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    Abstract   
The analytical formulation of curved-plate non-linear equilibrium equations that include transverse-shear-

deformation effects is presented.  A unified set of non-linear strains that contains terms from both physical and
tensorial strain measures is used.  Using several simplifying assumptions, linearized, stability equations are derived
that describe the response of the plate just after bifurcation buckling occurs.  These equations are then modified to
allow the plate reference surface to be located a distance zc from the centroidal surface which is convenient for
modeling stiffened-plate assemblies.  The implementation of the new theory into the VICONOPT buckling and
vibration analysis and optimum design program code is described.  Either classical plate theory (CPT) or first-order
shear-deformation plate theory (SDPT) may be selected in VICONOPT.  Comparisons of numerical results for
several example problems with different loading states are made.  Results from the new curved-plate analysis
compare well with closed-form solution results and with results from known example problems in the literature.
Finally, a design-optimization study of two different cylindrical shells subject to uniform axial compression is
presented.

    List of Symbols    

A extensional stiffness matrix
a upper half of the eigenvectors of matrix R,

associated with displacements
B coupling stiffness matrix
    B    ,     C    ,     E    ,
    F    ,     G    ,     H    coefficients used to select physical or tensorial

strains
b lower half of the eigenvectors of matrix R,

associated with forces
b plate width (arc length)
c single eigenvector of matrix R
D bending stiffness matrix
d vector of displacement amplitudes at the two

edges of a plate
Eii Young’s modulus in the i-direction
E matrix used to define vector d
F matrix used to define vector f
f vector of force amplitudes at the two edges of

a plate
Gij shear stiffness associated with i-j direction
I identity matrix
i imaginary number, square root of -1
K plate stiffness matrix
k transverse shear compliance matrix
M11, M22, M12 applied (prebuckling) moment
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resultants
m11, m22, m12 perturbation values of moment

resultants just after buckling has
occurred

˜ , ˜ , ˜m m m11 22 12 moment resultants

N11, N22, N12 applied (prebuckling) stress resultants
n11, n22, n12 perturbation values of stress resultants

just after buckling has occurred
˜ , ˜ , ˜n n n11 22 12 stress resultants
ˆ ,  ˆn n22 12 effective forces per unit length at an

edge ξ2 = constant
nl number of layers in a general curved laminate
P coefficient matrix of the set of first-order plate

differential equations
Q lamina reduced transformed stiffness matrix
Q1, Q2 applied (prebuckling) shear stress resultants
q1, q2, perturbation values of shear stress resultants

just after buckling has occurred
˜ , ˜q q1 2 shear stress resultants
q̂2 effective transverse shear force per unit length

at an edge ξ2 = constant
R matrix whose eigenvalues are the characteristic

roots of the plate differential equations
R1, R2 radii of lines of principal curvature
T coefficient matrix of the set of first-order plate

differential equations
t plate thickness
U1, U2 prebuckling displacements
u1, u2 perturbation values of displacements just after

buckling has occurred
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w normal displacement in the ξ3-direction
Z vector of the forces and displacements in the

plate
z vector of the amplitudes of the forces and

displacements in the plate assuming a
sinusoidal variation in the ξ1-direction

zc distance from the plate centroidal surface to the
plate reference surface

zk distance from laminate reference surface to the
kth layer in the laminate

Greek
α1, α2 Lamé parameters
β angle included by a curved plate
ε vector containing strains ε11, ε22, and γ12

ε11, ε22 in-plane direct strains
ε12, γ12 in-plane shear strains
ε13, γ13

ε23, γ23 transverse shear strains
φ1, φ2 rotations
φn rotation about the normal to the plate middle

surface
k vector containing curvatures κ11, κ22, and κ12

κ11, κ22 middle surface changes in curvature
κ12 middle surface twisting curvature
λ half wavelength of buckling mode
ν Poisson’s ratio
θk angular orientation of ply k in a laminate with

respect to the laminate coordinate system
ρ density
σ vector containing stresses σ11, σ22, and τ12

σ11, σ22 in-plane direct stresses
τ12 in-plane shear stress
ξ1, ξ2, ξ3 coordinate measures in the 1, 2, and 3-

directions, respectively

Subscripts and Superscripts
cr critical value for buckling
k kth layer in a laminated composite plate
n normal to middle surface
1, 2, 3 1, 2, and 3-directions, respectively
° value at centroidal surface

