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REGULARIZATION OF THE CHAPMAN-ENSKOG EXPANSION AND

ITS DESCRIPTION OF SHOCK STRUCTURE�
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Abstract. In the continuum transition 
ow regime, we propose to truncate the Chapman-Enskog

expansion of the Boltzmann equation to the Navier-Stokes order only without going to the Burnett or super

Burnett orders. However, the local particle collision time has to be generalized to depend not only on the

local macroscopic 
ow variables, but also their gradients in the rare�ed gas regime. Based on the gas-kinetic

BGK model, the relation between the conventional collision time and the general one is obtained. More

speci�cially, a generalized constitutive relation for stress and heat 
ux is proposed. This new model is

applied to the study of argon gas shock structure. There is good agreement between the predicted shock

structure and experimental results for a wide range of Mach numbers.
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1. Introduction. It is well recognized that the Navier-Stokes equations of the classical hydrodynamics

are incapable of accurately describing shock wave phenomena and also for the 
ow phenomena in the rare�ed

regime. In order to improve the Navier-Stokes solutions, much e�ort has been paid on the construction of

higher-order hydrodynamic equations based on the Chapman-Enskog expansion. But the Burnett and super

Burnett equations give unstable shock structures in high Mach number cases. For example, no shock structure

can be obtained for the Burnett equations after a critical Mach number Mc = 2:69 [9]. Even though the

argumented Burnett of Zhong et al. and BGK-Burnett equations of Agarwal et al. can signi�cantly improve

the Navier-Stokes solutions in the continuum transition regime [7, 14, 1], it is unclear that the stable shock

structures of these schemes are coming from the complicated numerical dissipations, such as the use of

Steger Warming 
ux splitting scheme for the inviscid part of the equations [8], or the selected higher-order

terms. As analyzed in [10], the failure of the Burnett equations for the shock structure calculation is not too

surprising because the applicability of the Chapman-Enskog expansion itself is valid to the small Knudsen

numbers. The possible generation of spurious solutions from the higher-order terms in the Chapman-Enskog

expansion is another point for criticism [5].

This work is motivated originally by extending the gas-kinetic BGK Navier-Stokes solver to the con-

tinuum transition regime [12]. The direct adoption of the Chapman-Enskog expansion with the terms pro-

portional to Knudsen number K2
n and K3

n in the gas distribution function encounters great di�culty in the

shock structure calculations. The critical Mach number for the shock structure based on the BGK-Burnett

expansion is found to be around Mc = 4:5, and the number becomes even smaller, i.e., Mc = 2:0, with the

inclusion of super Burnett term [13]. Our numerical experiments show clearly that the successive Chapman-

Enskog expansion without selectively choosing higher order terms give divergent results as the Knudsen
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number increases. However, up to the Navier-Stokes order, there is not any limitation on the Mach number

for the existence of the stable shock structure. This observation is consistent with the theoretical analysis

in [9]. Therefore, it may be possible to truncate the Chapman-Enskog expansion to the Navier-Stokes order

only and include the possible non-equilibrium e�ect on the modi�cation of the viscosity and heat conduction

coe�cients, the so-called constitutive relations. Traditionally, the particle collision time � is regarded as a

function of macroscopic variables. For example, based on the BGK model [3], we have the collision time

� = �=p, where � is the dynamical viscosity coe�cient, such as the Sutherland's law, and p is the pressure.

All those viscosity coe�cients are basically obtained either experimentally or theoretically in the continuum


ow regime [6]. There is no reason to guarantee that this relation is still applicable for the rare�ed gas. In

this paper, we are going to derive a general particle collision time ��, which is applicable in both continuum

and continuum transition regime. This derivation is based on the closure of the Chapman-Enskog expansion

on the Navier-Stokes order and the BGK equation.

