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A GAS-KINETIC BGK SCHEME FOR THE COMPRESSIBLE NAVIER-STOKES

EQUATIONS�

KUN XUy

Abstract. This paper presents an improved gas-kinetic scheme based on the Bhatnagar-Gross-Krook

(BGK) model for the compressible Navier-Stokes equations. The current method extends the previous gas-

kinetic Navier-Stokes solver developed by Xu and Prendergast by implementing a general nonequilibrium

state to represent the gas distribution function at the beginning of each time step. As a result, the requirement

in the previous scheme, such as the particle collision time being less than the time step for the validity of

the BGK Navier-Stokes solution, is removed. Therefore, the applicable regime of the current method is

much enlarged and the Navier-Stokes solution can be obtained accurately regardless of the ratio between

the collision time and the time step. The gas-kinetic Navier-Stokes solver developed by Chou and Bagano�

is the limiting case of the current method, and it is valid only under such a limiting condition. Also, in

this paper, the appropriate implementation of boundary condition for the kinetic scheme, di�erent kinetic

limiting cases, and the Prandtl number �x are presented. The connection among arti�cial dissipative central

schemes, Godunov-type schemes, and the gas-kinetic BGK method is discussed. Many numerical tests are

included to validate the current method.

Key words. gas-kinetic method, Navier-Stokes equations, Chapman-Enskog expansion, kinetic bound-

ary condition, arti�cial dissipation, Godunov method

Subject classi�cation. Applied Numerical Mathematics

1. Introduction. There are many approaches for the numerical solution of the compressible Navier-

Stokes equations. Godunov-type schemes solve the Navier-Stokes equations in two steps, i.e., the inviscid

Euler step and the viscous step. The Euler solution is based on an exact or approximate Riemann solvers.

For the viscous part, a central di�erence method is generally adapted [13, 31].

Based on the gas-kinetic theory, the Navier-Stokes equations can be derived from the Boltzmann equation

using the Chapman-Enskog expansion. Therefore, a Navier-Stokes solver can be equally obtained by solving

the Boltzmann equation, especially the simpli�ed collision models [3, 2]. In the gas-kinetic representation,

all 
ow variables are moments of a single particle distribution function. Since a gas distribution function

is used to describe both equilibrium and nonequilibrium states, the inviscid and viscous 
uxes are obtained

simultaneously. Furthermore, due to the Boltzmann equation, the kinetic method and the Direct Simulation

Monte Carlo (DSMC) method could possibly be matched in the near continuum regime [18]. But, this

does not mean that the gas-kinetic schemes are always superior in comparison with Godunov-type schemes

for the Navier-Stokes solutions. There is also an operator splitting procedure in solving the Boltzmann

equation. In many kinetic schemes, the free transport equation or the collisionless Boltzmann equation, i.e.,

ft+ufx = 0, is used for the 
ux evaluation across a cell interface. Then, the collision part, i.e., ft = Q(f; f),

is implemented inside each cell. Even though a nonequilibrium gas distribution function f0 can be used
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as the initial condition for the free transport equation [6], as discussed in the current paper the validity of

this kind of kinetic methods for the Navier-Stokes equations requires �=p � �t, where � is the dynamical

viscosity coe�cient, p is the pressure, and �t is the numerical time step. With the introduction of particle

collision time � , the above requirement is equivalent to � � �t. Note that for any viscosity coe�cient �, the

corresponding particle collision time � can be obtained from a simple kinetic model [22, 17]. The underlying

reason for the above requirement is that the free transport mechanism introduces a numerical collision time

�t, which generates a numerical viscosity being proportional to it, i.e., �n � �t [19]. Therefore, the condition

� � �t means that the physical viscosity coe�cient (� �) should be much larger than the numerical one

(� �t) in order to have an accurate Navier-Stokes solution. As analyzed in this paper, in some situations

the above requirement cannot be satis�ed, and the above kinetic scheme can perform poorly.

The BGK scheme di�ers from the above kinetic method is mainly on the inclusion of particle collision

time � in the gas evolution stage. Instead of solving the collisionless Boltzmann equation, a collisional BGK

model is solved for the 
ux evaluation, i.e., ft+ufx = (g�f)=� [1]. As a consequence, the dissipation in the

transport process is controlled by the collision time � instead of the time step �t. As analyzed previously

[42, 37], the BGK scheme does give the Navier-Stokes solution in the region where � < �t. Under such a

situation, the distribution function used for the 
ux evaluation in the BGK method automatically goes to

a Chapman-Enskog expansion of the BGK equation. The current paper is about the extension of the BGK

scheme by including a non-equilibrium state as the initial condition of the gas distribution function. As

a result, a nearly consistent kinetic method for the Navier-Stokes equations is developed, which is valid in

both � < �t and � > �t cases. In other words, the in
uence of time step �t on the accuracy of the viscous

solution is reduced to a minimal level. Many test cases are included to support the arguments. Also, in the

current paper, the appropriate implementation of boundary condition, Prandtl number �x, and the relation

among the schemes with ari�cial dissipation, upwinding, and kinetic approximation, will be discussed.

2. A BGK Scheme. The fundamental task in the construction of a �nite-volume gas-kinetic scheme

for the compressible 
ow simulation is to evaluate a time-dependent gas distribution function f at a cell

interface, from which the numerical 
ux can be obtained.

2.1. Reconstruction. Following van Leer's MUSCL idea [32], a numerical scheme is composed of

an initial reconstruction stage followed by a dynamical evolution stage. At the beginning of each time step

t = 0, cell averaged mass, momentum and energy densities are given. For a higher order scheme, interpolation

techniques must be used to construct the subcell structure. Simple polynomials usually generate spurious

oscillations if large gradients exist in the data. The most successful interpolation techniques known so far

are based either on the TVD, ENO or LED principles[10, 11, 15]. These interpolation techniques can be

applied to the conservative, characteristic or primitive 
ow variables. In this paper, the reconstruction is

solely applied to the conservative variables. The limiter used is the van Leer limiter. With the cell averaged

conservative variables wj , and their di�erences s+ = (wj+1 � wj)=�x and s� = (wj � wj�1)=�x, the slope

of w in cell j is

L(s+; s�) = S(s+; s�)
js+jjs�j
js+j+ js�j ;

where S(s+; s�) = sign(s+) + sign(s�). After reconstruction, the conservative variable w inside cell j is

distributed linearly,

�wj(x) = wj + L(s+; s�)(x � xj);
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and the interpolated 
ow distribution around a cell interface is shown in Fig.(4.1). The BGK scheme is

basically to present a numerical Navier-Stokes solution from the above macroscopic initial condition, where

the inviscid and viscous 
uxes are obtained simultaneously in the evolution of the gas distribution function

f .

2.2. BGK Model. Since we are going to use a directional splitting method to solve the 2D BGK

equation. The BGK model in the x-direction can be written as [17]

ft + ufx =
g � f

�
;(2.1)

where f is the gas distribution function and g is the equilibrium state approached by f . Both f and g are

functions of space x, time t, particle velocities (u; v), and internal variable �. The particle collision time � is

related to the viscosity and heat conduction coe�cients. The equilibrium state is a Maxwellian distribution,

g = �(
�

�
)
K+2

2 e��((u�U)
2+(v�V )2+�2);

where � is the density, U and V are the macroscopic velocities in the x and y directions, and � is related

to the gas temperature m=2kT . For a 2D 
ow, the particle motion in the z direction is included into the

internal variable �, and the total number of degrees of freedom K in � is equal to (5 � 3
)=(
 � 1) + 1.

