the closed-loop simulation. This figure shows thatdCP=dx and p0=ρ∞ for the

open-loop response, has a faster response time but at the cost of a larger overshoot. This figure also shows that there

is a slow transient in the flow system. Att = 25s, dCP=dxhas reached its desired value of 1:9, yet the cavity pressure

fluctuations are still being increased by the integral controller. On the other hand, the open-loop step input shows that

dCP=dx is slightly higher than the desired value att = 25sand then slowly drifts to the desired value. This shows the

advantage of the feedback controller since it is able to hold the desired pressure gradient while the flow system goes

through a slow transient.

Using the same integral gain, the controller was tested using a step down in the desireddCP=dx command. In

this regime the steady-state gains start to deviate from the linear model fit as shown in Fig. 3.4. Figure 6.3 shows the

closed-loop experimental data where the initial inlet pressure was set to,Pi �Ps = 20 and the controller was turned

on att = 0 with dCP=dx= 1:64. The response of the closed-loop system displayed large oscillations in thedCP=dx

signal, which settled down neart = 50s. The nonlinear model also shows large oscillations which did not settle down

where the linear model had mild oscillations for the closed-loop simulation. Neither model was able to predict the

closed-loop response in this regime but they did predict the unsteady behavior forKI = 6:946. The linear model is

certainly not valid in this regime since it does not account for the steady-state gain shown in Figs. 3.3 and 3.4. The

nonlinear model does include the nonlinear steady-state gain but is still unable to accurately model the closed-loop

system. To improve the nonlinear model in this regime, more steady-state and dynamic data is needed.

By reducing the integral gain, the closed-loop response in the nonlinear regime can be improved. Figure 6.4

shows the closed-loop experimental data forKI = 4:63 along with the linear and nonlinear simulations. ThedCP=dx

transient has improved but there are still some mild oscillations in the experimental closed-loop system. The nonlinear

model still predicts a continuing oscillation for this gain and the linear model is able to capture the average transient

response but does not capture the oscillations seen in the experimental data. Reducing the integral gain toKI = 2:315,

the transient response is much smoother at the cost of a slower response time as shown in Fig. 6.5. Both the linear

and nonlinear models show good agreement with the experimental data. Figure 6.6 shows a comparison between

the closed-loop and open-loop step input responses. This comparison shows how the open-loop response has a large

overshoot in the cavity pressure fluctuations and some oscillations in the value ofdCP=dx. The integral controller

shows how it increases the damping effect of the transient response by shaping the input commandPi �Ps. This

smoother inlet pressure command does not excite the higher frequency dynamics of the system like the open-loop

step input. Figure 6.7 shows the effect of decreasing the integral gain for the experimental closed-loop system. This

comparison shows how a smaller integral gain ofKI = 2:315 minimizes the overshoot and oscillations produced by

the controller.

7. Conclusions.This investigation demonstrated the incorporation of digital feedback control into an open-loop

flow control experiment. The objective of the feedback controller is to track a desired pressure gradient measured

in the controlled flow region. This pressure gradient characterizes the degree of flow separation (or attachment) and

hence the lift, drag, and moment forces acting on the generic hump model. The oscillatory excitation, which controlled

the flow in the separated region, operated at 385Hz. The degree of flow separation was then controlled by changing

12



the magnitude of the oscillatory excitation. The actuator system which changed the magnitude of the oscillatory

excitation, had a frequency response of 0:05Hz, which is much slower than the flow response. Therefore from the

flow physics point of view, the changes in the magnitude of the oscillatory excitation are performed in a quasi-steady

manor. The dynamics of the open-loop system are then the dynamics of the actuator system and do not include

dynamics of the controlled flow region. Experimental data from open-loop step inputs showed that the actuator system

could be modeled by a simple second-order model.

A PID control design approach was used since it could be tuned to give good performance results where only

the dominant system time constants are known. The PID control design showed that using only integral gain was

the most effective as a result of the large time constant of the actuator system. The control design showed that

adding a proportional or derivative gain would only amplify the oscillations produced by the small fluctuations in

the wind tunnel test conditions. The closed-loop experiments demonstrated that the integral feedback controller was

able to improve the transient response of the open-loop system by minimizing the overshoot seen in the open-loop

experiments. Overall, the integral controller did a good job in tracking the desired pressure gradient in the controlled

flow region. It should be noted that while the PID control design was reasonably simple, the application of a digital

feedback controller to a flow control experiment is unique. This closed-loop experiment is the first in a series of

experiments which will incorporate digital feedback control to existing NASA Langley flow control experiments. The

knowledge and insights gained from this experiment will be valuable for future closed-loop flow control experiments.

