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AERODYNAMIC SHAPE OPTIMIZATION OF TWO-DIMENSIONAL AIRFOILS

UNDER UNCERTAIN OPERATING CONDITIONS

LUC HUYSE� AND R. MICHAEL LEWISy

Abstract. Practical experience with airfoil optimization techniques has revealed unexpected di�culties.

Traditionally the performance of an airfoil is optimized for given, or assumed, model parameters. Experience

has indicated that a deterministic optimization for discrete operating conditions may result in dramatically

inferior performance when the actual conditions are di�erent from these, somewhat arbitrarily chosen, design

values. Extensions to multi-point optimization have proven unable to adequately remedy the problem of

\localized optimization". This paper presents an intrinsically statistical approach and demonstrates how the

shortcomings of multi-point optimization with respect to \localized optimization" can be overcome.

Key words. airfoil shape optimization, sensitivity analysis, statistical decision making, robust design,

stochastic optimization, multi-point optimization
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1. Introduction. Optimization of an analytical model is a process to develop better designs. Recent

advances in computing power and the development of more accurate computational 
uid dynamics codes

(CFD) should, at least in theory, allow to compute the optimal shape of an airfoil for a particular application,

speci�ed by constraints on payload, range, etc. Unfortunately, practical experience suggests this is not the

case. The use of deterministic optimization techniques leads to unexpected problems and often unacceptable

results.

An important concern in the shape optimization of airfoils is the sensitivity of the �nal optimal design

to small manufacturing errors or 
uctuations in the operating conditions. Tightening the tolerances in the

manufacturing process may prove prohibitively expensive or practically impossible to achieve. Moreover, a

certain variability in the operating conditions (e.g. 
ight speed) cannot be avoided. Developing optimization

methods which result in more \robust" designs sounds more appealing.

Several di�erent approaches (Taguchi methods, bounds-based, minimax, fuzzy and probabilistic meth-

ods) can be taken to achieve \robustness" and a detailed review thereof is given in [7]. In this work we focus

on Stochastic Optimization which tries to achieve the best performance (or minimal cost) for all possible

combinations of the operating conditions. The paper focuses on the e�ectiveness of the optimization strategy

rather than on particular implementations of optimization algorithms.

To our knowledge, non-deterministic approaches are quite new in aerodynamic optimization. In the next

section an overview of existing deterministic attempts at introducing robustness is presented. Subsequently,

we introduce an inherently statistical approach based on Van Morgenstern's Maximum Expected Value

Criterion [9] and we conclude with an application.
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Fig. 2.1. Single point optimization: (a) drag pro�le and (b) geometry

2. Deterministic Approach to Airfoil Shape Optimization.

2.1. Formulation of Optimization Problem. In a deterministic context, aerodynamic shape op-

timization of airfoils is concerned with obtaining the most aerodynamically favorable geometry for �xed {

either known or assumed { design conditions. In this approach, the requirements imposed on the design

by other disciplines, such as su�cient strength and sti�ness, are satis�ed by introducing (in)equality con-

straints on some of the design variables. Mathematically, the objective function g, which depends on the

design variables d and the model parameters � is minimized over all possible designs, subject to n constraints:

(
mind2D g(d; �)

subject to hi(d; �) � 0 for i = 1; :::; n
(2.1)

This model is not necessarily an accurate re
ection of the reality. The formulation in Eq.(2.1) contains

no information regarding o�-design condition performance. This is particularly worrisome if substantial

variability is associated with any model parameter �.

2.2. Single-Point Optimization. Consider the practical case where the drag Cd is to be minimized

over a range of free 
ow Mach numbers M1:

(
mind2D Cd(d;M1)

subject to hi(d;M1) � 0 for i = 1; :::; n
(2.2)

Typically, constraints will be imposed on both the lift Cl and the geometry (minimum thickness of airfoil

for su�cient strength)in Eq.(2.2). It is documented by other researchers [5] that, with this formulation, the

drag reduction is attained only over a very narrow range (see Figure 2.1a). In the remainder of this paper,

we will refer to this phenomenon as \localized optimization". Drela explains that the optimizer raises a

\bump" on the airfoil to �ll the transitional separation bubble (see Figure 2.1b). This e�ectively reduces the

drag penalty which occurs when a bubble undergoes transition and reattachment [4]. However, the location

of this bubble varies with M1 and this explains the really poor behavior in o�-design conditions.

It can be concluded that the real problem is not with the optimizer, which is likely to perform just

�ne, but with the problem formulation of Eq.(2.2). Trade-o�s between di�erent design conditions should

explicitly be considered in the problem formulation.
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2.3. Multi-Point Optimization. A straightforward approach to consider di�erentM1 is to generalize

the objective in Eq.(2.1) to a linear combination of 
ight conditions (m in total):

(
mind2D

Pm

i wiCd(d;M1;i)

subject to hj(d;M1;i) � 0 for j = 1; :::; n
(2.3)

Practical problems arise with the selection of the 
ight conditions M1;i and with the speci�cation of

the weights. There is no clear theoretical principles to guide the selection, which is in fact largely left up to

the designer's discretion (see [3], [5], [6]).

