
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

NASA/CR-2000-210329
ICASE Report No. 2000-34

Enhancing Jini for Use Across Non-multicastable
Networks

Ahmed Al-Theneyan
Old Dominion University, Norfolk, Virginia

Piyush Mehrotra
ICASE, Hampton, Virginia

Mohammad Zubair
Old Dominion University, Norfolk, Virginia

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA
Operated by Universities Space Research Association

September 2000

Prepared for Langley Research Center
under Contract NAS1-97046

 1

ENHANCING JINI FOR USE ACROSS NON-MULTICASTABLE NETWORKS 1

AHMED AL-THENEYAN 2, PIYUSH MEHROTRA3, AND MOHAMMAD ZUBAIR 4

Abstract. Distributed heterogeneous systems are being increasingly used to execute a variety of large size

simulation and computational problems. Resource management is one of the most important issues in building such

systems. Recently, Sun introduced the Jini connection technology for building plug-and-play networks of resources.

Jini relies on multicasting across the network for its internal protocols. However, in a distributed environment, such

as the one under consideration here, multicasting may not be supported across the subnets for various reasons. In

this paper we describe enhancements to Jini required to use it for building a middleware resource management

system in a distributed environment that does not support multicasting. In particular, we introduce a lightweight

service, called the Tunneling Service, which tunnels multicast messages across the subnets. We have implemented

our mechanism and used it to successfully tunnel messages between subnets in a single domain and also between

different domains. In this paper we describe our design choices and our implementation of the system.

Key words. distributed heterogeneous systems, resource management, Jini, multicasting, tunneling

Subject classification. Computer Science

1. Introduction. Distributed heterogeneous systems are being increasingly used to execute a variety of large

size simulation and computational problems. Such systems require flexible, platform independent and scalable

management of the heterogeneous collection of the shared resources [2, 4]. For example, ARCADE is a research

project in which we are developing a Web-based framework to provide support for a team of discipline experts

collaborating to design, execute and monitor multidisciplinary applications on a distributed heterogeneous network

of workstations and parallel machines [3]. In such an environment, the Resource Manager (RM) is required to

manage a distributed set of shared resources not necessarily on the same network, which comprises the execution

environment and provides information about these resources to the client/user upon request. Typically, these

resources could be in multiple domains which may be distributed geographically and collectively from the

underlying computing environment. The resources are varied in nature ranging from compute engines, to data

servers, to specialized instruments. The RM has to be flexible enough to not only handle such heterogeneity but also

provide information about these resources. The environment is generally dynamic in which resources randomly join

and leave. The RM should be able to handle such dynamic behavior without human intervention.

Recently, Sun Microsystems introduced the Jini connection technology which can be used to build dynamic,

flexible and easily administered distributed systems. It is based on the idea of federating groups of clients and the

resources required by those clients. Jini allows system resources, both hardware and software, to dynamically join

and leave the federation [1, 5, 10]. These features of Jini makes it appropriate for building the infrastructure of the

ARCADE Resource Manager.

1 This work was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while the authors
were in residence at the Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23681.
2 Computer Science Department, Old Dominion University, Norfolk VA 23529 USA, theneyan@cs.odu.edu and ICASE, MS 132C, NASA
Langley Research Center, Hampton, VA 23681 USA, theneyan@icase.edu.
3 ICASE, MS 132C, NASA Langley Research Center, Hampton, VA 23681 USA, pm@icase.edu.
4 Computer Science Department, Old Dominion University, Norfolk, VA 23529 USA, zubair@cs.odu.edu.

 2

Jini’s internal protocols rely on multicasting for discovering and joining lookup services. This becomes an issue

when deploying Jini across non-multicastable networks. In this paper, we describe the enhancements that we have

made to Jini in order to support systems like ARCADE Resource Manager that need to work with resources in

different domains. In particular, we have introduced a lightweight service called the Tunneling Service for tunneling

multicast message across subnets. In the paper, we describe our design decisions and the implementation of this

service.

The rest of the paper is structured as follows: Section 2 gives a short overview of Jini while Section 3 explains

the usage of Jini in ARCADE and the problems that Jini suffers while running across non-multicastable subnets.

Section 4 explains in detail the approach that we have designed to overcome these problems. Section 5 describes

another possible approach and compares the two alternatives. Finally, Section 6 summarizes the paper and discusses

some future work.

