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A PARALLEL MULTIGRID SOLVER FOR VISCOUS FLOWS ON ANISOTROPIC

STRUCTURED GRIDS�

MANUEL PRIETOy, RUBEN S. MONTEROz, AND IGNACIO M. LLORENTEx

Abstract. This paper presents an e�cient parallel multigrid solver for speeding up the computation of

a 3-D model that treats the 
ow of a viscous 
uid over a 
at plate. The main interest of this simulation

lies in exhibiting some basic di�culties that prevent optimal multigrid e�ciencies from being achieved. As

the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors

and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the

scalability of the solver but also includes a performance evaluation of Coral where the investigated solver

has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus

switched Fast-Ethernet) and the node con�guration (dual nodes versus single nodes). As a reference, the

performance results have been compared with those obtained with the NAS-MG benchmark.
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1. Introduction. Multilevel techniques are generally accepted as fast and e�cient methods for solving

a wide range of partial di�erential equations, especially elliptic operators. For these kinds of problems,

standard multigrid algorithms based on classical iterative methods, such as Gauss-Seidel or damped Jacobi,

exhibit an optimal complexity (the computational work is linearly proportional to the number of unknowns),

optimal memory requirements and good parallel e�ciencies [12, 2]. These characteristics have made multigrid

a common solution method in many application areas, particularly computational 
uid dynamics (CFD).

In fact, as a result of its popularity, some multigrid solvers such as the NAS-MG (one of the �ve kernels

included in the well-known NAS parallel benchmarks [1]) have also gained widespread acceptance among

both the scienti�c and the computer architecture communities as standard performance indicators.

However, standard multigrid algorithms su�er from a slow-down in convergence in practical CFD ap-

plications and the use of more advanced robust techniques is required [2, 13]. One of the most common

di�culties that prevent optimal convergence rates from being achieved is the presence of anisotropies. These

anisotropies occur naturally in the �eld of CFD since grid nodes are usually concentrated in certain regions

of the computational domain for accuracy reasons or to capture small-scale physical phenomena such as

boundary layers. There are two main approaches to dealing with these anisotropic operators. The �rst ap-

proach consists in improving the smoothing process by using an alternating-direction block-implicit smoother

[10]. This algorithm explores all the possible directions of coupling of the variables. The second approach
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relies on improving the coarse-grid operator. Algorithms like selective coarsening [7], 
exible multiple semi-

coarsening [30] or block implicit relaxation combined with semicoarsening [6], among others, fall into this

category. Although these methods have been successfully applied to fully elliptic equations [24] and the 2-D

Navier-Stokes equations [20, 28] their application to the Navier-Stokes equations in 3-D has been limited

[21].

The multigrid solver proposed in this research combines a semicoarsening procedure with a plane implicit

smoother [14]. To test its robustness we have chosen the simulation of a viscous 
ow over a yawed 
at plate

at high Reynolds numbers. Although the 
ow structure of this problem is relatively simple, it requires

a high density of nodes concentrated near the plate surface in order to capture the viscous e�ects. The

numerical properties of this solver have been presented in [15], the parallel implementation of which is the

main subject of this paper. To the best of the authors' knowledge, this is the �rst study of a parallel-plane

implicit smoother combined with semicoarsening applied to the Navier-Stokes equations.

As a parallel computing platform we have employed Coral [8], an heterogeneous PC-cluster installed at

ICASE, based on Intel Pentium processors and equipped with GigaNet and switched Fast-Ethernet networks.

Coral is an ongoing project whose main goal is to evaluate the e�ciency of cost-e�ective Beowulf systems

for applications of interest to this center. Among them, we can mention parallel multigrid methods, which

have been one of its most important research activities for the last two decades. Given that the computing

characteristics of robust algorithms substantially di�er from the standard multigrid algorithms included in

most benchmark suites (such as the NAS-MG), we think that the proposed solver is also a good application

for evaluating Coral's performance.

The rest of this paper is organized as follows. In the second section we describe brie
y the characteristics

of Coral. The robust multigrid algorithm investigated and the test problem employed are presented in Section

3 and 4 respectively. Section 5 gives some remarks about the most important approaches, in our view, to

devising a parallel multigrid solver, focusing our attention on the main complications that arise when block

smoothers are applied. Section 6 studies the performance achieved by the investigated solver on Coral and

makes a comparison with the NAS-MG benchmark. Finally, the scalability of the proposed algorithm is

analyzed in Section 7. The paper ends with some conclusions.

2. Experimental Environment: Coral. The computing platform evaluated in this study, known as

Coral [8], is a 96-CPU heterogeneous cluster installed at ICASE, a research institute operated at the NASA

Langley Research Center. The original cluster (see Figure 2.1) consisted of a dual CPU front-end server

and 32 single compute nodes with 400 MHz Pentium II processors connected via a Fast Ethernet Switch.

