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ANALYSIS OF LINEAR PARAMETER VARYING SYSTEM MODELS BASED ON

REACHABLE SETS
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Abstract. This paper presents the analysis method of quasi-LPV models, comparing the ellipsoid set

which contains the reachable set of a nonlinear system to de�ne which quasi-LPV model is less conservative

to represent the nonlinear dynamics. Three quasi-LPV models are constructed from a nonlinear model

using three di�erent methods, to facilitate synthesis of an LPV controller for the nonlinear system. The

comparison results of closed-loop system performance with synthesized LPV controllers correspond to the

analysis results of quasi-LPV models.

Key words. LPV model, reachable set, LPV control synthesis

Subject classi�cation. Guidance and Control

1. Introduction. One of control schemes for nonlinear systems is a linear parameter varying (LPV)

technique [7, 6, 11, 4, 3, 10]. This approach is particularly appealing in that nonlinear plants are treated

as linear systems with varying parameters. This allows linear control techniques to be applied to nonlinear

systems. In applying LPV analysis and synthesis methodology to nonlinear systems, an LPV plant model

of a nonlinear system is required to describe the nonlinear dynamics. Since an LPV controller is synthesized

based on an LPV model and is applied to control the nonlinear system, it is important to choose which LPV

model is used for an LPV controller synthesis to lead a less conservative result.

There are three di�erent approaches to generate an LPV model from a nonlinear mathematical model

of a nonlinear system. Conventionally, an LPV model is constructed by the set of linearized models around

equilibrium points. Another approach is state transformation which changes state coordinates to remove

nonlinearity in the dynamics [5, 8]. The other approach is function substitution which formulates nonlinear

functions into quasi-LPV form functions [15, 16, 9]. The LPV models generated by these three methods have

been discussed in terms of accuracy to present a nonlinear dynamics by comparing time simulation results

with the pre-de�ned input signals [8, 1]. Comparison of the time responses is one of approaches to decide

which LPV model will be used for LPV analysis and synthesis of a nonlinear system.

There are possibilities for existence for di�erent LPV models to produce time responses of a nonlinear

system accurately within ignorable error range. Therefore, in this case, comparison of the time simulation

results of the LPV models is not suÆcient to analyze the models. In this paper, one of approaches is

demonstrated to analyze LPV models to �nd which LPV model is less conservative to describe the nonlinear

system.

In this paper, three di�erent LPV models of a nonlinear system are provided by three methods and time

simulation of three LPV models with the pre-de�ned input signals are presented. Ellipsoids which contain

the reachable set of the nonlinear system are calculated according to each LPV model and compared the

sizes of the ellipsoids. Also, each LPV controller is synthesized, based on each LPV model and is applied to

control the nonlinear system.
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Outline of this paper is follows. In section 2, conventional LPV control synthesis used in this paper is

brie
y summarized. In section 3, an analysis methodology of quasi-LPV models is presented, calculating

an ellipsoid which contains a reachable set. In section 4, an example of analysis of quasi-LPV models is

demonstrated and also nonlinear simulations with LPV controllers synthesized based on each quasi-LPV

model are presented for comparison. This paper concludes with a brief summary in section 5.

2. LPV Control Synthesis. In this section, a quasi-LPV system is de�ned and an LPV control

synthesis methodology is brie
y described. Consider a generalized linear open-loop system as functions

of parameters �(t) 2 P . For a compact subset P � Rs, the parameter variation set denotes the set of

all piecewise continuous functions mapping R (time) into P with a �nite number of discontinuities in any

interval, where s is number of parameters. An LPV open-loop system can be written as2
64
_x(t)

e(t)

y(t)

3
75 =

2
64
A(�(t)) B1(�(t)) B2(�(t))

C1(�(t)) 0 D12(�(t))

C2(�(t)) D21(�(t)) 0

3
75
2
64
x(t)

d(t)

u(t)

3
75 (2.1)

where y(t), e(t), d(t) and u(t) are measurements, errors, disturbances, and control signals. A quasi-LPV

system is de�ned when scheduling parameter vector � contains part of state vector as [x1 �e], where �e is

an exogenous scheduling parameter vector and the state vector x = [x1 x2]. Hereafter, � denotes �(t). The

induced L2 norm of d to e is de�ned as

sup
�2P;d2L2;jjdjj2 6=0

jjejj2
jjdjj2

:

In an LPV synthesis methodology, suppose there is an LPV output feedback controller K(�) which

stabilizes the closed-loop system exponentially and makes the induced L2-norm of d to e less than 
. The

controller K(�) can be written as "
_xk

u

#
=

"
Ak(�) Bk(�)

Ck(�) Dk(�)

# "
xk

y

#
: (2.2)

An LPV controller K(�) can be constructed from solutions of X 2 Rn�n and Y 2 Rn�n of the following

optimization problem [4].

min
X;Y 2Rn�n


 (2.3)

subject to 2
64
XÂT (�) + Â(�)X �B2(�)B

T
2 (�) XCT

11(�) 
�1B1(�)

C11(�)X �Ine1 0


�1BT
1 (�) 0 �Ind

3
75 < 0 (2.4)

2
64
~A(�)Y + Y ~AT (�)� CT

2 (�)C2(�) Y B11(�) 
�1CT
1 (�)

BT
11(�)Y �Ind1 0


�1C1(�) 0 �Ine

3
75 < 0; (2.5)

"
X 
�1In


�1In Y

#
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X > 0; Y > 0

where

Â(�) � A(�)�B2(�)C12(�); ~A(�) � A(�) �B12(�)C2(�); (2.7)

and n is number of states of the generalized open-loop system. Note that X and Y are constant positive

de�nite matrices.

A method to construct an LPV controller K(�) from the solution matrix X and Y of the LMI optimiza-

tion problem is taken from Ref.[4]. An LPV controller is constructed as[4]:

Ak(�) = A(�) +B2(�)F (�) +Q�1Y L(�)C2(�)� 
�2Q�1M(�); (2.8)

Bk(�) = �Q�1Y L(�); (2.9)

Ck(�) = F (�); (2.10)

Dk(�) = 0 (2.11)

where matrices Q, F (�), L(�), and M(�) are de�ned as

Q = Y � 
�2X�1;

F (�) = �[BT
2 (�)X

�1 +DT
12(�)C1(�)];

L(�) = �[Y �1CT
2 (�) +B1(�)D

T
21(�)];

M(�) = H(�) + 
2Q[�Q�1Y L(�)D21(�)�B1(�)]B
T
1 (�)X

�1:

Matrix H(�) is de�ned as

H(�) = �[X�1AF (�) +AF (�)
TX�1 + CT

F (�)CF (�) + 
�2X�1B1(�)B1(�)
TX�1]

with AF (�) = A(�) + B2(�)F (�) and CF (�) = C1 + D12F (�). The closed-loop system with the controller

K(�) is exponentially stable and the induced L2 norm is less than 
. The proof can be found in Ref. [4].

To make the optimization problem of equation (2.3) computationally tractable, scheduling parameters � are

discretized into grid points. Thus, in�nite LMI constraints, equations (2.4)-(2.5), are presented as �nite

number of LMI constraints. Note that the LPV controller may be di�erent based on scheduling-parameter

grid points.

Note that the open-loop LPV system matrices A(�), B(�), C(�) and D(�) are used to construct the

LPV controller (see equations (2.8)-(2.11)). The LPV controller can be di�erent based on the di�erent LPV

models of a nonlinear system, even if the di�erent LPV models can produce the exact same input-output

time responses for each other.

3. Analysis of Quasi-LPV Model. In this section, one of approaches to analyze an LPV model is

presented in terms of the sizes of ellipsoids which contain a reachable set of a nonlinear system. Before we

introduce an analysis method of LPV models of a nonlinear system, a class of nonlinear systems used in this

paper is de�ned as follows.

Consider a nonlinear system in which an input vector enters aÆnely. A nonlinear system can be written

as

_x = F (x) +B(x)u (3.1)
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where a state vector x is in Rn, an input vector u is in Rm, continuous function F (x) : Rn ! Rn and

B(x) : Rn ! Rn�m. The reachable set of a nonlinear system with bounded-energy inputs is de�ned by

Rnl �

(
x(T )

���� _x = F (x) +B(x)u; x(0) = 0;

Z T

0

uTudt � �2; T � 0

)
(3.2)

where � is a given positive constant. The reachable set of a nonlinear system is bounded. Here an initial

point of x is de�ned as 0 without loss of generality. De�nition of an invariant set used in this paper is follows:

De�nition 3.1 Invariant set

Let a set " denote a set centered at the origin

" = fx 2 RnjV (x) < 1g:

The set " is said to be invariant if for every trajectory x(t) of a nonlinear system, x(0) 2 " implies x(t) 2 "

for all t. A function V (x) is a Lyapunov function.