   Introduction
Longitudinally stiffened plate structures occur

frequently in aerospace vehicle structures.  Thus,
analysis and optimization capabilities that can be used
economically for their design are of great importance.
One approach to modeling these structures is to
represent the stiffened panel mathematically by long,
thin, flat or curved-plate elements that are rigidly
connected along their longitudinal edges as shown in
Figure 1.  Furthermore, the designs for these structures

often exploit the increased structural efficiency that can
be obtained by the use of advanced composite
materials.  Therefore, any analysis tool used to design
these structures must include the effects of anisotropy
and through-the-thickness or transverse-shear
deformation.  The transverse-shear deformation
capability is especially important when the plate
elements are thick compared to their width or are made
of compliant lamina.  Additionally, to satisfy the
current demands for more cost-effective and
structurally efficient aerospace vehicles, these
structures are frequently optimized to obtain minimum-
mass designs that satisfy a wide range of constraints.
Two particularly important phenomena that must be
accounted for when performing a design optimization
of a stiffened-plate structure are buckling and vibration.
Constraints on buckling loads, vibration frequencies, or
a combination of both usually appear as design criteria
in the design-optimization process.  Therefore, an
analytical tool that is economical and predicts
accurately the structural response of stiffened-plate
structures is highly desirable.  One such analytical tool
is the VICONOPT computer code [1].

The VICONOPT computer code is an analysis and
design-optimization code for the buckling and vibration
analyses of prismatic assemblies of flat- or curved-plate
elements subjected to in-plane-loads.  The code
includes the capability to model anisotropic stiffened-
plate structures that have fully populated A, B and D
stiffness matrices.  The user can select either classical
plate theory (CPT) or first-order transverse-shear-
deformation plate theory (SDPT) [2].  The SDPT used
in VICONOPT and in the present study uses the usual
first-order assumption that straight material lines that
are originally normal to the centroidal surface of a plate
remain straight and inextensional during deformation of
the plate, but not necessarily normal to the centroidal
surface.  The formulation used in VICONOPT to model
plate elements is referred to herein as an exact finite-
strip method (FSM) [3] because it uses the exact
solution to the differential equations that describe the
behavior of a plate element to formulate the
corresponding stiffness matrices.  Examples of other
exact FSM analyses of curved plates are given in Refs.
[4, 5, and 6].  Other FSM analyses that formulate the
stiffness matrices from a variational approach are
referred to as approximate FSM’s.  Examples of
approximate FSM analyses of curved plates are given in
Refs. [7 and 8].

As the use of advanced composite materials has
increased in the design of aerospace vehicles, stiffened-
plate structures with one or more curved-plate elements
have become more common.  Currently, the
VICONOPT code approximates the geometry of a
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curved plate by subdividing or discretizing it into a
series of flat-plate elements that are joined to form the
complete curved plate as shown in Figure 2.  Thus, the
analyst must ensure that an adequate number of flat-
plate elements is used in the analysis.  This procedure is
analogous to the discretization approach used in finite
element analysis, and it is referred to herein as the
segmented-plate analysis in the VICONOPT code.
Although this approach it not very difficult, it would be
more efficient to have an exact method for modeling
curved-plate elements within VICONOPT.

The present paper describes an analysis method for
modeling curved-plate elements exactly that has been
implemented into the VICONOPT code.  This new
analysis capability is referred to herein as the curved-
plate analysis in VICONOPT.  Several features
accompanying this analysis that have been added to the
VICONOPT code are described in the present paper.
The current version of VICONOPT only analyzes flat-
plate elements based on a tensorial strain-displacement
relation.  However, the choice of strain-displacement
relations can affect the magnitude and distribution of
prebuckling stresses in curved plates.  Therefore, a
unified set of nonlinear strain-displacement relations
that contains terms from both physical and tensorial
strain measures is used to derive the curved-plate
equilibrium equations.  This unified set of strains is
used throughout the derivation of the equilibrium
equations, and the selection of either physical or
tensorial strains is achieved by setting appropriate
coefficients in the equilibrium equations equal to one or
zero.  Another addition to the code is the option to
include the effects of in-plane transverse loads that act
perpendicular to the longitudinal edges of a plate
element and in-plane shear loads in the in-plane
equilibrium equations.  These effects are currently
ignored in the VICONOPT code (see [1]).  All of these
features have been implemented such that they are
available for use in the analysis of both flat and curved-
plate elements.  The methodology used to accomplish
this enhancement of the code and results obtained using
this new capability are presented.