With the multi-point formulation, an improved Cd can be realized over a wider range of Mach numbers

M1 [5]. However, this formulation is still unable to provide a truly global solution by avoiding localized

optimization. In fact multiple \bumps" appear on the airfoil, one associated with each 
ight conditionM1;i.

In the transonic regime, each bump occurs at the shock foot location for each of the sampled Mach numbers.

3. Explicitly Statistical Approach.

3.1. Design as a Decision-Making Process. Designing a structure or device is essentially a decision-

making process. Appropriate values of the design variables d need to be selected which optimize the perfor-

mance or the utility of a design. The designer has full control over the design variables, such as the geometry

of the structure and the type and grade of materials used for it, but the operating conditions of a structure

or device, such as the loads or the operating speeds, will typically vary during the design life time.

Since each operating condition parameter may take on a range of values over the lifetime of the design, it

is possible to collect their histograms (and joint histograms). From a subjectivist point of view, the operating

conditions are then e�ectively modeled as random variables.

The previous section indicated that a speci�c design may perform exceptionally well for a selected set of

operating conditions, say the free 
ow Mach numberM1, but may perform poorly for slightly di�erent values

of M1, which are quite likely to occur. The impact of the uncertainty of M1 on the design performance

should be taken into account when the quality of a particular design is assessed.

3.2. Mathematical Problem Formulation. To avoid overloading the notation, we will resort to

our basic problem in Eq.(2.2): minimize the drag Cd over a range of free 
ow Mach numbers M1 while

maintaining lift Cl = C�l . Note that M1 is now a random variable. The optimization problem Eq.(2.2) is

now interpreted as a statistical decision-making problem.

According to the Von Neumann-Morgenstern statistical decision theory [9], the best course of action in

the presence of uncertainty is to select the design which leads to the lowest expected drag. This is commonly

known as the Maximum Expected Value criterion (MEV). The risk �, associated with a particular design

d, is identi�ed as the expected value of the perceived loss associated with the design. The best design or

decision, which minimizes the overall risk, is referred to as the \Bayes' decision". In our problem formulation,

the Bayes' risk �� and Bayes' decision d� are given as:

8><
>:

�� =
R
M1

Cd(d
�;M1)fM1(M1)dM1

= mind2D
R
M1

Cd(d;M1)fM1(M1)dM1

subject to Cl(d;M1) = C�l

(3.1)

where fM1(M1) is the probability density function of M1.
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The practical problem with formulation Eq.(3.1) is that integration is required in each of the optimization

steps. Since the objective function Cd is computationally expensive to evaluate, this approach, although

theoretically sound, becomes prohibitively expensive. Therefore a computational scheme that minimizes the

number of function calls is desirable.

3.3. Analytic Approximation of the Expectation Integral. When the variability of the free 
ow

Mach number M1 is not too large, a second-order Taylor series expansion of Cd around the mean value M1

may be a su�ciently accurate model of the variation of the drag Cd with respect to M1.

Cd(d;M1) ' Cd(d;M1) +rM1Cd:(M1 �M1) + 1

2
r2M1Cd:(M1 �M1)2(3.2)

When substituted in the Bayes' risk expression (3.1), the linear term rM1Cd:(M1 �M1) in Eq.(3.2)

disappears after integration over M1 because the Taylor series is built around the mean value M1. The

Bayes' risk is:

8<
: �� = mind2D

�
Cd(d;M1) + 1

2
V ar(M1) @2Cd

@M1
2

���
d;M1

�
subject to Cl(d;M1) = C�l

(3.3)

It seems that we have substituted an integration with an almost equally expensive computation of a

second-order derivative. Even though the approximation may result in only moderate computational savings,

this theoretical result provides additional insight in the problem. It follows from Eq.(3.3) that the variability

of M1 can a�ect the optimal design only if the objective function Cd is highly non-linear in this parameter.

This is the case near the drag divergence Mach number MDIV , where the drag undergoes a sharp increase.

In mathematical terms, the advantage of working with expected values is that the minimum is second-

order accurate with respect to variations in the parameters. This ensures a more global solution since

localized optimization will be avoided. This can also be explained in an intuitive manner: the second-order

derivative is a measure for the curvature. Since this curvature is now a part of the objective function, a

design which results in a drag trough or \cusp" as found in the optimal solution in Figure 2.1a will not be

accepted by the optimizer. The high curvature of the \cusp" would increase the objective in Eq.(3.3) and

excessive localized optimization will be avoided.