2. Closure of the Chapman-Enskog Expansion. The BGK model in the x-direction can be written

as [5]

ft + ufx =
g � f

�
;(2.1)

where f is the gas distribution function and g is the equilibrium state approached by f . Both f and g

are functions of space x, time t, particle velocities u, and internal variable �. The particle collision time �

determines the viscosity and heat conduction coe�cients, i.e., � = �p. The equilibrium state is a Maxwellian

distribution,

g = �(
�

�
)
K+2

2 e��((u�U)
2+�21+�

2
2);

where � is the density, U is the macroscopic velocity in the x direction, and � is related to the gas temperature

m=2kT . For a monatomic gas, �1 and �2 represent the particle velocities in the y and z directions. The

relation between mass �, momentum �U , and energy �E densities with the distribution function f is

0
B@

�

�U

�E

1
CA =

Z
 fdud�1d�2;

where  has the components

 = ( 1;  2;  3)
T = (1; u;

1

2
(u2 + �21 + �22))

T :

Since mass, momentum and energy are conserved during particle collisions, f and g should satisfy the

compatibility condition

Z
(g � f) �dud�1d�2 = 0; � = 1; 2; 3;(2.2)

at any point in space and time.

It is well known that the Euler, the Navier-Stokes, and the Burnett, etc. equations can be derived

from the above BGK model using the Chapman-Enskog expansion [6]. The successive expansion of the

Chapman-Enskog expansion gives

f = g � �(gt + ugx) + �2(gtt + 2ugxt + u2gxx)� �3(gttt + 3ugxtt + 3u2gxxt + u3gxxx) + :::
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which corresponds to the Euler (�0), the Navier-Stokes (�), the Burnett (�2), and the super Burnett (�3) ...

orders. With the de�nition D = @=@t+ u@=@x, we can write the above equation as

f = g +

1X
n=1

(��D)ng:

In the continuum transition regime, the Navier-Stokes equations are expected to be inaccurate and the

expansions beyond the Navier-Stokes order have only achieved limited success. As shown by Uribe et al.

[10], Bobylev's instability analysis basically provides a range of Knudsen numbers for which the Burnett

order is valid [4].

In order to increase the validity of the gas kinetic approach in the continuum transition regime, we have

to regularize the Chapman-Enskog expansion. The main idea of this paper is to close the Chapman-Enskog

expansion up to the Navier-Stokes order only without going to Burnett or super Burnett orders. But, instead

of keeping the original particle collision time � , we have to construct a general one. In other words, we expand

the gas distribution function as

f = g � ��(gt + ugx);(2.3)

and �� is obtained to have the BGK equation to be satis�ed,

f = g � �(ft + ufx):(2.4)

When the spatial and temporal derivatives of the particle collision times are ignored, from the above two

equations (2.3) and (2.4), we can get the relation between the original particle collision time � and the new

one ��,

�� =
�

1 + �D2g=Dg
:(2.5)

Therefore, the local particle collision time depends not only on the macroscopic variables through � = �=p,

but also the ratio between the Burnett order D2g and the Navier-Stokes order Dg. In the above equation,

�� depends on the particle velocities, which may introduce great complexity in using its solution. In order

to remove the particle velocity dependence in ��, we suggest to take a moment on D
2g=Dg �rst, such as

hD
2g

Dg
i �

Z
	(u)D2gdud�1d�2=

Z
	(u)Dgdud�1d�2:(2.6)

Here we propose to use 	(u) = (u�U)2 in the above integration, where U is the local macroscopic velocity.

Other choices may be possible. But, due to the fact that both moments of Dg and D2g on (1; u; (1=2)(u2+

�21 + �22)) vanish, the above choice becomes the only one which mimics `dissipative' energy in some sense.

In the expressions of D2g and Dg, there exist temporal and spatial derivatives of a Maxwellian. The local

spatial derivatives can always be constructed from the interpolated macroscopic 
ow variables, such as the

gradients of mass, momentum, and energy. For the temporal derivatives, they have to be evaluated based

on the compatibility conditions, such as
R
D2g �dud�1d�2 = 0 and

R
Dg �dud�1d�2 = 0 of the Chapman-

Enskog expansion. The detailed numerical procedure is given in [13]. In summary, based on the BGK model

and the closure of the Chapman-Enskog expansion on the Navier-Stokes order, we derive a new local particle

collision time ��, such that

�� = �=
�
1 + �hD2g=Dgi� :(2.7)
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Based on the above ��, the viscosity and heat conduction coe�cients will depend on both the macroscopic

variables and their slopes. In the continuum regime, since the higher-order dissipation should have less e�ect

than the lower order one, hD2g=Dgi will theoretically go to zero. This is veri�ed in the following shock

structure calculation.

