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EFFECTS OF EDDY VISCOSITY ON TIME CORRELATIONS

IN LARGE EDDY SIMULATION

GUOWEI HE�, R. RUBINSTEINy, AND LIAN-PING WANGz

Abstract. Subgrid-scale (SGS) models for large eddy simulation (LES) have generally been evaluated by

their ability to predict single-time statistics of turbulent 
ows such as kinetic energy and Reynolds stresses.

Recent applications of large eddy simulation to the evaluation of sound sources in turbulent 
ows, a problem

in which time correlations determine the frequency distribution of acoustic radiation, suggest that subgrid

models should also be evaluated by their ability to predict time correlations in turbulent 
ows.

This paper compares the two-point, two-time Eulerian velocity correlation evaluated from direct numerical

simulation (DNS) with that evaluated from LES, using a spectral eddy viscosity, for isotropic homogeneous

turbulence. It is found that the LES �elds are too coherent, in the sense that their time correlations decay

more slowly than the corresponding time correlations in the DNS �elds. This observation is con�rmed by

theoretical estimates of time correlations using the Taylor expansion technique. The reason for the slower

decay is that the eddy viscosity does not include the random backscatter, which decorrelates 
uid motion at

large scales. An e�ective eddy viscosity associated with time correlations is formulated, to which the eddy

viscosity associated with energy transfer is a leading order approximation.
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1. Introduction. In large eddy simulation of turbulent 
ows, large-scale velocity �elds are computed

directly from the �ltered Navier-Stokes (N-S) equation, while the e�ects of small-scale velocity �elds on

large-scale velocity �elds are modeled using a SGS model. The SGS models are constructed to represent

energy drain from large scales to small scales, and local inverse energy transfer, i.e., energy backscatter (from

small scales to large scales). It is desirable that the SGS models can produce a LES �eld which correctly

predicts the large-scale statistics of the N-S �eld. A direct evaluation [1, 2, 3] of the SGS models is to compare

statistics of the LES �elds with those of the �ltered N-S �elds. There has been extensive work comparing

single-time statistics of the LES and DNS �elds. For recent reviews, see [4, 5]. However, there is little work

concerning two-time statistics. This paper investigates the e�ects of the eddy viscosity SGS models on the

time correlations of the LES �elds. The research is motivated by use of LES in the aeroacoustics [4, 6], where

sound radiation is dependent on Eulerian time correlations.

Time correlations are among the simplest statistical properties of turbulent 
ow. We will consider

Eulerian time correlations in isotropic homogeneous turbulence, whose Fourier transformation is expressed

as

C(k; �) = hu(k; t+ �) � u(k; t)i:(1.1)

�ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23681-2199 (email:hgw@icase.edu). This research

was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while the author

was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681.
yMail Stop 128, NASA Langley Research Center, Hampton, VA 23681-2199 (email:r.rubinstein@larc.nasa.gov).
zDepartment of Mechanical Engineering, 126 Spencer Laboratory, University of Delaware, Newark, DE 19716.

1



where u(k; t) is a Fourier mode of the velocity �eld at the wavenumber vector k with k = jkj. The bracket

\h i" means ensemble averaging. The Eulerian time correlation measures the temporal changes seen by

an observer in a �xed reference frame with zero mean velocity. For a possible equilibrium range at high

frequencies, such an observer sees small scale eddies being swept past him by larger scale eddies. The

correlation coe�cient [8, 9] between the LES and DNS �elds has been used to evaluate the ability of LES

to predict 
ow evolution. It was demonstrated that the correlation coe�cient will decay to zero after a few

eddy turnover times. This implies the LES and DNS �elds will be completely decorrelated. However, this

result is not discouraging. In fact, two DNS �elds which are initially identical at large scales but slight

di�erent at small scales will also become completely decorrelated, although their uncoupled statistics still

remain equal. Even independent random �elds can be statistically identical. Therefore, the relevant question

to ask is if the LES �elds can reproduce the statistics of the DNS �elds, whether the LES and DNS �elds are

correlated or not. In this paper, the validity of the LES is evaluated by its ability to reproduce the Eulerian

time correlations of the DNS �eld.