In a second phase, Coral was upgraded with two �le servers and 16 dual nodes, which are equipped with

two 500 MHz Pentium III (PIII-500) and linked by another Fast Ethernet Switch. A root Gigabit Ethernet

Switch connects the servers and the Fast Ethernet Switches via Gigabit Ethernet uplinks. Currently (Phase

3), Coral has 16 additional compute nodes with two 800 MHz Pentium III processors (PIII-800) per node

and a GigaNet cluster area network (cLAN), which connects the 32 dual CPU nodes [4]. GigaNet is a

connection-oriented interconnect based on GigaNet's proprietary implementation for ATM switching. Its

host interfaces consist in a hardware implementation of the standard Virtual Interface Architecture (VIA),

giving user processes direct access to the network interface. In this research we have concentrated on the

PIII-800 (Phase 3) subcluster in order to assess the impact of using dual CPU nodes and the improvements

achieved via GigaNet.

3. Robust Multigrid. The full multigrid (FMG) [2] algorithm employed by the robust solver investi-

gated is characterized by a sequence of grids G = f
k : k = 0; 1; 2; :::; Ng, where 
0 is the �nest target grid
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Fig. 2.1. Coral PC-Cluster at ICASE (Nasa Langley Research Center)

and the rest of the grids are obtained by applying a semicoarsening procedure, which basically consists in

doubling the mesh size in just one direction. The computations are initiated on the coarsest grid and once

the discrete system is solved on that level, the solution is transferred to the next �nest grid, where it is used

as an initial guess. This procedure is repeated until the �nest grid is reached.

The algorithm employed a Full Approximation Scheme (FAS) [2] to solve each level in the FMG cycle,

which can be recursively de�ned as in algorithm 1:

Algorithm 1 FAS(�1,�2,
,n) multigrid cycle applied to the system Lnu
n = fn de�ned on a grid 
n. The

variables �1 and �2 denote the number of pre and post-smoothing iterations. The cycle type is �xed with 
.

if n=N then

Apply smoother: ûN = Smooth(LN ; u
N ; fN ; �0)

else

Apply smoother: ûn = Smooth(Ln; u
n; fn; �1)

Evaluation of the residual: rn  fn � Lnû
n

Restriction of the residual: rn+1  In+1n rn

Restriction of the solution: un+1  In+1n ûn

Computation of the right hand-side: fn+1  rn+1 + Ln+1u
n+1

for i = 0 to 
 do

FAS(�1; �2; 
; n+ 1)

end for

Update Solution: ûn  ûn + Inn+1(u
n+1 � ûn+1)

Apply smoother: ûn = Smooth(Ln; û
n; fn; �2)

end if
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This multigrid cycle is characterized by the number of pre- and post-smoothing iterations (�1; �2) and 
,

which sets the order in which the grids are visited. Depending on 
 the cycle is denoted by V(�1; �2) if 
 = 1

and by W(�1; �2) if 
 = 2. In general, a growing 
 implies an increasing complexity and more smoothing

sweeps in coarser levels with the consequent deterioration of the parallel e�ciency [29](see section 5). However

low 
 cycles (i.e V-cycles) are known to be less robust than W-cycles, especially in convection-dominated

problems [22]. Due to this trade-o�, the investigated algorithm employed F-cycles, which correspond to a 


between the V and W-cycles, i.e. 1 < 
 < 2. Figure 3.1 shows the 
owcharts for the V and F-cycles.
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Fig. 3.1. Scheme of a V-cycle V(�1; �2) (left-hand chart) and an F-cycle F(�1; �2) where �0 represents the number of

iterations of the smoother performed to solve the coarsest level

The algorithm proposed in this work deals with the anisotropy problem by combining x-semicoarsening

(i.e., doubling the mesh space only in the x direction) with a yz-plane implicit solver. We will refer to this

method as SCPI (semicoarsening combined with a Symmetric-Coupled Plane-Implicit smother). The planes

will be approximately solved by a 2-D multigrid algorithm consisting of one 2-D FAS V(1,1) cycle. Since

the same kind of anisotropies found in 3-D problems may appear in the 2-D system a similar 2-D robust

multigrid algorithm has been employed based on a line-implicit smoother combined with semi-coarsening.

To solve the lines, one 1-D FAS V(1,1) cycle is also applied.

From a computational point of view, block smoothing is obviously more expensive that standard point-

wise smoothing. However, we should note that a block smoother can exploit the memory hierarchy more

e�ciently. The employment of point-wise smoothers, which have to perform global sweeps through data

sets that are too large to �t in the cache, often means that multigrid methods only reach a disappointingly

small percentage of the theoretically available CPU performance. Some authors have successfully improved

cache reuse (locality) using well-known data access and data layout transformations [25, 26, 31]. However,

the improvements that can be achieved using these techniques in our algorithm are less relevant since plane

smoothers exploit blocking in an implicit way.

4. Flat Plate Boundary Layer Simulation. As a test problem we have considered the steady-state

viscous 
ow over a cascade of square plates of side L (as depicted in Figure 4.2) with a Reynolds number 10000.