    Analytical Formulation
The analytical formulation of the present theory is

described.  The geometry, loadings, and sign
conventions used in the present study are described
first.  The unified set of strain-displacement relations
used in the present theory is then presented.  Next, the
derivation of a set of non-linear equilibrium equations
and linearized stability equations is described.  The
stability equations are then modified such that they
describe the response of the curved-plate segment with

respect to a reference surface which may be offset from
the centroidal surface of the plate.  These modified
stability equations are needed to simplify the numerical
procedure used to implement the present analysis into
the VICONOPT code.

    Geometry, Loadings, and Sign Conventions   
The geometry of the basic curved-plate element

this is being studied in this section is given in Figure 3.
This figure depicts the orthogonal curvilinear
coordinate system (ξ1, ξ2, ξ3) used in the analysis.  The
ξ1- and ξ2-axes shown in the figure are along lines of
principal curvature and they have radii of curvature R1

and R2, respectively.  Lines of principal curvature
coordinates are sufficient for the analysis because twist
of the curved-plate reference surface is absent in
prismatic curved-plate assemblies.  The reference
surface for a curved-plate element used herein is its
middle surface, and the corresponding first fundamental
form is given by

ds d d2
1
2

1
2

2
2

2
2= +α ξ α ξ (1)

where α1 and α2 are the Lamé parameters.  The
coordinates ξ1 and ξ2 are measured as arc lengths along
the ξ1- and ξ2-axes, respectively.  The result of
measuring the coordinates in this manner is α1 = α2 = 1.
The sign conventions for buckling displacements,
moments, rotations, and stress resultants are also shown
in Figure 3.  The sign convention for the applied in-
plane loadings and the relationship of the reference
surface of the plate to the centroidal surface of the plate
are shown in Figure 4.  The centroidal surface is
defined to be located at the centroid of the face of the
panel that is normal to the ξ1-axis.  Observe that the
centroidal surface can be offset from the reference
surface by a distance zc.  This offset is useful in
maintaining a smooth outer-surface mold line when
plates of different thicknesses are linked together (as in
the analysis of a stringer-stiffened panel).  The loading
N22 shown in Figure 4 is referred to in the present paper
as an in-plane transverse loading.

    Strain-Displacement Relations
The unified set of nonlinear strain-displacement

relations used for the present study for small strains are
given by
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where the following notation for partial derivatives is

used: 
∂
∂ξ
u

ui

i
i≡ , .  The displacement quantities in Eqs.

(2a)-(2e) are displacements of the centroidal surface of
the curved-plate element.  The constants     B    ,     C    ,     E    ,     F    , and
    H     are set equal to one and     G     is set equal to zero in Eqs.
(2a)-(2c) to obtain tensorial strain measures.  The
constants     B    ,     E    , and     G     are set equal to one and     C    ,     F    , and
    H     are set equal to zero to obtain physical strain
measures.  Note that the linear portions of the tensorial
and physical strain measures are identical.  The
tensorial strain measures are those of Novozhilov [9].
The physical strains used in the present thesis are
derived in a manner similar to that presented by Stein in
[10] and they were communicated to the first author in
terms of lines of curvature coordinates by Dr. Michael
P. Nemeth1.

The definitions for the changes in curvature of the
centroidal surface in terms of surface rotations used for
both theories are

κ φ11 11= − , (3a)

κ φ22 22= − , (3b)

κ φ φ12 1 2 2 1= − +( ), , (3c)

These changes in curvatures are equivalent to those
given by Sanders in [11] with the terms involving
                                                
1 Structures Division, Structural Mechanics Branch,
NASA Langley Research Center, Hampton, Virginia,
23681-0001

rotations about the normal neglected to simplify the
analysis.

    Derivation of Stability Equations
The nonlinear equilibrium equations for the curved

plate illustrated in Figure 3 are derived using the
principle of virtual work [12].  The present derivation
uses the principle of virtual work in the manner of
Sanders [13] that is written in the following form
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The terms ñ12 and m̃12 are the effective membrane-

shear and bending stress measures, respectively,
defined by Sanders in [13].  The terms ̃q1 and q̃2  are

the effective transverse-shear stress measures defined
by Cohen in [14].  The uppercase terms in Eq. (4) are
the applied loads on the boundary of the plate.