2. Overview of Jini. Jini is a connection technology introduced by Sun Microsystems that can be used to

build a flexible network of resources and services to be shared by a group of clients. Built on top of Java, Jini

provides simple mechanisms for resources to join together in a federation with no human intervention. The resources

can provide services to clients on the network. The Jini connection technology, based on Java, provides the

necessary protocols for services to register themselves with lookup services and for clients to then discover these

services. Additional features make the system resilient to failures such as removal of resources, network outages,

etc. The whole technology can be segmented into three categories: infrastructure, programming model and services.

FIG. 1. Sequence of steps required to use Jini Technology

The infrastructure includes lookup services that serve as a repository of services and uses RMI (Remote

Method Invocation), which defines the mechanism of communication between the members. The programming

model includes interfaces such as discovery, lookup, leasing, remote events and transactions which ease the task of

 3

building distributed systems [1, 10]. A service is a central concept within Jini. It is essentially an entity that can be

used by a person, program or another service to perform a required task.

The runtime infrastructure supports the discovery and join protocol that enables services to discover and register

with lookup services. Discovery is the process by which a service locates lookup services on the network and

obtains references to them. Join is the process by which a resource registers the services it offers with lookup

services. In particular, the resource may post with the lookup service, objects representing the services they provide

including any code required to use the services.

On the other hand, clients use the same protocol to locate and contact services. The discovery protocol is used

to locate lookup services. Once an appropriate lookup service has been found, the client can query it to find the

reference to the service that it requires. A client may then download the posted object and utilize it to directly use

the service. Figure 1 shows a simplified version of the sequence of steps that take place for a service to discover and

join a lookup service and for a client to use the lookup service to locate and interact with the service that it is

seeking.

 Thus, the initial phase for both clients and services is the discovery of a lookup service (LS). As described

below, Jini has three discovery protocols: the multicast request protocol, the unicast discovery protocol and the

multicast announcement protocol. We refer to clients and services, which are attempting to discover other services

as discovering entities.

The Multicast Request Protocol

Discovering entities use this protocol to locate all the nearby Lookup Services (LSs). In this protocol, each LS

establishes a multicast request server at a well-known multicast end point (224.0.1.85/4160), where it can receive

incoming multicast request messages from discovering entities and respond back to them, if necessary, using a direct

unicast connection.

The Unicast Discovery Protocol

Discovering entities use this protocol to communicate with a known LS. This LS may be local, non-local, beyond

multicast radius, or one with which a long-term relationship has been established [1, 5, 10]. Using this protocol, the

discovering entity sends a unicast discovery message to a specific LS.

The Multicast Announcement Protocol

The Multicast Announcement Protocol is used by LSs to announce their existence. It can be used in two situations.

When a new is LS started, it might need to announce its availability and services it provides to clients. Also, when

network failure happens and clients lose the connection to an LS, a multicast announcement message can be used to

make the clients aware of the availability of the LS [5, 10].

In this protocol, each discovering entity establishes a multicast announcement server at a well-known multicast

end point (224.0.1.84/4160), where it can receive incoming multicast announcement messages from LSs.

3. Jini for Resource Management. We have a built a simple middleware resource monitor and manager in

ARCADE using the Jini connection technology. We have defined our own Java-objects to represent the resources,

workstations, and parallel machines in particular. When the ARCADE environment comes online, it starts an

ARCADE Resource lookup service on a designated workstation. As the resources in the environment come online a

Resource Controller is started up on the resource. This controller then discovers and joins the ARCADE Resource

lookup service and uploads its service object. The service object contains some static information, e.g., the type of

 4

machine, the speed of the CPU, memory size, etc. It also contains dynamic information, such as the current load. At

this point the object is designed such that the dynamic information is loaded into the service object by the resource

itself. We are looking at the possibility of the client to pull information about the resources dynamically.

Our experience with Jini technology has brought out some problems in using the technology for resource

monitoring. These include scalability, security and the lack of range queries. Here we concentrate on one specific

problem: using Jini across networks that do not support multicasting.

The Problem

The brief description in the last section makes it clear that Jini’s discovery protocol uses multicast traffic for both the

request and announcement messages. This works fine in environments which support multicast. However, some

routers on the Internet do not support routing of multicast packets for a variety of reasons. Also, some organizations

are not willing to open their firewalls to multicast so as to avoid security problems [8]. Similarly, a local area

network divided into subnets, may disable multicast traffic across the subnets to avoid unnecessary traffic that may

result in performance degradation. This blocking of multicast traffic across subnets prohibits the use of Jini in such

an environment.

