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BACKSCATTERING AND NONPARAXIALITY ARREST COLLAPSE OF DAMPED

NONLINEAR WAVES�

G� FIBICHyz� B� ILANyx� AND S� TSYNKOVy�

Abstract� The critical nonlinear Schr�odinger equation �NLS� models the propagation of intense laser

light in Kerr media� This equation is derived from the more comprehensive nonlinear Helmholtz equation

�NLH� by employing the paraxial approximation and neglecting the backscattered waves� It is known that

if the input power of the laser beam �i�e�� L� norm of the initial solution� is su�ciently high� then the

NLS model predicts that the beam will self�focus to a point �i�e�� collapse� at a �nite propagation distance�

Mathematically� this behavior corresponds to the formation of a singularity in the solution of the NLS� A key

question which has been open for many years is whether the solution to the NLH� i�e�� the 	parent
 equation�

may nonetheless exist and remain regular everywhere� in particular for those initial conditions �input powers�

that lead to blowup in the NLS� In the current study we address this question by introducing linear damping

into both models and subsequently comparing the numerical solutions of the damped NLH �boundary�value

problem� with the corresponding solutions of the damped NLS �initial�value problem�� Linear damping

is introduced in much the same way as done when analyzing the classical constant�coe�cient Helmholtz

equation using the limiting absorption principle� Numerically� we have found that it provides a very e�cient

tool for controlling the solutions of both the NLH and NLS� In particular� we have been able to identify

initial conditions for which the NLS solution does become singular� whereas the NLH solution still remains

regular everywhere� We believe that our �nding of a larger domain of existence for the NLH than that for

the NLS is accounted for by precisely those mechanisms that have been neglected when deriving the NLS

from the NLH� i�e�� nonparaxiality and backscattering�

Key words� Kerr medium� nonlinear wave propagation� self�focusing� singularity formation� linear

damping� limiting absorption� two�way ABCs

Subject classi�cation� Applied and Numerical Mathematics

�� Introduction� The focusing critical nonlinear Schr�odinger equation �NLS�

i�z�z�x � � ��� � j�j��d� 
 �� ����x � 
 ���x �� �����

where x � Rd and �� 
 �x�x� � � � �� �xdxd � arises in a variety of physical contexts� Of foremost interest is

the case d 
 �� which corresponds to the propagation of intense laser beams in Kerr media� In this case� z is

the axial coordinate in the direction of propagation� x 
 �x� y� are the spatial coordinates in the transverse

plane� �� 
 �xx � �yy is the di�raction term �transverse Laplacian�� and j�j�� describes the nonlinear

polarization of the Kerr medium� It is well known that solutions to the critical NLS ����� can self�focus

and eventually collapse� i�e�� become singular� at a �nite propagation distance� provided that their initial
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power N��� 

R j��j� dx exceeds a threshold power Nc� whose value depends only on the dimension d �������

Since� however� physical quantities do not become in�nite� and since in experiments laser beams continue to

propagate beyond the NLS blowup point� the question arises as to what speci�c physical mechanism�s� among

those that have been neglected when deriving the NLS from the Maxwell�s equations� actually arrest�s� the

collapse� We recall that the �nal stage in the derivation of the NLS is to disregard the backscattering and

apply the paraxial approximation �see Section ���� to the critical nonlinear Helmholtz equation �NLH�

�E�z�x � � k��

�
� � �jEj��d

�
E 
 �� � � �zz ���� �����

where k� is the linear wavenumber and the extent of nonlinearity is measured by the quantity � 
 ���cn��

where n� is the Kerr coe�cient� see� e�g�� ��� ���� Therefore� it is natural to ask whether going back from

the NLS to the NLH� i�e�� adding nonparaxiality and backscattering� is su�cient to guarantee existence of

the solution with no singularities� In other words� for a given initial condition that leads to blowup in the

critical NLS� does the NLH �always� have a solution that remains regular everywhere�

The foregoing question has been open for many years� In his celebrated ���� paper in Physical Review

Letters ����� which was the �rst publication in the literature to predict that the solutions to the critical

NLS can become singular� Kelley was careful to note that the paraxial approximation� and hence the

entire NLS model� breaks down near the singularity� Feit and Fleck ��� were the �rst to demonstrate

that nonparaxiality of the beam can arrest the blowup� by showing numerically that the initial conditions

that lead to singularity formation in the NLS� result in focusing�defocusing oscillations in the NLH� In these

simulations� however� they did not solve a true boundary�value problem for the NLH� Instead� they solved an

initial�value problem for a 	modi�ed
 NLH that only describes the right�propagating wave �while introducing

several additional assumptions along the way�� Akhmediev and collaborators ����� analyzed an initial�value

problem for a di�erent 	modi�ed
 NLH� their numerical simulations also suggested that nonparaxiality

arrests the singularity formation� Both numerical approaches ��� and ������ however� did not account for the

e�ect of backscattering� Fibich ��� applied asymptotic analysis to derive an ODE in z for self�focusing in

the presence of small nonparaxiality� His analysis suggests that nonparaxiality indeed arrests the singularity

formation� resulting instead in decaying focusing�defocusing oscillations� However� backscattering e�ects

were neglected in this asymptotic analysis�

The aforementioned studies ��� �� �� �� ��� have prompted a general belief that nonparaxiality arrests the

collapse� However� no rigorous proof of global existence for the NLH has ever been provided� Moreover� all the

simulations in the above studies neglected the backscattering and considered only the forward�propagating

�eld� The �rst numerical solutions of the NLH as a true boundary value problem� with backscattering

e�ects fully included� have been obtained by Fibich and Tsynkov in ����� using a high�order discretization

supplemented by a new two�way arti�cial boundary condition �ABC�� The simulations in ���� were performed

for the values of the input power of up to ��� of the threshold Nc� and they have captured the mild self�

focusing of the corresponding solutions� In a subsequent paper ����� we have corroborated experimentally

the prediction of the asymptotic analysis that the magnitude of the backscattered signal scales quadratically

with the nonparaxiality parameter f �see Section ����� and that the computed NLH solutions converge to

the corresponding NLS solutions as f goes to zero�

The numerical methodology of ���� was obviously not free of limitations of its own� Foremost� we could

not obtain converging solutions for initial powers equal to or higher than the critical value Nc� In ����� we

have considered initial powers of only up to ��� of Nc� in the current paper we computed the NLH solutions

for up to N��� 
 ����Nc �see Section ��� In the course of these simulations we have noticed that as N���
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approaches the critical power from below� the convergence rate of the iterations slows down noticeably� This

makes the simulations for higher subcritical values of N��� �����Nc � N��� � Nc� di�cult to conduct�

although it is reasonable to assume that the NLH solution will converge for input powers all the way up to