In order to derive a set of non-linear equilibrium
equations that adequately models the behavior of an
assembly of curved or flat-plate elements, the issue of
continuity of rotations at a plate junction must be
examined.  When two plates are joined together such
that one cross-section is oriented at an arbitrary angle,
α, to the other, rotations about the normals to the
centroidal surfaces of the two plates must be included
to satisfy continuity of rotations.  However, this
rotation, φn, has been neglected in the kinematic
equations used in the present paper.  To account for this
effect, a procedure to maintain continuity of rotations
that was developed by Cohen in [15] is used in the
present study and in VICONOPT.  This procedure
introduces the shear strain, γ13, as a fundamental
displacement variable instead of the rotation, φ1 by

replacing φ1 with the expression  w
u

R
,1

1

1
13− − γ   in the

boundary integral over ξ2 in Eq. (4).  Although a
detailed discussion of this topic is given in reference
[16], a brief discussion of the justification for using this
approach is presented subsequently.  As shown in
reference [16] the equations for continuity of rotations
at a plate junction will be satisfied if the transverse
shear strain, γ13, equals zero for any non-zero value of
the angle α.  Therefore, if γ13 is a fundamental
displacement variable, it may easily be set equal to zero
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by simply striking out the appropriate rows and
columns in the stiffness matrix of the plate.  The
equations of continuity of rotations at a plate junction
presented in reference [16] also indicate that for α = 0,
the values of γ13 in each plate are equal.

To derive a set of nonlinear equilibrium equations,
the variations of Eqs. (2) and (3) are substituted into Eq.
(4) and the resulting equation is integrated by parts to
yield an integral equation that consists of an area
integral and two line integrals.  This integral equation is
given in reference [16].  Recall that, per Cohen’s
procedure, φ1 is replace with the expression

w
u

R
,1

1

1
13− − γ   in the boundary integral over ξ2 in Eq.

(4).  For arbitrary displacements u1, u2, w, φ1, and φ2,
the coefficients of the displacements in the area integral
are the five equilibrium equations.  The coefficients of
the displacement variables in the line integrals are the
natural or force boundary conditions for the edges
ξ1=constant and ξ2=constant.

A set of linear perturbation equilibrium equations
that govern the stability of the plate, referred to herein
as the stability or linear bifurcation buckling equations,
is obtained by taking the difference between the
equilibrium equations evaluated for a stable equilibrium
state just prior to bifurcation buckling and an adjacent
(perturbed) equilibrium state (not necessarily stable)
just after bifurcation buckling has occurred.  The
prebuckling state is represented herein by:

˜ ,  ˜ ,  ˜ ,  

˜ ,  ˜ ,  ˜ ,  

˜ ,  ˜ ,  ,  ,  

n N n N n N

m M m M m M

q Q q Q U U W
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11 11 22 22 12 12
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= − = −

(5)

where the minus signs in the loading terms reflect the
sign convention used in which the applied loads are
opposite in direction to the loads that develop after
buckling.  The adjacent equilibrium state just after
bifurcation buckling has occurred is represented herein
by:

˜ ,  ˜ ,  

˜ ,  ˜ ,  

˜ ,  ˜ ,  

˜ ,  ˜ ,  ,  

,  

n n N n n N

n n N m m M
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= − = − +
+ +

(6)

where the lower-case variables are perturbation
variables.  Taking the difference between the two
equilibrium states represented by Eqs. (5) and (6),
linearizing the resulting equations with respect to the
perturbation variables, and applying several simplifying
assumptions yields the set of five stability equations

and two sets of boundary conditions given in reference
[16].  These assumptions are:

1) Prebuckling deformations, moments and
transverse shear stress are negligible

2) The in-plane prebuckling stress state is uniform

The form of the stability equations used herein is a
form that describes the response of the curved plate
with respect to a reference surface of the plate that is
located a distance zc from the centroidal surface shown
in Figure 4.  To obtain this form of the stability
equations, the following information is used:

1) The relationships of the displacements at the
centroidal surface, u and uo o

1 2  , to the displacements at

the reference surface, u1 and u2 are:

u u zo
c1 1 1= − φ (7a)

u u zo
c2 2 2= − φ (7b)

2) The relationships of the moments at the centroidal
surface, m m and mo o o

11 22 12,  ,   , to the displacements at
the reference surface, m m and m11 22 12,  ,    are:

m m z no
c11 11 11= − (8a)

m m z no
c22 22 22= − (8b)

m m z no
c12 12 12= − (8c)

3) The following quantities do not vary through the
thickness (with ξ3):

N N N n n n q q and w11 22 12 11 22 12 1 2,  ,  ,  ,  ,  ,  ,  ,   

4) The applied in-plane stress resultants, N11, N22,
and N12 act at the centroidal surface.