3.4. Direct Numerical Evaluation of Expectation and Comparison with Multi-Point Opti-

mization. The integration with respect to M1 in Eq.(3.1) can also be performed numerically. Irrespective

of the chosen integration scheme, the optimization problem (3.1) can formally be rewritten as (nk integration

points):

� = mind2D

 
nkX
k=1

wk :Cd(d;M1;k) + �(nk)

!
(3.4)

where the integration error �(nk)! 0 as nk !1.

Formulation Eq.(3.4) is strikingly similar to Eq.(2.3). It is therefore interesting to analyze how the

Bayes' decision d� { which minimizes � in Eq.(3.4){ compares with the multi-point solution and exactly how

localized optimization is avoided.

In the multi-point approach the Mach numbers and weights need to be selected by the designer. In

the statistical approach, the weights are directly related to the relative importance of each Mach number
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through the integration over the probability density. Which Mach numbers are used in the optimization

depends on the chosen integration scheme. In short, the statistical approach removes the arbitrariness from

the weighting process.

Careful comparison of Eq.(2.3) with Eq.(3.4) reveals the shortcoming in the multi-point formulation

which causes localized optimization. Numerical integration of Eq.(3.1) results in Eq.(3.4) and includes a

random, zero-mean error term �(nk), which decreases as the number of sampling points increases. The

multi-point optimization Eq.(2.3) di�ers from Eq.(3.4) only in the sense that this error term is not explicitly

considered in the objective function. However, omitting this error term from the optimization problem alters

the structure of the problem at hand. The multi-point optimization e�ectively looks for the design, which

minimizes the weighted sum of the goal function Cd, evaluated in the nk speci�ed points M1;k. There is

absolutely no control over what happens to the objective function Cd in the neighborhood around these nk

sampling points. During the optimization iterations, the shape of the goal function Cd(d;M1) is altered.

As a result, the discrete sum in Eq.(2.3) may fail to be a good approximation of the integral in Eq.(3.1).

In e�ect, multi-point optimization will prefer a design d1 over a design d2 even when design d1 is

considerably worse than design d2 in all but the nk speci�ed sampling points. Multi-point optimization

allows the optimizer to mold the goal function Cd to its own advantage. What was originally a random

integration error is no longer random, and the discrete sum in Eq.(2.3) no longer approximates the integral

in Eq.(3.1) at all.

This rather annoying behavior is avoided if we can prevent the optimizer from exploiting the approxi-

mation error in Eq.(3.4) to its own advantage. We need to make sure that the discrete sum in Eq.(3.4) really

is an approximation of the integral in Eq.(3.1) at all times. In general terms, we need to ensure that the

discrete sum Eq.(2.3) remains a a good approximation of the integral in Eq.(3.1). An elegant solution is to

randomize the sampling points M1;k in the evaluation of the integral but any adaptive optimization scheme

that varies the location of the integration points M1;k for each optimization step will do. Randomization of

the integration points ensures that the optimizer maximizes the performance not just for nk speci�c values

of M1;k, but for any set of values M1;k; k = 1; : : : nk. To minimize the loss of accuracy in the integration

due to random location of the integration points, strati�ed sampling can be used to generate the M1;k

values. Our experience with the spline-based integration also suggests that the sampling points should not

be allowed to be arbitrarily close to each other.

3.5. Additional Considerations. The use of Eq.(3.4) for the optimization instead of Eq.(2.3) leads

to numerical complications. Because of the random location of the integration points M1;k, a repeated

evaluation of the objective function Cd for identical values of the design parameters d will lead to di�erent

results. This makes it hard to identify whether a new design is really better than a previous one, or if the

\improvement" should be attributed to random 
uctuations instead. When a trial solution d is still far

away from the optimal solution d�, large improvements �Cd can be expected. This means that a very crude

integration, which requires very few function evaluations, will su�ce in the early stages of the optimization.

The improvement of the goal function is expected to be smaller closer to the optimal solution, and more

sampling points M1;k will be required to keep the integration error small enough. Current research focuses

on the development of a strategy which takes maximum advantage of this e�ect.

In addition, the physical and mathematical models used for the objective function will generally not be

error-free. Each of these errors can be treated as a random variable. Their e�ect on the optimal solution is

readily assessed by extending the integration over these additional random variables. It is believed that the

approximate second-order result in Eq.(3.3) will prove particularly useful for this purpose. In a �rst step we

5



minimize the drag while keeping the model errors �xed at their average level. If the second order derivative

of the drag with respect to this model error parameter at the solution of this simpli�ed problem (without

explicit error modeling) is su�ciently small, it can be concluded that these model errors will only have a

minimal impact on the solution. Otherwise, the model errors should explicitly be included in the problem

formulation and a full integration is required.