One method for working around this problem is to use a tunneling mechanism where the multicast traffic is

encapsulated in a unicast packet and is then transferred through unicast routers and non-collaborative firewalls. This

method has been used in several projects. For example, MRoutd [9] has been used to achieve tunneling in the

MBone [9]. However, there are many problems in the approach taken by the MRoutd implementation, such as the

lack of platform independence, wastage of available bandwidth due to the transfer of a lot of control information and

the fact that it forwards all the multicast traffic interfaces [8]. Other projects, such as mTunnel [8, 9] and liveGate

[6], were designed to overcome some of these problems but there are several reasons for building our own tunneling

mechanism and not using some of those existing ones. Having decided to use Jini, we would like to take advantage

of the open source code of Jini and embed our mechanism within Jini. Using a pure Jini approach allows us to

leverage the capabilities of Jini while activating tunneling in the background without the aid of any of members of

the federation.

Also, unlike other tunneling mechanisms, in our environment we do not need to tunnel some of the control

information such as the multicast address group and port to which the message is supposed to be delivered. This is

because in the context of Jini, our needs are very specific: we need to tunnel only the multicast request and

announcement messages that have predetermined multicast endpoints. Providing the right proxies, as explained in

the next section, can easily satisfy these requirements.

4. Our Approach. As described in the last section, Jini need to be extended before it can be deployed across

non-multicastable networks. To solve this problem, we have introduced a lightweight Tunneling Service (TS) with

the aim of embedding it within Jini’s specifications without affecting Jini’s existing functionality.

Our approach, as illustrated in Figure 2, involves establishing a tunneling service end point, TS, at each subnet.

Each TS provides a window between its subnet and the rest of the world. The TSs are implemented as Jini services

and thus have to register with a known Global Tunneling Lookup Service (GTLS) dedicated to maintains the list of

TSs in the environment. The GTLS is implemented as a lookup service that can be started at any subnet of the

federation. TSs will collaborate with each other in order to tunnel all the multicastable messages across the subnets.

Thus, we name this approach the Collaboration approach so we can distinguish with the alternative approach the

Central Directory Service (CDS) scheme, which we discuss in the next section.

 5

FIG. 2. Different non-multicastable subnets connected by the TS

 Given such architecture, the scenario is as follows. Each TS is going to establish the appropriate multicast

endpoints and listen for incoming multicast requests and announcements from within its subnet and will then tunnel

the messages out to all the other TSs. Also, each TS is going to listen for incoming tunneled multicast requests and

announcements from other subnets and will multicast them locally. Any connection that needs to be setup between

the clients, services and the lookup services use the unicast protocol even if they have to cross subnet boundaries.

The underlying aim of our implementation is to make enhancements to Jini that are compatible with the Jini

functionality. Thus, we would like the tunneling service to be active in the background without making any changes

as far as possible to the behavior of the clients, services and the lookup services. Also, we would like the

implementation to work without any modification even if the underlying network supports multicasting and the

tunneling service is not required. In the next few subsections we describe the implementation of the Global

Tunneling Lookup Service and the Tunneling Service.

4.1 Global Tunneling Lookup Service (GTLS). In order for the system to work properly, each of the TSs

needs to know about all the other TSs in the environment. Thus, we need a central repository that keeps track of all

the currently active TSs. Jini provides the functionality required for just such a repository. Hence, we implemented

this repository as a lookup service called the Global Tunneling Lookup Service. Using the distributed events

interface of Jini, every TS can get notified when a new TS joins or leaves the system. In our implementation, since

each TS relies on the unicast discovery protocol in all its interactions with the GTLS, it needs to know the IP address

and the port where the GTLS is running. Thus, the GTLS address/port will be preloaded into each TS at the startup

time.

4.2 Tunneling Service (TS). The Tunneling Service is the central concept in our solution. This service can be

patched into the runtime infrastructure of Jini as a new service just like any other standalone service. A TS has to be

started on each subnet that is taking part in the larger system. The system administrator can do this. On the other

hand, if suitably modified, the first Jini client, service or LS to start in a subnet could check to see if a TS is already

running in the subnet. If not, it can start one. The tunneling service consists of four major parts: the core tunneling

GTLS

 Subnet 2

TS2

Client2
Host 3

 Subnet 1

TS1

Client1 Service1
LS1

Host 1 Host 2

 Subnet 3

TS3

Service2
LS2

LS3
Host 4 Host 5

 6

subsystem which is published at the GTLS as a proxy; the listener which keeps track of local multicast requests and

announcements and uses other TSs’ proxies for tunneling messages; the notifier which keeps track of all the other

active TSs; and the wrapper which implements the infrastructure necessary for the TS to be a Jini service.