In the equilibrium state, �2 is equal to �2 = �21 + �22 + ::: + �2K . The relation between mass �, momentum

(n = �U;m = �V ), and energy E densities with the distribution function f is

0
BBB@
�

n

m

E

1
CCCA =

Z
 �fd�; � = 1; 2; 3; 4;(2.2)

where  � is the component of the vector of moments

 = ( 1;  2;  3;  4)
T = (1; u; v;

1

2
(u2 + v2 + �2))T ;

and d� = dudvd� is the volume element in the phase space with d� = d�1d�2:::d�K . Since mass, momentum

and energy are conserved during particle collisions, f and g satisfy the conservation constraint

Z
(g � f) �d� = 0; � = 1; 2; 3; 4;(2.3)

at any point in space and time. For an easy reference, the formula of the moment of a Maxwellian in 2D are

presented in Appendix A.

For a local equilibrium state with f = g, the Euler equations can be obtained by taking the moments of

 � to Eq.(2.1). This yields

Z
 �(gt + ugx)d� = 0; � = 1; 2; 3; 4:

and the corresponding Euler equations in x-direction are

0
BBB@

�

�U

�V

E

1
CCCA
t

+

0
BBB@

�U

�U2 + p

�UV

(E + p)U

1
CCCA
x

= 0;
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where E = 1
2�(U

2 + V 2 + K+2
2� ) and p = �=2�.

On the other hand, to the �rst order of � , the Chapman-Enskog expansion gives f = g � �(gt + ugx).

Taking moments of  again to the BGK equation with the new f , we get
Z
 (gt + ugx)d� = �

Z
 (gtt + 2ugxt + u2gxx)d�;

from which the Navier-Stokes equations with a dynamic viscous coe�cient � = �p can be obtained,

0
BBB@

�

�U

�V

E

1
CCCA
t

+

0
BBB@

�U

�U2 + p

�UV

(E + p)U

1
CCCA
x

=

0
BBB@

0

s1x

s2x

s3x

1
CCCA
x

;(2.4)

where

s1x = �p[2
@U

@x
� 2

K + 2
(
@U

@x
+
@V

@y
)];

s2x = �p(
@V

@x
+
@U

@y
);

s3x = �p[2U
@U

@x
+ V (

@V

@x
+
@U

@y
)� 2

K + 2
U(

@U

@x
+
@V

@y
) +

K + 4

4

@

@x
(
1

�
)]:

For the 1D 
ow, where only U -velocity exists, the above viscous governing equations become

0
B@

�

�U

E

1
CA
t

+

0
B@

�U

�U2 + p

(E + p)U

1
CA
x

=

0
B@

0
2K
K+1�pUx

K+3
4 �p( 1� )x +

2K
K+1�pUUx

1
CA
x

;

where K = (5 � 3
)=(
 � 1) and E = 1
2�(U

2 + K+1
2� ). From the above Navier-Stokes equations, an exact

solution of a shock structure can be obtained.

2.3. BGK 
ow solver. The general solution of f of the BGK model at a cell interface xj+1=2 and

time t is

f(xj+1=2; t; u; v; �) =
1

�

Z t

0

g(x0; t0; u; v; �)e�(t�t
0)=�dt0 + e�t=�f0(xj+1=2 � ut);(2.5)

where x0 = xj+1=2 � u(t � t0) is the trajectory of a particle motion and f0 is the initial gas distribution

function f at the beginning of each time step (t = 0). Two unknowns g and f0 must be speci�ed in Eq.(2.5)

in order to obtain the solution f . In order to simplify the notation, xj+1=2 = 0 will be used in the following

text.

In all previous BGK schemes [37], based on the initial macroscopic variables, see Fig.(4.1), the initial

gas distribution function f0 is assumed to be

f0 =

�
gl
�
1 + alx

�
; x � 0

gr [1 + arx]; x � 0
(2.6)

where gl and gr are the Maxwellian distributions at the left and right of a cell interface. The slopes al and ar

are coming from the spatial derivative of a Maxwellian and have a unique correspondence with the slopes of

the conservative variables. Note that the formulation of al and ar will be given later. The basic assumption
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in the above formula is that, even with a discontinuity at the cell interface, the gas is assumed to stay in an

equilibrium state on both sides of the discontinuity. This assumption is valid for any 
ow simulation, where

the cell size �x cannot properly resolve the viscous 
ow structure, such as in the shock capturing case of

the Euler equations. When the cell size is much larger than the shock thickness, the shock does appear as

a discontinuity and the 
ows in the upstream and downstream stay in equilibrium states. However, if the

mesh size is �ne enough to well resolve the physical shock structure, the initial gas distribution function f0

should give an accurate description of the real physical situation inside a shock wave, which deviates from an

equilibrium Maxwellian. Therefore, a non-equilibrium state must be used to represent the physical reality

in this case! So, in order to represent a general situation, in the current paper the initial gas distribution

function f0 will be assumed to have the form,

f0 =

�
gl
�
1 + alx� �(alu+Al)

�
; x � 0

gr [1 + arx� �(aru+Ar)]; x � 0
(2.7)

where additional terms represent the nonequilibrium states from the Chapman-Enskog expansion of the BGK

model. Again, the detail formulation of (al; Al; ar; Ar) will be given at a later time. Basically, the additional

terms of ��(alu+Al)gl and ��(aru+Ar)gr account for the deviation of a distribution function away from

a Maxwellian. Since the nonequilibrium parts have no direct contribution to the conservative variables, i.e.,

Z
(alu+Al) gld� = 0;

Z
(aru+Ar) gld� = 0;(2.8)

both distributions Eq.(2.6) and Eq.(2.7) represent basically the same macroscopic distributions shown in

Fig.(4.1) ! Hence, we can clearly observe that a gas-kinetic approach does have more freedom to describe a


ow. To keep an initial non-equilibrium state in the gas distribution is physically necessary and numerically

possible. It gives a more realistic description of the 
ow motion in the dissipative region. Many kinetic

schemes have used the Chapman-Enskog distribution function as the initial condition [6, 16].

After having f0, the equilibrium state g around (x = 0; t = 0) is assumed to have the same form as that

proposed in the previous BGK schemes [37],

g = g0
�
1 + (1�H[x])�alx+H[x]�arx+ �At

�
;(2.9)

where H[x] is the Heaviside function de�ned as

H [x] =

�
0; x < 0;

1: x � 0:

Here g0 is a local Maxwellian distribution function located at x = 0. Even though, g is continuous at x = 0,

but it has di�erent slopes at x < 0 and x > 0, see Fig.(4.2). In both f0 and g, al; Al; ar; Ar; �al; �ar, and �A

are related to the derivatives of a Maxwellian in space and time.

The dependence of al; ar; :::; �A on the particle velocities can be obtained from a Taylor expansion of a

Maxwellian and have the following form,

al = al1 + al2u+ al3v + al4
1

2
(u2 + v2 + �2) = al� �;

Al = Al
1 +Al

2u+Al
3v +Al

4

1

2
(u2 + v2 + �2) = al� �;
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:::

�A = �A1 + �A2u+ �A3v + �A4
1

2
(u2 + �2) = �A� �;

where � = 1; 2; 3; 4 and all coe�cients al1; a
l
2; :::;

�A4 are local constants.