In order to obtain the discrete expressions of the equations that govern this problem (the incompressible

Navier-Stokes equations), the solution domain is divided into a �nite set of hexahedra (control-volumes),

where the variables are stored in a staggered way, i.e., the velocities are evaluated on their faces and the

pressure �eld at their centers. Note that in this problem, a plane is understood as a slab of cells as shown in

Figure 4.1 (left-hand chart). Hence, the plane smoother will update all velocity components and pressures

contained within a slab at the same time (a more detailed description of the plane solver can be found in

[15]). Due to the particular dependencies of this problem, the parallel implementation of the smoother has

been constructed based on a four-color ordering of planes (right-hand chart in Figure 4.1).

In order to capture the viscous e�ects, the grids employed in this test are highly stretched near the plate
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ordering of planes and data dependencies (right-hand chart).

(see Figure 4.2). Moreover, the grids are re�ned near the plate edges to reduce the large discretization errors

in these zones [27]. In this work, the experiments have been performed over di�erent geometrically stretched

grids of the form hk+1 = �hk, where hk is the mesh space of the kth control-volume and the stretching factor

� ranges from 1.2 to 1.05 (depending on the grid size).

The number of multigrid levels has been �xed so that the coarsest level has four yz-planes (the coarsest

level where it makes sense to apply a four-color plane smoother). Using more levels does not result in any

signi�cantly faster convergence and, moreover, it increases the execution time of the parallel version (see

Section 5). For the 2-D plane solver, the choice of the number of grid levels is also a trade-o�. The optimum

has been found empirically in all the experiments reported.

5. Parallel Multigrid. Generally speaking, there are two di�erent strategies to devise a parallel imple-

mentation of a multigrid solver [29]: domain decomposition combined with multigrid (DD-MG) and global

multigrid partitioning (GMP or MG-DD). The �rst approach is based on the general principles of domain

decomposition methods. The �nest grid is decomposed into a number of blocks, which are then treated with

a multigrid method as independently as possible. The main advantage of this scheme lies in its straight-

forward application to general multi-block and irregular grids. However, it requires a careful treatment of

the connections between the di�erent blocks in order to achieve satisfactory convergence rates, which often

involves domain overlapping.

The second technique consists in applying domain decomposition on every grid level, not only on the

�nest grid. In this way, for many classical multigrid algorithms, all parallel approaches based on GMP are

algorithmically equivalent to their non-partitioned versions. Nevertheless, the algorithmical equivalence may

not be easily achieved for more complicated applications where block-implicit smoothers are required. In

addition, unlike DD-MG approaches, the degree of parallelism changes from one multigrid level to the next

and the communication-to-computation ratio may become unsatisfactory on coarse grids. Indeed, on very

coarse levels, some (or many) of the processors may be idle.

5.1. Parallel Block Smoothers. The parallel e�ciency that can be achieved by means of the GMP

approach depends on the characteristics of the di�erent multigrid components. Common grid transfer oper-

ators (In+1n , Inn+1) or residual evaluations (r
n) do not need any further discussion since these components are
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embarrassingly parallel by nature and consequently, their parallel counterparts do not impose any signi�cant

overheads on the execution time (as shown in algorithm 2, these operators only require the usual exchange

of halos). Unfortunately, this is not the case for block smoothers. Indeed, this component can be di�cult or

even impossible to parallelize.

Focusing our attention on the plane solver employed by the SCPI algorithm, it is always possible to

avoid the need for a parallel version by using a 1-D data decomposition in the semicoarsening direction,

as Figure 5.1 shows. From an implementational point of view, this is by far the best scheme that can be

considered, since it avoids the programming e�ort and the overheads that a parallel plane solver introduces

into the code. These considerations have been employed for example in [24] and [11] to parallelize a robust

multigrid algorithm for the anisotropic di�usion and advection equations respectively. Nevertheless, although

1-D decompositions have no need for a parallel plane smoother, they also have some drawbacks. The most

important one, which can be denoted as the critical level problem [11], is discussed below.

5.2. Critical Level Problem. The need to solve exactly the system of equations on the coarsest grid

[2] usually leads to choosing the coarsest multigrid level as coarse as possible to reduce the computational

cost. However, in the parallel implementation, this decision may cause some processors to be idle on the

coarsest grids. To clear up this problem it is convenient to de�ne the multigrid critical level as the level L

where the following condition is satis�ed:

�
Nx(L)

S � Px
_

Ny(L)

S � Py
_

Nz(L)

S � Pz

�
= 1; with S =

8><
>:

1; Damped Jacobi

2; Zebra Gauss�Seidel

4; Four�Color Gauss�Seidel

(5.1)
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Algorithm 2 Parallel FAS(�1,�2,
,n) multigrid cycle applied to the system Lnu
n = fn de�ned on a grid


n. The variables �1 and �2 denote the number of pre and post-smoothing iterations. The cycle type is

�xed with 
.