The Core Tunneling Subsystem: The core tunneling subsystem is the proxy to the service that is posted with the

GTLS by the wrapper. The TSs need to contact the GTLS and download each other’s proxies in order to achieve

tunneling amongst them. The proxy consists of two methods: one for the incoming tunneled request messages and

the other for the incoming tunneled announcement messages. Incoming tunneled requests from other TSs are

multicast across the local subnet so that the local LSs can respond appropriately. Similarly, incoming tunneled

announcements from other TSs are multicast for the discovering entities in the local subnet. As we explain in the

next subsection, a special flag is used to avoid problem of the TS acting on the messages that it has itself tunneled.

The Listener: This is the part of the service that is in charge of catching the necessary multicast traffic, the

multicast requests and the multicast announcements from within the local subnet. It listens for incoming multicast

requests from any discovering entity in its subnet, at the same multicast request endpoint as any other LS

(224.0.1.85/4160). Similarly, it listens for incoming multicast announcements from any LS in its subnet at the same

multicast announcement endpoint as any other discovering entity (224.0.1.84/4160). When it receives a request or

announcement message, it tunnels it to all the other TSs using their references and proxies that it holds.

The Notifier: This part has been implemented using one of the most useful mechanisms of Jini, the notification

mechanism. When a TS starts up, it sends an inquiry to the GTLS about all the currently registered TSs. Then it uses

the remote events model supported by Jini to request that the GTLS notify it whenever a new TS registers or leaves

the environment.

The Wrapper: The wrapper is the main segment of the service. It publishes the TS’s proxy in the GTLS and

renews its lease as and when necessary. Also, it launches the assistant subsystems, the Listener and the Notifier, and

keeps track of them. If more functionality, such as the encryption of the data for security reasons, or the detection of

unnecessary TSs is needed, this can be added as subsystems of the wrapper.

4.3 Jini Modifications. We would have preferred to implement our system without making any modifications

to Jini. However, to overcome some of the obstacles of tunneling, we have had to modify the format of the outgoing

request and announcement messages. Note that only the message formats need to be modified, the behavior of the

rest of Jini remains intact and does not need to be changed.

 First is the loopback problem. Consider the situation in which a TS multicasts a message in its local subnet that

it has received from an external subnet. The issue is that the listener which is listening for all multicast messages

within the subnet will also receive this message and will have no way of knowing that the message actually

originated from outside the subnet. Thus, we need to distinguish tunneled messages, both requests and

announcements, from those originating from within the subnet. We do this by adding a new field, Tunneled Flag, in

the message’s header to show whether this message has been tunneled. This field, added to both kinds of messages

as shown in Figure 3, will be set to zero when the message is initially multicast. The TS which then re-multicasts the

message in another subnet will set the flag to one so that it can be ignored when it is received by its own listener.

 The second problem is the host address of the sender in a tunneled request message. When responding to a

request message from a discovering entity, an LS uses the port number included in the message. However, it obtains

 7

the IP address of the sender by inquiring for the source of the multicast message. This works well within a subnet

where the multicast message is originating from the discovering entity itself. However, in the case of a tunneled

request, the IP address is going to represent the TS’s host and not the host of the original discovering entity. To

overcome this problem, we have added the IP address of the host of the sending entity in the header of the request

message, as shown at the top of Figure 3. We don’t need to add it in the announcement message since it is already

contains the host IP address.

Protocol

Version

Port Tunneled

Flag

Host Group

Len

Group1 ... Heard

Len

Heard1 ...

The new outgoing request message

Protocol

Version

Host Port LS ID Tunneled

Flag

Group

Len

Group1 ...

The new outgoing announcement message

FIG. 3. New format of Jini messages (shaded fields have been added)

4.4 Current Status. The mechanisms described above have been implemented using the Java Development

Kit (JDK) 1.2 and the current Jini reference implementation 1.0 with the modifications that we have described in the

previous subsection. We have used the implementation to tunnel messages across subnets in a single domain

(cs.odu.edu) and also across two separate domains (cs.odu.edu and icase.edu).