In the reconstruction stage described earlier, we have obtained the distributions ��j(x), �mj(x), �nj(x),

and �Ej(x) inside each cell xj�1=2 � x � xj+1=2. At the cell interface xj+1=2, the left and right macroscopic

states are

�wj(xj+1=2) =

0
BBB@

��j(xj+1=2)

�mj(xj+1=2)

�nj(xj+1=2)

�Ej(xj+1=2)

1
CCCA ; �wj+1(xj+1=2) =

0
BBB@

��j+1(xj+1=2)

�mj+1(xj+1=2)

�nj+1(xj+1=2)

�Ej+1(xj+1=2)

1
CCCA :

By using the relation between the gas distribution function f and the macroscopic variables (Eq.(2.2)),

around xj+1=2 we get

Z
gl d� = �wj(xj+1=2) ;

Z
glal d� =

�wj(xj+1=2)� �wj(xj)

�x�
(2.10)

Z
gr d� = �wj+1(xj+1=2) ;

Z
grar d� =

�wj+1(xj+1)� �wj+1(xj+1=2)

�x+
(2.11)

where �x� = xj+1=2 � xj and �x+ = xj+1 � xj+1=2. With the de�nition of the Maxwellian distributions,

gl = �l(
�l

�
)

K+2

2

e��
l((u�Ul)2+(v�V l)2+�2);

gr = �r(
�r

�
)

K+2

2

e��
r((u�Ur)2+(v�V r)2+�2);

and from Eq.(2.10) and (2.11), all the parameters in gl and gr can be uniquely determined,0
BBBB@

�l

U l

V l

�l

1
CCCCA =

0
BBBB@

��j(xj+1=2)

�mj(xj+1=2)=��j(xj+1=2)

�nj(xj+1=2)=��j(xj+1=2)

�l

1
CCCCA

and 0
BBBB@

�r

Ur

V r

�r

1
CCCCA =

0
BBBB@

��j+1(xj+1=2)

�mj+1(xj+1=2)=��j+1(xj+1=2)

�nj+1(xj+1=2)=��j+1(xj+1=2)

�r

1
CCCCA ;

where

�l =
(K + 2)��j(xj+1=2)

4
�
�Ej(xj+1=2)� 1

2 ( �m
2
j (xj+1=2) + �n2j (xj+1=2))=��j(xj+1=2)

�
and

�r =
(K + 2)��j+1(xj+1=2)

4
�
�Ej+1(xj+1=2)� 1

2 ( �m
2
j+1(xj+1=2) + �n2j+1(xj+1=2))=��j+1(xj+1=2)

� :
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Once gr is obtained from the above equations, the slope ar in Eq.(2.11) can be computed from,

�wj+1(xj+1)� �wj+1(xj+1=2)

�r�x+
=Mr

��

0
BBB@
ar1

ar2

ar3

ar4

1
CCCA =Mr

��a
r
� ;(2.12)

where Mr
�� =

R
gr � �d�=�

r. The matrix and the direct evaluation of the solution (ar1; a
r
2; a

r
3; a

r
4)
T from

the above equation are presented in Appendix B. For gl, the matrix M l
�� =

R
gl � �d�=�

l has the same

structure as Mr
�� , (a

l
1; a

l
2; a

l
3; a

l
4)
T in Eq.(2.10) can be obtained similarly using Appendix B. After having

the terms al and ar, Al and Ar in f0 can be found from Eq.(2.8), which are

M l
��A

l
� =

1

�l

Z
alu �d�;

Mr
��A

r
� =

1

�r

Z
aru �d�:(2.13)

Since M l
�� , M

r
�� , and the right hand sides of the above equations are known, all parameters in Al and Ar

can be obtained subsequently using the method in Appendix B again.

After determining f0, the corresponding values of �0; U0; V0 and �0 in g0 Eq.(2.9),

g0 = �0(
�0
�
)

K+2

2

e��0((u�U0)
2+(v�V0)

2+�2)

can be determined as follows. Taking the limit t! 0 in Eq.(2.5) and substituting its solution into Eq.(2.3),

the conservation constraint at (x = xj+1=2; t = 0) gives

Z
g0 d� = w0 =

Z
u>0

Z
gl d� +

Z
u<0

Z
gr d�;(2.14)

where w0 = (�0;m0; n0; E0)
T . Since gl and gr have been obtained earlier, the above moments can be

evaluated explicitly. Therefore, the conservative variables �0;m0; n0, and E0 at the cell interface can be

obtained, from which g0 is uniquely determined. For example, �0 in g0 can be found from

�0 = (K + 2)�0=(4(E0 � 1

2
(m0

2 + n20)=�0)):

Then, �al and �ar of g in Eq.(2.9) can be obtained through the relation of

�wj+1(xj+1)� w0

�0�x+
= �M0

��

0
BBB@
�ar1

�ar2

�ar3

�ar4

1
CCCA = �M0

���a
r
� ;(2.15)

and

w0 � �wj(xj)

�0�x�
= �M0

��

0
BBB@
�al1

�al2

�al3

�al4

1
CCCA = �M0

���a
l
� ;(2.16)

where the matrix �M0
�� =

R
g0 � �d�=�0 is known. Therefore, (�ar1; �a

r
2; �a

r
3; �a

r
4)
T and (�al1; �a

l
2; �a

l
3; �a

l
4)
T can be

found following the procedure in Appendix B.
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Up to this point, we have determined all parameters in the initial gas distribution function f0 and the

equilibrium state g at the beginning of each time step t = 0. After substituting Eq.(2.7) and Eq.(2.9) into

Eq.(2.5), the gas distribution function f at a cell interface can be expressed as

f(xj+1=2; t; u; v; �) = (1� e�t=� )g0

+
�
�(�1 + e�t=� ) + te�t=�

� �
�alH[u] + �ar(1�H[u])

�
ug0

+�(t=� � 1 + e�t=� ) �Ag0

+e�t=�
�
(1� u(t+ �)al)H[u]gl + (1� u(t+ �)ar)(1�H[u])gr

�
+e�t=�

���AlH[u]gl � �Ar(1�H[u])gr
�
:(2.17)

The only unknown left in the above expression is �A. Since both f (Eq.(2.17)) and g (Eq.(2.9)) contain

�A, the integration of the conservation constraint Eq.(2.3) at xj+1=2 over the whole time step �t gives

Z �t

0

Z
(g � f) dtd� = 0;

which goes to

�M0
��

�A� =
1

�0

Z �

1g0 + 
2u

�
�alH[u] + �ar(1�H[u])

�
g0

+ 
3
�
H[u]gl + (1�H[u])gr

�
+ 
4u

�
alH[u]gl + ar(1�H[u])gr

�
+ 
5

�
(alu+Al)H[u]gl + (aru+Ar)(1�H [u])gr

��
 �d�;(2.18)

where


0 = �t� �(1� e��t=� );


1 = �(1� e��t=� )=
0;


2 =
�
��t+ 2�(1� e��t=� )��te��t=�

�
=
0;


3 = (1� e��t=� )=
0;


4 =
�
�te��t=� � �(1� e��t=� )

�
=
0;


5 = �(1� e��t=� )=
0:

Since all moments of the Maxwellian on the right hand side of Eq.(2.18) can be evaluated using Appendix

A, Eq.(2.18) can be solved to �nd ( �A1; �A2; �A3; �A4)
T using Appendix B again.

