
NASA/CR-2002-211763
ICASE Report No. 2002-29
A Multi-domain Spectral Method for Supersonic
Reactive Flows

Wai-Sun Don, David Gottlieb, and Jae-Hun Jung
Brown University, Providence, Rhode Island
August 2002



The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this
important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information.
The NASA STI Program Office provides
access to the NASA STI Database, the
largest collection of aeronautical and space
science STI in the world. The Program Office
is also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA’s
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATIONS.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the
STI Program Office’s diverse offerings include
creating custom thesauri, building customized
data bases, organizing and publishing
research results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home
Page athttp://www.sti.nasa.gov

• Email your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI
Help Desk at (301) 621-0134

• Telephone the NASA STI Help Desk at
(301) 621-0390

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320



NASA/CR-2000-
ICASE Report No.
NASA/CR-2002-211763
ICASE Report No. 2002-29
A Multi-domain Spectral Method for Supersonic
Reactive Flows

Wai-Sun Don, David Gottlieb, and Jae-Hun Jung
Brown University, Providence, Rhode Island

ICASE
NASA Langley Research Center
Hampton, Virginia

Operated by Universities Space Research Association

Prepared for Langley Research Center
under Contract NAS1-97046
August 2002



Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 487-4650



A MULTI-DOMAIN SPECTRAL METHOD FOR SUPERSONIC REACTIVE FLOWS �

WAI-SUN DON, DAVID GOTTLIEB & JAE-HUN JUNG

Abstract. This paper has a dual purpose: it presents a multidomain Chebyshev method for the solu-

tion of the two-dimensional reactive compressible Navier-Stokes equations, and it reports the results of the

application of this code to the numerical simulations of high Mach number reactive 
ows in recessed cavity.

The computational method utilizes newly derived interface boundary conditions as well as an adaptive �l-

tering technique to stabilize the computations. The results of the simulations are relevant to recessed cavity


ameholders.

Key words. multi-domain spectral method, penalty interface conditions, supersonic combustor, recessed

cavity 
ame-holder, compressible Navier-Stokes equations

Subject classi�cation. Applied and Numerical Mathematics

1. Introduction. The eÆcacy of spectral methods for the numerical solution of highly supersonic,

reactive 
ows had been previously reported in the literature. Don and Gottlieb [7, 8] simulated interactions

of shock waves with hydrogen jets and obtained results showing the rich dynamics of the mixing process as

well as the very complex shock structures. Don and Quillen [9] studied the interaction of a planar shock

with a cylindrical volume of a light gas and showed that the spectral methods used gave good results for the


ows with the shocks and complicated non-linear behaviors. In fact the results compared favorably to ENO

schemes.

The methods reported above were based on Chebyshev techniques in one domain. In order to extend

the utility of spectral methods to complex domains, multidomain techniques have to be considered. The

main issue here is the stable imposition of the interface boundary conditions, and in this paper we consider

mainly the penalty method, introduced for hyperbolic equations by Funaro and Gottlieb [10, 11].

There is an extensive literature on the subject: Hesthaven [13, 14, 15] applied penalty BC for Chebyshev

multidomain methods using the characteristic variables. Carpenter et. al. [4, 17, 18] used it in conjunction

with compact �nite di�erence schemes, going from a scalar model equation to the full N-S equations in

general coordinate systems. Carpenter, Gottlieb and Shu [5] demonstrated the conservation properties of

the Legendre multidomain techniques.

In the current work we follow the same methodology but in the context of supersonic combustion.

We formulate the stable interface conditions based on the penalty method in a conservative form for both

Euler and Navier-Stokes equations in two dimensional Cartesian coordinates. We derive stability conditions,

independent on the local 
ow properties, for the penalty parameters for the Legendre spectral method.

We also present here a new adaptive �ltering technique that stabilize the spectral scheme when applied to

supersonic reactive 
ows.

Implementing this method, we consider supersonic combustion problems in recessed cavities in order to

establish the eÆcacy of recessed cavity 
ame-holders.

� Brown University, Division of Applied Mathematics, 182 George Street, Providence, RI 02912 (E-mail: wsdon, dig,

jung@cfm.brown.edu) This work was performed under AFOSR grant no. F49620-02-1-0113 and DOE grant no. DE-FG02-

96ER25346. This research was supported by the National Aeronautics and Space Administration while the second author was

in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681.
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We consider two di�erent cases; (1)Non-reactive 
ows with two chemical species and (2)Reactive 
ows

with four chemical species.

Recessed cavities provide a high temperature, low speed recirculating region that can support the pro-

duction of radicals created during chemical reactions. This stable and eÆcient 
ame-holding performance

by the cavity is achieved by generating a recirculation region inside the cavity where a hot pool of radicals

forms resulting in reducing the induction time and thus obtaining the auto-ignition [2, 22]. Experiments have

shown that such eÆciency depends on the geometry of the cavity such as the degree of the slantness of the

aft wall and the length to depth ratio of cavity L=D. Thus one can optimize the 
ame-holding performance

by properly adjusting the geometrical parameters of the cavity 
ame-holder system for a given supersonic


ight regime. There are two major issues of such cavity 
ame-holder system that need to be investigated ;

(1)What is the optimal angle of the aft wall for a given L=D? and (2)How does the fuel injection interact

with cavity 
ows? An answer to these questions require both a comprehensive laboratory and numerical

experiments.

There have been previous numerical studies on these questions, many of them rely on the turbulence

models. Rizzetta [19] used a modi�cation of the Baldwin Lomax algebraic turbulence model. Davis and

Bowersox [6] also used Baldwin-Lomax model. Zhang et.al. [23] used Wilcox ��! turbulence model. Baurle

and Gruber [3] used the Menter model. Although the use of the turbulence models can make it possible

to handle the compressible supersonic shear 
ows, the results are quite model-dependent as they require

parametric assumptions. In this work, we solve the full compressible Navier-Stokes equations with chemical

reactions without any turbulence model, using a multi-domain spectral method.

Results of several numerical studies including the present study have shown that the stability of the

recirculation inside cavity is enhanced for the lower angle of cavity compared to the rectangular cavity.

The present study, however, gives more accurate and �ner details of the �elds than those done by lower

order numerical experiments. We show that a stationary recirculation region is not formed inside the cavity

contrary to what the lower order schemes predict. A quantitative analysis made in this study shows that

the lower angled wall of the cavity reduces the pressure 
uctuations signi�cantly inside the cavity for the

non-reactive 
ows. We obtained a similar result for the reactive 
ows with the ignition of the fuel supplied

initially in the cavity.

The rest of this paper is organized as follows. In section 2 the governing equations are given. In section

3 we describe the numerical method used in this work. In this section we present the adaptive-�ltering

used to remove the high frequency mode that causes the instability due to the non-smoothness of the 
ow,

and we derive stable penalty interface conditions. In section 4 the system of the supersonic recessed cavity

combustor is described. In section 5 the main results of this work are given and discussed.