if n=N then

Apply parallel smoother: ûN = Parallel Smooth(LN ; u
N ; fN ; �0)

else

Apply parallel smoother: ûn = Parallel Smooth(Ln; u
n; fn; �1)

Exchange solution halos un in grid 
n

Evaluation of the residual: rn  fn � Lnû
n

Exchange residual halos rn in grid 
n

Restriction of the residual: rn+1  In+1n rn

Restriction of the solution: un+1  In+1n ûn

Exchange solution and residual halos in grid 
n+1

Computation of the right hand-side: fn+1  rn+1 + Ln+1u
n+1

for i = 0 to 
 do

FAS(�1; �2; 
; n+ 1)

end for

Exchange solution halos un+1 in grid 
n+1

Update Solution: ûn  ûn + Inn+1(u
n+1 � ûn+1)

Apply smoother: ûn = Parallel Smooth(Ln; û
n; fn; �2)

end if
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Fig. 5.1. Schematic data distribution of a 1-D data decomposition

where Nx(L), Ny(L), Nz(L) are the local number of cells per side on level L in direction x, y and z

respectively, and Px, Py and Pz are the number of processors in direction x, y and z. That is, the critical

level is the coarsest level at which all processors can perform the smoothing operation concurrently or, or

in other words, the multigrid level where each processor has one local plane in the case of a damped Jacobi

smoother, two planes for a zebra update and four planes in the case of a four-color ordering.

Below the critical level, the parallel algorithm has serious load-balance problems that reduce its e�ciency,

since the number of idle processors is doubled on every level below the critical one. It also complicates its
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implementation because, as we pass below the critical level, it may be necessary to dynamically rearrange the

communication patterns and grid distributions. Among the most popular alternatives that could alleviate

this problem, we should mention:

� Agglomeration on coarsest grids. In some cases, the idleness of processors is not the main overhead

source and multigrid may be faster just using one processor on the very coarse grids (below the

critical level). It makes sense to apply this approach, which for example has been successfully

employed in [16], when the communication overhead on coarse levels is more problematic than the

load-imbalance, i.e. when the communications are more expensive than the computation. However,

when plane-wise smoothers are considered, the communication-computation ratio is still low even

on the coarsest grids and this approach fails to achieve satisfactory e�ciencies. In other words,

this strategy is more suitable in the context of point-wise relaxation because plane-wise smoothers

already have an implicit degree of agglomeration.

� Multiple Coarse Grids. This approach keeps the processors busy below the critical level using

multiple coarse grids. Although it slightly increases the execution time, since extra work is necessary

to merge the solutions of the di�erent grids, it may improve the convergence properties of the method.

However, it is quite di�cult to �nd satisfactory merging operators for sophisticated problems.

� U-Cycle method. In some cases, it is advisable to avoid idle processors by �xing the number of grid

levels so that the coarsest grid employed is the critical level. This strategy makes the implementation

easier and keeps all the processors busy. However, not going down to the coarsest possible grids

changes the algorithm, since in the sequential counterpart the coarsest level is usually chosen to be

as coarse as possible. For many applications where a large number of grid levels is still processed,

this strategy has achieved very satisfactory results. If an iterative method is employed to solve

the system of equations on the coarsest grid, the e�ciency of the U-Cycle depends on the required

number of iterations, which in turn depends on the number of processors since it grows with the

system size [24].

5.3. U-cycle. In this research we have tried to steer clear of load-imbalance problems by using the

U-Cycle approach. However, if this strategy were combined with a 1-D decomposition to avoid a parallel

plane smoother, the scalability of the corresponding solver would be very limited due to a high critical level.

This fact is of a great relevance in the SCPI algorithm, since it employs a four-color ordering for updating

the planes.

Let us assume, without losing generality, that the avaliable processors (P ) are equally distributed among

all the partitioned directions. If we de�ne d as the number of the dimensions in which the data is partitioned,

the critical level L satis�es the following condition:

min(Ni(L))

S � P 1=d
= 1 i 2 (x; y; z) = i = partitioned direction.(5.2)

As shown in equation 5.2 the critical level can be lowered by either reducing the coloring of the smoother or

using a higher order decomposition, both alternatives have been combined in the parallel implementation of

the solver.

We have opted to employ a 2-D decomposition since 3-D data decompositions require a parallel tridiago-

nal solver. Although these kinds of solvers have been widely studied (see for example [9]) and it is possible to

obtain quite satisfactory e�ciencies for large and even moderate problem sizes, current memory limitations

make it impossible to solve 3-D problems whose corresponding lines are big enough to obtain reasonable

e�ciencies [24]. Obviously, a 2-D decomposition introduces some overhead to the plane solver. Indeed, since

8



it consists in a 2-D version of the SCPI algorithm, it presents the same complications as those discussed

above for the 3-D problem. However, the critical level problem is less troublesome in the 2-D counterpart

because the computational cost required to solve the coarsest levels is much lower than in 3-D.