Finally, the time-dependent numerical 
uxes in the x-direction across the cell interface can be computed

as

0
BBB@
F�
Fm
Fn
FE

1
CCCA
j+1=2

=

Z
u

0
BBB@

1

u

v
1
2 (u

2 + v2 + �2)

1
CCCAf(xj+1=2; t; u; v; �)d�;(2.19)

where f(xj+1=2; t; u; v; �) is given in Eq.(2.17). By integrating the above equation to the whole time step,

we can get the total mass, momentum and energy transport.
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2.4. Analysis. In this section, we are going to analyze the BGK scheme presented in the last section.

Many issues related to the kinetic limits, collision time, Prandtl number �x, boundary condition, and kinetic

model, will be addressed.

2.4.1. Navier-Stokes Solver. In order to verify that Eq.(2.17) corresponds to a Navier-Stokes solu-

tion, let's consider the following limiting case. Eq.(2.17) gives explicitly the time-dependent gas distribution

function f at the cell interface. In a well resolved 
ow region, such as in a resolved shock layer, the recon-

structed conservative variables in Fig.(4.1) will become approximately a straight line. In such a case, the

distribution function f0 has g
l = gr and al = ar. Consequently, Eq.(2.14) gives g0 = gl = gr, and Eq.(2.15)

and (2.16) reduce to �al = �ar = al = ar. As a result, �A determined in Eq.(2.18) is exactly equal to Al and Ar

in Eq.(2.13). Therefore, without any further assumption, the gas distribution function f at a cell interface

becomes

f = g0
�
1� �(u�a+ �A) + t �A

�
;(2.20)

where ��(u�a + �A)g0 is exactly the nonequilibrium state in the Chapman-Enskog expansion of the BGK

model [37], and g0 �At is the time evolution part of the gas distribution function. The equation (2.20) is

the equation we used for the low Mach number viscous 
ow calculations [29], where the accuracy of the

above formulation is well established. Note that in deriving Eq.(2.20), we have not required the assumption

� < �t, which has been used previously [37]. The only requirement here is that the dissipative region is well

resolved, such as the case with 5 � 10 grid points in the shock or boundary layers. In the under-resolved

region, the BGK scheme will present a viscous solution for the discontinuous initial data.

In the paper by Chae, Kim, and Rho [4], they basically interpolated g0u�a as the nonequilibrium state of

the Chapman-Enskog expansion. Actually, the correct form should be g0(u�a + �A), and only this one could

satisfy the requirement
R
g0(�au+ �A) d� = 0.

2.4.2. Collision time. In a well resolved dissipative region, such as the cell size �x is smaller than

the dissipative length scale determined by the physical viscosity, the collision time � in the BGK scheme can

be naturally determined by the physical relation

� = �=p;

where � is the dynamical viscosity coe�cient and p is the pressure. The BGK model gives a �xed Prandtl

number Pr = 1:0, which could only make one parameter correct, i.e., the viscosity or heat conduction. A

numerical �x to make both coe�cients correct will be addressed next in the Prandtl number �x part. For

the viscosity coe�cient, � can take any reasonable form in the determination of � . The simplest case is that

� keeps a constant. In the shock-boundary interaction case, � will take the Sutherland's law,

� = �1(
T

T1
)3=2

T1 + S

T + S
;

where T1 and S are the temperatures with the values T1 = 285K and S = 110:4K.

Theoretically, the dissipative structure, such as the shock thickness, is solely determined by the physical

viscosity. The structure should be independent of the cell size and time step used in a numerical scheme.

However, even though the Navier-Stokes equations are accurately solved by the BGK method, if the cell size

is not �ne enough to resolve the wave structure, the physical one has to be replaced by a numerical one. For

example, the physical shock thickness is replaced by the numerical cell size. In such a situation, we cannot

solve the Navier-Stokes equations with the original physical viscosity. The e�ective viscosity in such a case
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should be a combination of the physical and numerical ones. Di�erent from many upwinding schemes, the

BGK method cannot simply take the apology to admit that the implicit numerical viscosity is included in

the under-resolved 
ow region. Since the BGK method is such an accurate Navier-Stokes 
ow solver, even

in the under-resolved discontinuity region, the required additional numerical viscosity which is consistent

with the numerical shock thickness has to be explicitly included. Since the jump in the 
ow variables at

a cell interface, see Fig.(4.1), represents basically the under resolveness and appears automatically in high

gradient 
ow region, the collision time � used in all simulations in this paper takes the following form,

� =
�

p
+
j�l=�l � �r=�rj
j�l=�l + �r=�rj�t;(2.21)

where �t is the CFL time step and the second part corresponds to the numerical viscosity. The second

term on the right hand side in the above equation is related to the pressure jump at the cell interface in the

reconstructed initial data. In the continuum 
ow region, this term will become very small. As shown in the

test cases, this term neither poisons the boundary or shock layer calculations in the well resolved cases, nor

reduces the shock capturing ability of the BGK scheme in the under-resolved region.

The obvious advantage of the BGK method is that it solves a viscous governing equation with an explicit

dissipative coe�cient all the time, which avoids the ambiguity of implicit dissipation in many upwinding

schemes due to the wave modeling in the Riemann solvers [31]. Even though the shock jump with a width of

2 or 3 cell size can be captured nicely in the Godunov type schemes, the dissipation there for the construction

of such a shock structure is solely coming from numerics. There is no reason to guarantee that the same

numerical dissipative mechanism works in all physical situations [39]. The BGK scheme explicitly includes

the physical and numerical ones into the algorithm. The 
uid behavior in both smooth and discontinuous

regions are described uniformly by the collisional BGKmodel with an adaptive collision time. The adaptation

of collision time is necessary physically and numerically.

Even the Navier-Stokes equations with an adaptive local viscous coe�cient can be solved by the Godunov-

type method, there are still di�erence between it and the BGK method. The BGK scheme gives a solution

under the general initial condition (Fig.(4.1)) without separating the inviscid and viscous terms, it is di�cult

to design such an unsplitting time accurate Godunov method for the Navier-Stokes equations. Even for

the same mass, momentum, and energy distributions, see Fig.(4.1) again, the kinetic scheme uses a non-

equilibrium state f0 to describe it. The macroscopic description could only see an equilibrium state initially.

2.4.3. Limiting cases. The BGK scheme based on the BGK model is valid for the Navier-Stokes

solution in both � < �t and � > �t region. If the collisionless Boltzmann equation ft + ufx = 0 is solved,

the gas distribution function (2.17) goes to

f = f0(x� ut)

=
�
1� �(ual +Al)� tual

�
H[u]gl + [1� �(uar +Ar)� tuar] (1�H[u])gr:(2.22)

This is a 2nd-order time accurate scheme and is the limiting solution of Eq.(2.17) under the condition � � �t.

If the above distribution function is further simpli�ed to the 1st-order time accuracy, it becomes

f =
�
1� �(ual +Al)

�
H[u]gl + [1� �(uar +Ar)] (1�H[u])gr:(2.23)

The above distribution is ideally the same as the one used by Chou and Bagano� in their gas-kinetic Navier-

Stokes solver [6]. In their approach, a direct implementation of the Chapman-Enskog distribution of the

Boltzmann equation is used to split the 
ux. The non-equilibrium state in our case is solely consistent with
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the BGK model. From the BGK scheme, we can clearly understand the limitation of the Chou-Bagano�'s

Kinetic Flux Vector Splitting Navier-Stokes (KFVS NS) method. Because Eq.(2.23) is the limiting case of

Eq.(2.17) with � � �t, Eq.(2.23) is only valid for the Navier-Stokes solution under such a limiting condition.

