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A MODEL FOR RATE-DEPENDENT HYSTERESIS IN PIEZOCERAMIC MATERIALS

OPERATING AT LOW FREQUENCIES

RALPH C. SMITH�, ZOUBEIDA OUNAIESy, AND ROBERT WIEMANz

Abstract. This paper addresses the modeling of certain rate-dependent mechanisms which contribute

to hysteresis inherent to piezoelectric materials operating at low frequencies. While quasistatic models

are suitable for initial material characterization in some applications, the reduction in coercive �eld and

polarization values which occur as frequencies increase must be accommodated to achieve the full capabilities

of the materials. The model employed here quanti�es the hysteresis in two steps. In the �rst, anhysteretic

polarization switching is modeled through the application of Boltzmann principles to balance the electrostatic

and thermal energy. Hysteresis is then incorporated through the quanti�cation of energy required to translate

and bend domain walls pinned at inclusions inherent to the materials. The performance of the model is

illustrated through a �t to low frequency data (0.1 Hz - 1 Hz) from a PZT5A wafer.
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1. Introduction. The majority of currently employed models for hysteresis in ferroelectric materials

are based on the assumption of static or quasistatic operating conditions. However, it has long been rec-

ognized that the polarization which is generated at a given �eld strength is dependent upon the rate at

which the �eld is cycled. Hence while quasistatic models may be suitable for initial material characteri-

zation in certain applications, the incorporation of rate-dependence in the models is necessary to quantify

the material behavior through its full operational range. In this paper we characterize the low frequency

rate-dependent hysteresis in piezoceramic materials through a model comprised of two components: (i) A

frequency-dependent anhysteretic model developed from Boltzmann principles, and (ii) Algebraic and ODE

relations which quantify reversible and irreversible polarization changes due to the bending and translation

of domain walls.

The dependence of the polarization, in barium titanate, on the rate at which the �eld is cycled was

discussed in detail by Landauer et al. [11] with signi�cant reference to observations made by Merz [12].

These references illustrate that the coercive �eld at which the polarization switches direction is dependent

upon the time allowed for switching. As illustrated in Figure 2 of [11], the rate at which the �eld cycles also

signi�cantly a�ects the shape of the polarization curve, with the maximum polarization attained at a �xed

�eld strength decreasing with increasing frequency.

To illustrate these phenomena in the context of piezoceramic materials, data collected from a PZT5A

wafer for input �elds ranging from 0.1 Hz to 1 Hz is plotted in Figure 1.1. A comparison between the 0.1 Hz
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Fig. 1.1. Rate-dependent hysteresis measured in a PZT5A wafer for input �elds cycled from 0.1 Hz to 1.0 Hz.

quasistatic data and the 1 Hz data illustrates a decrease in both the coercive �eld and the polarization as

the frequency increases. This indicates the necessity of considering the e�ects of rate-dependence, even at

very low frequencies.

Numerous modeling strategies have been employed to quantify hysteresis in piezoelectric and ferroelectric

materials. These include microscopic theories applied at the lattice or grain level [13], macroscopic theories

based on empirical observations [4, 6, 7, 8, 9], and semi-macroscopic models which combine energy relations

with macroscopic averages to quantify the bulk behavior of the material [3, 10, 15, 16, 17]. While some of

these models incorporate frequency-dependence (e.g., [13, 17]), the majority of current analysis is directed

toward static or quasistatic hysteresis phenomena. Moreover, a basic tenet underlying the construction of

Preisach models is the assumption that the hysteresis behavior is rate independent [2]. Hence this approach

will not accommodate variable frequencies of the type illustrated in Figure 1.1 using a single parameter set.