2. The Governing Equations. In this work, we consider the compressible Navier-Stokes equations

in the presence of the chemical reactions. Since Hydrogen is used as a fuel in our numerical experiments,

four chemical species are considered, i.e. H2;O2;H2O and N2 with the chemical reaction between Hydrogen

and Oxygen gases:

2H2 +O2 *) 2H2O:(2.1)

The two-dimensional compressible Navier-Stokes equations in conservative form can be written as:

@q

@t
+
@F

@x
+
@G

@y
=
@F�
@x

+
@G�

@y
+ C:(2.2)
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The state vector, q and the inviscid 
uxes, F and G are given by

q =

0
BBBBBB@

�

�u

�v

E

�f

1
CCCCCCA
; F =

0
BBBBBB@

�u

�u2 + P

�uv

(E + P )u

�fu

1
CCCCCCA
; G =

0
BBBBBB@

�v

�uv

�v2 + P

(E + P )v

�fv

1
CCCCCCA
:(2.3)

Here � is the density, u and v are the mean mixture velocity components of 
ow, E is the total internal

energy and P is the pressure. The mass fraction vector, is f = (f1; f2; f3; f4)
T and the column vectors fu

and fv are composed of the speci�c momentum of ith species

fui = fi(u+ ~ui); fvi = fi(v + ~vi):(2.4)

The velocity �eld (~ui; ~vi) of the i
th species is the drift velocity relative to the mean mixture velocity (u; v)

and is determined by

(~ui; ~vi) =
�

�Sc
rfi:(2.5)

Here � is the mixture dynamic viscosity to be determined in (2.11), and Sc is the Schmidt number which is

taken to be 0:22. The viscous 
uxes, F� and G� are given by

F� =

0
BBBBBB@

0

�xx

�yx

u�xx + v�yx + �
�Cp
Pr
Tx � �

P4
i=1 hi~uifi

0

1
CCCCCCA
;

G� =

0
BBBBBB@

0

�xy

�yy

u�xy + v�yy + �
�Cp
Pr
Ty � �

P4
i=1 hi~vifi

0

1
CCCCCCA
:(2.6)

where 0 = (0; 0; 0; 0)T , T is the temperature, �Cp is the mixture speci�c heat at constant pressure, Pr is

the Prandtl number (which is taken to be 0:72) for the normal air and hi is the speci�c enthalpy of the ith

species and given by

hi = h0i +

Z T

0

Cpi(s) ds :

where h0i is the reference enthalpy of the ith species and the speci�c heat of the ith species at constant

pressure, Cpi is represented as a fourth-order polynomial of T (see [16]). The elements of the viscous stress

tensor are given by

�xixj = �

�
@ui
@xj

+
@uj
@xi

�
+ Æij�

2X
k=1

@uk
@xk

;(2.7)

where Æ is the Kronecker delta symbol, and � is the bulk viscosity which is taken to be � 2
3� under the Stokes

hypothesis.
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The equation of state is given by the assumption of the perfect gas law

P = � �RT = RT

4X
i=1

�fi=Mi;(2.8)

where �R is a mixture gas constant with the universal gas constant R and Mi is the molecular weights of i
th

species. The energy E is given by

E = �

Z T

0

�Cp(s)ds� P +
1

2
�(u2 + v2) +

4X
i=1

�fih
0
i ;(2.9)

where the mixture speci�c heat at constant pressure is given by

�Cp =
4X
i=1

Cpifi=Mi:(2.10)

2.1. The chemical models. We use the same models as in [7]. Each chemical species has di�erent

dynamical viscosity �i based on Sutherland's law and we obtain the mixture viscosity � by Wilke's law [21],

i.e.

�i
�0i

=

�
T

T0i

�3=2�
T0i + Si
T + Si

�
;

� =

4X
i=1

�ifi=MiP4
j=1 fj=Mj�ij

;(2.11)

�ij =

�
1 + [(�i=�j)(fj=fi)]

1

2 (Mi=Mj)
1

4

�2
[8(1 + (Mi=Mj))]

1

2

:

Here �0i, T0i and Si are constants. A modi�ed Arrhenius Law gives the equilibrium reaction rate ke, the

forward reaction rate kf and the backward reaction rate kb as

ke = AeT exp(4:60517(Ee=T � 2:915))

kf = Af exp(�Ef=(RT ))

kb = kf=ke;

where the activation energy Ee = 12925; Ef = 7200 and the frequency factor Ae = 83:006156; Af = 5:541�

1014.

The species are ordered as follows : (H2;O2;H2O;N2), and the law of mass action is used to �nd the

net rate of change in concentration of ith species _Ci by the single reaction (2.1), i.e.

_C1 = 2(kf [H2]
2[O2]� kb[H2O]

2)

_C2 = �(kf [H2]
2[O2]� kb[H2O]

2)

_C3 = 2(kf [H2]
2[O2]� kb[H2O]

2)

where [�] denoted the net rate of change in concentration.

Finally, the chemical source term C in (2.2) is given by

C =
�
0; 0; 0; 0; _C1M1; _C2M2; _C3M3; _C4M4

�T
;(2.12)

where _Ci is the net rate of change in concentration of ith species by the reaction.

In Appendix C, a table of all the necessary coeÆcients and constants used for the reactive Navier-Stokes

equations with species (H2;O2;H2O;N2) are given.
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3. The Multi-domain Spectral Method. In this section we describe the two crucial components of

the Chebyshev multi domain code used in our work, i.e. the adaptive �ltering and the penalty method for

the stable interface conditions.

3.1. The adaptive �ltering technique. It is well known that spectral methods may exhibit insta-

bilities when applied to nonlinear equations. To stabilize the spectral scheme in an eÆcient way we use here

�lters to attenuate the high frequency modes of the function qN(x; t) smoothly to zero. Thus the �ltered

version of a polynomial qN is given by:

q�
N
(x; t) =

NX
k=�N

�(k=N)ak(t)�k(x);(3.1)

where ak is the transform coeÆcient and �k is the basis polynomial of order k (generally the Fourier and

Chebyshev polynomials for a periodic and non-periodic function respectively).

Following Vandeven [20] we de�ne a �lter function �(!) of order p > 1 as a C1[�1; 1] function satisfying

�(0) = 1 ; �(�1) = 0 ;

�(j)(0) = 0 ; �(j)(�1) = 0 ; j � p
(3.2)

where �(j) denotes the j-th derivative.

It can be shown that the �ltered sum (3.1) approximates the original function very well away from the

discontinuities. A good example of �lter function is the exponential �lter. It is de�ned as

�(!) = exp (��j!j
) ;(3.3)

where �1 � ! = k=N � 1, � = � ln �, � is the machine zero and 
 is the order of the �lter.

The exponential �lter o�ers the 
exibility of changing the order of the �lter simply by specifying a

di�erent 
. One does not have to write a di�erent �lter for di�erent order. Thus varying 
 with N yields

exponential accuracy according to [20]. In the present study the sixth order global smoothing (
 = 6) is

used. If the order of the �lter 
 is taken to be too small, say 
 � 4, the method becomes too dissipative.

In the current application, the interaction of the aft cavity wall and the strong vortex generated by the

shear layer 
ow over the cavity, creates large pressure variations near the corner of the aft cavity wall. The

local sharp gradient can cause numerical instability and a heavier �lter is needed to prevent the development

of oscillations in this region. This heavy �ltering can be used globally and maintain the stability of the

scheme, however this dissipates out all �ne scale structures, which is highly undesirable when the resolution

of �ne scale structures is essential for the understanding of the recessed cavity 
ameholder systems.

Since this is a local phenomenon, it is enough to apply a heavy �lter only in points in this region.

This Local Adaptive Filtering keeps the scheme stable, without dissipating �ne scale features away from this

region. The local adaptive �ltering is carried out where conditions such as ql � q � qu are violated. Here q

can be the mass fraction of each species fi and/or temperature T and ql and qu denote the lower and upper

tolerance limits of q. In this work, a �ltering of the order 
 = 2 or 
 = 3 is used to reduce the magnitude of

the oscillations at those points.

The results of this work indicate that the local adaptive �ltering is applied only in a few number (in the

range of 1 to 7) of grid points around the corner of the aft wall once in a while.