In other words, KFVS NS scheme approaches the Navier-Stokes solution accurately if the condition �=p� �t

is satis�ed. In �=p < �t region, the KFVS NS scheme could behave badly for the Navier-Stokes calculation.

In the later case, the free transport mechanism in the KFVS NS solver regards the time step �t as the particle

collision time, subsequently poisons the physical viscous solution. This artifact can be ignored only in the

case �t� �=p, where the physical viscous term is dominant. In order to get a more accurate understanding

about the above analysis. In the following, we are going to qualitatively estimate the KFVS NS scheme in

the shock and boundary layer simulations. Suppose we need N � 10 cells to resolve a NS shock structure or

boundary layer. Since the shock thickness is proportional to the mean free path ls, in the shock layer case

we need ls = N�x. Then, the condition �=p� �t becomes

�

p
� �t =) �cls

p
� �x

jU j+ c
=) N � 1

M + 1
;

where c is the sound speed, U is the macroscopic velocity, and M is the Mach number. For any shock

wave with M > 1, the above relation can be satis�ed. Therefore, the KFVS NS scheme could give an

accurate NS shock structure [6]. We have also tested both Eq.(2.22) and (2.23) in the shock structure

calculations in Case(1) of the numerical experiment section in the current paper. Both formulations give an

accurate solution. However, if the boundary layer is resolved with the same number of grid points, we havep
�x=U1 = N�x. In this case, the condition �=p� �t goes to

M
N2�x

x
� 1

M + 1
;

where x is the distance between the point in the boundary measured and the leading edge, which is on the

order of N2�x. Therefore, for the subsonic boundary layer, such asM � 0:1, the above condition cannot be

satis�ed. The KFVS NS scheme cannot be an accurate NS solver in this case. Fig.(4.14) veri�es the above

analysis for both Eq.(2.22) and (2.23). Recently, it is interesting to observe that the KFVS NS method could

give consistent results with DSMC simulation in the near continuum regime with the implementation of slip

boundary condition [18]. The current BGK scheme can cover the similar cases.

For the Euler solution, Eq.(2.23) can be further simpli�ed,

f = H[u]gl + (1�H[u])gr;(2.24)

where the nonequilibrium state is totally removed. This is precisely the KFVS scheme for the compressible

Euler equations [25, 26, 20, 23]. The above KFVS scheme has been well studied and applied to many

physical and engineering problems. A earlier version of the above scheme is the beam scheme, where instead

of Maxwellians the equilibrium states gl and gr are replaced by three Delta functions or particles [27]. As

analyzed recently [30], the Steger-Warming method can be represented as a \beam scheme" too. But, due

to their slight di�erence in the particle representation, such as the lack of internal energy in the second

\particle" in the Steger-Warming method [30], it is less robust than the beam scheme. The relation between

the beam scheme and the Lattice Boltzmann method is analyzed in [40].

With the above connection between the KFVS scheme and the Steger-Warming method, it is easy to

understand the poor performance of many FVS schemes in the viscous boundary layer calculations [28, 33, 34].

Similar to the KFVS scheme, for the Navier-Stokes solution FVS methods also require �=p � �t. Due to
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the symmetric lattice and diagonal transport, the Lattice Boltzmann Method (LBM) is very fortunate in this

aspect. It does present an accurate NS solution in the incompressible limit [5, 12]. The reason for this is that

with a symmetric lattice, the free particle transport mechanism from one node to another node could generate

an arti�cial viscous term which is consistent with the Navier-Stokes term and its coe�cient is proportional

to � 1
2�t. Therefore, in a �xed time step case the numerical dissipative term can be absorbed in the physical

one [16]. As a result, the �nal viscosity coe�cient in the Lattice BGK (LBGK) method is proportional to

(� � �t=2), where �t = 1 is used there. There is no a precise analogue between the �nite volume KFVS

scheme and the Lattice Boltzmann method. Due to cell averaging, reconstruction process, and the non-

isotropic transport, such as the lack of diagonal transport, the KFVS scheme has a much more complicated

dissipative mechanism. But, the numerical viscosity coe�cient �n can be still approximately estimated for

a 1st-order KFVS scheme using a simple shear 
ow model [19], which gives the same result as � = �t in the

LBGK method. The development of a multidimensional upwinding scheme will depend not only on the wave

modeling, but more closely on the mesh construction. More precisely, it depends on whether a numerical

mesh could preserve the isotropic and homogeneous properties of the 
uid equations. CFD community

usually has less experience in this aspect. There is something we can learn from the Lattice Boltzmann

method, where the symmetry, invariants, etc., are the main concerns in their algorithm developments. In

some sense, a triangular mesh has more symmetry and isotropic property than a rectangular one.

2.4.4. Prandtl Number Fix. It is well known that the BGK scheme corresponds to unit Prandtl

number. In order to change the above Prandtl number to any realistic value, many attempts have been

proposed. The most well known one is the BGK-Ellipsoidal-Statistical (BGK-ES) collision operator [14],

where the equilibrium state in the BGK model is replaced by an anisotropic Gaussian (without considering

internal variables),

G =
�p

det(2�T ) exp
�
�1

2
(ui � Ui)T �1(uj � Uj)

�
;

where �T = 1
PrRTI + (1� 1

Pr )�� is a linear combination of the stress tensor �� =
R
(ui �Ui)(uj �Uj)fd�

and of the Maxwellian isotropic stress tensor �RTI . If we extend the current BGK scheme to the above

BGK-ES model, considerable work has to be devoted to capture the time evolution of the above anisotropic

stress tensor.

As mentioned earlier, the BGK model itself can always make one coe�cient correct, the viscosity or heat

conduction. In the BGK method, we have obtained explicitly the time dependent gas distribution function

f at the cell interface Eq.(2.17). Therefore, the time-dependent heat 
ux can be evaluated precisely,

q =
1

2

Z
(u� U)

�
(u� U)2 + (v � V )2 + �2

�
fd�;(2.25)

where the average velocities U and V are de�ned by

U =

Z
ufd�=

Z
fd� ; V =

Z
vfd�=

Z
fd�:

Then, the easiest way to �x the Prandtl number for the BGK scheme is to modify the energy 
ux by

subtracting the above heat 
ux (2.25) and adding another amount with a correct Prandtl number,

Fnew
E = FE + (

1

Pr
� 1)q;(2.26)

where FE is the energy 
ux in Eq.(2.19). This �x can be equally applied to the BGK Discrete Velocity

Model (DVM), where the discrete distribution function f is known [21].
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In a smooth 
ow region, the above Prandtl number �x can be further simpli�ed. Since the gas distribution

function in such a case reduces to f = g0
�
1� �(�au+ �A) + t �A

�
, the corresponding heat 
ux is

qs = ��
Z
g0(u� U0)( 4 � U0 2 � V0 3 +

1

2
(U2

0 + V 2
0 ))(�au+ �A)d�

= ��
Z
g0(u� U0)( 4 � U0 2 � V0 3)(�au+ �A)d�

= ��
Z
g0(�au

2 4 + �Au 4 � U0(�au
3 + �Au2)� V0(�au

2v + �Auv))d�:(2.27)

So, in this case we can simply replace q in Eq.(2.26) by the above qs. This is the formula we are going to use

in the Couette 
ow and the shock boundary interaction cases in the next section. There will not have much

CPU time involved in the above Prandtl number �x, since all momentum in Eq.(2.27) have been obtained

already in the evaluation of the original energy 
ux FE . The above Prandtl number �x with the evaluation

of qs is similar to the method proposed in [4]. The di�erence is that all terms related to �A in Eq.(2.27) was

ignored in [4], which will introduce errors in the unsteady 
ow calculation. As mentioned earlier, the correct

nonequilibrium state in the BGK scheme should be proportional to (u�a+ �A)g0 instead of u�ag0.