Substitution of Eqs. (7) and (8) into the original
linear stability equations yields the following modified
linear stability equations:
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m m z n n qc111 12 2 111 12 2 1 0, , , ,+ − +( ) − = (9d)

m m z n n qc12 1 22 2 12 1 22 2 2 0, , , ,+ − +( ) − = (9e)

As will be discussed subsequently, a sinusoidal
variation of the displacements and forces in the ξ1-
direction will be assumed to simplify the analysis by
reducing the linear stability equations to a system of
ordinary differential equations.  Therefore, the
boundary conditions for an edge ξ1 = constant are
ignored.  The remaining natural boundary conditions
for an edge ξ2 = constant are
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m z nc12 12 0− = (10d)
m z nc22 22 0− = (10e)

where the terms with a caret (^) are forces per unit
length at an edge ξ2=constant that are aligned with the
original (undeformed) coordinates.  These forces have
been introduced herein because of the fact that the

stiffness matrix of a finite-strip element must relate the
forces along the longitudinal edges of the plate in the
original coordinate directions to the corresponding
displacements along those edges.  Note that the term
m12,1 which appears in the Kirchhoff shear term of CPT
also appears in the expression for q̂2  for SDPT when

γ13 is used as a fundamental displacement quantity.
Modified expressions for the last two stability

equations are obtained by substituting expressions for
the quantities n n111 12 2, ,+( )  and n n12 1 22 2, ,+( ) that

are obtained by using Eqs. (9a) and (10a), and Eqs. (9b)
and (10b) in the appropriate places in Eqs. (9d) and
(9e), respectively.  The definitions for the effective
forces given in Eqs (10a)-(10c) are needed since the
terms n12 and n22 that appear in the quantities in
parentheses above are the perturbation values, not the
effective forces.  Substitution of the expressions for the
two quantities in parentheses above into Eqs. (9d) and
(9e), respectively, yields the final form of the last two
stability equations
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(11b)

These modified equations are used to simplify the
numerical procedure used to implement the present
analysis into the VICONOPT code.  The stability
equations in the form given in Eqs. (9a)-(9c) and Eqs.
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(11a)-(11b) are those implemented into the VICONOPT
code.

    Constitutive Relations   
The through-the-thickness geometry and the

geometry of an arbitrary lamina of a general, curved
laminate is given in Figure 5.  The number of layers in
the laminate is nl, and as shown in the figure, the arc-
width of the laminate is b.  The ξ1’- and ξ2’-axes are the
principal material axes of the kth specially orthotropic
lamina that makes an angle θk with the ξ1-axis in the
middle surface tangent plane at a given point of the
plate.  The laminate ξ1-axis is aligned with the
longitudinal edges of the plate.  The overall isothermal
constitutive relations for a thin, elastic laminated
composite shell are defined in reference [17] as

N

M

A B

B D








= 












ε
κ

(12)

The stress and moment resultants acting on the
laminate, {N} and {M }, respectively, are defined as

N

N

N

d
zk
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k

nl
11

22
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3
11
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
=
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
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



∫∑
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σ
σ
τ
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The extensional, coupling, and bending stiffness
matrices, A, B, and D, respectively, are defined as

A B D Q,  ,   ,  ,   ( ) = [ ]( )∫∑
−=

k

zk

zk

k

nl
d1 3 3

2

11
3ξ ξ ξ (15)

The constitutive relations for transverse shear used
in VICONOPT are those presented by Cohen in [14].
The constitutive relations for transverse shear are
written in inverted form as

γ
γ

13

23

11 12

12 22

1

2









= 














k k

k k

q

q
(16)

where [k ] is a symmetric 2-by-2 transverse shear
compliance matrix whose terms are defined in [14].

   Implementation into VICONOPT
The implementation of the present theory into the
VICONOPT code is described in this section.  Several
simplifications made to the present theory are described
first.  Then the derivation of the curved-plate stiffness
matrix based upon the analysis of the present study is
presented.  The implementation of the present curved-

plate theory into VICONOPT follows very closely the
procedure described in [2].  Therefore, for convenience,
the following discussion is presented in a form similar
to that in [2].

    Simplifications to the Theory    
The theory implemented into the VICONOPT code

is for structures that are prismatic in the longitudinal
direction.  Therefore, for the curved-plate elements that
are considered in the present paper, the radius of
curvature in the longitudinal direction, R1, is infinite;

i.e., any terms involving the quantity 
1

1R
 are zero.