3.2. Stable interface conditions. In this paper we use mainly the penalty type interface conditions,

i.e. the boundary conditions are imposed only in a weak form [10, 11]. Successful penalty interface conditions
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were constructed based on the characteristics for the Navier-Stokes equations in [13, 14, 15] and for spectral

method and for high-order �nite di�erence methods in [4, 17, 18], and a conservative form of penalty interface

conditions was proposed [5] for the Legendre spectral method. Following the same idea as those works, we

consider two interface conditions, i.e.

1. The averaging method, in which the interface conditions are obtained by averaging the state vectors

of the two adjacent domains, and

2. The Penalty method in conservative form in which the interface conditions are satis�ed only in a

weak form, leaving the approximations not necessarily continuous at the interfaces.

In the following sections we will give the penalty interface conditions for the Euler and Navier-Stokes

equations and also show that the averaging method is a subset of the penalty method.

3.2.1. Conservative penalty interface conditions. Consider equation 2.2 with the inviscid part

only, in the x-direction in the interval �2 � x � 2, i.e.,

@q

@t
+
@F

@x
= 0:(3.4)

For simplicity, assume that we have two domains in this interval with the interface at x = 0, qIN (x; t)

denotes the numerical solution in the left domain x � 0 and qIIM (x; t) in the right domain x � 0. Note that

the numerical solution is composed of two polynomials of di�erent orders. The Legendre spectral penalty

method is given by

@qIN
@t

+
@IINF (q

I
N )

@x
= B(qIN (�2; t)) +

�1QN (x)[f
+(qIN (0; t))� f+(qIIM (0; t))] +

�2QN (x)[f
�(qIN (0; t))� f�(qIIM (0; t))];

@qIIM
@t

+
@IIIM F (qIIM )

@x
= B(qIIM (2; t)) +

�3QM (x)[f+(qIIM (0; t))� f+(qIN (0; t))] +

�4QM (x)[f�(qIIM (0; t))� f�(qIN (0; t))](3.5)

where B is a boundary operator at the end points, i.e., x = �2 and IIN and IIIM are the Legendre interpolation

operators for the left and right domains respectively. . The positive and negative 
uxes f+ and f� are de�ned

by

f� =

Z
S��S�1dq;(3.6)

with

A �
@F

@q
= S�S�1:(3.7)

The Jacobian matrix A is assumed to be symmetric. �+ and �� are the diagonal matrices composed of

positive and negative eigenvalues of A respectively. QN (x) and QM (x) are polynomials of orders N and M

respectively such that they are zero at all the collocation points except the interface points x = 0 (for example

QN (x) =
(1�x=2)T 0

N (x=2)
N2 ; 0 � x � 2 where TN(x) is the Chebyshev polynomial of degree N). The penalty

parameters �1; �2; �3 and �4 are all constants. Since we are interested only in the interface conditions, we

ignore the boundary operator B at x = �2. De�ne the discrete scalar product (p; q)N =
PN

i=0 p
T (�i)q(�i)!i.

!i is the weight in the Gauss-Lobatto-Legendre quadrature formula. With the discrete product, the energy
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E(t) is de�ned by E(t) = (qIN (x; t); q
I
N (x; t))N + (qIIM (x; t); qIIM (x; t))M . The stability conditions of penalty

parameters are given by the following theorem [5]:

Theorem 3.1. The energy is bounded by the initial energy of the system if the following conditions are

satis�ed ;

2!IN�1 � 1; 2!IN�2 � 1; 2!IIM �3 � �1; 2!IIM �4 � �1;

!IN�1 � !IIM �3 = 1; !IN�2 � !IIM �4 = 1:(3.8)

3.2.2. The penalty method for the Euler Equations. The penalty method in the case of the 2-D

Euler equation is given by

@qN
@t

+
@INF (qN )

@x
+
@ING(qN )

@y
= �1;3Q(x; y)[f

+(qN )� f+(qM�)] +

�2;4Q(x; y)[f
�(qN )� f�(qM�)];(3.9)

where qM� is the state vector of the adjacent domain at the interface of degree M , �1;3(�2;4) denotes �1(�2)

and �3(�4) respectively. �1 and �2 (�3 and �4) are the penalty parameters for the right(left) in x-direction

and top(bottom) in y-direction respectively. Q(x; y) is a polynomial which vanishes at all of interior points

of the domain and is equal to 1 at the four interfaces. Note that the boundary operator B does not appear

in the scheme. Let A be the linearized Jacobian matrix (around a state vector q0) of two inviscid 
uxes

A =

�
@F

@q
;
@G

@q

�
� ~n

����
q0

:(3.10)

where ~n = (nx; ny) is the unit outward normal vector. Since the matrix A is symmetric, there exists S such

that

A = S�S�1;(3.11)

where � is a diagonal matrix composed of eigenvalues of A. Then A = A+ +A� and A� = S��S�1. �� is

de�ned as in previous section. Splitting A yields

f� = A�q0; :(3.12)

where f� is obtained from the linearized state.

Remark 1. Since ~n = (nx; ny) is taken to be outward normal vector, the stability condition (3.8) is now

modi�ed and given as

2!IN�1 � 1; 2!IN�2 � 1; 2!IIM �3 � 1; 2!IIM �4 � 1;

!IN�1 + !IIM �4 = 1; !IN�2 + !IIM �3 = 1:(3.13)

The Jacobian matrix A and its eigenvalue matrix � are given in Appendix A.

For illustration, we consider the propagation of a Gaussian density peak at the center of rectangular

physical domains. The physical domain is partitioned with 16 sub-domains. The interface conditions be-

tween the domains are imposed according to the penalty Euler equations as discussed above. Characteristic

boundary conditions are imposed at the outer physical boundaries. The results presented in �gure 3.1 indi-

cate that the penalty formulation works well. From the numerical experiments of this problem, we observe
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Fig. 3.1. The propagation of a density peak with the penalty Euler equations with 16 sub-domains: The initial condition

(left) and the solution (right) at t = 0:03604ms are given.

that re
ections can be created at the interface across the adjacent domains depending on the choice of the

penalty parameters. Thus proper choice of the penalty parameters should take into account re
ections from

the interfaces. To demonstrate the above formulation for the Euler Equations, We will return to this issue

in a future paper 1.

3.2.3. The penalty method for the Navier-Stokes Equations. When dealing with the Navier

Stokes equation, we keep the penalty form for the Euler 
uxes and add a penalty term for the viscous


uxes. The stability of this procedure stems from the fact that the Jacobian matrices for the full reactive

Navier-Stokes equation can be symmetrized by the same similarity transformation (see Appendix B). Thus

we get the system:

@qN
@t

+
@INF

@x
+
@ING

@y
=
@INF�
@x

+
@ING�

@y
+

�1;3Q(x; y)[f
+(qN )� f+(qM�)] +

�2;4Q(x; y)[f
�(qN )� f�(qM�)] +

�6;8Q(x; y)[A� � qN �A� � qM�] +

�5;7Q(x; y)[A� � @qN �A� � @qM�]:(3.14)

Here f� are same as de�ned in the previous section and the Jacobian matrix vector A� is given by

A� =

�
@F�
@qx

nx;
@G�

@qy
ny

�����
q0

;(3.15)

and

q = (q; q); @q = (qx; qy);(3.16)

where again q� and @q� denote the adjacent domains state vectors and their derivatives. Note that the

penalty terms A� � @q does not appear in [4, 17, 18]. The penalty parameters �5;7 and �6;8 are de�ned in

the same way as in the previous section. To seek stable penalty parameters we split the inviscid and viscous


uxes and keep the stability conditions of �1;2;3;4 for the inviscid 
ux as in Theorem 3.1. The stability

conditions of �5;7 and �6;8 are given in the following Theorem :

1J. H. Jung, PhD thesis, Div. of Applied Math., Brown University, 2002
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Theorem 3.2. The penalty method for the Navier-Stokes equations (3.14) is stable if the penalty pa-

rameters �j , j = 1:::4 are as in Theorem 3.1 and the rest satisfy:

!N�6 � 0;

!N�6 � !M �8 = 0;

1 + !N�5 � !M �7 = 0;

�
1

!M
+

1

!N

�
!2M �

2
7 � 2�7 + 4!N�6 +

1

!M
� 0 :(3.17)

Proof.