In recent years, an accurate gas-kinetic BGK Navier-Stokes solver (BGK-NS) has been developed for the

viscous solution in the continuum regime by the current author and co-workers [12]. In the following argon gas

shock structure calculations, we are going to use the above BGK-NS method, but with the implementation of

the new particle collision time ��. For a monatomic gas modeled by point centers of force, the kinetic theory

leads to a viscosity � proportional to T s and the Prandtl number Pr = �Cp=� is a constant equal to 2=3,

where � is the heat conduction coe�cient. The temperature exponent s is given by s = 1=2+2=(v�1), where
v is the power index of the inter-molecular force law. For argon gas at STP, v= 7:5 is cited by Chapman

and Cowling [6] based on early viscosity data. Recent work by Lumpkin and Chapman [7] suggests that

v= 9 is a better approximation, which is con�rmed through systematic calculation of shock wave pro�les.

In our calculation, the local Navier-Stokes particle collision time � is �rst evaluated according to � = �=p,

where � � T s and p is the local pressure. Then, the new value �� is obtained according to Eq.(2.7). With

the general ��, the BGK-NS solver is used for the shock structure solution [12]. Since the BGK scheme is

a �nite volume method, even with intrinsic unit Prandtl number in the BGK model, the heat 
ux across a

cell interface can be modi�ed to simulate a gas with any realistic Prandtl number [12], such as 2=3 for the

current argon gas. The shock structure is obtained using a time accurate BGK-NS solver until a steady state

is reached. In each calculation with �xed � and Pr, the mesh size is chosen to make sure that there are at

least 30 mesh points in the shock layer and the whole computational domain is covered by 200 grid points.
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Fig. 2.1. Comparison of the theoretical shock thickness �1=Ls vs. Mach number Ms with the experimental data [2]. The

solid lines are the results from the BGK-NS solver [12] and the new BGK-Xu model. The simulations are done for both v= 9:0

and 7:5 cases.

Studies of the shock structure are generally validated by comparing the reciprocal density thickness with

experimental measurements. The thickness is de�ned as

Ls = (�2 � �1)=(d�=dx)max:
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Fig. 2.2. The density �n = (� � �1)=(�2 � �1) distribution vs. x=�1 inside the shock layer at Ms = 9. Dash-dot line,

BGK-NS solution with v= 7:5; solid line, BGK-Xu solution with v= 7:5; circles, experimental data for argon gas [2].

The above shock thickness is normalized by the upstream mean free path,

�1 =
16

5
p
�

�1

�1
p
2RT1

:

Figure 2.1 displays the results, where \BGK-NS" refers to the solution of the BGK Navier-Stokes solver

with the original particle collision time � = �=p [12], and \BGK-Xu" refers to the results from the same

BGK Navier-Stokes solver but with the implementation of the new value ��. Both v= 9 and v= 7:5 cases are

tested. All symbols in Figure 2.1 are the experimental data presented in [2], which are extensively used by

many others to validate their models [1, 11]. The solution from the current new model (BGK-Xu) matches

perfectly with the experimental data. Figure 2.2 presents the density distribution �n = (� � �1)=(�2 � �1)

vs. x=�1, where v= 7:5 is used in both BGK-NS and BGK-Xu solutions. The circles in Figure 2.2 are the

experimental data from [2]. From these �gures, we can observe that the general particle collision time used

signi�cantly improves the results. In the continuum 
ow regime, where the Mach number of the shock wave

goes to 1:0, the BGK-NS and BGK-Xu solutions converge. In other words, �� approaches to � automatically

as Knudsen number decreases.

3. Conclusion. In this paper, we have developed a generalized constitutive relation, where the viscosity

coe�cient depends not only on the macroscopic variables, but also on their gradients. Even with the closure

of the Chapman-Enskog expansion on the Navier-Stokes order, the results from this new model agrees well

with the experimental data in the study of argon shock structure. The generalization of the collision time

from � to ��,

�� =
�

1 + �hD2g=Dgi ;

is important to capture the rare�ed gas e�ect in the continuum transition regime. In the continuum regime,

such as the Mach number approaching to 1:0 in the shock case, the contribution from hD2g=Dgi disappears
automatically. This can be understood physically that in the near equilibrium 
ow the higher order con-

tribution (Burnett D2g) has much less e�ect than the lower order term (Navier-Stokes Dg). The further
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application of this new BGK-Xu model in the continuum transition regime, such as Couette and Poiseuille


ows, will be presented in subsequent papers.
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