It is easily shown that when V (x) > 0 and dV (x)
dt

< 0 for all trajectory satisfying the nonlinear dynamics in

equation (3.1), the set " is invariant.

A quasi-LPV model of a nonlinear system can be produced with or without a bounded uncertainty block

to capture nonlinear dynamics.

� Case 1 : a quasi-LPV model can describe the nonlinear dynamic model without an uncertainty

block. A quasi-LPV model is

_x = A(x)x +B(x)u = F (x) +B(x)u: (3.3)

The reachable set of a quasi-LPV model is de�ned as

Rbe �

(
x

���� _x = A(x)x +B(x)u; x(0) = 0;

Z T

0

uTudt � �2; T � 0

)
: (3.4)

Thus, it is obvious that the reachable set Rbe is equal to Rnl.

� Case 2: a quasi-LPV model can describe the nonlinear dynamic model with a bounded uncertainty

block. A quasi-LPV model is

_x = A(x)x +Bu(x)u+Bw(x)w; (3.5)

z = Cz(x)x +Dzu(x)u+Dzw(x)w; (3.6)

w = �z (3.7)

where Bw(x) 2 Rn�p, w 2 Rp, Cz 2 Rq�n, Dzu 2 Rq�m, Dzw 2 Rq�p, and jj�jj � �. The

reachable set of a quasi-LPV model is de�ned as

Rbeu �

8><
>:x

����
_x = A(x)x +B(x)u+Bw(x)w;

z = Cz(x)x +Dzu(x)u+Dzw(x)w;

w = �z

x(0) = 0;

Z T

0

uTudt � �2; T � 0

9>=
>; :

(3.8)

Assume that there exists � such that

Rnl � Rbeu: (3.9)
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Note that calculating the size and structure of � to validate equation (3.9) is out of this paper scope.

Suppose there exists a Lyapunov function V such that

dV (x(t))

dt
�

1

�2
jju(t)jj22 (3.10)

for every x(t) and u(t) satisfying equation (3.3) or equations (3.5)-(3.7). Then there exists the invariant set

fx j V (x) < 1g which contains the reachable set Rbe or Rbeu, according to each quasi-LPV model.

3.1. Singular Quadratic Lyapunov Function. In this section, an LMI optimization problem is

formulated to calculate the smallest ellipsoid which contains the reachable set, using a singular quadratic

Lyapunov function V (x) = xTPx. For the two cases: Case 1 and Case 2, the LMI optimization problems

are formulated as follows.

For case 1:

sup
P2Rn�n

Tr(P ) (3.11)

subject to "
A(x)TP + PA(x) PB(x)

B(x)TP � 1
�2
I

#
< 0: (3.12)

The LMI constraint of equation (3.12) is easily derived from dV (x(t))
dt

� 1
�2
jju(t)jj22 and equation (3.3). Thus,

the set fx(t)jx(t)TPx(t) < 1; t > Tg contains the reachable set Rbe. Also, it is noticed from the LMI

constraint that the ellipsoid is an invariant set.

For case 2:

sup
P

Tr(P ) (3.13)

2
64
AT (x)P + PA(x) + tCT

z (x)Cz(x) PBu(x) + tCT
z (x)Dzu(x) PBw(x) + tCT

z (x)Dzw(x)

BT
u (x)P + tDT

zu(x)Cz(x) � 1
�2
I + tDT

zu(x)Dzu(x) 0

BT
w(x)P + tDT

zw(x)Cz(x) 0 tDT
zw(x)Dzw(x) �

t
�2
I

3
75 < 0 (3.14)

P > 0; t � 0 (3.15)

where jj�jj � � and � is given constant. The LMI constraint of equation (3.14) is easily derived from
dV (x(t))

dt
� 1

�2
jju(t)jj22 and equations (3.5)-(3.7), using S-procedure [14]. The set fx(t)jx(t)

TPx(t) < 1; t > Tg

contain the reachable set Rbeu. Also, it is noticed from the LMI constraint that the ellipsoid is an invariant

set.