The Prandtl number �x (2.26) is a post-processing correction, which is basically a numerical �x. But,

to the Navier-Stokes order, the above �x is physically founded. Theoretically, the BGK-ES model is also

a numerical �x, but it is on the dynamical level. Dynamically, keeping an anisotropic Gaussian for the

equilibrium distribution function seem no any physical basis. The real physical weakness of the BGK model

is that the collision time is independent of particle velocity, this fact is di�erent from the phenomena with

an anisotropic temperature distribution, where the temperature is directionly dependent. If only a correct

Prandtl number is required, there is no reason to construct more and more complicated kinetic models.

2.4.5. Boundary Condition. For the Navier-Stokes equations, the no-slip boundary condition is ob-

tained by creating two ghost cells, where the velocities in the ghost cells are reversed from the velocities

inside the computational domain, see Fig.(4.3). For the adiabatic wall condition, where there is no heat


ow through the boundary, the mass and energy densities in the ghost cells should be symmetric around the

boundary,

��1 = �1 ; E�1 = E1;

��2 = �2 ; E�2 = E2;

where �1 and �2 represent the 1st and 2nd ghost cells. Due to the above boundary condition, we can easily

prove that the mass 
ux F� = 0 and the heat 
ux q = 0 at the wall for the BGK scheme.

For the isothermal boundary condition, where the boundary keeps a �xed temperature, such as �0 =

m=(2kT0), in order to keep a 2nd-order accuracy of the scheme at the boundary we have to carefully derive

the 
ow variables in the ghost cell. In the following, we only consider the case where the nonlinear limiter is

not applied at the boundary cells. Therefore, we only need to construct the 
ow variables in the �rst ghost

cell, see Fig.(4.3). In order to have the non-slip condition, we �rst have

U�1 = �U1 ; V�1 = �V1;

which gives U0 = 0 and V0 = 0 at the wall. Since the temperature at x = 0 (location of the boundary) has

a �xed value �0, the slope of temperature in space at the boundary is

(
@�

@x
)0 =

�1 � �0
1
2�x

;
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where �1 is the \temperature" in the �rst cell inside the computation domain. Therefore, the temperature

in cell �1 becomes

��1 = �0 � 1

2
�x(

@�

@x
)0:

Since the energy density in cell �1 is determined by

E�1 =
1

2
��1(U

2
�1 + V 2

�1) +
1


 � 1

��1
2��1

;(2.28)

the only unknown in the above formulation is ��1. In order to determine ��1, we need to use the condition

that there is no net mass 
ux transport across the boundary. Since the mass transport in a time step �t

can be expressed as (no limiter involved),

�m = 0 =

Z �t

0

Z
u
�
1� �(�au+ �A) + t �A

�
g0dtd�

=

Z �t

0

Z
u(1 + t �A)g0dtd�

= �t(�0U0)� 1

2
(�t)2

Z
�au2g0d�

= �1

2
(�t)2

�
1

2�0
(
@�

@x
)0 � �0

2�20
(
@�

@x
)0

�
;

which gives

1

�0
(
@�

@x
)0 =

1

�0
(
@�

@x
)0:

The discretized form of the above equation is

�1 � ��1
�1 + ��1

=
1

2�0
(
@�

@x
)0�x;(2.29)

from which ��1 can be derived. The above isothermal boundary boundary condition will be used in the

Couette 
ow simulation. For a moving isothermal boundary, such as that with a velocity V0, the only change

from the above isothermal boundary condition is that V -velocity in the cell �1 is replaced by

V�1 = V0 � 1

2
�x(

@V

@x
)0;

where (@V =@x)0 = 2(V1 � V0)=�x.

Another important observation from the kinetic scheme is that it can introduce slip condition easily

through the use of appropriate 
ux boundary condition. The kinetic scheme can be matched with the

DSMC method in the near continuum regime only after the implementation of the slip condition at the solid

boundaries. The basic formulation of kinetic slip boundary is based on the fact that with the introduction

of gas distribution function, we can explicitly evaluate the amount of particles hitting the boundary, then

according to the accommodation coe�cients for the momentum and energy, and the temperature at the wall,

we can re-emit the same amount of particles with a pre-described distribution function. As a result, the

appearance of slip at the boundary is obtained naturally and is consistent with the DSMC type boundary

condition in the near continuum regime due to their common kinetic considerations. More discussion and

the speci�c application of slip boundary can be found in many kinetic books and papers [22, 17, 3, 2, 6, 18].
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2.5. Arti�cial viscosity { Godunov { BGK method. In the CFD algorithm development, the

two classical pioneering papers for the shock capturing schemes are by von Neumann and Richtmyer [35]

and by Godunov [8]. Since any physical solution has to be described in the discretized space and time, the

limitation of cell size and time step has to be considered. von Neumann and Richtmyer realized that the

numerical shock thickness needs to be compatible with the cell size. So, the central idea in [35] is that a

viscous governing equation with an enhanced viscosity coe�cient has to be solved numerically.

The success in Godunov method is that it introduces a discontinuity in the 
ow representation. In the

under-resolved 
ow simulation, due to the large cell size, a discontinuity will appear naturally in the initial

data. The implementation of a discontinuity is much more important than the introduction of the Riemann

solver. The cell interface discontinuity gives a more realistic representation about the physical situation. The

numerical dissipation involved in the discontinuity can hardly be recovered by a delicate viscosity coe�cient

[39]. But, for a second order scheme with high-order initial interpolation, the dissipation introduced in

the discontinuity is much reduced, which is not enough to construct a numerical shock wave. From our

experience, we have the following conjecture. If a Generalized Riemann Problem (GRP) is correctly solved

for the Euler equations with the inclusion of initial slopes in the gas evolution stage, see Fig.(4.1), a 2nd-order

(in both space and time) accurate scheme cannot properly capture the numerical shock waves. Even with

the discontinuity at a cell interface, additional numerical dissipation is still needed. As a special case, the

Lax-Wendro� scheme is actually a generalized Riemann solver under the continuous initial condition.

The methodology of the BGK scheme is in somehow to combine the two important issues risen in the

above two methods, (i) a viscous governing equation with an enhanced viscosity coe�cient (2.21) is solved,

and (ii) follows the time evolution of the 
ow distribution from a discontinuious initial data. Both factors

are important for the development of a robust scheme for the 
uid simulation. In the smooth region, the

additional numerical viscosity and the discontinuity at the cell interface disappear. The BGK scheme goes

back to the traditional Lax-Wendro� type central schemes for the NS equations.

3. Numerical Experiments. The current scheme has been applied to several test cases ranging from

simple Couette 
ow to the complicated shock-boundary interaction case. Unless otherwise stated, in all

numerical examples reported, the particle collision time is given by Eq.(2.21), 
 = 1:4. The time step �t in

all calculations are determined by CFL number equal to 0:7. All steady state solutions are obtained from

the time accurate BGK solver with a long time integration.