Nc� However� for the input power N��� exactly equal to Nc the convergence of nonlinear iterations of ���� is

lost �see Section ���

The aforementioned slowdown of convergence for input powers slightly below Nc should be attributed

to either de�ciencies of the method� or to insu�cient computational resources� or to both� As concerns

the iteration method of ���� itself� it is the most straightforward approach based on simply freezing the

nonlinearity� most likely� it can be improved or replaced by a more advanced technique� and we plan on

looking into this issue in the future� As for the computer resources requirements� they are determined by the

size of the computational domain� which should be su�ciently large so that to meet the condition of near�

linear propagation in the far �eld� see ����� and by the grid size� which should be su�ciently �ne to resolve a

given wave length and the sharp near�blowup pro�le� These requirements become more stringent for higher

input powers� which decay at larger distances and�or undergo stronger focusing� In other words� the higher

the input power the larger the domain and�or the �ner the grid that one needs to use in order to maintain the

same solution quality and�or convergence rate� In our previous simulations we have� indeed� seen examples

of diverging NLH solutions with subcritical input powers which converged on a larger computational domain

and�or at a �ner resolution� It is still unclear� however� whether having more computer resources and�or a

better nonlinear iteration scheme will allow one to solve the NLH for initial conditions that lead to collapse

in the NLS� or whether the convergence breakdown at N��� � Nc is an indication of the loss of solvability

of the NLH� or loss of regularity of the solution�

As such� in the current paper we explore an alternative approach to the issue of solving the NLH in

the blowup regime of the NLS� by considering the linearly damped NLH and the corresponding linearly

damped NLS� The addition of linear damping is not an ad hoc procedure� Indeed� an electromagnetic wave

is always partially absorbed by the medium through which it propagates� an e�ect neglected in either the

original undamped NLH or NLS� both of which model the propagation under 	ideal transparency�
 A

mathematical motivation to add linear damping comes from the so�called limiting absorption principle that

is used for identifying the unique solutions of the linear Helmholtz equation� see� e�g�� ����� It is known that

the classical constant�coe�cient homogeneous Helmholtz equation

�E � k��E 
 � ����a�

has non�trivial solutions on the entire space even in the class of functions that vanish at in�nity� which

obviously amounts to non�uniqueness� To �x the problem� the additional Sommerfeld boundary conditions

need to be introduced at in�nity that basically distinguish between the incoming and outgoing waves� On

the other hand� when a complex absorption coe�cient is added� the new damped equation

�E � k���� � i��E 
 � ����b�

has only trivial solution� Consequently� its inhomogeneous counterpart will be uniquely solvable for any

compactly�supported right�hand side in rather wide classes of functions� such as tempered distributions�

see ����� Moreover� when � �� ��� the unique solution of the inhomogeneous damped equation will converge

uniformly on the entire space to the solution of the respective undamped equation that corresponds to either

the radiation of waves toward in�nity �outgoing waves�� or conversely� the incidence of waves from in�nity

�incoming waves�� where the distinction is rendered by the sign of �� This� in particular� implies that if
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we decide to keep a small but �nite damping in the equation� we may expect its solution to be uniformly

close to the solution of the undamped equation that is driven by the same source terms and is composed of

either only outgoing or only incoming waves in the far �eld� The latter consideration is especially important

in the context of our iteration algorithm� see Section � and ���� for detail� which basically reduces to a

repeated solution of the constant�coe�cient Helmholtz equation driven by a variety of compactly supported

right�hand sides and subject to the radiation boundary conditions in the far �eld�

Solving the damped NLH numerically as a true boundary value problem required only minor changes

in the algorithm of ���� for the undamped NLH� which are described in Section �� At the same time� the

addition of damping allows us to better control the solution� In particular� damping decreases the solution

magnitude in the far �eld� which is a key requirement for the validity of the arti�cial boundary conditions

�ABCs� of ����� As a result� we have been able to consider initial conditions with the powers well above Nc�

Let us recall that for a given initial condition that leads to the blowup in the undamped critical NLS�

there is a threshold value �Sth of the damping parameter � such that if � � �Sth then linear damping arrests

the collapse� whereas when � � �Sth the solution of the NLS blows up� see ����� In the numerical simulations

of the damped NLH reported hereafter we found a similar threshold value �Hth such that for � � �Hth the

solution exists and is regular everywhere� whereas when � � �Hth the iteration scheme diverges� As has been

mentioned� in the latter case it is not clear whether the divergence indicates that there is no solution to

the NLH� or that our computational resources are insu�cient �or the iteration scheme is suboptimal� to

calculate the solution� Therefore� we can conclude that the actual �analytical� threshold value  �Hth� such that

regular solutions to the NLH exist for all � �  �Hth� is less or equal than the computed threshold �Hth� which is

determined from the simulations� i�e�� that � �  �Hth � �Hth�

The main result of the current study is that

�Hth � �Sth�

In other words� for a given initial condition that leads to the blowup in the undamped NLS� there is an entire

range of values for the damping coe�cient! �Hth � � � �Sth� for which the damped NLS solution will blow

up� but the NLH solution will be regular everywhere� Therefore� we can conclude that nonparaxiality and

backscattering arrest the collapse when the damping parameter is in the range �Hth � � � �Sth� Whether NLH

solutions exist for in�nitely small linear damping as well� i�e�� in the limit � �� �� is the question that yet

remains to be answered� We believe� however� that this question should be considerably easier to address�

both numerically and analytically� than the question of solvability of the original undamped NLH�

�� Formulation of the Problem�

���� The Nonlinear Helmholtz Equation� A typical setup for the propagation of electromagnetic

waves in a Kerr medium is shown in Figure ���� An incoming laser beam with known characteristics impinges

normally on the planar interface z 
 � between the linear and the nonlinear medium� The electric �eld E 