The size of the ellipsoid is de�ned as

SP = C

nY
i

�i(P ) (3.16)

where C is constant which is dependent on the geometry of the ellipsoid. Thus, it is easy to compare the

size of the ellipsoid set fxjxTPx < 1g.
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3.2. Parameter Dependent Lyapunov Function. In this section, the LMI optimization problem is

formulated with the parameter-dependent Lyapunov function V (x) = xTP (x)x. LMI constraints are written

for each case in the same manner of formulation of LMI constraints in equations (3.12) and (3.14).

For case 1:

sup
P (x):Rn!Rn�n

Tr(P (x)) (3.17)

subject to "
A(x)TP (x) + PA(x) + _P (x) P (x)B(x))

B(x)TP (x) � 1
�2
I

#
< 0: (3.18)

For case 2:

sup
P (x):Rn!Rn�n

Tr(P (x)) (3.19)

2
64
AT (x)P (x) + P (x)A(x) + tCT

z (x)Cz(x) + _P (x) P (x)Bu(x) + tCT
z (x)Dzu(x) P (x)Bw(x) + tCT

z (x)Dzw(x)

BT
u (x)P (x) + tDT

zu(x)Cz(x) � 1

�2
I + tDT

zu(x)Dzu(x) 0

BT
w (x)P (x) + tDT

zw(x)Cz(x) 0 tDT
zw(x)Dzw(x)�

t
�2
I

3
75 � 0 (3.20)

P > 0; t � 0: (3.21)

Using the LMI optimization, the smallest ellipsoid to capture the reachable set of the nonlinear dynamics

can be calculated. To solve the LMI optimization problem, the basis functions of P (x) are required. The

details of solving the LMI with _P (x) will be explained in the next section. Note that the size of the set

fxjx(t)TP (x(t))x(t) < 1g is not easy to calculate since it is not ellipsoid.

4. Example. In this section, LPV models of a nonlinear system are generated by three di�erent meth-

ods (Jacobian linearization, state transformation, and function substitution) and each LPV model is simu-

lated with pre-de�ned input signals. The simulation results are compared with nonlinear simulation results

to notice that quasi-LPV models can capture the nonlinear dynamics. Also, the size of an ellipsoid which

contains the reachable set of the nonlinear system is calculated for each LPV model. An LPV controller is

synthesized based on each LPV model, respectively and is simulated with nonlinear system to compare the

closed-loop performance.

A nonlinear system taken from Ref. [2] is"
_x1

_x2

#
=

"
�x1

x1 � jx2jx2 � 10

#
+

"
1

0

#
u; y = x2: (4.1)

It is noted that systems with similar types of nonlinearity are frequently encounted in practice [2, 13].

4.1. Quasi-LPVModels. Using Jacobian linearization around trim points, the set of linearized models

can present a quasi- LPV model of the nonlinear system. The linearized model at a trim point is"
Æ _x1

Æ _x2

#
=

"
�1 0

1 �2jx20 j

# "
Æx1

Æx2

#
+

"
1

0

#
Æu; Æy = Æx2; (4.2)

where Æx1 = x1 � x10 , Æx2 = x2 � x20 , Æu = u� u0, and Æy = y � y0. The associated quasi-LPV system is"
_�1

_�2

#
=

"
�1 0

1 �2z

#"
�1

�2

#
+

"
1

0

#
u; y =

h
0 1

i "�1
�2

#
(4.3)
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where the range of z = jx20 j is de�ned arbitrary from 0 to 5. It is noted that states, �1 and �2, are de�ned

as deviation from each trim point (x10 ; x20 ; u0). Thus, when scheduling parameter z changes the de�nitions

of states of the LPV model are changed.