Current SGS models can be categorized into several groups: eddy viscosity, stochastic, similarity, as-

sumed SGS velocity models [5] and multiscale model [10]. The most extensively used SGS model is based

on the eddy-viscosity assumption: the e�ects of subgrid scale motion is supposed to be similar to that of

molecular dissipation, but with an eddy viscosity which depends on both wavenumber and the cuto�. Many

eddy viscosity models have been developed including the Smagorinsky model, the kinetic-energy model and

the dynamical model. In isotropic homogeneous turbulence, the eddy viscosity can be formulated in terms

of the energy balance equation:

�
@

@t
+ 2�k2

�
E(k; t) = T (k; t);(1.2)

where E(k; t) is the kinetic energy spectrum, � the kinematic viscosity and T (k; t) the energy transfer. One

introduces a cuto� wavenumber kc such that only scales larger than 1=kc will be resolved explicitly. The

energy transfer can be separated into two parts

T (k; t) = T<(kjkc; t) + T>(kjkc; t);(1.3)

where T<(kjkc; t) is the part of the total energy transfer induced by triad interactions among waves p, q and

k satisfying p+q = k such that p and q are less than kc, and T
>(kjkc; t) the part of the total energy transfer

induced by triad interaction among the wavenumber p, q and k satisfying p+q = k such that p or q is larger

than kc. Hereinafter, the superscript < implies the part of any quantity involving only wavenumbers less

than the cuto� kc, while the superscript > denotes the remainder, in which at least one of the wavenumbers

is larger than the cuto� kc. The eddy viscosity is de�ned by [11]:

�t(kjkc; t) = �
T>(kjkc; t)

2k2E(k; t)
;(1.4)

so that �nally

�
@

@t
+ 2(� + �t)k

2

�
E(k; t) = T<(kjkc; t):(1.5)
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In the formulation of the papers [12, 13]

�t(kjkc; t) = �+t (kjkc)

s
E(kc; t)

kc
;(1.6)

where E(kc; t) is the energy spectrum at the cuto� wavenumber kc and �+t (kjkc) is

�+t (kjkc) = 0:267+ 9:21 exp(�3:03kc=k):(1.7)

This eddy viscosity model has been extensively studied by DNS and experiments. These studies show

that it does model the energy dissipation at small scales but misses the energy backscatter from small scales

to large scales. We will show that the lack of the random backscatter causes more coherence, in the sense

that the time correlations of the LES �elds decay more slowly than those of the DNS �elds. We will focus

on the eddy viscosity model (1.4). The results may be extended to other eddy-viscosity SGS models. In

Section 2, we calculate the Eulerian time correlations for the DNS and LES �elds, respectively. We will show

that the LES �elds predict larger time correlations. In Section 3, the reasons for the larger predictions are

explained. We use the Taylor expansion technique to estimate the time correlations respectively for the N-S

and LES �elds. The e�ective eddy viscosity for time correlation is derived. Discussion and conclusions are

given in Section 4.

2. Numerical calculation of time correlations. We carry out DNS and LES of isotropic homoge-

neous turbulence. The three-dimensional N-S equations are solved numerically in a periodic box of side 2�

by the standard pseudospectral algorithm. In DNS, the 
ow cube is discretized uniformly into N = 128 grid

points, which de�nes the wavenumber components in Fourier space as kj = �0; 1; � � � ; N=2�1 for j = 1; 2; 3.

The aliasing errors are removed by the two-thirds truncation method. Consequently, the e�ective wavenum-

ber space is by jkj < N=3. The initial condition is set to be isotropic and homogeneous with the energy

spectrum E(k; 0) / k4=k50 exp(�2(k=k0)
2), where k0 is the wavenumber at which the maximum of the energy

spectrum occurs. By steady random forcing on the �rst two wavenumber shell k < 2, stationary conditions

are achieved after some passage of time. In this study, the relevant parameters are: viscosity � = 0:002, time

step size dt = 0:005, Taylor microscale wave number R� = 40, CFL number 0:46 and velocity derivative

skewness �0:34. In LES, N = 64. We use the eddy viscosity model (1.6) and the sharp cuto� �lter. All

other parameters in the LES are kept to be the same as the DNS. The spectral codes for the DNS and LES

are developed and implemented on the ICASE Beowulf 96 CPU cluster computer, Coral.