E�z�x � is governed by the nonlinear Helmholtz equation ������ For simplicity� we consider the cylindrically�

symmetric case� where E 
 E�z� r� and r 

p
x�� � � � �� x�d� The nonlinear medium occupies the semi�space

z � � �see Figure ����� Consequently� the NLH ����� has to be supplemented by boundary conditions at z 
 �

�Self�focusing in the critical NLS is highly sensitive to the e�ect of small perturbations� Some perturbations can arrest the

collapse even if they are initially in�nitesimally small ����� In contrast� an in�nitesimally small linear damping does not arrest

the collapse� and its su�cient amount must be present to regularize the solution�
�This assumption is quite reasonable� since even when the initial conditions of the NLS are not cylindrically�symmetric�

near the singularity the solution becomes cylindrically�symmetric ����

�
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Fig� ���� Schematic of propagation of waves in Kerr media�

and z �� �	� We require that as z �� �	� E have no left�traveling components and that the propagation

be di�raction�dominated with the �eld amplitude decaying to zero� i�e�� lim
z��

max
��r��

jE�z� r�j 
 �� which also

means that the nonlinear wavenumber k� � k��
�
� � �jEj��d� approaches its linear limit! lim

z���
k� 
 k�� � In

other words� at large z�s the solution should be a linear superposition of right�traveling waves� Since the

actual numerical simulation is carried out on a truncated domain � � z � zmax �Figure ����� the desired

behavior of the solution as z �� �	 has to be captured by a far��eld arti�cial boundary condition �ABC�

at the arti�cial boundary z 
 zmax� This boundary condition should guarantee a re"ectionless propagation

of all the waves traveling towards z 
 �	� Often� boundary conditions designed to ensure the transparency

of the outer boundary to the outgoing waves are called radiation boundary conditions �����

The situation is more complex at the interface z 
 �� where the total �eld E��� r� is composed of a given

incoming �right�traveling� component Einc��� r� and an unknown backscattered �left�traveling� component

Escat��� r�� i�e��

E��� r� 
 Einc��� r� �Escat��� r��

As such� the boundary condition at z 
 � has to guarantee the re"ectionless propagation of any left�

traveling wave through the interface and at the same time be able to correctly prescribe the incoming signal�

Implementation of such a two�way ABC was �rst carried out in ���� for the undamped NLS� and is extended

to the damped case in Section ����

Finally� the electric �eld vanishes as r �� �	� In practice� we truncate the domain at some large but

�nite rmax and require that E�z� rmax� 
 ��

���� Paraxial Approximation and the Nonlinear Schr�odinger Equation� We �rst introduce the

dimensionless quantities #r� #z� and � as

#r 

r

r�
� #z 


z

�LDF
� E 
 eik�z��r��k

�
��
�d����z� r�� �����

�



where r� is the transverse width of the input beam and LDF 
 k�r
�
� is the di�raction length� Then� by

substituting the quantities ����� into the NLH ����� and dropping the tildes� we obtain

i�z ���� � j�j��d� 
 ��f��zz � �����

where f 
 �	r�k� 
 
	��r� is the nonparaxiality parameter�

The standard derivation of the NLS is motivated by the observation that f 
 �� since typically 

 r��

This suggests that one can neglect the �zz term� i�e�� apply the paraxial approximation� and obtain the

nonlinear Schr�odinger equation

i�z�z� r� � ��� � j�j��d� 
 �� �����

which is the same as the previously introduced equation ������ except that in ����� we use r instead of x for

simplicity� The NLS ����� is supplemented by the initial condition at z 
 � !

���� r� 
 ��r��k
�
��
d��Einc��� r��

Subsequently� it needs to be integrated by a 	time
�marching algorithm� where the direction of propagation z

plays the role of time� We reemphasize that backscattering e�ects are not taken into account by the NLS ������

Indeed� once ����� is solved� the overall solution� according to ������ is the slowly varying amplitude � times

the forward propagating oscillatory component eik�z�

���� Linear Damping� When damping� i�e�� linear absorption� is included� the NLH ����� becomes

�E�z�x � � k��

�
� � i� � �jEj��d

�
E 
 �� �����

where k� is the �real part of the� wavenumber�

� 

��n���
��n���

�

and n� is the linear index of refraction of the medium� The corresponding NLS ����� becomes �see eq� ������

i�z ���� � j�j��d� � ir��k
�
��� 
 �� �����

By de�nition� optical transparency of the medium means that the damping is small� For example� for water

in the visible regime �����

��n���
��n���


 �����

Having small physical values of damping also agrees well with the mathematical reasoning behind the limiting

absorption principle� As indicated in Section � �see� e�g�� ���� for detail�� for a classical constant�coe�cient

Helmholtz operator of ����a�� the introduction of a small complex absorption coe�cient of the appropriate

sign �as in ����b�� implies that there will be a unique solution for any compactly supported excitation� and

that this solution will be uniformly close in the entire space Rd�� to the solution of the corresponding

undamped linear Helmholtz equation driven by the same sources and subject to the radiation boundary

conditions in the far �eld� In the following Section �� we show that for the formulation analyzed in this

paper the proper sign of � is positive�

As we have noted before� the physical case that corresponds to the propagation of laser beams in bulk

Kerr media is d 
 �� However� in order to reduce the complexity of the computations we rather consider a






simpler case d 
 �� as was previously done in ����� Thus� the damped NLH for E 
 E�z� r� and the damped

NLS for � 
 ��z� r� that are solved numerically in this study are

Ezz�z� r� �Err � k���� � i� � �jEj��E 
 �� �����

and

i�z�z� r� � �rr � ir��k
�
��� � j�j�� 
 �� �����

respectively�

�� Numerical Methods� The damped NLH ����� is solved using fourth�order �nite di�erences� The

methodology of solution is outlined below in Section ���� it is similar to the one that we have introduced in

our previous work ���� for solving the undamped NLH� The choice of a higher�order method is motivated

primarily by the necessity to resolve a small�scale phenomenon of backscattering at the background of the

forward propagating waves� The damped NLS ����� is also solved by a fourth�order scheme� it is natural to

expect that this will leave less room for potential purely numerical discrepancies between the two techniques

and as such� will allow for a more accurate comparison� Besides� it is generally known that higher�order

methods provide for a better resolution of waves�

���� Discretization of the NLH and Solution Methodology� We use a conventional fourth�order

central�di�erence discretization for the Laplacian � 
 �zz � �rr of ������ in so doing the stencil is �ve�node

wide in each coordinate direction� As the equation is nonlinear� we implement a nested iteration scheme�

On the outer loop� we freeze the nonlinearity� i�e�� consider the coe�cient k� � k��
�
� � i� � �jEj�� as a

given function of the coordinates z and r� which is actually obtained by taking the quantity jEj� from the

previous iteration� see ������ This way we arrive at a linear equation with variable coe�cients� The latter is

also solved by iterations on the inner loop of the nested scheme� Here� we leave the entire varying part of

the equation� which is proportional to �� on the lower level� and on the upper level need to invert only the

constant�coe�cient linear damped Helmholtz operator �� k���� � i��I �cf� equation ����b���

Formally� our iteration scheme resembles the �xed�point approach� however� no rigorous convergence

theory is available yet� and the convergence is assessed experimentally� The advantage of using these nested

iterations is that �rst� the method eventually reduces to the repeated solution of one and the same linear

constant coe�cient equation driven by di�erent source terms� which can be done e�ciently at the discrete

level� Second� the radiation boundary conditions at z 
 zmax and the two�way ABCs at z 
 �� see Figure ����

are most convenient to set on the upper time level of the iteration scheme already for the linear constant�

coe�cient operator�

To solve the linear constant�coe�cient damped discrete Helmholtz equation

��h�E � k���� � i��E 
 g� �����

where g is the right�hand side generated on the previous iteration� we �rst separate the variables by

implementing the discrete Fourier transform in the transverse direction r� the boundary conditions are

symmetry at r 
 � and zero Dirichlet at r 
 rmax �see Section ����� This yields a collection of fourth�order

one�dimensional �nite�di�erence equations �grid index n corresponds to the continuous variable z�!

�  En�� � ��  En�� � ��  En � ��  En�� �  En��

��h�z
� �k���� � i��� 
m�  En 
  gn �����

�



parameterized by the dual Fourier variable 
m� the latter is de�ned by formula ���� of ����� Each equation

����� needs to be solved independently�	 The two�way and radiation ABCs at z 
 � and z 
 zmax�

respectively� for the discrete equation ����� are set in the Fourier space� i�e�� individually for each one�

dimensional equation ������ This is done by �rst identifying the linearly�independent eigen�modes for the

homogeneous version of this equation� It is important to note that even though the original di�erential

equation is of the second order� we are using its fourth�order approximation and as such� each homogeneous

discrete one�dimensional equation of type ����� has four linearly independent solutions� These solutions are

qn� � q
�n
� � qn� � and q�n� � see ����� where q�� �	q�� q�� and �	q� are roots of the characteristic algebraic equation

�� � ��q � ���h�z�k
�
��� � i��� 
m�� ���q� � ��q	 � q� 
 �� �����

���� Roots of the Characteristic Equation� It is indeed easy to see that equation ����� has two

pairs of mutually inverse roots� We �rst notice that this equation originates from a central�di�erence� i�e��

symmetric� discretization ������ As such� if q is a root� then q�� is obviously a root as well� which can be

veri�ed by direct substitution� Then� to actually �nd the roots we rewrite the polynomial on the left�hand

side of ����� as

�q � q���q � q��� ��q � q���q � q��� �

�� � � �d� � d��q � �� � d�d��q
� � �d� � d��q

	 � q��

where

d� 
 q� � q��� � d� 
 q� � q��� �

and match the coe�cients� In so doing� we obtain

d� � d� 
 ��� ��� d�d� 
 ��h�z�k
�
��� � i��� 
m�� ��� �����

so that each pair of roots! q�� q
��
� and q�� q

��
� � can be found by solving the corresponding quadratic equation!

q� � d�q � � 
 � ����a�

or

q� � d�q � � 
 �� ����b�

while the coe�cients d� and d� are� in turn� determined by solving quadratic equations ������

At this stage� the key di�erence between the current analysis for the damped equation and the previous

analysis for the undamped equation of ���� needs to be emphasized� As shown in ����� when � 
 � the �rst

pair of solutions of the homogeneous equation ������ qn� and q�n� � approximates the genuine 	longitudinal�


i�e�� z�aligned� modes of the undamped homogeneous di�erential equation ����a�!

 E� 
 eikcz� and  E� 
 e�ikcz� �����

respectively� The functions  E� 
  E��z� and  E� 
  E��z� are two linearly�independent solutions of the ODE

 Ezz � �k�� � 
�  E 
 � �����

�Note� the discrete equations ����	 and ����	 are very similar to the corresponding discrete equations studied in ���� except

that previously we had no damping�

�



obtained by Fourier transforming equation ����a� with respect to r� 
 is the dual variable� In formulae

������ we have denoted kc 

p
k�� � 
� and a particular branch of the square root that we always take isp

�ei� 
 ����ei���� The two continuous modes ����� may be either traveling or evanescent waves depending

on whether the real quantity k�c 
 �k���
� is positive or negative� or in other words� whether the dual Fourier

variable 
 is less or greater than k�� � To demonstrate the aforementioned approximation property for the

undamped �� 
 �� discretization ������ we re�de�ne kc 

p
k�� � 
m� introduce 
 
 h�zk

�
c � and show in ����

that if 
 � � then q� and q��� are complex conjugate roots of the characteristic equation ������ Both these

roots have unit magnitude! jq�j 
 jq��� j 
 �� which indicates that qn� and q�n� are pure discrete traveling

waves� Moreover� if 

 � then �see �����

q� 
 eikchz �O��kchz�
�� q��� 
 e�ikchz �O��kchz�
�� �����

Equalities ����� imply that in the undamped case � 
 �� qn� is a discrete counterpart of the right�traveling

wave  E�� and q�n� is a discrete counterpart of the left�traveling wave  E�� the approximation is obviously

fourth�order accurate because on the grid zn 
 hzn� If 
 � � and still � 
 �� then we again show in ���� that

jq�j � � and jq��� j � �� which indicates that qn� is a right�evanescent wave and q�n� is a left�evanescent wave�

The situation changes drastically with the introduction of damping� In contradistinction to the

undamped case� when � �
 � the homogeneous di�erential equation no longer has pure propagating� i�e��

constant�amplitude� longitudinal modes� Indeed� by Fourier transforming equation ����b� in the r direction�

we arrive at the family of ODEs

 Ezz � �k���� � i��� 
�  E 
 � �����

parameterized by the dual variable 
� Each of the equations ����� has two linearly independent solutions!