As Figure 5.2 shows, such a decomposition can also be seen as a 1-D partitioning of the plane solver

integrated into the 1-D decomposition of a 3-D domain. Although it is beyond the scope of this research,

this view suggests that an hybrid message-passing (a 1-D distribution of the 3-D domain using MPI) and

shared-memory (the plane solver is parallelized using OpenMP) parallelism could take advantage of modern

HPC machines based on clusters of shared-memory compute nodes.

P1

P11

P

P01

1−D Decomposition of the planes

P0

P00

10

Topology 2x1

Topology 2x2

1−D Decomposition of the 3−D Domain

Fig. 5.2. Schematic data distribution of a 2-D data decomposition

In addition, the plane smoother employed in our parallel SCPI algorithm reduces its coloring S dy-

namically, using a zebra and damped Jacobi updates on grids below the critical level. Obviously, this new

smoother causes the numerical properties of the algorithm to deteriorate. Nevertheless, increasing the num-

ber of iterations when zebra or Jacobi updates are used compensates for their impact on the convergence

rate. In this way, the parallel SCPI algorithm achieves the same convergence rate as that of the sequential

counterpart.

Finally, we should remark that given a certain problem size and a certain number of processors P , the

choice of the optimum 2-D process topology is a tradeo� between non-parallelization of the plane solver

(following the notation introduced in Figure 5.2, a topology Px1), and a topology 1xP , where all the

processors cooperate in solving each plane. The former is at the expense of a change in the algorithm (not

going down to the 3-D coarsest possible grid) while the latter is at the expense of some communication

overhead in the plane solver. The experimental results presented in the next section have been obtained

using the optimal topology.

6. Performance of the SCPI solver on Coral. In this section we have studied in more detail the

performance of the SCPI solver on Coral. The results have been compared with the well-known NAS-MG

benchmark (class B)[1], a standard multigrid V-cycle (see algorithm 3) based on global multigrid partitioning

that solves the Poisson equation on a 3-D uniform grid (class B uses a 2563 grid). This comparison can only

be seen as a reference, whose main goal is to highlight how an optimal cluster design strongly depends on

the target applications, even for such a speci�c area as that of parallel multigrid methods based on global

multigrid partitioning.
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Algorithm 3 NAS(n) V-cycle multigrid cycle applied to the system Lnu
n = fn de�ned on a grid 
n.

if n=N then

Apply Smoother: uN = Smooth(rN ; 0)

else

Restriction of the residual: rn+1  In+1n rn

Recursively solve the system on 
n+1: NAS(n+ 1)

Prolongate solution: un  Ihh+1u
n+1

Evaluate residual: rn  fn � Lnu
n

Apply Smoother: un = Smooth(rn; u
n)

end if

6.1. Analysis of the Interconnection Network. The interconnection network is probably the key

factor in the design of a Beowulf-class system. Its overall cost, as well as the potential e�ciency that can

be achieved, strongly depends on its choice. Possibilities range from a low cost Fast-Ethernet switch to a

state-of-the-art cluster area network interconnect, such as Myrinet [19] or GigaNet [4]. In this section, we

will evaluate the e�ect of the two di�erent interconnection networks available in Coral on the performance

of the two multigrid solvers considered. To take advantage of the GigaNet network, the codes have been

compiled against the MPI/Pro library [18], a commercial implementation of the MPI standard which o�ers

access to the VIA interface in an interrupt-driven receive mode.

6.1.1. Raw Performance. Before discussing the network impact on the multigrid solvers investigated,

it is worthwhile comparing the raw performance achieved by MPI/Pro in both networks, particularly the

point-to-point communication performance, since this operation accounts for the greater part of the commu-

nication cost in both codes (collective communications are also required to compute vector norms but their

overheads are insigni�cant in both cases). As a point-to-point benchmark we have employed the classical

ping-pong test between two processes running on di�erent nodes [23]. In this basic test GigaNet clearly out-

performs Fast-Ethernet. MPI/Pro over GigaNet achieves an asymptotic bandwidth of about 102 Mbytes/s,

which is about nine times better than the Fast Ethernet bandwidth (around 11.1 Mbytes/s) [8].

Nevertheless, this basic test ignores the e�ect of message memory layout on message-passing performance,

since it assumes that the data to be communicated are contiguously stored in memory. However, this is not

always the case in practical applications since boundary data are not, in general, contiguous in memory.

A quantitative measurement of the e�ect of this characteristic can be obtained using a modi�ed ping-

pong test, where message spatial locality is modi�ed by means of di�erent strides between successive elements

of the message (see [23] for a detailed discussion). As Figure 6.1 shows, non-unit-stride memory accesses have

a severe impact on performance (following the notation of the MPI Type vector data type [17], stride-one

represents contiguous data). This fact is especially relevant for GigaNet, where the e�ective bandwidth is

reduced from a peak of about 102 Mbytes/s to about 12 Mbytes/s for stride-four messages, a performance

drop of around 88%. The equivalent drop over Fast-Ethernet is also very signi�cant but only about 42%

(from about 11.1 Mbytes/s to about 6.5 Mbytes/s).