REFERENCES

[1] SIMULINK, a dynamic system simulator for MATLAB, MATLAB reference guide. The Math Works, Inc., 1999.

[2] G. F. FRANKLIN , J. D. POWEL, AND A. EMAMI -NAEINI , Feedback Control of Dynamic Systems, Addison-

Wesley, New York, 1994.

[3] R. ISERMANN, Digital Control Systems, Volume I, Springer-Verlag, New York, 1989.

[4] A. C. LADSON AND J. E. RAY, Evolution calibration, and operation characteristics of the two-dimensional test

section of the Langley 0.3-meter transonic cryogenic wind tunnel, Tech. Report TP-2749, NASA Langley

Research Center, Hampton, VA 23681-2199, 1987.

[5] A. R. RALLO , A. D. DRESS, AND A. J. H. SIEGLE, Operating envelope charts for the Langley 0.3-meter

transonic cryogenic wind tunnel, Tech. Report TM-89008, NASA Langley Research Center, Hampton, VA

23681-2199, 1986.

[6] A. SEIFERT, T. BACHAR, D. KOSS, M. SHEPSHELOVICH, AND I. WYGNANSKI, Oscillatory blowing, a tool to

delay boundary layer separation, AIAA Journal, 31 (1993), pp. 2052–2060.

[7] A. SEIFERT, A. DARABI , AND I. WYGNANSKI, On the delay of airfoil stall by periodic excitation, AIAA Journal

of Aircraft, 33 (1996), pp. 691–699.

[8] A. SEIFERT AND L. G. PACK, Active control of separated flows on generic configurations at high Reynolds

numbers. AIAA 99-3403, 1999.

[9] A. SEIFERT AND L. G. PACK, Oscillatory control of separation at high Reynolds numbers, AIAA Journal, 37

(1999), pp. 1062–1071.

13



0 20 40 60 80
200

300

400

500

600

700
P

‘/ρ

Model     
Experiment

0 20 40 60 80
1.6

1.7

1.8

1.9

2

dC
P
/d

x

Time, sec

FIG. 3.6.A comparison of an open-loop step input of Pi�Ps

from 10 to 15 for the experimental system and the linear discrete

model

0 20 40 60 80
500

550

600

650

700

750

P
‘/ρ

Model     
Experiment

0 20 40 60 80
1.74

1.76

1.78

1.8

1.82

1.84

1.86

dC
P
/d

x
Time, sec

FIG. 3.7.A comparison of an open-loop step input of Pi�Ps

from 15 to 17 for the experimental system and the linear discrete

model

0 20 40 60 80
650

700

750

800

850

900

P
‘/ρ

Model     
Experiment

0 20 40 60 80
1.8

1.82

1.84

1.86

1.88

1.9

1.92

dC
P
/d

x

Time, sec

FIG. 3.8.A comparison of an open-loop step input of Pi�Ps

from 17 to 20 for the experimental system and the linear discrete

model

0 20 40 60 80
800

900

1000

1100

1200

P
‘/ρ

Model     
Experiment

0 20 40 60 80
1.85

1.9

1.95

2

2.05

2.1

dC
P
/d

x

Time, sec

FIG. 3.9.A comparison of an open-loop step input of Pi�Ps

from 20 to 25 for the experimental system and the linear discrete

model

14



KI

KD

KP

dt

d/dt
−

e(t)ydes(t) u(t)

+

+ y(t)Plant
Model

FIG. 4.1.Block diagram for PID controller.

Kd

KiT/2

1/T

Kp

z−1

z−1

−

+

+

+e
k

e
k−1

+

u
k

FIG. 4.2.Block diagram for digital PID controller.

H(z) P(z)
v(kT)e(kT)r(kT)

−

w(kT)
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FIG. 6.2. A comparison of the open-loop step input response

to the closed-loop system using KI = 6:946.
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FIG. 6.3.Closed-loop response of the nonlinear model and the

experimental system for(dCP=dx)des= 1:64 where the controller

was turned on at t= 0. The PID controller had the gains, KP =

0;KI = 6:946, and KD = 0.
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FIG. 6.4. Closed-loop response of the nonlinear model and

the experimental system for(dCP=dx)des= 1:9 where the controller

was turned on at t= 0. The PID controller had the gains, KP =

0;KI = 4:64, and KD = 0.
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FIG. 6.5. Closed-loop response of the nonlinear model and

the experimental system for(dCP=dx)des= 1:9 where the controller

was turned on at t= 0. The PID controller had the gains, KP =

0;KI = 2:315, and KD = 0.
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FIG. 6.6. A comparison of the open-loop step input response

to the closed-loop system using KI = 2:315.
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FIG. 6.7.A comparison of the experimental closed-loop transient responses for three KI values.
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