 E� 
 eiz
p
k�
c
�ik�

�
� 
 e

ikcz

r
��i

k�
�

k�
c

�
�

 E� 
 e�iz
p
k�
c
�ik�

�
� 
 e

�ikcz

r
��i

k�
�

k�
c

�
�

������

Clearly� the second equality in each formula ������ is valid only if kc �
 �� Formulae ������ show that as long

as � �
 � there will always be a nontrivial real part in each exponent� Consequently� the amplitudes of the

waves ������ will always decrease or increase exponentially for z �� �	� In particular� if we analyze the

traveling waves regime of the undamped equation� i�e�� the case of small 
! k�� � 
 � �� and additionally

assume that j�j 
 �� then formulae ������ yield �cf� formulae ������!

 E
�damped�
� � e

ikcz

�
��i �

�

k
�
�

k�
c

�

�

 eikcz�

�

�

k
�
�

kc
�z 
  E

�undamped�
� � e� �

�

k
�
�

kc
�z �

 E
�damped�
� � e

�ikcz

�
��i �

�

k
�
�

k�
c

�

�

 e�ikcz�

�

�

k
�
�

kc
�z 
  E

�undamped�
� � e �

�

k
�
�

kc
�z�

������

Since we identify  E
�undamped�
� 
 eikcz of ����� as the right�traveling wave� and  E

�undamped�
� 
 e�ikcz of �����

as the left traveling wave� we can conclude that to have the propagation toward in�nity �i�e�� the radiation

of waves� accompanied by the decay of the amplitude �as opposed to growth with no bound�� we have to

take positive values of the damping factor	 � � � �cf� Section ��� In this case� the amplitude of  E
�damped�
�

will decay exponentially for z �� �	 �propagation to the right�� and the amplitude of  E
�damped�
� will decay

exponentially for z �� �	 �propagation to the left�� As one can easily see from ������� the rate of decay is

controlled by the value of ��






In connection to the aforementioned exponential behavior of the longitudinal modes� a more general

fact is also worth mentioning� The full Fourier symbol of the undamped operator of ����a� obviously has

real roots on the dual plane� these roots occupy the entire circle of radius k� centered at the origin� In

contradistinction to that� the symbol of the damped operator of ����b� does not have real roots on the dual

plane� As shown in ����� the damped operator will therefore have an exponentially decaying fundamental

solution� In practical terms it means that the outgoing waves governed by the damped Helmholtz equation

will decay exponentially toward in�nity in all directions� For comparison we remind that the fundamental

solution of the undamped operator is given by a zero order Hankel function� which only decays at in�nity

as the inverse square root of the distance from the origin�

To establish the properties of the propagating modes for the discretization ����� in the presence of

damping� and to demonstrate similarities to the continuous damped case� we �rst introduce and prove

Proposition ���� The characteristic equation ����� for � �
 � does not have roots with unit magnitude�

Proof� Let us assume the opposite! There exists a unit magnitude root q 
 ei� to the algebraic

characteristic equation ������ Then�

� � � ��ei� � ���h�z�k
�
��� � i��� 
m�� ���e�i� � ��e	i� � e�i�



��e��i� � ��e�i� � ���h�z�k

�
��� � i��� 
m�� ��� � ��ei� � e�i�

� � e�i�


��� cos���� � �� cos� � ���h�z�k

�
��� � i��� 
m�� ���

� � e�i� 
 ��

As e�i� �
 �� the expression in rectangular brackets has to be equal to zero� Since the only imaginary

contribution to this expression is proportional to �� we conclude that it is only possible when � 
 ��

Proposition ��� implies that similarly to the continuous case� there will be no constant�amplitude

solutions to the homogeneous counterpart of the discrete equation ������ Each of the four corresponding

modes! qn� � q
�n
� � qn� � and q�n� � will exponentially decrease in one direction and exponentially increase in

the opposite direction� In particular� if we assume as before that 
 
 � in the undamped traveling waves

regime�� and in addition let � 
 �� then solving �rst equations ����� for d�� then equation ����a� for q� and

q��� � and �nally using the Taylor expansion� we obtain �cf� formula ������

q� 
 eikchz�
�

�

k
�
�

kc
�hz �O

��
kchz

	
� � i

�

�

k��
k�c

�


�
�
�

q��� 
 e�ikchz�
�

�

k
�
�

kc
�hz �O

��
kchz

	
� � i

�

�

k��
k�c

�


�
�
�

������

Equalities ������ mean that the damped discrete traveling waves qn� and q�n� approximate the damped

continuous waves ������ with the fourth order of accuracy� This result is obviously similar to the one

obtained in the undamped case� see formulae ������

As of yet� our discussion has focused on the �rst pair of roots q� and q��� of the characteristic equation

������ because these roots correspond to the genuine modes of the original di�erential equation� The second

pair of roots q� and q��� is obtained by solving equations ����� for d� and subsequently solving equation

����b�� The corresponding pair of solutions qn� and q�n� is� of course� a pure numerical artifact� In ���� we

have shown that for � 
 � the roots q� and q��� cannot have unit magnitude! jq�j � � and jq��� j � �� which

means that the waves qn� and q�n� are always evanescent� In the damped case� Proposition ��� implies that

�This would also imply
k
�

�

kc
hz � � because �m is small and kc � k��

��



these waves will remain evanescent as well� The presence of the second pair of waves� however� implies that

the discrete equation requires two more boundary conditions compared to the original di�erential equation�

In Section �� we have outlined a general two�fold motivation behind the introduction of damping into

the Helmholtz equation� One part was coming from physics because absorption by the medium always

accompanies the propagation of electromagnetic waves in real�life settings� Moreover� from the standpoint

of mathematics the introduction of damping helps select a unique solution using the limiting absorption

principle� Besides these two key reasons� the presence of damping in the equation also a�ects positively the

properties of the numerical algorithm�

First� having no roots of unit magnitude presents a signi
cant advantage from the viewpoint of numerical

stability� In this case� every discrete system ����� supplemented by the boundary conditions that are discussed

below in Section ���� will be well�posed in the classical sense of ���� ���� In contradistinction to that� in the

original undamped case existence of the roots with unit magnitude may� generally speaking� cause a weak

polynomial growth of the error when the grid size is re�ned� although no major exponential instability will

be possible�

Second� we remind that the original formulation of the problem requires that E�z� r� vanish as jrj �� 	�

Instead� when solving the problem numerically we set E�z� r� 
 � at a large but still �nite distance r 
 rmax�

Of course� we expect that on some �xed bounded region of interest located next to the axis of the propagating

beam our solution will converge to the original in�nite�domain solution with the increase of rmax� A general

methodology for solving in�nite�domain problems based on a similar idea was �rst introduced and studied

in ������������� in the context of "uid "ow� It was shown� in particular� that one may obtain the convergence

rate inversely proportional to the square of the domain size �i�e�� 
 �	r�max using our particular notations��

Besides� for a speci�c example that involves the Laplace equation that transforms into a Yukawa equation

by introducing small 	dissipation�
 Mishkov and Ryaben�kii have shown in ���� that one may expect a much

faster convergence of the damped solution to the undamped one on a �xed�size domain rather than on the

original unbounded domain� Even though the formulation of the problem in ���� is not quite the same as the

one analyzed here� there are still similarities that allow us to consider the results of ���� as another argument

toward using the damped equation�

���� Boundary Conditions� Apart from the foregoing key di�erence in the properties of the roots of

equation ����� in the undamped and damped case� see Section ���� the algorithm for solving the damped NLH

remains basically the same as the undamped algorithm of ����� Each equation ����� needs to be supplemented

by the radiation boundary conditions at z 
 zmax and two�way ABCs at z 
 ��

The radiation boundary conditions are constructed by requiring that on the right boundary z 
 zmax the

solution of ����� be composed of only the waves that propagate�decay to the right� i�e��  En 
 c�q
n
� � c�q

n
� �

The selection is rendered by the so�called one�way discrete Helmholtz equation ����� which is a a linear

homogeneous relation that de�nes the span of all the appropriate modes� Speci�cally� let us consider equation

����� on the grid n 
 �� �� � � � � N � �� N � and assume that the right�hand side  gn is small and can therefore

be neglected near the right boundary n 
 N � i�e�� that the propagation is almost linear in the far 
eld�

Then� we require that the vector �  EN�	�  EN���  EN���  EN �T be a linear combination of the two vectors!

�qN�	� � qN��� � qN��� � qN� �T and �qN�	� � qN��� � qN��� � qN� �T � which obviously translates into

Rank



��

 EN�	
 EN��

 EN��
 EN

� q� q�� q	�

� q� q�� q	�

�
�� 
 �� ������

��



Relation ������ is� in turn� equivalent to the two scalar equalities

q�q�  EN�	 � �q� � q��  EN�� �  EN�� 
 �� �����a�

q�q�  EN�� � �q� � q��  EN�� �  EN 
 �� �����b�

which constitute the one�way�to�the�right discrete Helmholtz equation� Relations �����a� and �����b�

supplement the scheme ����� at n 
 N � � and n 
 N � respectively� i�e�� at the two near�edge nodes of

the grid where the regular �ve�point wide stencil of ����� cannot be applied�

The two�way ABC at z 
 � also has to possess the capability of radiation boundary conditions� i�e�� it has

guarantee the transparency of the interface for all the waves that propagate�decay to the left� In other words�

we require that at the left boundary the outgoing� i�e�� scattered� waves be given by  E
�scat�
n 
 c�q

�n
� � c�q

�n
� �

Assuming for a second the homogeneity!  gn 
 � near n 
 �� we could obtain similarly to ������!

Rank



��

 E
�scat�
�

 E
�scat�
�

 E
�scat�
�

 E
�scat�
	

� q��� q��� q�	�

� q��� q��� q�	�

�
�� 
 �� ������

Relation ������� again� is equivalent to the one�way�to�the�left discrete Helmholtz equation	

 E
�scat�
� � �q� � q��  E

�scat�
� � q�q�  E

�scat�
� 
 �� �����a�

 E
�scat�
� � �q� � q��  E

�scat�
� � q�q�  E

�scat�
	 
 �� �����b�

Equations �����a�� �����b�� however� cannot be immediately used as the ABC at z 
 � because the foregoing

assumption of homogeneity near the interface is� generally speaking� not correct� and moreover� equations

�����a�� �����b� do not account for the incoming wave at z 
 � �see Section ����� i�e�� do not have the

important two�way capability� The analysis of ���� shows that to accurately address both issues� i�e�� the

inhomogeneity that comes from the previous iteration and the presence of the incoming wave� it is su�cient

to introduce particular modi�cations to the right�hand side gn only at two nodes! n 
 � and n 
 �� The

corresponding modi�cation due to the incoming signal is obtained by simply substituting the right�traveling

incoming wave  E
�inc�
� qn� into the one�way�to�the�left Helmholtz equation �����a�� �����b�� Altogether� the

two�way ABCs at z 
 � are given by �cf� formulae �����a�� �����b��!