Although these terms are set equal to zero in the
calculation of the terms of the stiffness matrix, they
have been retained for completeness of the theory
presented herein.  Another simplification to the theory
involves limiting the capability to locate the reference
surface a distance zc from the centroidal surface.  This
capability has only been implemented for the case
where the effects of N22 and N12 loads in the in-plane
stability equations are neglected.  The expressions for
the stiffness terms that result when N22 and N12 are
included in the in-plane stability equations are
prohibitively long.  Therefore, in the derivation of the
stiffness matrix that follows, only the following two
cases are included:

1) N22 and N12 are included in the in-plane
stability equations and zc is zero (i.e., reference surface
is coincident with the centroidal surface)

2) N22 and N12 are neglected in the in-plane
stability equations and zc is non-zero (i.e., reference
surface may be shifted from the centroidal surface)

    Derivation of the Curved-Plate Stiffness Matrix
Throughout this section, reference is made to force

quantities.  Although these quantities are force per unit
length, they are designated forces herein for
convenience.  The first step in implementing the present
theory into VICONOPT is to derive a stiffness matrix
that relates the force quantities along the two
longitudinal edges (referred to herein as simply forces),

ξ2 2
= ± b

, to the displacements along those edges.  The

desired force and displacement quantities are in the
direction of the original (undeformed) coordinates.  The
displacement and force variables are

d =




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
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
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 (17)
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where the shear strain, γ13, has been introduced as a
fundamental displacement quantity instead of the
rotation, φ1.  Note that the effective forces per unit
length at the boundaries, defined by Eqs. (10a)-(10c),
are used as forces since they are equal to forces in the
direction of the original (undeformed) coordinates.

The curved-plate element equations may now be
reduced to ordinary differential equations in ξ2 by
assuming that the response of the plate in the
longitudinal ξ1-direction varies sinusoidally.  For
isotropic or orthotropic plate assemblies without shear
loading, a sinusoidal response in the ξ1-direction is
exact for simply supported end conditions.  A series of
sinusoidal modes is used with a Lagrangian multiplier
technique to obtain results for other loadings and end
conditions [2].  Applying the assumption of a sinusoidal
variation in the ξ1-direction, the variables of Eqs. (17)
may be written as

Z zξ ξ π ξ
λ

ξ1 2
1

2, exp
  ( ) = 



 ( )i

, z
d

f
= 








(18)

where λ is the half-wavelength of the response in the
ξ1-direction.  Since a sinusoidal variation in the ξ1-
direction is assumed, the vector z will involve the
amplitudes of the displacement and forces.  The
imaginary number, i, has been used in Eqs. (17) to
account for the spatial phase shift that occurs between
the displacement and force quantities when an in-plane
shear loading is present and to result in real plate
stiffnesses when using the exponential expression of
Eq. (18).

The next step in the derivation is to express all
unknowns in terms of z.  A partially inverted form of
the constitutive relations is used to express the required
quantities as functions of the fundamental variables in d
and f, or terms that may be derived from the
fundamental variables.  The partially inverted
constitutive relations are given in reference [2].

Another requirement of the present derivation is to
express the relationship between q2 and ̂q2  without any

ξ2-derivatives so that a first-order system of differential
equations is maintained.  This expression is

q

q N w
u z

R

N h m z n

N h

c

c
2

2 12 1
1 1

1

22 2 78 1 12 121

22 881
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−[ ]
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+ −( ) + −[ ]
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













−

ˆ ,

,

φ

φ γ
(19)

where h78 and h88 are terms from the partially inverted
constitutive relations given in reference [2].  As with
the stability equations, only the linear portion of the
strain-displacement relations (Eqs. (2c), (2b), (2e), (3b),
and (3c)) are considered in the present derivation.  The

expression for κ12 is re-written after substituting
expressions obtained for φ1 and φ2 from Eqs. (2d) and
(2e) and using the linear portion of ε12, that is,

κ γ φ

ε γ

12 2
1 2

2 2
1

12

1
1 2

1 1
2= − + +





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+












+ +

R R
u

R

,

,

(20)

Using the partially inverted constitutive relations and
Eq. (19), the strain displacement equations, Eqs. (2c),
(2b), (2e), (3b), and (3c), and the stability equations,
Eqs. (9a)-(9c) and Eqs. (11a) and (11b) are written in
terms of the elements of z as

T z’ =P z or z’ =T-1 P z (21)

where a prime denotes differentiation with respect to ξ2.
The square matrix T  appears in the present study as a
result of the inclusion of the effects of N22 and N12 in
the in-plane stability equations.  When these terms are
neglected, this matrix is shown to be the identity matrix
in reference [2].  The use of the modified stability
equations given in Eqs. (11a) and (11b) is also required
for T to be the identity matrix.  The presence of off-
diagonal terms in T  is a fundamental difference
between the present theory and that presented in
reference [2].