6.1.2. SCPI Performance. Figure 6.2 shows the e�ciency obtained by the SCPI solver for a �xed

32x128x128 problem size. As usual, the e�ciency has been de�ned as:

E(N;P ) =
T (N; 1)

P � T (N;P )
;(6.1)
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Fig. 6.1. Point-to-point communication bandwidth obtained by MPI/Pro over GigaNet and over Fast-Ethernet in Coral.

The measurements have been obtained using the classical ping-pong test with two di�erent message memory layouts: contiguous

and stride-four vectors.

where the execution time chosen is the time needed to perform one cycle of the SCPI solver on every grid

level. These measurements have been performed over GigaNet and over Fast Ethernet under an unloaded

network using two MPI processes per node.
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Fig. 6.2. Parallel e�ciency obtained by the SCPI solver for a �xed problem size using a dual node con�guration in

combination with the GigaNet or the Fast-Ethernet networks.

As could be expected, GigaNet outperforms Fast Ethernet, especially as the number of processors grows.

The improvement achieved by GigaNet varies from a small margin of 7%, using 4 processors, to 30% for 32

processors. The drop in e�ciency experienced by the code when moving from the GigaNet to Fast-Ethernet

is due to the worsening communication-to-computation ratio. Given that the problem size is �xed, the

di�erence in this ratio for the two interconnects grows linearly with the number of processors (see right-hand

chart in Figure 6.3).

The great di�erences in performance experienced with both networks are due to the e�cient exploitation

of the interconnection hardware made by the SCPI algorithm. In order to analyze this di�erence it is useful

to consider the GigaNet communication and computation gains. The communication gain has been de�ned

as the ratio of the communication cost over Fast-Ethernet to the GigaNet counterpart (and similarly for the

11



computation gain):

G =
Teth
Tgnet

:(6.2)

The left-hand chart in Figure 6.3 shows the gains in communication and computation achieved by Gi-

gaNet. As expected the computation time is the same for both networks (i.e. Gcomputation � 1), whereas the

communication gain is around 2, which is lower than the gains obtained in the ping-pong test for the problem

sizes involved in the simulation (note that these measurements also involve intra-node communications).
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Fig. 6.3. Computation and communications gains achieved by GigaNet (left-hand chart) and communication to computa-

tion ratio for the Fast Ethernet and the GigaNet networks (right-hand chart). These experimental results have been obtained

for the SCPI solver (using a �xed 32x128x128 problem size) and a dual node con�guration.

6.1.3. NAS-MG Performance. Using the NAS-MG benchmark, the e�ciency obtained is again bet-

ter with GigaNet (Figure 6.4). However, in this case the di�erence between both networks is not as remarkable

as for the SCPI solver. This is due to the lower communication gain obtained by GigaNet in this case, which

is a consequence of the poor spatial locality in some of the boundaries employed by the NAS-MG.

0

0.2

0.4

0.6

0.8

1

12 4 8 16 32

 E
ffi

ci
en

cy
 

 Number of Processors 

NAS-MG

GigaNet
Fast Ethernet

Fig. 6.4. Parallel e�ciency obtained by the NAS-MG (class B) benchmarks using a dual node con�guration in combination

with the GigaNet or the Fast-Ethernet networks.

The 2-D data decomposition employed in the SCPI algorithm has been deliberately chosen so that

boundaries are stored almost contiguously in memory. However, the NAS-MG benchmark uses a 3-D data

12



decomposition, forcing the usage of non-contiguous boundaries. Indeed, point-to point communications are

done in the NAS-MG benchmark via an explicit packing of data, i.e. messages are �rst built by transferring

data from the original boundaries into a message bu�er explicitly managed by the program. In this case, we

can assume that the communication cost can be split into:

T = tnet + �;(6.3)

where only the term tnet depends on the interconnection network. The � parameter, which accounts for the

explicit message packing, is network independent and, consequently, it limits the potential communication

improvement that can be achieved by the interconnection network. Applying Amdahl's law (i.e. assuming

an ideal network where tnet is insigni�cant), the maximum communication gain that can be achieved is:

Gmax =
Ttarget net

Tideal net
= 1 +

tnet
�

:(6.4)

Combining equation (6.2) and (6.3), the communication gain achieved by GigaNet can be predicted by:

Gpre =
1 + �

teth
tgnet
teth

+ �
teth

:(6.5)

In the left-hand chart in Figure 6.5 the experimental communication gain is plotted against the maximum

gain (Gmax) and the predicted gain (Gpre). The quotient tgnet=teth in equation (6.5) has been obtained using

data from the ping-pong test and � has been experimentally measured. The experimental gain, which matches

the predicted one, is about 1.6 for more than 8 processors, which is only 46% lower than the maximum gain.