In Fig. 2.1, we plot the time correlations of the LES �elds against the time delay. Fig. 2.1 clearly

demonstrates the spatial scale dependence of the time correlations: the larger wavenumbers remain coherent

for a longer time while the smaller wavenumbers are rapidly decorrelated. Fig. 2.2 and Fig. 2.3 show the

same data against time delay normalized by eddy turnover time �e = [k
p
kE(k)]�1 and sweeping time

�s = (uk)�1 respectively, where u is the rms velocity. The sweeping time is more suitable for collapsing the

time correlation.

Fig. 2.4 shows the time correlations of the DNS and LES �elds for di�erent wavenumbers, k = 5; 10; 15; 20,

spanning a range from the scale on the order of the integral scale to the scale on the upper end of resolved

scale range. The times are normalized by the sweeping time at the largest wavenumber k = 1. It is evident

that the time correlations of the LES �elds decay more slowly than those of the DNS �elds.
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Fig. 2.1. Time correlation C(k; �) of the LES �eld as a function of time lag � : k = 5 (solid), 10 (dash), 15 (dash-dot),

20 (dash-dot-dot).
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Fig. 2.2. Time correlation C(k; �) versus the time lag � normalized by the local eddy-turnover time �e. Other details are

as in Fig. 2.1.
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Fig. 2.3. Time correlation C(k; �) versus the time lag � normalized by the sweeping time �s. Other details are as in

Fig. 2.1.
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Fig. 2.4. Time correlation C(k; �) versus the time lag �=�s. The solid line for the LES �eld and the dash line for the

DNS �eld: k = 5; 10; 15; 20.

3. The e�ects of eddy viscosity on time correlation. The numerical observations in the last

section can be supported by theoretical estimates of time correlations. We will use the Taylor expansion

technique to estimate time correlations for both the N-S and LES velocity �elds. The Taylor expansions have

been developed to construct approximations to statistics in turbulence. Kaneda's group [14, 15] has done

extensive work on the Taylor expansion approach. Its central idea is to expand the time correlation into a

power series of time lag � . The coe�cients in the Taylor series are determined by the governing equations.
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The governing equations for the N-S �elds u�, � = 1; 2; 3; in spectrum space are

�
@

@t
+ �k2

�
u�(k; t) =M��
(p+ q = k)u�(p)u
(q);(3.1)

where

M��
(p+ q = k) =M��
(k)
X

p+q=k

;

M��
(k) =
1

2i
(k�P�
(k) + k
P��(k)) ;

P��(k) = ��� � k�k�=k
2;(3.2)

and
P

p+q=k denotes a summation for all p and q such that p+ q = k.

The governing equations for the LES �elds u�, � = 1; 2; 3, in spectrum space are

�
@

@t
+ [� + �t(kjkc)]k

2

�
u�(k; t) =M<

��
(p+ q = k)u�(p)u
(q):(3.3)

To facilitate comparison, we simply assume that the N-S and LES velocity �elds u�(k; t) are identical at the

time t. The velocity �elds u�(k; t+ �) at the later time t+ � are obtained from the equation.

The Taylor expansion of the time correlation (1.1) has the following form

C(k; �) = C0(k) + C1(k)� + C2(k)�
2=2 + � � � ;

Cn(k) = h
dnu(k; t)

dtn
u(�k; t)i:(3.4)

The time derivatives of the velocity �elds can be formally calculated from the N-S equation. For a negligible

viscosity �, we obtain

C0(k) = hu�(k; t)u�(�k; t)i;

C1(k) =
1

2

�
T< + T>

�
;

C2(k) = 2M��
(p+ q = k)M���(m+ n = p)hu�(m; t)u�(n; t)u
(q; t)u�(�k; t)i:(3.5)

Similarly, the Taylor coe�cients of time correlations in the LES velocity �elds can be obtained

~C0(k) = hu�(k; t)u�(�k; t)i;