The model developed here is based on the approach employed in [14, 15, 16] for quasistatic regimes. The

anhysteretic polarization is modeled �rst through the balance of electrostatic and thermal energies using

Boltzmann principles. In the original formulation of the model, the anhysteretic polarization was formulated

under equilibrium conditions between the �eld and polarization. Hysteresis was then incorporated by quanti-

fying the irreversible and reversible changes in polarization due to domain wall movement. The modi�cation

of the model considered here is based on probabilistic arguments which ascertain the rate-dependence of the

anhysteretic polarization. The resulting model yields the decrease in polarization observed in piezoceramic

materials as the drive frequency increases. Hence it quanti�es the e�ects observed in Figure 1.1. Finally,

this model reduces to the quasistatic models in [14, 15, 16] when frequencies are limited to zero.

The quasistatic model from [14, 15, 16] is summarized in Section 2 to illustrate the methodology and

to indicate necessary modi�cations. The rate-dependent model is then developed in Section 3 and the

performance of the model is illustrated in Section 4 through a comparison of the model prediction with the

experimental data plotted in Figure 1.1.

2. Quasistatic Model. To illustrate the modeling approach and indicate components which must be

modi�ed, we summarize the model developed in [14, 15, 16] for hysteresis in quasistatic regimes. As indicated

previously, the model is comprised of two components. The �rst models the anhysteretic polarization which
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is due to polar switching in addition to domain rotation at high �eld levels. Under certain conditions, the

anhysteretic polarization is multivalued and hence incorporates a form of hysteresis. The transition between

remanence and the coercive point is typically steeper than that observed in most ferroelectric materials,

however, due to their polycrystalline nature and the inhibition of domain wall movement due to inclusions

inherent to the materials. The latter e�ects are quanti�ed through the consideration of energy required to

bend and translate domain walls pinned at inclusions in the material. The combined model characterizes the

nonlinear and hysteretic relation between the input �eld E and the polarization P generated in the material.

The anhysteretic polarization for both quasistatic and dynamic regimes is modeled through the balance

of the electrostatic and thermal energy using Boltzmann principles. For a dipole p in an electric �eld E, the

potential energy is

E = �p �E = �pE cos(�)(2.1)

where p = jpj and E = jEj. The thermal energy at temperature T is given by ET = kBT where kB denotes

Boltzmann's constant. The probability that a dipole occupies the energy state E is then speci�ed through

Boltzmann statistics as

�(E) = Ce�E=kBT(2.2)

where the parameter C is chosen to ensure that integration over all possible dipole con�gurations yields the

total number N of moments per unit volume. The assumptions specifying possible moment orientations

determines the form of the anhysteretic model.

The simplest model results from the assumption that dipoles can be oriented only in the direction of the

electric �eld or opposite to it. If we let N+ and N� respectively denote the number of dipoles oriented with

and opposing the �eld, then the application of (2.2) yields

N+ = CepE=kBT ; N� = Ce�pE=kBT :(2.3)

Since N = N+ +N�, it then follows that

N = 2C cosh

�
pE

kBT

�
:(2.4)

The polarization for this con�guration is given by

P = pN+ � pN� = 2pC sinh

�
pE

kBT

�
which yields the Ising spin relation

P = pN tanh

�
pE

kBT

�
(2.5)

relating E and P .

As detailed in [15], the anhysteretic polarization saturates to the value Ps for increasing �eld inputs.

Furthermore the relation (2.5) ignores the interaction with neighboring domains as well as electromechanical

inputs due to applied stresses. The inclusion of these mechanisms yields the anhysteretic relation

Pan = Ps tanh

�
Ee

a

�
(2.6)
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where

Ee = E + �P + P�(2.7)

denotes the e�ective �eld acting on the domain. The parameter � quanti�es the degree of interdomain

coupling while P� incorporates �eld contributions from an applied stress �. The parameter a quanti�es a form

of temperature-dependence due to the thermal energy [15]. For material characterization, the parameters

Ps; � and a are estimated either from asymptotic relations or a least squares �t to data [16].