Compared to the SCPI algorithm, this gain is around 20% lower.
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Fig. 6.5. Computation and communications gains achieved by GigaNet (left-hand chart) and communication to computa-

tion ratio for the Fast Ethernet and the GigaNet networks (right-hand chart). These experimental results have been obtained

for the NAS-MG (Class B) benchmark using a dual node con�guration.

In the right-hand chart in Figure 6.5 the communication to computation ratio of the NAS-MG benchmark

is shown for the two networks. As for the SCPI, the di�erence between the two ratios grows linearly with

the number of processors, thus increasing the e�ciency of GigaNet over Fast-Ethernet as the number of

processors is increased. However, when compared with the SCPI, the communication-to-computation ratio

of the NAS-MG is substantially higher. For example, for the 32 processors simulation the ratio is around

0.3 for the SCPI, while for the NAS-MG it is around 0.9. This result is due to both the higher computation
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count of the implicit plane solver and the locality of the messages exhibited by the SCPI. This fact is clearly

re
ected in the e�ciency results of Figure 6.2, note that using 32 processors the e�ciency of the SCPI is

0.7, which is 40% better than that obtained by the NAS-MG.

6.2. Analysis of the Dual Node con�guration. In recent years, dual node con�gurations have

become a standard in cluster computing. The drop in system cost and power consumption, the reduction in

space and wiring-complexity and the attraction of the possible use of shared memory paradigm have been,

among others, the main reasons leading to this fact. Focusing on system cost and quoting July 2001 prices

obtained from Compaq [5] and Myricom [19] sites, a 16 node cluster equipped with Compaq ProLiant DL320

single nodes (with Intel Pentium III processors running at 1GHz) and a 16 serial-port Myrinet switch (with

the corresponding host interface cards) is about 27% more expensive than a similar 8 node cluster equipped

with Compaq ProLiant DL360 dual nodes (with two Intel Pentium III processors running at 1GHz and

twice the amount of memory and disk space than the DL320 nodes) and a 8 serial-port Myrinet switch. In

addition, this di�erence grows with the number of nodes, since network cost does not scale linearly with

system size (making the comparison between a 64 dual-node cluster and its 128 single-node counterpart, the

di�erence grows to 35%).

However, single node con�gurations can obtain a better performance compared to their dual counter-

parts, and consequently the right choice (dual versus single node con�guration) strongly depends on the

cluster target application. In this section, we have assessed dual and single node con�gurations taking the

NAS-MG and the SCPI solver as targets.

Before studying both solvers, we should remark that although one of the advantages of dual computing

is the potential reduction in the intra-node communications cost, the current version of MPI/Pro installed on

Coral does not seem to take advantage of the shared memory. Indeed, the asymptotic intra-node bandwidth

using MPI/Pro is only 83 Mbytes/s. Better performance is obtained in this case using MPI Lam (using

the correct Lam driver [8]). The peak bandwidth is about 270 Mbytes/s for message sizes lower than 256

Kbytes (for longer messages it drops to 127 Mbytes/s since the internal message bu�ers do not �t into the

L2 cache)[8].

6.2.1. SCPI Performance. As shown in the left-hand chart in Figure 6.6 , the e�ciency obtained by

the SCPI solver (for a �xed 32x128x128 problem size) using single nodes combined over GigaNet is almost

optimal up to four processors and remains satisfactory for eight or more processors.

The right-hand chart in Figure 6.6 shows the communication and computation overheads introduced by

the dual con�guration due to the competition for shared resources (local memory and network card), where

the overhead has been de�ned as:

O =
tdual � tsingle

tdual
:(6.6)

We should point out that when the single nodes are replaced by dual nodes the computing time is increased

by only 15%. This low increase is due to the locality exhibited by the implicit plane solver, which reduces

memory tra�c, and hence relieves the memory contention. Thus, the SCPI algorithm does not present a

signi�cant reduction (15% to 20%) in e�ciency when dual nodes are used.

6.2.2. NAS-MG Performance. As the left-hand chart in Figure 6.7 shows, dual con�guration causes

an important e�ciency reduction on the NAS-MG. As shown in Figure 6.7 (right-hand chart), the computa-

tion overhead grows to about 35% (twice than in the SCPI solver). The communication overhead does not

grow with the number of processors, although 70% is the overhead achieved on the SCPI for the 16-processor
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Fig. 6.6. E�ciency for a �xed 32x128x128 problem size (left-hand chart) and dual node communication and computation

overheads achieved for the SCPI solver (right-hand chart). These measurements have been obtained over GigaNet.

case. The computation overhead increase is due to the poor locality exhibited by the NAS-MG benchmark,

which magni�es the competition for the memory system.
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Fig. 6.7. Dual node communication and computation overheads achieved for the NAS-MG benchmark (left-hand chart)

and communication-to-computation ratio for the dual and single node con�gurations (right-hand chart). These measurements

have been obtained over GigaNet.