As in the proof of Theorem 3.1, we assume that we have two domains and by multiplying the equations

by the state vectors, we get

1

2

d

dt
E(t) � [Inviscid] + [V iscous];(3.18)

where [Inviscid] and [V iscous] denote the terms from inviscid and viscous parts of the equation respectively.

The conditions for �1;2 and �3;4 given in the Theorem 3.1 assure that the �rst term [Inviscid] is negative.

The [V iscous] part at the interface is given by

[V iscous] = qTA�q
0 �

NX
i=0

q0i
T
A�q

0

i!i �

qT�A�q
0

� �

MX
j=0

q0i�
T
A�q

0

i�!j +

�5!N [q
TA�q

0 � qTA�q
0

�] + �7!M [qT�A�q
0

� � qT�A�q
0] +(3.19)

�6!N [q
TA�q � qTA�q�] + �8!M [qT�A�q� � qT�A�q];

where q0 denotes the derivative of q either in x or y direction, ! is the Legendre weight, and A� is

A� =

�
@F�
@qx

;
@G�

@qy

�
� ~n

����
q0

:(3.20)

Since all the eigenvalues of A� are non-negative, every term inside the summations in the above equation is

not negative, and we would like to keep the boundary terms. Thus we get the energy estimate such as

1

2

d

dt
E(t) � [qTA�q

0 � !Nq
0TA�q

0 � qT�A�q
0

� � !Mq
0T
� A�q

0

�] +

�5!N [q
TA�q

0 � qTA�q
0

�] + �7!M [qT�A�q
0

� � qT�A�q
0] +

�6!N [q
TA�q � qTA�q�] + �8!M [qT�A�q� � qT�A�q] :(3.21)

The RHS of (3.21) can be rewritten as

RHS = uTBu;(3.22)

where u = (q; q�; q
0; q0�) and B is given by

B =

0
BBBB@

2�6A� ��6A� � �8A
T
� (1 + �5)A� ��5A�

��6A
T
� � �8A� 2�8A� ��7A� (�1 + �7)A�

(1 + �5)A
T
� ��7A

T
� �2!NA� 0

��5A
T
� (�1 + �7)A

T
� 0 �2!MA�

1
CCCCA(3.23)

9



with 0 = diag(0; 0; 0; 0); �5 = !N�5; �6 = !N�6; �7 = !M�7 and �8 = !M �8: It is suÆcient for the proof if B

can be shown to be negative semi-de�nite. This �rst leads to:

!N�6 � 0; !N�6 = !M�8; 1 + !N�5 � !M �7 = 0:(3.24)

Note that we use here the fact that A� is symmetrizable (see Appendix B). Taking into account (3.24), B

becomes

B =

0
B@

2�6 ��7 �1 + �7

��7 �2!N 0

�1 + �7 0 �2!M

1
CA :(3.25)

To ensure negative semi-de�niteness, det(B) � 0 and therefore�
1

!M
+

1

!N

�
�27 � 2

1

!M
�7 + 4�6 +

1

!M
� 0:(3.26)

Thus

��7 � �7 � �+7(3.27)

where

��7 =
!N

!M + !N
�

s
(!N!M )(1� 4�6(!M + !N ))

(!N + !M )2
:

Here we note that the condition that �6 �
�1

4(!N+!M ) must be also satis�ed in order for �7 to have real

root. This yields the conditions in the Theorem. Note that these conditions are given independently of the

local 
ow properties. And moreover, the penalty parameters of each domain are constrained by its adjacent

domain.

Remark 2. For ~n to be outward normal vector the condition (3.17) is now given by

!N�6 � 0; !N�6 + !M�8 = 0; 1 + !N�5 + !M�7 = 0;

�
1

!M
+

1

!N

�
!2M �

2
7 + 2�7 + 4!N�6 +

1

!M
� 0(3.28)

with the conditions (3.13)

3.2.4. The averaging method. We show in this Section that the averagingmethod can also be written

as a penalty method with a particular choice of the parameters.

Euler Equations :. We start �rst with the Euler equations: consider the following penalty method:

@q

@t
+
@F

@x
+
@G

@y
= �1;3Q(x; y)[f

0+(q)� f 0
+
(q�)] +

�2;4Q(x; y)[f
0�(q) � f 0

�
(q�)];(3.29)

where

f 0� =
�
A�qx; A

�qy
�
� ~njq0 ;(3.30)

Note that the penalty terms use the derivative of the 
uxes.
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Theorem 3.3. If �1 = �3 =
1
2 , �2 = �4 =

1
2 then the above penalty method (3.29) is equivalent to the

averaging method and is stable.

Proof. We prove the theorem at the interface x = 0 with the rectangular domain and assume that

N =M . If �1 = �3 =
1
2 , and �2 = �4 =

1
2 then the method becomes

@qI

@t
jx=0 =

@qII

@t
jx=0 = �

1

2

�
@F I

@x
+
@F II

@x

�
�
@G

@y
(3.31)

and this is obviously equivalent to the Averaging Method. Here note that @GI

@y = @GII

@y = @G
@y . Following the

same procedure in Theorem 3.2, the energy equation becomes

1

2!N

d

dt
E(t) = �

1

2!N

�
qIAqI � qIIAqII

�
j0 + (�1q

I � �3q
II)A+(qIx � qIIx )j0

+(�2q
I � �4q

II )A�(qIx � qIIx )j0:(3.32)

Since �1 = �3 =
1
2 , �2 = �4 =

1
2 , and q

I (0; y; t) = qII(0; y; t), the RHS of the above equation vanishes and

the energy is bounded by the initial energy.

The Navier-Stokes Equations :. The averaging method for the N-S equations can be presented as

@q

@t
+
@F

@x
+
@G

@y
=
@F�
@x

+
@G�

@y
+

�1;3Q(x; y)[f
0+(q)� f 0

+
(q�)] +

�2;4Q(x; y)[f
0�(q)� f 0

�
(q�)] +

�5;7Q(x; y)[A� � @
2q�A� � @

2q�] +

�6;8Q(x; y)[A� � @q�A� � @q�];(3.33)

where @2q is the second derivative of q in either x or y direction.

Theorem 3.4. If �1 = �3 =
1
2 , �2 = �4 =

1
2 , �5 = �7 =

1
2 , and �6 = ��8 = � 1

2!N
, then the approximation

is continuous at the interface and the scheme (3.33) is stable.

Proof. If �1 = �3 =
1
2 , �2 = �4 =

1
2 , �5 = �7 =

1
2 , and �6 = ��8 = � 1

!N
, then (3.33) becomes,

@qI

@t
jx=0 =

@qII

@t
jx=0 = �

1

2

�
@F I

@x
+
@F II

@x

�
�
@G

@y

+
1

2

�
@F I

�

@x
+
@F II

�

@x

�
+
@G�

@y

+
1

!N
A� � (@q

II � @qI);(3.34)

and this ensures the continuity of the approximation at the interface. If the approximation is smooth enough

such that the derivative of q is continuous at the interface then this becomes the averaging method.