4. Application: 2D-Airfoil in Transonic Regime.

4.1. Problem Formulation. In this section the presented method is applied to a practical transonic

optimization problem: lift-constrained (C�l = 0:175) minimization of the drag Cd for a Mach number range

M1 2 [0:7; 0:8] (we assumed a uniform distribution for M1). In this analysis only the Mach number is

considered an uncertain operating variable; no additional model uncertainties are included. No constraints

are imposed on the pitching moment Cm. The baseline geometry is a NACA-0012 pro�le, which was splined

using 23 control nodes. The design variables in the optimization problem are given by the vertical positions

of the control nodes and the angle of attack �. Three control nodes are in locked positions: one at the leading

edge, and a double control node at the trailing edge. The inviscid Euler equations for the 
ow are discretized

on unstructured meshes [2]. The sensitivities of both lift and drag with respect to the design parameters are

e�ciently calculated using a continuous adjoint formulation [1]. We used a bound constrained trust region

algorithm in the optimization [8]. The following optimization formulations are compared:

1. optimization at the midpoint of the Mach range: M1 = 0:75

2. multipoint optimization using 4 Mach numbers: M1 = 0:72; 0:74; 0:76 and 0:78

3. \robust" optimization using 4 randomly selected Mach numbers

In formulations 2 and 3, the integration is performed using interpolating natural splines, which are based on

5th-order Hermite-polynomials. Formulations 2 and 3 require a similar amount of computational e�ort.

4.2. Single-Point Optimization Results. The single point case has 21 design variables: the angle

of attack � and the vertical positions of the 10 spline control nodes at both the top and bottom surface of

the airfoil. Table 1 indicates a dramatic reduction of the drag Cd is obtained at M1 = 0:75, but Figure 2.1a

reveals that this gain is rapidly lost when the free 
ow Mach number is away from this design value.

The geometry plot in Figure 2.1b shows what happens. During the optimization a distinct \bump" is

formed on the top surface. The optimizer takes advantage of all degrees of freedom to achieve the lowest

possible drag at M1 = 0:75, irrespective of what happens to the drag at other Mach numbers. Obviously,

there is a penalty to be paid for this: even though the drag reduction at the design Mach number is 24%,

the reduction over the entire Mach range is only 11% (see Table 1). This localized optimization behavior

was previously documented by Drela [5].

4.3. Multi-Point Optimizations. The constrained multi-point optimization has 24 design variables:

the same 20 y-coordinates which describe the geometry and 4 angles of attack. The optimal angle of attack

(which ensures that the lift constraint is satis�ed)depends on the free 
ow Mach number, so each design

condition adds one additional angle-of-attack design variable. The integration of the drag over the Mach

range is performed using spline-based inter/extrapolation for both the �xed point and robust optimizations.

The results in Table 1 indicate that a multi-point optimization does indeed achieve a better overall

drag reduction: the discrepancy between the drag reduction at the design points (18%) and the true drag

reduction over the entire range (15:5%) is signi�cantly reduced. This is in line with the �ndings of other

researchers [5]. However, Figure 4.1 indicates a drag-trough at or near each of the discrete design points.
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Fig. 4.1. Drag pro�le obtained using di�erent optimization strategies

Table 4.1

Comparison of drag improvements for di�erent optimization formulations

Optimization Model Reduction at Sampling Points Reduction of Expected Value

Single Point 24% 11%

4-Point Fixed 18% 15:5%

4-Point Robust N/A 17:5%

The drag increases rapidly away from the design points. This is very clear near the high end of the Mach

range.

Figure 4.1 shows that the \robust" optimization scheme with randomly selected values for M1 results

in a much smoother drag pro�le over the entire Mach range. The resulting airfoil geometry is a lot smoother

as well. In this particular case the drag reduction over the entire interval is 17:5%, almost identical to the

drag reduction at the design points for the multipoint optimization with 4 points. It can be concluded that

the \robust" scheme results in a superior design for an identical computational e�ort. It is interesting to

note that the �nal geometries are quite di�erent for each method: one solution requires a much higher angle

of attack than the other.

5. Summary and Conclusions. The robustness of an optimal solution can be achieved by incorpo-

rating the variability of the operating conditions directly into the optimization problem formulation. The
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practical application shows that a statistical approach leads to smooth airfoil geometries and drag pro�les.

The suggested method is computationally similar to existing multi-point optimization, which is widely

accepted in industry. This increases the likelihood of acceptance by both designers and theorists alike. The

new formulation avoids the arbitrary selection of design conditions and weighting factors; they automatically

follow from the procedure.

The relative likelihood of each operating condition is taken into account. A randomized integration

scheme ensures that the optimizer cannot exploit approximation errors due to discretization.

It can be concluded that optimization on the basis of the Euler equations leads to some interesting can-

didate designs. However, viscous e�ects need to be included to achieve more realistic pressure distributions.
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