7. SCPI Scalability. Before discussing the SCPI scalability, we should remark that for this kind of

solvers scalability involves two di�erent aspects, which can be denoted as algorithmic scalability and imple-

mentation scalability [3]. From a numerical point of view, scalability (algorithmic scalability ) requires that

the computational work per iteration only grows linearly with the problem size and that the convergence fac-

tor per iteration remains bounded below 1, the bound being independent of problem size. The second aspect

(implementation scalability) only requires that a single solver iteration is scalable on the target computing

platform.

Although the aim of this paper is to study the implementation scalability, Figure (7.1) shows the con-

vergence histories achieved by the SCPI algorithm for the target 
at-plate simulation. The residual norm

is reduced by nearly �ve orders of magnitude in the �rst �ve cycles on the �ner grid (corresponding to

a convergence rate of roughly 0.1 per �ne grid iteration), which is close to that obtained for the Poisson
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equation with a semi-coarsened smoother [24]. In addition, the convergence rate is independent of the grid

size and the grid-stretching factor. More numerical results can be found in [15].
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Fig. 7.1. L2-norm of the residual versus F(2,1)-cycles of the investigated SCPI algorithm for the 
at plate simulation

with Re = 104 on a 128x128x128 grid (left-hand chart), and a 64x128x128 (right-hand chart).

Focusing on the implementation scalability, as mention above, if a �xed problem size (time-critical scaling

model) is considered the performance of the SCPI algorithm is almost optimal up to four processors (for the

single processor con�guration), since in these simulations it is possible to apply a 1-D decomposition and

consequently the plane solver, which is by far the most time consuming component of the algorithm, does

not su�er any communication overhead. Due to the critical level problem, experiments using eight or more

processors require a 2-D decomposition and the e�ciency decreases, although it remains satisfactory up to

32-processor simulations.

In practice, the usage of a large number of processors only makes sense for large problem sizes. Hence,

although the e�ciency data discussed above provide useful information about the implementation scalability

of the SCPI solver, it is more relevant to study how the algorithm scales when both the size of the problem

and the number of processors are increased (accuracy-critical scaling model) [12]. As is well known, in this

case it is not possible to study the scalability taking the e�ciency as a reference, since it is not possible to

obtain the sequential solution of larger problems due to memory constraints.

In this research we have opted to use a scaled e�ciency:

E(N;P ) =
T (N; 1)

T (PN;P )
:(7.1)

One would like a highly scalable algorithm where E(N;P ) = 1, i.e. one would like that if the problem size

is doubled, doubling the number of processors would keep the solution time constant. Nevertheless, as other

authors have pointed out, a solver can be considered nearly scalable if its scaled e�ciency remains bounded

away from zero, i.e. E(N;P ) > 0.

The scaled e�ciency data shown in Figure (7.2) has been taken over GigaNet using two MPI processes

per node. As expected, the e�ciency becomes worse for increasing P , but we can say that our algorithm

nearly scales since its scaled e�ciency only decreases logarithmically and remains bounded away from zero.

Indeed, this is the most reasonable scalability that multigrid algorithms can achieve since as the number of

processors and the problem size get larger (N=P = const:), the number of levels also increases [29].
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Fig. 7.2. Scalability of the SCPI algorithm if both the number of processors and the problem size grow. The measurements

have been taken using MPI/Pro over GigaNet using two MPI process per node.

8. Conclusions. The combination of semicoarsening and a plane-implicit smoother has been studied in

the simulation of a 
at plate boundary layer, taking into account both numerical and architectural properties.

The main conclusions can be summarized as follows:

� The solver reduces the residual norm by nearly �ve orders of magnitude in the �rst �ve cycles on the

�nest grid in all cases. In addition, the algorithm is fully robust: the convergence rate is independent

of the grid size and the grid-stretching factor [15].

� The strategy considered for parallelizing the SCPI solver consists in applying a multigrid U-cycle

with a 2-D grid partitioning. Unlike 3-D decompositions, this strategy avoids the need for a parallel

block tridiagonal solver that has been previously reported to have low e�ciency for small problems.

A 1-D grid decomposition was also found to be non-scalable due to the critical level problem.

� Satisfactory e�ciencies have been obtained for up to 32 processors and the scaled e�ciency remains

bounded away from zero.

In addition, we have analyzed the di�erent Coral con�gurations using both the solver investigated and

the NAS-MG benchmark. The results highlight the strong dependence of the optimal con�guration choice on

the target applications, even for such a speci�c area as that of parallel multigrid methods. For the NAS-MG

kernel, the most convenient con�guration (taking performance and cost factors into account) seems to be

the combination of a switched Fast-Ethernet network with single nodes. GigaNet only achieves a gain of

about 1.6 over Fast-Ethernet since the message-packing cost, which is network independent, accounts for an

important percentage of the communication cost in this application. On the other hand, a dual con�guration

imposes a high overhead of about 30% due to poor data locality exploitation, which increases memory tra�c.

However for the SCPI code, which represents a better characterization of a practical multigrid workload,

GigaNet achieves a signi�cant improvement of about 2.15 in communication time and the dual node overhead

is only about 15% due to a better exploitation of data locality.
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