Thus we get for the energy:

1

2!N

d

dt
E(t) = �

1

2!N

�
qIAqI � qIIAqII � 2qIA�q

I
x + 2qIIA�q

II
x

�
jx=0 �Z 0

�2

qIxA�q
I
xdx �

Z 2

0

qIIx A�q
II
x dx +�

(�1q
I � �3q

II)A+ + (�2q
I � �4q

II)A�
�
(qIx � qIIx )jx=0 +(3.35) �

(�5q
I � �7q

II)A�(q
I
xx � qIIxx) + (�6q

I � �8q
II)A�(q

I
x � qIIx )

�
jx=0:
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Since qI(0; y; t) = qII(0; y; t), we have

1

2!N

d

dt
E(t) � qI([(�1 � �3)A

+ + (�2 � �4)A
�](qIx � qIIx ) +

(�5 � �7)A�(q
I
xx � qIIxx)

(�6 � �8 +
1

!N
)A�(q

I
x � qIIx ))jx=0:(3.36)

Thus if �1 = �3 =
1
2 , �2 = �4 =

1
2 , �5 = �7 =

1
2 , and �6 = ��8 = � 1

2!N
, the RHS vanishes.

3.2.5. Adaptive averaging. To ensure the stability of the scheme at some particular collocation points

where the solution become singular and unstable, we use the averaging method adaptively at selective grid

points. In particular, we switched from the penalty method to the averaging when the following criteria was

satis�ed:

max

�
j�� ��j

j�+ ��j
;
jT � T�j

jT + T�j

�
� Cave;(3.37)

or

jP � P�j

jP + P�j
� Cave;(3.38)

where Cave is a non-negative constant. Note that Cave = 0 leads to the averaging method, whereas a large

Cave results in the penalty method. For the value of Cave used in this paper, we found out that there were

very few points in which one needs to switch from the penalty to the averaging procedure. Moreover this

happened only at very few time steps.

4. The Cavity System And Numerical Con�gurations. In this section we describe the set up of

the simulations of the recessed cavity 
ameholders by the spectral multi-domain technique presented above.

The main goal of this experiment is to investigate how the geometry of the aft wall a�ects the 
ame stability.

4.1. Physical setup. In the SCRAMJet community, a cavity with the length-to-depth ratio L=D <

7 � 10 is usually categorized as an 'open' cavity since the upper shear layer re-attaches at the back face [2].

In this work, we choose the L=D of the baseline cavity to be 4 and thus the open cavity system is considered.

The coordinates of the cavity are (7cm;�1cm) for the upper left and (11cm;�2cm) for the right bottom

corners of cavity. With the length of the neck of the cavity �xed to be 4cm, we consider three di�erent

angles of the right corner of the 
oor of the cavity ( 60; 45 and 30), we then compare each one with the

case of the rectangular aft wall. The 
uid conditions are given as followings; the free stream Mach number

M = 1:91, total pressure P = 2:82(atm), total temperature T = 830:6(K) and normalized Reynolds number

Re = 3:9 � 107(1=m). Note that the Reynolds number is here normalized and has a unit of 1=[length],

also the Reynolds number based on the cavity dimensions is O(105). The boundary layer thickness scale is

Æ = 5 � 10�4(m), and �nally, the wall temperature is Tw = 460:7835(K). The initial con�guration for the

baseline cavity system is shown in Figure 4.1.

4.2. Numerical setup. We have conducted two di�erent experiments for each of the following cases

(1) non-reacting cold 
ow and (2) reacting 
ow . We use 9 and 17 subdomains for both cases 1 and 2. For

the out
ow conditions at the exit of the system and at the upper boundary, we mainly use a semi-in�nite

mapping in order to reduce the possible re
ections at the boundaries. The characteristic boundary conditions

are also applied and will be discussed in the next section and compared to the mapping. For the case of the

reactive 
ows, the cavity was initially �lled with Hydrogen fuel with fuel-to-total gas ratio of 0:5. The order
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< ------------- L = 4 cm ------------------->

M = 1.91
Re = 3.95 E+07 (1/m)
Pt = 2.828522 (atm)
Tt = 830.6 (K)
L/D = 4
δ = 0.0013

−−−−−−−−−−−−−−−−−−−−−−−>
−−−−−−−−−−−−−−−−−−−−−−−>

90o

D = 1 cm
Injector
(d=2mm)

||||
Boundary Layer

Fig. 4.1. The initial con�guration for the baseline cavity system.

of the polynomial of approximation in y direction in the domain beside the wall is taken large enough to

resolve the boundary layer well. Finally the adaptive �ltering is turned on if the mass fraction of Hydrogen

and Oxygen exceed the range of �0:09 � fH2
� 1:09;�0:02 � fO2

� 0:25 and the temperature exceeds the

range of 300(K) � T � 3500(K). As the shear layer and the complex features of the 
ows develop, the

adaptivity criteria for applying the local smoothing is satis�ed at some points. In the calculations, we use

the 3rd and 2nd order local �ltering for the non-reactive and reactive 
ows respectively. It turns out that

the local smoothing was applied in very few points at the upper corner of the cavity wall.

For the adaptive averaging, we use the criteria constant Cave such that the di�erence of the state vectors

(or pressure) between the two adjacent domains is less than 10%. In �gure 4.2 the Penalty Navier-Stokes

equations were considered for the non-reactive cold 
ows. As evident from the contours of the density, the

approximations were well matched at the interfaces. Here the outer boundary was approximated by using the

characteristic conditions of the inviscid 
uxes. The adaptive averaging, with the given adaptivity conditions

above, took place at only a few points. The characteristic boundary conditions using the inviscid 
uxes yield

good results for both the problems of the density peak propagation and the non-reactive cold 
ows. As in

�gure 1, we observe that there exist penalty parameters satisfying the stability conditions that may induce

re
ecting modes at the interfaces.

x

y

0.05 0.1 0.15-0.02

-0.01

0

0.01

0.02

0.03

Fig. 4.2. The non-reactive cold 
ows with the penalty Navier-Stokes equations: the density contours are given in this

�gure at t = 0:25ms. 17 domains are used and the boundaries of each domain are shown.

5. Results And Discussion.

5.1. Pressure history. Figure 5.1 shows the pressure history of the non-reactive cold 
ows for the

various angles of the aft wall at two di�erent locations inside the cavity, i.e. at the center, (x; y) =

(8:5cm;�1:5cm), and at the middle of the 
oor (x; y) = (8:5cm;�1:9cm).

These �gures show that the pressure 
uctuations in cavities with lower angle of the aft are weaker than

in cavities with higher angles. It is also shown that the attenuation of the pressure 
uctuations are obtained

both at the center and the middle of the 
oor of the cavity. It is interesting to observe that the patterns of

the pressure 
uctuations for a given angle at di�erent locations are di�erent depending on the angle. In the
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Fig. 5.1. Pressure history for non-reactive 
ows: the left panel represents the pressure history at the center of the cavity

and the right panel at the middle of the 
oor of the cavity. Each panel shows the case of 90, 60, 45 and 30 degree cavity walls

from top to bottom.
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Fig. 5.2. Pressure history of the non-reactive 
ows with the use of the 4th order �lter: the left panel represents the

pressure history at the center of cavity and the right panel shows the left panel in a smaller scale. Each panel shows the case

of 90, and 30 degree cavity walls from top to bottom. Note that the scale of the right panel is di�erent from the left.

case of the 30 degree aft wall, the pressure 
uctuations are almost the same at the two locations considered

whereas the case of 45 degree shows a di�erence in the patterns of the pressure 
uctuations between the two

locations. The pressure 
uctuations at the bottom grows greater than that at the center after some time.
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-0.014
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-0.008

-0.006

-0.004

Fig. 5.3. Streamlines: the left �gure shows the streamlines at t = 1:685ms for the global �ltering order 
 = 4 and the

right at t = 2:38ms for 
 = 6.