A second anhysteretic model is obtained under the assumption that the dipoles can orient uniformly in

all directions. Integration and scaling for this case yields the Langevin model

Pan = Ps

�
coth

�
Ee

a

�
�

�
a

Ee

��
:(2.8)

As illustrated in [15], the Langevin model saturates less quickly than the Ising spin model since dipoles

have more freedom concerning the directions in which they can orient. Both models have been employed to

characterize the anhysteretic behavior of ferroelectric and piezoceramic materials.

The second component of the hysteresis model incorporates the energy required to translate and bend

domain walls pinned at inclusions inherent to the material. As detailed in [15], this respectively yields an

irreversible component Pirr and reversible component Prev to the polarization. The quanti�cation of energy

required to break pinning sites yields the di�erential equation

dPirr

dE
= e� Pan � Pirr

k� � � (Pan � Pirr)
(2.9)

specifying the irreversible polarization. The parameter � = sign(dE) ensures that the energy required to

break pinning sites always opposes changes in polarization. The physical observation that polarization

changes after a reversal in �eld direction are reversible motivates the incorporation of the parameter

e� = (
1 ; fdE > 0 and P < Pang or fdE < 0 and P > Pang

0 ; otherwise
:

Finally, the parameter k, which quanti�es the average energy required to reorient domains, is demonstrated

in [16] to be asymptotically approximated by the coercive �eld Ec in soft materials.

The second component of the polarization is the reversible polarization which models the e�ects of

domain wall bending. To �rst approximation, this is modeled by the relation

Prev = c(Pan � Pirr)(2.10)

where c is a parameter which must be estimated for the speci�c application.

The total polarization is then given by

P = Prev + Pirr :(2.11)

To implement the model, the e�ective �eld for a given �eld and irreversible polarization level is computed

using (2.7). This e�ective �eld value is then employed in either (2.6) or (2.8) to compute the corresponding

anhysteretic polarization. The subsequent irreversible polarization is determined by numerically integrating

(2.9) and the total polarization is speci�ed by (2.11). We note that the prevailing polarization (2.11) is

employed in (2.7) when modeling the contributions of neighboring dipoles on the e�ective �eld.
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3. Time-Dependent Model. The model summarized in Section 2 is derived under the assumption

of equilibrium conditions when employing the electrostatic potential energy relation (2.1) to derive the

model for the anhysteretic polarization along with the energy required to reorient dipoles and hence break

pinning sites. This assumption is valid under static or quasistatic operating conditions but omits rate-

dependent mechanisms which are signi�cant even at low frequencies. In this section, we derive a model for

the anhysteretic polarization which incorporates this rate-dependence and reduces to the Ising spin model

as the frequency is limited to zero. This quanti�es a signi�cant component of the rate-dependent behavior

observed in Figure 1.1.

3.1. Anhysteretic Polarization. To derive the anhysteretic model, we consider the material to be

comprised of a lattice of cells with each cell having a dipole moment that is aligned either in the direction of

the �eld or opposite to it. This is the same assumption made when deriving the Ising spin model in Section 2

and is analogous to the regimes considered in [1, pages 69-71], [5, pages 104-106] and [19, pages 370-373].

The number of cells aligned in the direction of the applied �eld at time t is denoted by N1(t) and N2(t)

denotes the number of cells whose dipole moment is oriented in the opposite direction.

The potential energy associated with the two equilibria is depicted in Figure 3.1. In the absence of an

applied �eld, any interchange of dipole orientations is due to thermal 
uctuations, whereas dipoles have a

higher probability of overcoming the energy barrier and the number N1(t) increases in the presence of an

applied �eld E. To quantify this increase, we let w21 denote the probability that one cell, considered for one

second, switches orientation into the �eld direction and let w12 denote the probability that a dipole switches

in the opposite direction due to thermal excitation. The change in the number of cells having a speci�c

orientation is then determined by the equations

dN1

dt
= �w12N1 + w21N2

dN2

dt
= w12N1 � w21N2 :

At equilibrium, the conditions dN1

dt = dN2

dt = 0 yield the requirement

w12

w21
=

N2

N1
:(3.1)