Case(1) Couette Flow with a Temperature Gradient

Couette 
ow with a temperature gradient provides a good test for the BGK scheme to describe the

viscous heat conducting 
ow. With the bottom wall �xed, the top boundary is moving at a speed U . The

temperatures at the bottom and top are �xed with values T0 and T1. The analytic steady state temperature

distribution is

T � T0
T1 � T0

=
y

H
+

PrEc

2

y

H
(1� y

H
);(3.1)

whereH is the height of the channel, Pr is the Prandtl number, Ec is the Eckert number Ec = U2=Cp(T1�T0),
and Cp is the speci�c heat ratio at constant pressure.

We have set up the simulation as a 1D problem in the x-direction. There are 20 grid points used in

this direction from 0 to 1 with H = 1:0. The moving velocity at the right boundary in the y-direction is

V1 = 1:0. The initial density and Mach number of the gas inside the channel are 1:0 and 0:1 respectively.

The isothermal no-slip boundary conditions are implemented at both ends. We have tested the current BGK

scheme with a wide range of parameters. (i). speci�c heat ratio 
 = 7=5; 5=3, and 2:0, (ii). di�erent Prandtl
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number Pr = 0:5; 0:72; 1:0; 1:5; and 2:0, (iii). di�erent collision time � , which ranges from 0:01�t to 1:5�t.

With the variations of parameters, all simulation results �t the exact solutions very well. Fig.(4.4) and (4.5)

present the solutions in a few cases with di�erent Prandtl numbers and Eckert numbers. From these �gures,

we see that the Prandtl number �x does modify the heat conduction term correctly.

Case(2) Navier-Stokes Shock Structure

This is also a 1D case, which is mainly to test the performance of the BGK scheme from the shock

capturing to shock structure calculation. The initial condition is that a stationary shock with Mach number

M = 1:5 is located at x = 0. The viscosity coe�cient for the Navier-Stokes equations takes a value � =

0:00025, which corresponds approximately to a shock thickness, ls � 1=300. We have tested 6 cases with

di�erent cell size, which ranges from the under-resolved case with �x = 1=100 to the well resolved case with

�x = 1=3200:0. The simulation results for density, velocity, and temperature distributions are shown in

Fig.(4.6)-(4.8). From the coarse mesh to �ne mesh cases, the shock structure gradually appears and it does

converge to the exact Navier-Stokes solution. In the coarse mesh case, the BGK scheme could capture the

shock jump crisply without any oscillation. Since the physical collision time � is determined by Eq.(2.21),

with the change of cell size, the maximum ratio of �=�t ranges approximately from 0:3 to 10 through these

cases.

We have also tested the schemes based on Eq.(2.22) and (2.23) in the above shock structure calculation.

Both methods give accurate Navier-Stokes solutions in this case, which is consistent with the observation in

[6].

Case(3) Mach 3 Step Problem

The 2D Mach 3 step problem was �rst proposed by Woodward and Colella [36]. The computation is

carried out on a uniform mesh with 120�40 cells, and the cell size used is �x = �y = 1=40. In order to test

the viscous e�ect on the 
ow structure, we have used di�erent Reynolds number Re = UL=� = 105; 103; 50,

where the length scale is L = 1:0 and the upstream velocity is U = 3:0. The adiabatic slip Euler boundary

condition is imposed at the boundaries in order to avoid the formation of viscous boundary layer. The density

and pressure distributions at di�erent Reynolds number are presented in Fig.(4.9)-(4.11). From these �gures,

we can clearly observe the e�ect of viscosity coe�cient on the 
ow structure, such as the shear layer and

the shock wave structure. Especially, in the case with Re = 50, the shock structure is well resolved. It is

interesting to compare the BGK solution and the DSMC simulations in small Knudsen number regime, such

as the case Fig.(14.29) in [2]. Due to the inclusion of non-equilibrium state and the easy implementation

of kinetic slip boundary condition, the BGK scheme does provide a potential method to connect the Euler

solution with the rare�ed solution through the Navier-Stokes at near continuum regime.

Case(4) Laminar Boundary Layer Case

A laminar boundary layer with Mach number M = 0:15 and Re = 105 is tested over a 
at plate. A

rectangular mesh with 120� 30 grid points is used and the mesh distribution in shown in Fig.(4.12). The

U velocity contours at the steady state are shown in Fig.(4.12). The U and V velocity distributions at the

locations x = 6:438 and x = 34:469 are plotted in Fig.(4.13), where the solid lines are the exact Blasius

solutions in the x and y directions. Due to the rectangular mesh, the number of grid points in the boundary

layer at di�erent locations are di�erent. In both locations, the numerical solutions �t the exact solution very

well. Due to the high Reynolds number in this case, the physical collision time � determined by the viscosity

coe�cient is much smaller than the time step �t, i.e., � � �t. For this case, the previous BGK schemes

could also capture the boundary solution correctly [37]. The results presented in Fig.(12) of [4] about the

BGK scheme are due to the mis-use of the viscous term in the Chapman-Enskog expansion as stated earlier.
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When Eq.(2.22) and (2.23) are used for the 
ux calculation in the above boundary layer case, the

simulation results are shown in Fig.(4.14). For the time accurate collisionless Boltzmann solution (2.22), the

e�ective viscous coe�cient is approximately proportional to (�phys + �tp=2), where �phys is the physical

viscosity coe�cient and �t=2 is comming from the free transport mechanism. For the 1st-order time accurate

and 2nd-order space accurate scheme (2.23), the viscosity coe�cient of the scheme is roughly proportional

to (�phys � �tp=2), where the forward Euler time steeping introduces an antidi�usive term (� ��tp).
Therefore, the solution in Fig.(4.14a) is more di�usive, and the solution in Fig.(4.14b) is less di�usive

than the physical solution determined by �phys. Due to the stretched mesh, initial data reconstruction,

and directional splitting, the motion of the numerical 
uid from Eq.(2.22) and (2.23) has a complicated

dissipative nature. The above e�ective viscosity estimates are only from the physical intuition. As we can

see from Fig.(4.14), the similarity solution is even lost. This means that the e�ective dissipative coe�cient

depends on local mesh size.

Case(5) Shock Boundary Layer Interaction

This test is about the interaction of an oblique shock at an angle 32:60 with a boundary layer. The Mach

number of the shock wave isM = 2:0 and the Reynolds number for the upstream 
ow is Re = 2:96�105. The
dynamical viscosity � used here is the Sutherland's law, and the Prandtl number is equal to 0:72. A mesh

similar to Fig.(4.12) with 110� 60 grid points are constructed. The skin friction and pressure distributions

at the surface of the plate is shown in Fig.(4.15), where the data � is the experimental data from [9]. The

pressure contours in the whole computational domain is shown in Fig.(4.16). Due to the high Reynolds

number, the shock structure is not well resolved in this case. So, in terms of the shock, it is only a shock

capturing scheme. But, in terms of the boundary layer, it is a Navier-Stokes solver because the boundary

layer is well resolved. In this test, the condition � < �t is satis�ed. The previous BGK schemes work as

well. The numerical solution from the previous BGK scheme is shown in [38]. However, for the KFVS and

FVS schemes, the numerical dissipation could easily poison the boundary layer solution, since their validity

condition is �=p� �t.

4. Conclusion. This paper extends the BGK scheme to include the non-equilibrium state as the initial

gas distribution function. As a result, a consistent BGK scheme for the Navier-Stokes equations is developed,

which is valid in both � < �t and � > �t regions. The new scheme works not only in the viscous shear

or boundary layer cases, where � < �t is satis�ed, but also in the construction of a Navier-Stokes shock

structure, where � � �t. The KFVS NS method and KFVS scheme are the limiting cases of the current

BGK scheme in the case �=p� �t, and both schemes are applicable to simulate the Navier-Stokes equations

only under such a limiting condition. Also, the kinetic boundary condition, Prandtl number �x, as well as

the relation among di�erent schemes, are discussed in this paper.