Figure 5.2 shows the pressure history when the heavy global �lter is applied (in this case, the 4th order

�lter was used). Unlike the previous case illustrated in Figure 5.1, where the 6th order global �lter is used,

the pressure 
uctuations eventually decay out and a large recirculation zone is formed inside the cavity

without any severe pressure 
uctuations. Note that the scale in the left panel shown is the same as in Figure

5.1 while the right panel is shown in a smaller scale for a closer look. This �gure shows that the large

recirculation zone(s) formed inside the cavity obtained by the lower order numerical scheme is induced not

physically but rather arti�cially due to the heavy numerical dissipations. This is clearly shown in Figure

5.3. In this �gure a large recirculation zone is observed - this zone is formed earlier than this streamlines

are captured - when the 4th order �lter is used(left �gure) and an almost steady state is already reached as

the pressure history indicates in Figure 5.2. We �nd from the numerical results that the large recirculation

is very stable once it forms. This large recirculation and the steady state solutions are not observed in the

case of 
 = 6(right). For the case of 
 = 6 instead of the large single recirculation zone, smaller scale vortex
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circulations are formed and they are interacting with each other, never reaching the steady state with time.

This result shows that for these sensitive problems, high order accuracy should be used in order to minimize

the e�ect of the numerical dissipation.

Figure 5.4 shows the case of the reactive 
ows for the 90 and 30 degree aft walls. Similar features of

the pressure 
uctuations are shown as in the non-reactive 
ows. However the pressure 
uctuations are much

more attenuated for both the 90 and 30 degree walls than in the non-reactive cold 
ows. In the reactive

cases Hydrogen fuel, which was initially supplied inside the cavity was consumed. As time elapses, the fuel

is consumed out with the production of the water for these cases.
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Fig. 5.4. Pressure history for reactive 
ows: the left panel represents the pressure history at the center of cavity and the

right panel at the middle of the 
oor of cavity. Each panel shows the case of 90 and 30 degree cavity walls from top to bottom.
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Fig. 5.5. The water contour of the reactive 
ows: the left the water density contour is given in the left �gure and its

streamlines in the right �gure at t = 0:135ms.

These results demonstrate that simulations of cold 
ows do not necessarily shed light on the behavior

of reactive 
ows.

5.2. Flow �elds.

Non-reactive cold 
ow

Figure 5.6 shows the density contours and streamlines for the 90, 60, 45 and 30 degree walls at the

instant time t = 2:4ms. As shown in the �gure, the shear layer is becoming weaker as the degree of angle

of the aft wall and the 
ow �elds are becoming more regularized for the case of the lower angle. And note

that the density compression at the corner of the aft wall is also becoming weaker for the more slanted wall

cases.

Figure 5.8 shows the streamlines corresponding to the each case of Figure 5.7. Note that compared to

the non-reactive cases, the shear layers are less developed for the reactive cases. As the �gures of the pressure


uctuation history and Figure 5.8 indicate, the shear layers are weak for both the 90 and the 30 degree walls

in the reactive cases.

Reactive 
ow

Figure 5.7 shows the water contour inside the cavity for the di�erent angles at di�erent time. Here we

de�ne the region where the 
ames are generated to be same as the region where the water is produced. As

the Hydrogen fuel is consumed, the water is produced and starts to be expelled from the cavity to the main

channel. The 
ame-holding eÆciency is enhanced if the chemical radicals (water in this case) are stably

circulating and long lasting before they are expelled from the cavity. Figure 5.7 shows that the lower angled
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Fig. 5.6. The density contour and the streamline of the non-reactive 
ows: the left column shows the density contour for

90, 60, 45 and 30 degree walls from top to bottom and the right column shows the corresponding streamlines at t = 2:43ms.

The maximum contour level is 1:8 and the minimum 0:5 with the level step size 50.

aft wall (30 degree in this case) maintains more water than the 90 degree wall at a given time. The �gure

also shows that the lower angled aft wall holds the 
ame (water in this case) longer than the 90 degree wall

- in the last �gure in Figure 5.7 at t = 2:26ms, the most water is expelled and the only the small amount

is left in the left corner while the 30 degree wall cavity holds the water still throughout the cavity. These

results imply that the 
ame-holding eÆciency can be increased by lowering the angle of the aft wall of the

cavity.

Appendix A. The similarity transform matrices and the eigenvalues of the inviscid 
ux

with chemical species.

Air model without combustion

First consider the ideal gas composed of two chemically non-reactive species (for the ideal mono-atomic

gas � the diagonal matrix and S, the diagonalizer, were given in [15]). � is given by

� = diag(~U � ~n+ c; ~U � ~n; ~U � ~n; ~U � ~n� c; ~U � ~n; ~U � ~n);

where ~U = (u; v), ~n = (nx; ny) is an unit outward normal vector at the interface and c is a local sound speed.

For simplicity we assume that

�

Z T

0

�Cp(s)ds� P � �CvT;
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t = 0:175ms

t = 0:275ms

t = 0:945ms

t = 2:26ms

Fig. 5.7. The water contour of the reactive 
ows: the water density contours are given in the left �gures for 90 degree wall

and 30 degree wall in the right �gures. From top to bottom the instant times t are 0:175ms, 0:275ms, 0:945ms and 2:26ms.

The maximum and minimum contour levels are 0.01 and 0.23 respectively with the number of levels 50.

This form is used only in the analysis, as mentioned in Sec. 3.1, Cpi is expressed as a 4th order polynomial

in the temperature T . The nonlinear expression of Cpi makes it diÆcult to derive the Jacobian matrices

of the 
uxes. Our simpli�cations is a results of assuming small coeÆcients of the high order terms of the

polynomial. In the actual simulations Cv is computed appropriately using the empirical law and assumed

temperature independent at each linearization step. With this assumption S is given by

S =

0
BBBBBBBBB@

1 1 0 1 0 0

u+ cnx u �ny u� cnx 0 �ny

v + cny v nx v � cny 0 nx

H + c~U � ~n 1
2
~U � ~U ~U � ~k H � c~U � ~n �c2 ~U � ~k + c

f1 a12 0 f1 a12 �cR2

Rh

f2 a21 0 f2 a21 cR1

Rh

1
CCCCCCCCCA

;

where H = (E + P )=�;Ri = R=(MiCv); Rh = R1h
0
2 � R2h

0
1; Rv =

P2
i=1 fiRi; � = �1=(Rv + R2

v); the

17



t = 0:175ms

t = 0:275ms

t = 0:945ms

t = 2:26ms

Fig. 5.8. The streamlines for the reactive 
ows: the streamlines for 90 degree wall are shown in the left �gures and the

30 degree wall in the right. From top to bottom the times t are 0:175ms, 0:275ms, 0:945ms and 2:51ms.

tangential vector ~k = (�ny; nx) and

aij = Rv

h0j
(Rih0j �Rjh0i )

; aji = Rv
h0i

(Rjh0i �Rih0j )
:

Note that Rv = 
 � 1 for the mono-atomic ideal gas with 
, the ratio between the heat capacities Cp and

Cv .