To use function substitution [15, 16, 9], the nonlinear system is rewritten as"
_~x1
_~x2

#
=

"
�1 0

1 0

#"
~x1

~x2

#
+

"
1

0

#
~u+

"
�x10 + u0

x10 � j~x2 + x20 j(~x2 + x20)� 10

#
(4.4)

where

~x1 = x1 � x10 ; ~x2 = x2 � x20 ; ~u = u� u0: (4.5)

The nonlinearity in equation (4.4) is substituted for a function in quasi-LPV form.

f(~x2) =

8<
:[jx20 jx20 � j~x2 + x20 j(~x2 + x20)]=~x2; ~x2 6= 0;

0; ~x2 = 0:
(4.6)

A quasi-LPV model is written as "
_~x1
_~x2

#
=

"
�1 0

1 f(~x2)

# "
~x1

~x2

#
+

"
1

0

#
~u: (4.7)

Here, a trim point is set as (x10 ; x20) = (11; 1). Note that the de�nition of states of this quasi-LPV model

is deviation from the trim point. Also, the de�nition of states does not change as a scheduling parameter ~x2

changes.

A quasi-LPV model of the nonlinear system can be generated by changing state coordinates [5]

�1 = x1 � x10(x2); (4.8)

�2 = x2 (4.9)

where

x10(x2) = jx2jx2 + 10: (4.10)

A quasi-LPV model is "
_�1

_�2

#
=

"
�1� 2j�2j 0

1 0

#"
�1

�2

#
+

"
1

0

#
r (4.11)

where r = u � u0(x2). Note that de�nition of control input r and state �1 are changed as scheduling

parameters vary. When the quasi-LPV model is simulated, the variations of u0(x2) and �1 should be

compensated as the scheduling parameter x2 changes.

4.2. Quasi-LPV Model Simulations. There are three quasi-LPV models to describe the nonlinear

system. To compare the simulation results between the nonlinear system and the quasi-LPV model, a

performance index J is introduced as L2 norm of error in �nite time T ,

J =

Z T

0

e(t)te(t) dt =

Z T

0

(ynl(t)� yLPV (t))
t(ynl(t)� yLPV (t)) dt (4.12)

where ynl and yLPV are measurements of the nonlinear system and the quasi-LPV model, respectively. Here,

T is set as 30 sec in this example.
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The quasi-LPV models are simulated for the two di�erent input signal sets (see Figure 5.1), respectively.

The simulation results in Figure 5.2 show that the quasi-LPV models present the nonlinear dynamics very

accurately. The di�erences of time responses between the quasi-LPV models and the nonlinear system are

not noticeable in Figure 5.2. The performance index, J , for all quasi-LPV models is less than 10�7 for

both di�erent input cases. The indexes, NL, Q-LPVJ , Q-LPVs, and Q-LPVf , in Figure 5.2 are denoted

as the nonlinear system, the quasi-LPV model by Jacobian linearization, the quasi-LPV model by state-

transformation, and the quasi-LPV model by function substitution. Note that all quasi-LPV models can

present all state dynamics of the nonlinear system very accurately. Therefore, comparing performance index

is not suÆcient to choose which quasi-LPV model will be used for LPV controller synthesis.

4.3. Reachable Set. In this section, the smallest ellipsoid which contains the reachable set of the

nonlinear model is calculated for each quasi-LPV model.

4.3.1. Singular Quadratic Lyapunov Function. Assume a Lyapunov function V (x) = xTPx,

P 2 Rn�n is used to calculate the smallest set fxjxTPx < 1g which contains the reachable set of the

nonlinear system. Consider a quasi-LPV model without an uncertainty block, which can capture the nonlin-

ear dynamics (Case 1). To make the LMI optimization problem in equation (3.11) computationally tractable,

the in�nite number of LMI constraints are converted into the �nite number of LMI constraints de�ned each

grid points over the parameter space. The grid points in this example are de�ned as

x2i 2 f0:1; 0:5; 0:9; 2; 3; 4; 5g: (4.13)

Also, bounded energy inputs are required to solve the LMI optimization problems. Hereafter, the bounded

energy inputs are de�ned
R T
0 utu � 0:2 in this example.