5. Alternative Approach to the GTLS. Instead of using the Jini Lookup Service, the repository of TSs in

the system, can be implemented as a standalone server that we call the Central Directory Service (CDS). In this

scenario, the CDS would not only keep track of the currently active TSs in the system but also act as the conduit for

multicasting messages to other subnet. In this approach, the TSs do not need to keep track of other TSs in the

system. Using this alternative, each TS listens for incoming multicast requests and announcements in its subnet and

sends it to the CDS. It is then the CDSs responsibility to broadcast it to all the other TSs in the system. Each TS still

has to listen for incoming requests and announcements tunneled via the CDS and has to multicast them on its subnet.

The Central Directory Service approach has some advantages over the Collaboration approach. In this scheme,

the TSs are lighter in weight since they do not have to keep track of the currently active TSs. However, the CDS is a

potential communication bottleneck since all messages have to go through it. The Collaboration scheme is a purely

Jini approach which leverages off Jini technology in using the mechanism for storing proxies in the GTLS and also

the event notification interface for keeping track of active TSs. On the other hand, the CDS scheme allows us to add

more functionality to the central repository. For example, in a system such as ARCADE [3], we might need to do

some load balancing of executing codes or manage user’s remote directories. We cannot add support for such

features if we use the Jini LS for our central repository. We will be implementing the alternate approach in the near

future in order to compare both the schemes.

 8

6. Conclusion. This paper presents the Tunneling Service, a new service that we have introduced to allow

Jini to be used smoothly across non-multicastable subnets. We have described the design and implementation of this

service.

There are some other issues that we have not addressed and in particular new features can be added to the

system. For example, tunneled data can be encrypted when transported across subnets so we can make sure that only

the intended TSs can read it [8]. In addition, tunneling can be done on demand, i.e., we can have a TS only where we

need it. Thus, the first Jini client, service or LS that starts in the subnet can start the TS dynamically. Sometimes, we

might have more than one TS running at the same network and not aware of each other. Mechanisms like the ones

used by mTunnel [7, 8] can be added in order to detect unnecessary TSs. A TS might send a multicastable test

messages periodically to a specific group address and port and wait for a response. TSs within the same network, if

any, exchange messages to identify the redundant TSs. Also, scalability seems to be an issue as Jini is targeted at the

workgroup level (about 1000 services). We can achieve high scalability by building a hierarchy of federations. We

will be examining our design and adding features as necessary in the near future.

References

1. K. ARNOLD, B. OSULLIVAN, R. W. SCHEIFLER, J. WALDO and A. WOLLRATH, The Jini Specification,

Addison-Wesley, 1999.

2. K. CZAJKOWSKI, I. FOSTER, N. KARONIS, C. KESSELMAN, S. MARTIN, W. SMITH and S. TUECKE,

A Resource Management Architecture for Metacomputing Systems, Proceedings of the IPPS/SPDP '98

Workshop on Job Scheduling Strategies for Parallel Processing, 1998.

3. Z. CHEN, K. MALY, P. MEHROTRA and M. ZUBAIR, ARCADE: A Web-Java Based Framework for

Distributed Computing, WebNet 99, October 1999.

4. I. FOSTER, C. KESSELMAN, C. LEE, R. LINDELL, K. NAHRSTEDT and A. ROY, A Distributed Resource

Management Architecture that Supports Advance Reservations and Co-Allocation, International Workshop on

Quality of Service, 1999.

5. W. KEITH, Core Jini, Prentice Hall, ISBN: 013014469X, 1999.

6. Live Networks Inc., The "liveGate" Multicast Tunneling Server, <http://www.lvn.com/liveGate/ >.

7. P. PARNES, K. SYNNES and D. SCHEFSTROM, Lightweight Application Level Multicast Tunneling using

mTunnel, Computer Communication, 1998.

8. P. PARNES, K. SYNNES and D. SCHEFSTROM, mTunnel: A Multicast Tunneling System With A User Based

Quality-Of-Service Model, European Workshop on Interactive Distributed Multimedia Systems and

Telecommunication Services, 1997.

9. K. SAVETZ, N. RANDALL and Y. LEPAGE, MBONE: Multicasting Tomorrow's Internet, IDG, 1996.

10. B. VENNERS, A Talk on Jini/JavaSpaces, <http://www.artima.com/javaseminars/modules/Jini/index.html>.