Air model with combustion

Consider now the equations the Euler equations with four reactive species. In this case � and S are

given by

� = diag(~U � ~n+ c; ~U � ~n; ~U � ~n; ~U � ~n� c; ~U � ~n; ~U � ~n; ~U � ~n; ~U � ~n);

18



and

S =

0
BBBBBBBBBBBBBB@

1 1 0 1 0 0 1 1

u+ cnx u �ny u� cnx 0 �ny u u

v + cny v nx v � cny 0 nx v v

H + c~U � ~n 1
2
~U � ~U ~U � ~k H � c~U � ~n �c2 ~U � ~k + c 1

2
~U � ~U 1

2
~U � ~U

f1 a12 0 f1 a1234 R1234 a13 a14

f2 a21 0 f2 a2134 R2134 0 0

f3 0 0 f3 a3124 R3124 a31 0

f4 0 0 f4 a4123 R4123 0 a41

1
CCCCCCCCCCCCCCA

;

where all the variables are same as in the two species case except that

aijkl = �ijkl(h
0
j � h0k + h0l )Rv=Rh;

and

Rijkl = ��ijkl(Rj �Rk +Rl)c=Rh;

with

Rh =

4X
i=1

�ijklRi(h
0
j � h0k + h0l ); i; j; k; l = 1; 2; 3; 4; j < k < l;

�ijkl is the permutation symbol and Rv =
P4

i=1 fiRi. � and S are based on the time dependent local spatial

quantities at a given time. f� is calculated at the interface points at each time.

Appendix B. The symmetrizability of the coeÆcient matrices of the Navier-Stokes equa-

tions with chemical species.

In [1] it had been proven that the coeÆcient matrices of the Navier-Stokes equations (expressed in

the primitive form), of the ideal gas can be simultaneously symmetrized. In [12, 15] the same result was

demonstrated for the conservative form of the equations. Here we show that it is also true for the Navier-

Stokes equations of the combustible gas with multiple chemical species in two dimension.

Rewrite the linearized Navier-Stokes equations (2.2) in conservative form without the chemical source

term as

@q

@t
+A

@q

@x
+B

@q

@y
= C

@2q

@x2
+D

@2q

@x@y
+E

@2q

@y2
;

where A = @F
@q ;B = @G

@q ;C = @F�
@qx

;D = @F�
@qy

+ @G�

@qx
and E = @G�

@qy
. It is suÆcient to consider the chemically

interacting two chemical species. The coeÆcient matrices are given by

A =

0
BBBBBBBBB@

0 1 0 0 0 0

�� u2 (2�Rv)u �Rvv Rv  1  2

�uv v u 0 0 0

u(��H) H �Rvu
2 �Rvuv (1 + Rv)u u 1 u 2

�uf1 f1 0 0 u 0

�uf2 f2 0 0 0 u

1
CCCCCCCCCA
;
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B =

0
BBBBBBBBB@

0 0 1 0 0 0

�uv v u 0 0 0

�� v2 �Rvu (2�Rv)v Rv  1  2

v(��H) �Rvuv H �Rvv
2 (1 +Rv)v v 1 v 2

�vf1 0 f1 0 v 0

�vf2 0 f2 0 0 v

1
CCCCCCCCCA
;

C =

0
BBBBBBBBB@

0 0 0 0 0 0

�u�1 �1 0 0 0 0

�v�2 0 �2 0 0 0

��12 u(�1 � �3) v(�2 � �3) �3 Æ1 Æ2

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCA

;

D = (�1 � �2)

0
BBBBBBBBB@

0 0 0 0 0 0

�v 0 1 0 0 0

�u 1 0 0 0 0

�2uv v u 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCA

;

E =

0
BBBBBBBBB@

0 0 0 0 0 0

�u�2 �2 0 0 0 0

�v�1 0 �1 0 0 0

��21 u(�2 � �3) v(�1 � �3) �3 Æ1 Æ2

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCA

;

where U2 = 1
2
~U � ~U;H = E+P

� ; �1 = 2�+�
� ; �2 = �

� ; �3 = �
�Cp

�PrCv
; � = P

�Rv
; � = Rv(U2 � �);  i = �Ri �

Rvh
0
i ; Æi = �hifi

�
�Sc

; ~Æi = � Æi
�3
; � = E

� +
P2

i=1(hi �
~Æi)fi; � = � � 2U2 and �jk = �ju

2 + �kv
2 + �3� :

To �nd the symmetrizer for A;B;C;D and E, we �rst consider the similarity transform matrix SP of

C such that

S�1P CSP = �C ;

where �C is a diagonal matrix composed of the eigenvalues of C. The subscript P denotes that this matrix

is adopted from the parabolic portion of the equations [1]. The diagonal matrix �C of C is given by

�C =

0
BBBBBBBBB@

0 0 0 0 0 0

0 �1 0 0 0 0

0 0 �2 0 0 0

0 0 0 �3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCA
:
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The diagonalizer SP is composed of the eigenvectors of C, SP and its inverse S�1P are given by

SP =

0
BBBBBBBBB@

1 0 0 0 0 0

u 1 0 0 0 0

v 0 1 0 0 0

� u v 1 ~Æ1 ~Æ2

0 0 0 0 1 0

0 0 0 0 0 1

1
CCCCCCCCCA
; S�1P =

0
BBBBBBBBB@

1 0 0 0 0 0

�u 1 0 0 0 0

�v 0 1 0 0 0

�� �u �v 1 �~Æ1 �~Æ2

0 0 0 0 1 0

0 0 0 0 0 1

1
CCCCCCCCCA
:

The similarity transform induced by SP , transforms the coeÆcient matrices A;B;C;D and E to

S�1P ASP =

0
BBBBBBBBB@

u 1 0 0 0 0

� u 0 Rv �1 �2

0 0 u 0 0 0

0 Rv� 0 u 0 0

0 f1 0 0 u 0

0 f2 0 0 0 u

1
CCCCCCCCCA
;

S�1P BSP =

0
BBBBBBBBB@

v 0 1 0 0 0

0 v 0 0 0 0

� 0 v Rv �1 �2

0 0 Rv� v 0 0

0 0 f1 0 v 0

0 0 f2 0 0 v

1
CCCCCCCCCA
;

S�1P DSP =

0
BBBBBBBBB@

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCA
;

S�1P ESP =

0
BBBBBBBBB@

0 0 0 0 0 0

0 �2 0 0 0 0

0 0 �1 0 0 0

0 0 0 �3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCA
:

where � = Rv� � � and �i = Rv( ~Æi + h1f1) +  i.

Introducing a symmetrizing diagonal matrix, QTQ such as

QTQ =

0
BBBBBBBBB@

� 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1
� 0 0

0 0 0 0 �1
f1

0

0 0 0 0 0 �2
f2

1
CCCCCCCCCA
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we have symmetrized all the coeÆcient matrices, i.e.

QTQS�1P ASP = (QTQS�1P ASP )
T ;

QTQS�1P BSP = (QTQS�1P BSP )
T ;

QTQS�1P CSP = (QTQS�1P CSP )
T ;

QTQS�1P DSP = (QTQS�1P DSP )
T ;

QTQS�1P ESP = S�1P ESP :

Appendix C. Constants for Chemical Models.

Here we provide constants used in the chemical model for the current numerical experiment. Table I gives

the constants used to get the approximation of the speci�c heat Cpi of i
th species in the 4th order polynomial

of T , i.e.

Cpi = (c1 + T (c2 + T (c3 + T (c4 + c5T ))))R=Mi;

where R is a gas constant, and Mi is a molecular weight of i
th species [16].

Table I

CoeÆcients for the approximation of the speci�c heat Cpi

O2 H2 H2O N2

c1(1=mole) 3.0809 3.4990 3.4990 3.1459

c2(1=mole) 0.16962E-2 -0.18651E-3 0.14878E-2 0.99154E-3

c3(1=mole) -0.76334E-6 0.46064E-6 0.87544E-7 -0.22912E-6

c4(1=mole) 0.17140E-9 -0.13157E-9 -0.11499E-9 0.12181E-10

c5(1=mole) -0.14116E-13 0.11679E-13 0.13495E-13 0.11024E-14

Table II gives the molecular weight and speci�c enthalpy for each chemical species and Table III gives

the reference dynamic viscosity, temperature constants T and S in Wilke's law [21].