~C1(k) =
1

2

�
T< � 2�t(kjkc)k

2hu�(k; t)u�(�k; t)i
�
;

~C2(k) = 2M< �M��
(p+ q = k)�t(kjkc)(p
2 + q2 = k2)hu�(p; t)u
(q; t)u�(�k; t)i

+[�t(kjkc)k
2]2hu�(k; t)u�(�k; t)i:(3.6)

Comparing the equations (3.5) with the equations (3.6), we �nd: (1) C0(k) = ~C0(k); and (2) the eddy

viscosity (1.4) implies C1(k) = ~C1(k). In other words, the eddy viscosity (1.4) can be obtained solving
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the equation C1(k) = ~C1(k). Recall that C1(k) = 0; (3) C2(k) 6= ~C2(k) for the eddy viscosity (1.4). This

implies that the time microscale of the LES �eld is not equal to that in the DNS �eld. Therefore, the time

correlations of the LES �elds are di�erent from those of the N-S �elds. The numerical calculation indicates

that the former is larger than the latter.

The results from numerical calculation and theoretical estimations can be understood by the following

physical arguments: The contributions of small scales to large scales can be described as energy dissipation

and random backscatter. The eddy viscosity correctly models the drain of energy from large scales to small

scales but misses the random backscatter from small scales to large scales. This leads to a more coherent LES

�eld. Therefore, the LES �eld evolves in a more correlated fashion, in the sense that their time correlations

decay more slowly.

The eddy viscosity is introduced as a surrogate for energy drain from resolved scales to the subgrid scales.

Its expression (1.4) is then found from the energy balance equation. Following this idea, the e�ective eddy

viscosity for time correlation can be found from its governing equation as a surrogate of the contribution

from subgrid scales to resolved scales.

The governing equation for time correlation may be written as

�
@

@�
+ �k2

�
2hu�(k; t+ �)u�(�k; t)i

=M��
(p+ q = k) (hu�(p; t+ �)u
(q; t+ �); u�(�k; t)i � c:c)(3.7)

where \c:c" represents the complex conjugate of the triple moment. We separate the nonlinear interaction

on the right hand of the equation (3.7) into two parts: M<
��
 for p and q < k and M>

��
 for p or q � k such

that M��
 = M<
��
 +M>

��
 . Then, the e�ective eddy viscosity which describes the e�ects of the subgrid

scales on the time correlations of the LES �elds may be de�ned by

�� (kjkc) =
M>

��


2k2hu�(k; t+ �)u�(�k; t)i
:(3.8)

We can also derive a Taylor expansion of the e�ective eddy viscosity �� (kjkc) in power of time lag � , leading

to

�� (kjkc) = �t(kjkc) +O(�):(3.9)

It indicates that the normal eddy viscosity (1.4) is the leading order approximation to the e�ective

eddy viscosity (3.8). For small time lag, the normal eddy viscosity produces a satisfactory approximation.

However, for large time lag, the corrections from higher order terms must be taken into account.

4. Discussion and conclusion. The normal eddy viscosity models the energy dissipation but ignores

the random backscatter. It produces a more coherent LES �eld. It is shown by numerical calculation and

theoretical estimation that the time correlations for the LES �eld decay more slower than those for the

N-S �eld. The di�erences in time correlations between the LES and DNS �elds decrease with increasing

wavenumber. The e�ects of the eddy viscosity on time correlation have to be considered while applying LES

to sound radiation.

We have shown that the normal eddy viscosity for the energy balance equation is a leading order

approximation to the e�ective eddy viscosity for the time correlation equation. Therefore, it is di�cult to
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construct a new surrogate of eddy viscosity, which could exactly satisfy both energy balance equation and time

correlation equation. An e�ective eddy viscosity that could simultaneously produce a good approximation to

the terms involving small scales in the energy balance and time correlation equations will be helpful. Noting

that the information given by the eddy viscosity are only statistically averaged one, we need to account

for the stochastical e�ects on the particular realization of the LES �elds. The stochastical e�ects could be

introduced by random forcing. Therefore, the decorrelation of the LES �eld may be resorted by including

random force.
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