The solution matrix P of the LMI optimization problem is calculated, based on the quasi-LPV models

generated by Jacobian linearization and function substitution, respectively. The ellipsoids corresponding to

the solution matrix P are shown in Figure 5.3 for each quasi-LPV model. In Figure 5.3, possible trajectories

of the nonlinear system with pre-de�ned several input signals bounded by constant energy are also plotted

as dashed lines. It is observable that the two ellipsoids capture the candidate trajectories to represent the

reachable set of the nonlinear system. Also, it is noticeable that the size of the ellipsoid based on the function

substitution quasi-LPV model (Q-LPVf ) is smaller than that of the Jacobian linearization quasi-LPV model

(Q-LPVJ). Thus, the quasi-LPV model generated by function substitution is less conservative than the

quasi-LPV model generated by Jacobian linearization to contain the reachable set of the nonlinear system.

Since one of eigenvalues of the quasi-LPV model generated by state transformation is 0 for all grid

points, it is not computationally tractable to calculate the size of the ellipsoid to contain the reachable set.

It is noticeable that the quasi-LPV model can not satisfy one of the conventional assumptions for H1 and

LPV synthesis [4] : "
a b1

c2 d21

#
have full row rank. (4.14)

Thus, this analysis method can not apply for a quasi-LPVmodel which has zero eigenvalue over all grid points.

Hereafter, we discuss two quasi-LPV models generated by Jacobian linearization and function substitution

methods.

Consider that a quasi-LPVmodel with an uncertainty block to represent the nonlinear dynamics (Case 2).

Here, unmodeled dynamics is assumed as an input multiplicative uncertainty in Figure 5.4. The uncertainty

8



weighting function Wn is assumed as

Wn = 0:0045
s=0:09 + 1

s=80 + 1
: (4.15)

The magnitude of the uncertainty block j�j is bounded by one. The ellipsoids to contain the reachable

set are calculated based on quasi-LPV models (Q-LPVj and Q-LPVf ) and shown in Figure 5.5. It is

noticed that the function-substitution quasi-LPV model has smaller ellipsoid to represent the reachable set

than the Jacobian-linearization quasi-LPV model. Recall that the state x2 is measurement for design an

output feedback LPV controller. It is noticeable that the axis of the ellipsoid at x2 direction is smaller

of the function-substitute quasi-LPV model than the Jacobian-linearization quasi-LPV model. The set of

f(x1; x2)jx
TPx < 1g in Figure 5.5 is much larger than the set shown in Figure 5.3 for each quasi-LPV model,

respectively. It is obvious that adding unmodel dynamics in the quasi-LPV model enlarges the size of the

set f(x1; x2)jx
TPx < 1g. The state x3 of augmented open-loop system is the state of the weighting function.

The sizes of the ellipsoids in x3 direction are similar to each other, based on each quasi-LPV model (Q-LPVj

and Q-LPVf ).

In this example, adding unmodel dynamics in quasi-LPV models does not change the comparison result

that the function-substitution quasi-LPV model is less conservative to present the nonlinear dynamics than

the Jacobian-linearization quasi-LPV model. Note that it is unknown that adding an uncertainty block

changes the comparison results in general.

4.3.2. Parameter-Dependent Lyapunov Function. A Lyapunov function V (x) = xTP (x)x is used

to calculate the smallest set fxjV (x) < 1g which contains the reachable set of the nonlinear dynamics.

Consider quasi-LPV models without an uncertainty block. To solve the LMI optimization problem in equa-

tion (3.17), basis functions of P (x) are required. A matrix function P (x) and the time derivative of P (x)

can be written as:

P (x) =

NX
i=1

fi(x)Pi; Pi 2 R
n�n (4.16)

_P (x) =
sX

j=1

(
NX
i=1

_xj
@fi(x)

@xj
Pi) (4.17)

with given basis functions fi(x), where s and N are number of scheduling parameter and number of basis

functions, respectively. In the example, the set of basis function ffi(x)g is de�ned as the �rst order polynomial

function set f1; x2g for computational convenience. The time derivative of P (x) is written as:

_P (x) = _x2P2 (4.18)

where P2 2 Rn�n. In conventional parameter-dependent Lyapunov function LPV synthesis [3], constant

bounded values � of the parameter rates are used to describe the time derivative of P (x) as:

_P (x) =

nX
j=1

(

NX
i=1

��j
@fi(x)

@xj
Pi); j _xj j < �j (4.19)

where ��j represents all possible combination set of ��j and �j . In this paper, the time derivative of P (x)

is written as

_P (x) =
nX

j=1

(
NX
i=1

�gj(x)
@fi(x)

@xj
Pi); (4.20)
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where gj(x) : R
n ! R is satis�ed with j _xj j < gj(x). To evaluate equation (4.20), the function gj(x) is

estimated from nonlinear dynamic simulation results with the bounded energy inputs. For this example,

g(x2) = (1 + f(~x2))x2 (4.21)

where f(~x2) is de�ned in equation (4.6).