In this case, the Boltzmann relation (2.2) holds and

N1 = CepE=kBT

N2 = Ce�pE=kBT
(3.2)

where, from (2.4), the parameter C is speci�ed by C(E; T ) = N
2 cosh(pE=kBT )

. A comparison of (3.2) with

(2.3) illustrates that the Ising spin distribution results when the time-dependent system considered here is

allowed to reach equilibrium. Given the form of N1 and N2, the probabilities can be expressed as

w12 =
1

2�
e�pE=kBT

w21 =
1

2�
epE=kBT

where �(E; T ) is an arbitrary function of E and T . To determine the form of �(E; T ), we note that when the

system is not in equilibrium, and hence dN1

dt 6= 0, the probability that a cell switches orientation is nonzero.
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Fig. 3.1. The double potential well associated with the two equilibria; (a) No applied �eld, (b) An applied �eld E.

Hence

w12 + w21 =
1

�1

which yields the condition

�(E; T ) = �1(E; T ) cosh

�
pE

kBT

�
:(3.3)

The parameter �1 is, in general, also a function of E and T . For the model comparison to PZT5A data

presented in Section 4, we consider isothermal conditions and assume su�ciently small �eld dependence to

justify considering �1 as constant. In general applications, however, the determination of mechanisms for

determining the �eld and temperature dependence in �1 may improve the accuracy of the model.

We now consider the solution of the resulting system

dN1

dt
= �

1

2�
e�pE=kBTN1 +

1

2�
epE=kBTN2

dN2

dt
=

1

2�
e�pE=kBTN1 �

1

2�
epE=kBTN2

(3.4)

under two sets of assumptions regarding the input �eld E. For a general E, the solution of (3.4) is

N1(t) = k1 + k2e
�(t=�) cosh(pE=kBT )

N2(t) = k1e
�2pE=kBT � k2e

�(t=�) cosh(pE=kBT ) :

To determine the integration constants k1 and k2, we consider the limiting behavior as t ! 0 and t ! 1.

As t!1, the distribution of dipoles limits to the equilibrium case (3.2) modeled by the Ising spin relation.

This yields

k1 = CepE=kBT :

The enforcement of equal initial dipole distributions, N1(0) = N2(0), requires that

k2 = C sinh

�
pE

kBT

�
:

The �nal distribution of dipoles at a given �eld level is then

N1(t) = CepE=kBT + C sinh

�
pE

kBT

�
e�t=�1

N2(t) = Ce�pE=kBT � C sinh

�
pE

kBT

�
e�t=�1

(3.5)
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where (3.3) was used to eliminate �(E; T ).

The polarization generated by this dipole con�guration is speci�ed through the relation

P (t) = pN1(t)� pN2(t)

= 2pC sinh

�
pE

kBT

�h
1� e�t=�1

i

= pN tanh

�
pE

kBT

�h
1� e�t=�1

i
:

(3.6)

For the e�ective �eld Ee = E + �P + P� introduced in (2.7), this yields the rate-dependent anhysteretic

polarization model

Pan(t) = Ps tanh

�
Ee

a

�h
1� e�t=�1

i
:(3.7)

A comparison of (3.7) with the Ising spin model (2.6) indicates that the latter is obtained as t!1.

We consider now the response of the anhysteretic polarization to a periodic input �eld

E(t) = E0e
i!t :(3.8)

To accommodate the periodicity, we consider solutions of the form

N1(t) = N0 + �0e
i!t

N2(t) = N0 � �0e
i!t :

The substitution of these expressions into (3.4) and consolidation of terms yields

�0 =
N0

1 + i!�1
tanh

�
pE(t)

kBT

�
e�i!t

where E(t) is of the form assumed in (3.8). The resulting polarization is then

P (t) = pN1(t)� pN2(t)

=
pN

1 + i!�1
tanh

�
pE(t)

kBT

�
:

The isolation of the real component of the polarization, enforcement of saturation criteria, and the incorpo-

ration of the e�ective �eld Ee then yields the frequency-dependent anhysteretic relation

Pan(t) =
Ps

1 + !�1
tanh

�
Ee

a

�
:(3.9)

We �rst note that as ! ! 0, this expression reduces to the Ising spin model (2.6). In this formulation,

it can also be observed that the parameter �1 acts as a relaxation time. While �1 is considered constant

for the example in Section 4, it is in general a function of both E and T . Finally, we note that for in-

creasing frequencies, the expression incorporates the decrease in polarization observed in the data plotted in

Figure 1.1.
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3.2. Hysteresis Model. The expression (3.9) provides a frequency-dependent model for the anhys-

teretic polarization. This relation is combined with the expression (2.9) for the irreversible polarization

Pirr and (2.10) for the reversible polarization Prev to obtain a frequency-dependent model for the total

polarization. We note that the construction of the model in this manner neglects the quanti�cation of rate-

dependence in the energy required to bend domain walls or break pinning sites, thus rendering the model

accurate only at low frequencies. The incorporation of these latter e�ects is under investigation and will be

reported in a future work. An example illustrating the performance of the model at low frequencies (0.1 Hz

and 1.0 Hz) is provided in the next section.

4. Model Validation. The model developed in Section 3 quanti�es both the hysteresis inherent to the

E-P relation and the decrease in polarization which occurs when the frequency of the input �eld is increased

from quasistatic to low frequency regimes. To illustrate its capabilities, we consider the characterization of

polarization generated in a PZT5A wafer in response to a 2.5 MV/m input �eld at frequencies ranging from

0.1 Hz to 1.0 Hz. A constant temperature was maintained to ensure isothermal conditions.

The parameters a = 1:8�106 C/m, � = 3:6�106 Vm/C, k = 1:65�106 C/m2, c = 0:1, Ps = 0:52 C/m2

and �1 = 0:16 were obtained through a least squares �t to the data collected at 0.1 Hz. Once obtained, these

parameters were held �xed and variations in operating regimes were incorporated through the magnitude

E0 and frequency ! of the input �eld.

The model predictions at 0.1 Hz and 1.0 Hz are compared with the experimental data in Figure 3.2. It

is observed that the model very accurately quanti�es the data at 0.1 Hz which is the regime in which the

parameters were estimated. The model also accurately predicts the decrease in polarization at 1 Hz, but does

not yet incorporate the decrease in the coercive �eld which occurs as frequency increases. The incorporation

of rate-dependence in the energy required to bend and translate domain walls is under current investigation.

5. Concluding Remarks. This paper addresses the quanti�cation of certain rate-dependent mecha-

nisms inherent to the hysteretic relation between the �eld applied to a piezoceramic material and the resulting
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Fig. 3.2. Model �t to 0.1 Hz and 1.0 Hz PZT5A data with the parameters a = 1:8 � 106 C/m, � = 3:6 � 106 Vm/C,

k = 1:65� 106 C/m2, c = 0:1, Ps = 0:52 C/m2 and �1 = 0:16.
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polarization. The analysis presented here focuses primarily on the reduction in polarization which occurs as

frequencies increase from quasistatic levels to low frequency regimes. This is modeled by determining the

probability that dipoles achieve the energy required to overcome energy barriers and switch orientation when

an external �eld is applied. The resulting model, which quanti�es the anhysteretic polarization exhibited

by the material, reduces to the Ising spin model when the driving frequency is reduced to quasistatic levels.

This anhysteretic relation is then combined with expressions quantifying domain wall losses to provide a

model which characterizes the hysteresis exhibited by the material.

In its current formulation, the model is restricted to low frequency regimes since it does not yet incor-

porate rate-dependent mechanisms for quantifying the energy required to reorient dipoles when translating

domain walls. The extension of the model to include these mechanisms is necessary in order to increase the

applicable frequency range of the model and is under current investigation.
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