 E� � �q� � q��  E� � q�q�  E� 
  g��� �����a�

 E� � �q� � q��  E� � q�q�  E	 
  g��� �����b�

where prime denotes the aforementioned modi�cation of the right�hand side� see ����� Again� relations �����a�

and �����b� supplement the scheme ����� at the near�edge nodes n 
 � and n 
 �� respectively� where the

regular �ve�point stencil cannot be applied� Straightforward considerations based on the linear superposition

principle and uniqueness �see ����� guarantee that inhomogeneous relations �����a�� �����b� correctly specify

the incoming signal at z 
 � and still ensure the re"ectionless propagation of all the outgoing waves through

z 
 � toward z 
 �	�

���� Computational Complexity� The computational complexity of one solution of equation �����

is O�NzNr lnNr� operations� where Nz and Nr are the corresponding grid dimensions� Indeed� the cost of

solving each of theNr one�dimensional systems ����� is linear with respect to Nz� because each of this systems

needs to be solved repeatedly for multiple right�hand sides� As such� the sparse LU decomposition can be

performed only once ahead of time� and the cost of backward substitution is linear� Therefore� the overall

complexity is dominated by the cost of Nz direct and inverse FFTs of length Nr� which is O�NzNr lnNr��

��



�� Results� In this section we present simulation results for the Gaussian initial conditions E�
inc 


exp��r�� and �� 
 ��r��k
�
��

��� exp��r�	r��� for the NLH and NLS� respectively� Denoting� as before� the

input power of the incoming wave by N���� we de�ne the fractional input power as

p 
 N���	Nc� �����

i�e�� p 
 � when the input power is equal to the NLS critical power Nc� For the Gaussian initial conditions

used in our simulations p 
 k�
p
��	�� ����� In all simulations we set k� 
 � and r� 
 ��

Table ���

Threshold values of linear damping ��

Case No� � p 
 N���	Nc �Hth �Sth

� ���� ��� � �

� ���� ����� � �

� ����������� ��� � �

� ��	��� ���� ��� � ���
 �

� ����� ������ ������� �

� ���� ���� ������� �������

� ��� ���� ������ ������

� ����� ���� ������ ������

� ���� ���� ������ �����

�� ��� ���� ������ �����

�� ��� ���� ����� �����

�� ��� ���� ����� �����

�� ��� ���� ����� �����

In Table ��� we show the calculated threshold values �Hth and �Sth� The quantity �
H
th in Table ��� represents

the smallest non�negative value of � for which we obtain a global solution of the NLH� By this we mean

that the nonlinear iterations converge in the sense that the value of maxz�r�E
�n��� � E�n��	maxz�r E

�n���

drops by at least a factor of ���� in the course of iterations on the computational domain � � z � �� and

� � r � ��� with grid sizes hz 
 
	�� and hr 
 
	�� where 
 
 ��	k�� The particular choice of the domain

size and grid resolution is 	inherited
 from our previous numerical experiments� see �������� The values of �Hth
in Table ��� are obtained with at least two signi�cant digits by repeatedly running the code for a given � and

varying �� which allows one to 	close in
 on the threshold� As� however� discussed in Section �� with a larger

computational domain and�or a �ner grid it may be possible to obtain regular solutions for smaller values

of �� hence� to obtain a lower value of the threshold �Hth� For example� using the same computational domain

and twice as �ne grid! hz 
 
	�� and hr 
 
	��� we could obtain �Hth 
 ������ instead of �Hth 
 ������

for the data on row No� �� of Table ��� �� 
 ����� Likewise� using the original grid resolution hz 
 
	��

and hr 
 
	� and the computational domain which was twice as large! zmax 
 �� and rmax 
 ��� we could

obtain �Hth 
 ������ instead of �Hth 
 ������ for the data on row No� � of Table ��� �� 
 ����� In other words�

the values of �Hth from Table ��� should be considered upper bounds for the actual thresholds� However� the

quantitative limits of pursuing this venue are still unexplored� i�e�� it is not known how far down in �Hth one

can go by increasing the domain size and�or grid resolution� Our ability to answer this question is obviously

limited by computer resources� and as of yet the question remains open� In particular� it is unclear whether

��



we can achieve �Hth 
 � by choosing a su�ciently large domain and�or �ne grid�

Similarly� the quantity �Sth in Table ��� represents the smallest non�negative value of damping � for which

the NLS solution does not blow up� In our NLS simulations we use standard fourth�order �nite di�erence

schemes for the spatial derivatives and explicit fourth�order Runge�Kutta for marching in z� As has recently

been shown in ���� in �nite�di�erence simulations of NLS solutions that are known analytically to become

singular� the computed solution still remains bounded� Therefore� there is always an element of arbitrariness

in selecting a numerical criterion for blowup in NLS simulations� In our NLH simulations the largest relative

increase in amplitude due to self�focusing has never exceeded a factor of two� In order to make the blowup

criteria in NLH and NLS simulations as close to one another as possible� we de�ne the computed NLS

solution as becoming singular once its amplitude increases by a factor of two� We checked that altering this

NLS blowup criterion leads to only minor changes in the results for �Sth� For example� using the blowup

criterion of relative focusing by a factor of �� rather than �� for � 
 ���� �row No� � of Table ���� gives

�Sth 
 ������� instead of �Sth 
 �������� and using this new criterion for � 
 ���� �row No� � of Table ����

yields �Sth 
 ������ instead of �Sth 
 ������ In particular� this change does not a�ect our main �nding of

initial conditions for which �Hth � �Sth�

As expected� for both the NLS and the NLH the threshold values of � increase with � �i�e�� a larger

amount of damping is needed to arrest collapse of beams with higher input power�� For � 
 ���� and

� 
 ���� the input power is below critical� Therefore� both the NLS and the NLH have global solutions

for � 
 �� This behavior for the NLH holds �at least� till � 
 ������������ which corresponds to the last

subcritical value
 that we have checked! N��� being equal to ��� of Nc�

Starting from � 
 ��	�k�� � ������������ which corresponds exactly to N��� 
 Nc� the NLH requires a

certain positive amount of damping � to maintain the regularity of the solution� For the NLS� the solution

with no damping remains regular till � 
 ����� which corresponds to p 
 N���	Nc 
 ������ Indeed� it is

known that Nc is only a lower bound for the threshold power for NLS collapse� and that any initial condition

which does blow up� and whose amplitude j��j is not equal to the ground state pro�le ����
p
sech��r�� has

power strictly above Nc ��� ��� ���� In our simulations we have discovered that for � 
 ��	�k��� which is the

critical value for the NLH� as well as for the moderately supercritical values � 
 ������ � 
 ���� and � 
 ����

when the input power N��� is only slightly above Nc� the threshold damping for the NLH is larger� than that

for the NLS! �Hth � �Sth� However� for input powers that are equal or higher than ����Nc �which corresponds

to � 
 ������ this trend reverses� see Table ���� and we obtain �Hth � �Sth� Thus� for N��� � ����Nc�
� there

must be other mechanisms in the NLH not present in the NLS that help suppress the formation of singularity

in the solution� Therefore� we may conclude that in this regime nonparaxiality and backscattering help arrest

collapse of nonlinear waves�

In ��� Fibich has used asymptotic analysis to show that

�Sth 
 c�p� ��	��� �����

where p is the fractional critical power ������ In Figure ��� we put this theoretical prediction to a test by

plotting the values of �Sth and �Hth as a function of �p � ��� When we computed the best �t of the values of