The boundary of the set fxjxTP (x)x < 1g to contain the reachable set Rbe is shown in Figure 5.6. The

solid line in Figure 5.6 represents the boundary of the set fxjxTP (x)x < 1g calculated based on the function-

substitution quasi-LPV model. The dotted line in Figure 5.6 represents the ellipsoid calculated using the

singular quadratic Lyapunov function based on the function-substitution quasi-LPV model. It is noted

that the set fxjV (x) < 1g using the parameter-dependent Lyapunov function is smaller than using singular

quadratic Lyapunov function. This result corresponds to that LPV control synthesis methodology using the

parameter-dependent Lyapunov function leads a less conservative result than using the singular quadratic

Lyapunov function [3]. The dashed-dot line in Figure 5.6 represents the set fxjxTP (x)x < 1g calculated

based on the Jacobian-linearization quasi-LPV model. It is observed that the function-substitution quasi-

LPV model is less conservative than the Jacobian-linearization quasi-LPV model to present the reachable

set of nonlinear system. The analysis of quasi-LPV models with an uncertainty block leads the same result

that the function-substitution quasi-LPV model is less conservative. The plots of the calculated sets are

omitted for space limitation.

4.4. LPV Controller Synthesis. An LPV controller is synthesized based on each quasi-LPV model

and is simulated with the nonlinear simulation to compare the closed-loop system performance.

The prime objective of an LPV control synthesis is to track a given command. An LPV controller

synthesis formulation is taken from Ref. [2] shown in Figure 5.7. The performance weighting function W1

and control weighting function W2 are taken from Ref. [2] as

W1 =
0:5

s+ 0:002
; W2 =

0:1s

s+ 1000
: (4.22)

The noise weight function is de�ned as constant 0.05 over all frequency range to present 5% measurement

error.

To solve the LMI optimization of LPV controller synthesis, a scheduling parameter is discretized over

all spaces. The grid points are presented in equation (4.13). The LPV controllers are synthesized for each

quasi-LPV model with same weight functions, using standard software from the MATLAB LMI toolbox [12].

There are two generated LPV controllers (Q-LPVJ , Q-LPVf ) according to two quasi-LPV models.

The responses to step change in command from -1 to 5 of the closed-loop system are shown in Figure 5.8.

It is observable that the overshooting responses of the LPV controller synthesized based on the function

substitution quasi-LPV model are smaller than those with the Jacobian-linearization quasi-LPV model. The

calculated 
 in equation (2.3) is 0.92 for the Jacobian linearization quasi-LPV model and 0.73 for the function

substitution quasi-LPV model.

The performance results are correspond to the analysis results of LPV models. The ellipsoid based on

the functional substitution quasi-LPV model to present a reachable set of the nonlinear system is smaller.

That implies that the quasi-LPV model generated by the function substitution is less conservative. Note

that it is not known that the function substitution method can always generate a less conservative quasi-LPV

model in terms of an ellipsoid which contains the reachable set.
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5. Conclusion. In this paper, one of approaches to compare quasi-LPV models which represent a

nonlinear system is demonstrated in terms of the smallest set which contains the reachable set of the nonlinear

system. Based on the size of the set, it is possible to de�ne which quasi-LPV model is less conservative to

present the reachable set. The quasi-LPV models of a nonlinear system are generated by three di�erent

methods (Jacobian linearization, state transformation, and function substitution) to facilitate to design an

LPV controller of the nonlinear system. LPV controllers are synthesized based on each quasi-LPV model

and simulated with the nonlinear system to compare the closed-loop performance. The performance results

correspond to the results of comparing the size of the set calculated based on each quasi-LPV model. Based

on the analysis results of quasi-LPV models, it is possible to choose which LPV model is used for LPV

controller synthesis of a nonlinear system.
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