The elements of z are now assumed to be given by

z c
i

bj j= 





exp
  β ξ2 (22)

where β is a characteristic root of the system of
differential equations.  The number of values of β is
equal to the order of the differential equation system.
Substituting Eq. (22) into Eq. (21) results in the
following equation

(R - βI) c = 0, where R T P1= −b (23)

where I is the identity matrix.  The vector c consists of
the cj of Eq. (22).  The eigenvalues of the matrix R are
the characteristic roots of the differential equation.
This matrix is not symmetric; however, it can be made
real by multiplication or division of appropriate rows
and columns by the imaginary number, i.  The elements
of the matrices T and P are given in reference [16].  For
each eigenvalue of R, there exists an eigenvector, c.
The upper half of each eigenvector, denoted a, is
associated with displacements, and the lower half,
denoted b, is associated with forces.

The next step in the derivation is to determine the
amplitudes of the displacements and forces at the two

edges of the plate.  Quantities evaluated at ξ2 2
= − b

are identified with a superscript 1 and quantities
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evaluated at ξ2 2
= + b

 are identified with a superscript

2 as follows:

d a r
i

j jk k
k

k

N1

1 2
= −



∑

=
exp

 β
(24a)
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i

j jk k
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1 2
= 
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=
exp
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(24b)

f b r
i
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(24c)

f b r
i

j jk k
k

k

N2

1 2
= 



∑

=
exp

 β
(24d)

where the rk are constants determined from the edge
values and N is the order of the system of differential
equations.  Equations (24a)-(24d) may be written in
matrix form as

d
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
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Eliminating r  from Eqs. (25) yields
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f
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d
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
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


=



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
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
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(26)

where K  is the stiffness matrix given by

K  = F E-1 (27)

For CPT, K  is real and symmetric.  For SDPT, K  is real
and symmetric for orthotropic plates without in-plane
shear loading, and it is Hermitian otherwise.  Reference
[2] presents a discussion of techniques used to ensure
that accurate numerical results for K  are obtained from
Eq. (27).  The stiffness matrix K  is a transcendental
function of the load factor and half wavelength of the
buckling modes of the structure.  Therefore, the
eigenvalue problem for determining bifurcation
buckling load factors is transcendental.  The iterative
analysis procedure used in VICONOPT to solve this
eigenvalue problem is based upon the Wittrick-
Williams eigenvalue algorithm described in [18].  This
algorithm will not be discussed in the present paper.

    Numerical Results   
Numerical results are presented in this section that

were obtained using the new curved-plate analysis
derived herein that has been implemented into the
VICONOPT code.  Results for several known example
problems are presented to verify the results obtained
with this new capability.  Comparisons of analyses that
use both physical and tensorial strain measures are
made for selected examples, and, where appropriate,

results based upon CPT and SDPT are compared.  The
positive sense of the applied loadings for all of the
following examples is given in Figure 6.

    Convergence of the Segmented-Plate Approach
The convergence of bifurcation buckling results

obtained using the segmented-plate analysis in
VICONOPT is examined for the long, compression-
loaded aluminum cylinder illustrated in Figure 7.  The
values of the material properties used for this example
are E = 10.0 x 106 psi and ν12 = 0.33.  The wall
thickness, t, is 0.1 in., and the radius, R2 is 60 in.  As
shown in Ref. [19], the critical value for the applied
stress resultant, N

cr11( ) , for the axisymmetric buckling

of a long isotropic cylindrical shell is

N
Et

R
lb in

cr11

2

2
23 1

1019 354( ) =
−( )

=
ν

.  / . (28)

and the corresponding critical half wavelength, λcr, is

λ π
ν

cr
R t

R t in=
−( ) = = . .  .2
2 2

24 2
12 1

1 74 4 255 (29)

Results that illustrate the convergence of the
VICONOPT segmented-plate results for N

cr11( )  as a

function of the number of flat-plate elements used to
approximate the cylinder are shown in Figure 8.  In this
figure, the results of the segmented-plate analysis are
shown as the solid curve.  The theoretical value
obtained from Ref. [19] is shown as the dashed
horizontal line.  The value obtained by using the present
curved-plate analysis is shown as the open symbol.  All
results in this figure were calculated for the value of λcr

given in Eq. (29).  The VICONOPT results presented in
this figure were obtained using CPT with tensorial
strain measures.  As shown in Figure 8, the segmented-
plate results converge to the theoretical value of
1019.354 lb/in. when 120 flat-plate elements are used.
Therefore, to ensure that converged results are obtained
when the segmented-plate approach is used to analyze
the remaining example problems, sixty elements will be
used when analyzing curved plates with an included
angle of 180 degrees or less, and 120 elements will be
used when analyzing full cylinders.