Table II

Molecular weights and speci�c enthalpy

O2 H2 H2O N2

M(1=mole) 32.000 2.016 18.016 28.016

h0(Joule=kg) -272918.21 -4280070.46 -13973684.55 -302736.23

Table III

Constants for Wilke's law

O2 H2 H2O N2

�0(kg=m=sec) 0.1919E-4 0.08411E-4 0.1703E-4 0.1663E-4

T0(K) 273.111 273.111 416.667 273.111

S(K) 138.889 96.6667 861.111 106.667

22



References

[1] S. ABARBANEL AND D. GOTTLIEB,Optimal Time Splitting Methods for the Navier Stokes Equations

in Two And Three Space Variables, Journal of Computational Physics, 41-1 (1981)

[2] A. BEN-YAKAR AND R. K. HANSON, Cavity 
ameholders for ignition and 
ame stabilization in

scramjets - Review and experimental study, American Institute of Aeronautics and Astronautics, 98-

3122 (1998)

[3] R. A. BAURLE ANDM. R. GRUBER, A Study of Recessed Cavity Flow�elds for Supersonic Combustion

Applications, American Institute of Aeronautics and Astronautics, 98-0938 (1998)

[4] M. H. CARPENTER, J. NORDSTR�OM AND D. GOTTLIEB, A Stable And Conservative Interface

Treatment of Arbitrary Spatial Accuracy, Journal of Computational Physics, 148-2 (1999), pp. 341-365

[5] M. H. CARPENTER, D. GOTTLIEB AND C. W. SHU, On the conservation and convergence to weak

solutions of global schemes, ICASE 2001-44 (2001)

[6] D. L. DAVIS AND R. D. W. BOWERSOX, Stirred Reactor Analysis of Cavity Flame Holders for

Scramjets American Institute of Aeronautics and Astronautics 97-3274 (1997)

[7] W. S. DON AND D. GOTTLIEB, Spectral Simulations of Supersonic Reactive Flows, SIAM Journal of

Numerical Analysis, 35 (1998), pp. 2370

[8] W. S. DON AND D. GOTTLIEB, High Order Methods for Complicated Flows Interacting with Shock

Waves, American Institute of Aeronautics and Astronautics, 97-0538 (1997)

[9] W. S. DON AND C. QUILLEN, Numerical simulation of Reactive Flow, Part I : Resolution, Journal

of Computational Physics, 122 (1995), pp. 244-265

[10] D. FUNARO AND D. GOTTLIEB, A new method of imposing boundary conditions in pseudospectral

approximations of hyperbolic equations, Mathematical Computing, 51 (1998), pp. 599-611

[11] D. FUNARO AND D. GOTTLIEB, Convergence results for pseudospectral approximations of hyperbolic

systems by a penalty type boundary treatment, Mathematical Computing, 57 (1991), pp. 585-596

[12] A. HARTEN, High resolution schemes for hyperbolic conservation laws, Journal of Computational

Physics, 49 (1983), pp. 357-393

[13] J. S. HESTHAVEN AND D. GOTTLIEB, Stable Penalty Method for the Compressible Navier-Stokes

Equations. I. Open Boundary Conditions, SIAM Journal of Scienti�c Computing, 17-3 (1996), pp. 579-

612

[14] J. S. HESTHAVEN, A Stable Penalty Method for the Compressible Navier-Stokes Equations. II. One-

Dimensional Domain Decomposition Schemes, SIAM Journal of Scienti�c Computing, 18-3 (1997), pp.

658-685

[15] J. S. HESTHAVEN, A Stable Penalty Method for the Compressible Navier-Stokes Equations. III. Multi

Dimensional Domain Decomposition Schemes, SIAM Journal of Scienti�c Computing, 20-1 (1999), pp.

62-93

[16] B. J. MCBRIDE, S. HEIMEL, J. G. EHLERS AND S. GORDON, Thermodynamic Properties to 6000ÆK

for 210 Substances Involving the First 18 Elements, NASA SP-3001 (1963)

[17] J. NORDSTR�OM AND M. H. CARPENTER, High order �nite di�erence methods, multidimensional

linear problems and curvilinear coordinates, Journal of Computational Physics, 148 (1999), pp. 621

[18] J. NORDSTR�OM AND M. H. CARPENTER, High-Order Finite Di�erence Methods, Multidimensional

Linear Problems, and Curvilinear Coordinates, Journal of Computational Physics, 173 (2001), pp. 149

[19] D. P. RIZZETTA, Numerical Simulation of Supersonic Flow Over a Three-Dimensional Cavity, Amer-

ican Institute of Aeronautics and Astronautics, 26-7 (1988), pp. 799

23



[20] H. VANDEVEN, Family of spectral �lters for discontinuous problems, Journal of Scienti�c Computing,

24 (1992), pp. 37-49

[21] C. R. WILKE, A viscosity equation for gas mixtures, Chemical Physics, 18-4 (1950), pp. 517-519

[22] X. ZHANG AND J. A. EDWARDS, The e�ect of trailing edge gometry on cavity 
ow oscillation driven

by a supersonic shear layer, Aeronautical Journal, 102-1013 (1998), pp. 129-136

[23] X. ZHANG, A. RONA AND J. A. EDWARDS, An observation of pressure waves around a shallow

cavity, Aeronautical Journal, 214-4 (1998), pp. 771-778

24



REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Je�erson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the O�ce of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 2002 Contractor Report

4. TITLE AND SUBTITLE

A MULTI-DOMAIN SPECTRAL METHOD FOR SUPERSONIC
REACTIVE FLOWS

6. AUTHOR(S)

Wai-Sun Don, David Gottlieb, and Jae-Hun Jung

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

ICASE
Mail Stop 132C
NASA Langley Research Center
Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-2199

5. FUNDING NUMBERS

C NAS1-97046
WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 2002-29

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-2002-211763
ICASE Report No. 2002-29

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report
Submitted to the Journal of Computational Physics.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassi�ed{Unlimited
Subject Category 64
Distribution: Nonstandard
Availability: NASA-CASI (301) 621-0390

13. ABSTRACT (Maximum 200 words)

This paper has a dual purpose: it presents a multidomain Chebyshev method for the solution of the two-dimensional
reactive compressible Navier-Stokes equations, and it reports the results of the application of this code to the
numerical simulations of high Mach number reactive 
ows in recessed cavity. The computational method utilizes
newly derived interface boundary conditions as well as an adaptive �ltering technique to stabilize the computations.
The results of the simulations are relevant to recessed cavity 
ameholders.

14. SUBJECT TERMS 15. NUMBER OF PAGES

multi-domain spectral method, penalty interface conditions, supersonic combustor,
recessed cavity 
ame-holder, compressible Navier-Stokes equations

29

16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT

Unclassi�ed Unclassi�ed

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102


	Cover.pdf
	NASA/CR-2002-211763
	ICASE Report No. 2002-29
	A Multi-domain Spectral Method for Supersonic
	Reactive Flows
	Wai-Sun Don, David Gottlieb, and Jae-Hun Jung
	Brown University, Providence, Rhode Island
	NASA/CR-2002-211763
	ICASE Report No. 2002-29
	August 2002
	A Multi-domain Spectral Method for Supersonic
	Reactive Flows
	Wai-Sun Don, David Gottlieb, and Jae-Hun Jung
	Brown University, Providence, Rhode Island
	ICASE
	NASA Langley Research Center
	Hampton, Virginia
	Operated by Universities Space Research Association