�Sth with the two�parameter family of curves �th 
 c�p � ���� we obtained 
 
 ������ which is in excellent

�As mentioned in Section �� for larger subcritical values ofN��	 the convergence of nonlinear iterations becomes prohibitively

slow�
�We remind that the values of �H

th
in Table ��� are only upper bounds for the threshold� lower values may be obtained by

re�ning the grid and�or enlarging the computational domain�
�More precisely� N��	 higher than some value between ���
Nc and ����Nc

��



agreement with formula ������ Relation ����� also provides a good approximation to the data points �Hth�

see Figure ���� The only exception is the lowest�power NLH data point in Figure ��� that corresponds to

� 
 ���� �row No� � in Table ����� for which the value of �Hth has most likely been overpredicted numerically

because of the computational constraints discussed previously�
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Fig� ���� Threshold values �H
th

�hollow bullets ���� and �S
th

�asterisks ���� as a function of �p��	 for the data in Table ����

The solid line ������p� �	����� is the best �t to the values of �S
th
�

In Figure ��� we plot the on�axis �r 
 �� amplitudes of the NLH and NLS solutions for � 
 ��� and

various values of �� The on�axis behavior is most representative of the physical processes that we are studying�

because for symmetric beams this is the location of the peak intensity� When � 
 �Hth 
 ������� the NLH

solution exists globally but the NLS solution becomes singular at a �nite propagation distance� As the value

of damping increases� both the NLS and the NLH solutions undergo less focusing� For all the cases for

which both solutions remain regular� the NLS solution curve is higher than the NLH one from z 
 � until

its maximum� i�e�� the point of the arrest of collapse� This provides additional support to the foregoing

conclusion that nonparaxiality and backscattering arrest collapse of nonlinear waves� Note that after the

collapse has been arrested� the NLS solution becomes lower than the NLS one� One possible explanation for

this is that the NLS solution is undergoing higher focusing� hence it loses more power due to damping�

We emphasize that at z 
 � the NLH solution is not equal to E�
inc� see Figure ���� The di�erence

between the two is due to backscattering� and can be used to quantify the level of backscattering for a

particular setting� see ���� ����� In Table ��� we provide the values of maximum self�focusing and maximum

backscattering in the NLH� de�ned as maxr�z jE�z� r�j and maxr jE��� r��E�
inc�r�j� respectively� for various

values of � and �� The dash 	$
 in a particular cell of Table ��� means that the level of damping was

	There are� in fact� two phenomena that account for the discrepancy between the NLH and NLS curves� Nonparaxiality of

the forward propagating wave and backscattering� Because the problem is nonlinear� these two mechanisms cannot be easily

and explicitly told apart inside the domain� The only location where we can clearly say that the di�erence is purely due to

backscattering is the �in�ow� interface z � �� see �����

��
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insu�cient to guarantee the convergence of the numerical algorithm� As expected� for a given level of

damping �� the NLH solution undergoes stronger self�focusing as the nonlinearity coe�cient � increases� The

level of backscattering also increases with the increase of �� As also expected� for a given input power ��

when the damping � increases the NLH solution undergoes weaker self�focusing �see Figure ����� Surprisingly�

however� changing the value of damping � has very little or no e�ect on the level of backscattering� To further

corroborate this observation� we picked a particular value of the nonlinearity coe�cient� � 
 ���� and ran an

additional series of numerical tests with a substantially more �ne sampling for �� These results� which are

presented in Table ���� con�rm that backscattering is not a�ected by linear damping� This phenomenon

certainly cannot be explained by saying that linear damping has the overall negligible e�ect� since its e�ect

Table ���

Maximum absolute levels of self	focusing and backscattering in the NLH for a variety of � and ��

Maximum self�focusing Maximum backscattering

� 
 ������ � 
 ������ � 
 ������ � 
 ������ � 
 ������ � 
 ������

� 
 ���� ������ ������ ������ ������ ������ ������

� 
 ����� ������ ������ ������ ������ ������ ������

� 
 ��� ������ ������ ������ ������ ������ ������

� 
 ����� $ $ ������ $ $ ������

�




on the focusing dynamics can be clearly seen through the changing values of the maximum focusing both in

Table ��� and in Figure ���� At present� we have no good explanation to this surprising observation�

Table ���

Maximum absolute levels of self	focusing and backscattering in the NLH for � � ����

Case No� Damping � Max� self�focusing Max� backscattering

� ������ ������ ������

� ������ ������ ������

� ������ ������ ������

� ������ ������ ������

� ������ ������ ������

� ������ ������ ������

� ������ ������ ������

� ������ ������ ������

� ������ ������ ������

�� ������ ������ ������

�� ������ ������ ������

�� ������ ������ ������

�� Concluding Remarks� The question whether nonparaxiality and backscattering may arrest

collapse of nonlinear waves has been open for many years� While the answer to this question is probably

positive� no conclusive argument toward it� whether analytical or numerical� has been previously available in

the literature� In this study we addressed this question within the framework of the linearly damped NLH

and NLS� As has been mentioned� the addition of linear damping is not ad�hoc because it has both physical

and mathematical motivation� Methodologically� linear damping provides a very useful 	extra dimension


that allowed us to e�ciently control the solutions of the NLH and NLS� Speci�cally� the variation along this

extra dimension has helped us to numerically identify the regimes� for which the NLS solution blows up�

while the NLH solution remains regular� In other words� our results furnish the �rst ever de�nite numerical

evidence that nonparaxiality and backscattering can arrest collapse� The question whether regular solutions

to the NLH still exist in the absence of damping remains open as of yet� However� we hope that the arguments

based on linear damping and the limiting absorption principle may be useful for proving global existence

and uniqueness� both for the damped NLH and for the undamped NLH�
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