Following previous papers [24, 42, 41], the present paper shows a progressive development of the BGK-

type schemes. The comprehensive numerical results presented in this paper and the physical and numerical

analysis about the scheme indicate the level of maturity achieved by the gas-kinetic BGK method.

Appendix A

Moments of the Maxwellian Distribution Function. In the gas-kinetic scheme, we need to evaluate

moments of a Maxwellian distribution function with bounded and unbounded integration limits. Here, we

list some general formulas.

Firstly, the Maxwellian distribution for a 2D 
ow is

g = �(
�

�
)
K+2

2 e��((u�U)
2+(v�V )2+�2);
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where � has K degrees of freedom. Then, by introducing the following notation for the moments of g,

�h:::i =
Z
(:::)gdudvd�;

the general moment formula becomes

hunvm�li = hunihvmih�li;

where n and m are integers, and l is an even integer (owing to the symmetrical property of �). The moments

of h�li are:

h�2i = (
K

2�
)

h�4i = (
3K

4�2
+
K(K � 1)

4�2
)

The values of huni depend on the integration limits. If the limits are �1 to +1, we have

hu0i = 1

hui = U

::

hun+2i = Uhun+1i+ n+ 1

2�
huni

When the integral is from 0 to +1 as h:::i>0 or from �1 to 0 as h:::i<0, the error function and the

complementary error function, appear in the formulation. Thus, the moments for un in the half space are,

hu0i>0 =
1

2
erfc(�

p
�U)

hui>0 = Uhu0i>0 + 1

2

e��U
2

p
��

:::

hun+2i>0 = Uhun+1i>0 + n+ 1

2�
huni>0:

and,

hu0i<0 =
1

2
erfc(

p
�U)

hui<0 = Uhu0i<0 � 1

2

e��U
2

p
��

:::

hun+2i<0 = Uhun+1i<0 + n+ 1

2�
huni<0

Same formulation can be obtained for hvmi by changing U to V in the above moments of huni.
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Appendix B

Solution of Matrix Equation b =Ma . In the gas-kinetic scheme, the solution of the following equations

is used many times,
0
BBB@
b1

b2

b3

b4

1
CCCA =M

0
BBB@
a1

a2

a3

a4

1
CCCA ;(4.1)

where b andM are known. The matrixM is from the integration of a Maxwellian, i.e.,M�� =
R
 � �gd�=�,

and has the form

M =

0
BBB@

1 U V B1
U U2 + 1=2�l UV B2
V UV V 2 + 1=2�l B3
B1 B2 B3 B4

1
CCCA ;

where

B1 = 1

2
(U2 + V 2 + (K + 2)=2�);

B2 = 1

2
(U3 + V 2U + (K + 4)U=2�);

B3 = 1

2
(V 3 + U2V + (K + 4)V=2�)

and

B4 = 1

4

�
(U2 + V 2)

2
+ (K + 4)(U2 + V 2)=�+ (K2 + 6K + 8)=4�2

�
:

The solution of Eq.(4.1) is the following. De�ne

R4 = 2b4 � (U2 + V 2 +
K + 2

2�
)b1;

R3 = b3 � V b1;

R2 = b2 � Ub1;

the solution is

a4 =
4�2

K + 2
(R4 � 2UR2 � 2V R3);

a3 = 2�R3 � V R4;

a2 = 2�R2 � UR4;

and

a1 = b1 � Ua2 � V a3 � 1

2
a4(U

2 + V 2 +
K + 2

2�
):
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Fig. 4.1. The reconstructed initial conservative variables around a cell interface, from which the nonequilibrium state f0

can be constructed. The BGK scheme is based on the the solution of the collisional BGK model with the above initial condition.

xj+1/2 j+1xjx

f

g

0

Fig. 4.2. The spatial distribution of the initial state f0 and the equilibrium state g at t = 0. The evaluation of g from

f0 is given in Eq.(2.14)-(2.16). The �nal gas distribution function f in Eq.(2.17) at the cell interface xj+1=2 is a nonlinear

combination of f0 and g.
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Fig. 4.3. Boundary condition. (a). adiabatic boundary condition, where the mass, energy densities are distributed

symmetrically around the boundary and the velocities are reversed. (b). isothermal boundary condition, where the velocity

vector is reversed in the ghost cell, but the mass and energy densities are derived in Eq.(2.28) and (2.29).
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Fig. 4.4. Temperature ratio (T � T0)=(T1 � T0) in Couette 
ow. The solid line is the analytic solution given by Eq.(3.1),

and the circles are the numerical results from the BGK scheme. While the Eckert number is �xed to 40, the Prandtl number

takes the values 2:5; 1:0; and 0:72. The collision time � used in this scheme is about 0:1�t.
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Fig. 4.5. Continuation of Fig.(4.4). While the Prandtl number is �xed to 0:5, the Eckert number takes the values 40:0; 20:0;

and 4:0.
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Fig. 4.6. Density distribution of a stationary shock wave with M = 1:5. The kinetic viscosity coe�cient of the 
ow is

� = 0:00025, which corresponds to a shock thickness ls � 1=300. The numerical solution (+ sign) is obtained from the BGK

scheme with di�erent cell sizes. The solid lines are the exact Navier-Stokes solution. The cell sizes used are (a) 1=100, (b)
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24



−0.2 −0.1 0 0.1 0.2

−1

−0.8

−0.6

(a)

U

∆ x = 1/100

−0.1 −0.05 0 0.05 0.1

−1

−0.8

−0.6

(b)

U

∆ x = 1/200

−0.06 −0.04 −0.02 0 0.02 0.04

−1

−0.8

−0.6

(c)

U

∆ x = 1/400

−0.03 −0.02 −0.01 0 0.01 0.02

−1

−0.8

−0.6

(d)

U

∆ x = 1/800

−0.015 −0.01 −0.005 0 0.005 0.01

−1

−0.8

−0.6

(e)

U

∆ x = 1/1600

−5 0 5

x 10
−3

−1

−0.8

−0.6

(f)

U

∆ x = 1/3200

Fig. 4.7. Continuation of Fig.(4.6). Velocity distributions.
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Fig. 4.9. Density and pressure contours in Mach 3 step problem on a mesh with 120 � 40 grid points. The Reynolds

number used in this case is Re=105 w.r.t. the upstream velocity U = 3:0 and the channel height L = 1:0. The solution is very

close to the solution of the Euler solvers. No special treatment is used around the step corner.

26



0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1
Re = 103

Density

0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

Pressure

Fig. 4.10. Density and pressure contours in the step problem. The Reynolds number in this case is Re=103. Due to

larger viscosity, the shear layer is smeared.
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Fig. 4.11. Density and pressure contours. The Reynolds number is Re=50. The 
ow pattern becomes di�erent from the

Euler solutions. The shock structure in front of the step is well resolved.
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Fig. 4.12. (upper) Numerical mesh with 120 � 30 grid points for the boundary layer calculation. (lower) U velocity

contours at Re=105.
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30



0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

(a)

U
/U

in
f

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

(b)

U
/U

in
f

Fig. 4.14. U velocity distributions from KFVS NS schemes. (a). Eq.(2.22), (b). Eq.(2.23).
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The � is the experimental data [9]. Solid line: numerical solution on a mesh 110� 60 grid points.
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