    Buckling of an Unsymmetrically Laminated Curved
    Plate

This example problem includes the effect of
bending-stretching coupling and shear-extension
coupling on the buckling of an unsymmetrically
laminated curved plate with simply supported
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longitudinal edges (i.e., u1 = w = m22 =0).  The pre-
buckling deformations associated with bending-
stretching coupling are neglected in the analysis.  The
geometry of the curved plate is shown in Figure 9.  To
allow for direct comparison of results with those
presented in [6], SI units are used.  As shown in the
figure, the laminate that is being studied consists of a
0.508-cm.-thick layer of 2024 aluminum that is
reinforced on the inner surface with pairs of ±45o

boron/epoxy plies.  The material properties for a
boron/epoxy lamina and 2024 aluminum are given in
Table 1.  For this example, the number of pairs of ±45o

boron/epoxy plies is increased from one to seven.  Both
physical and tensorial strains are used with the new
curved-plate analysis, while only physical strains are
used with the segmented-plate analysis.  The analysis of
[6] uses physical strains.  All analyses use CPT.  Eight
curved-plate elements are used for the curve-plate
analyses, and 60 flat-plate elements are used for the
segmented-plate analysis.  The critical value of the
applied stress resultants N11 and N12 at buckling are
plotted as a function of the number of boron/epoxy
plies used in the laminate in Figure 10 and Figure 11,
respectively.  The agreement between all the analyses is
very good.  As shown in the figures, there is no
appreciable difference in the results obtained using
physical and tensorial strains.

    Design Optimization of a Cylindrical Shell Subject to
    Uniaxial Compression    

The final example utilizes the new curved-plate
analysis with the design optimization capability of
VICONOPT to perform a structural optimization of two
different cylindrical shell concepts subject to uniform
axial compression (N11 loading).  The two concepts are
solid-wall construction and honeycomb-sandwich-wall
construction.  The geometry of this example problem is
shown in Figure 12.  As shown in the figure, the
facesheets of the honeycomb-sandwich-wall concept
are aluminum, and the core is KorexTM aramid paper
honeycomb core [20].  The solid-wall concept is
aluminum.  The material properties used for the
facesheets and core are presented in Table 2.  Tensorial
strains are used for the analysis.

The design variables for the structural optimization
are the thicknesses of the facesheets and the core for the
sandwich concept and the wall thickness for the solid-
wall construction.  There is no minimum gage
restriction on these design variables.  The nominal
values for these variables are 0.1 in., 0.5 in., and 0.1 in.,
respectively.  The design constraints are that the strain
in the facesheets or the solid wall cannot exceed 0.005
in/in and that the stress in the core cannot exceed 115
psi in the ξ1 direction and 55 psi in the ξ2 direction.

The results of this study, including the mass of the
optimized cylinder and the final values of the design
variables are given in Table 3 for the honeycomb-
sandwich-wall concept and in Table 4 for the solid-wall
concept.  Results obtained using both CPT and SDPT
with tensorial strains are given in these tables.  The
optimized mass values are also plotted as a function of
the applied loading in Figure 13.  As seen in the tables
and the figure, the values of the optimized mass
obtained using CPT are slightly less than those for
SDPT for the honeycomb-sandwich-wall cylinder as the
applied loading is increased.  However, the values of
the core thickness obtained using CPT become
significantly less than those for SDPT as the loading is
increased.  This trend is expected because CPT results
in an overly stiff approximation since transverse-shear
flexibility is neglected.  This overly stiff approximation
results in higher buckling loads for a given core
thickness.  Therefore, the core thickness and the
optimum mass obtained using CPT is less than that
obtained using SDPT.  The optimized mass values for
the solid-wall construction are much greater than those
for the honeycomb sandwich construction.  The results
for CPT and SDPT are nearly identical for the solid-
wall construction with R2/t = 600, as expected.

    Concluding Remarks   
The VICONOPT computer code is an exact

analysis and optimum design program that includes the
buckling and vibration analyses of prismatic assemblies
of flat, in-plane-loaded anisotropic plates.  In the
present paper, the capability to analyze structures by
using curved-plate elements has been described, and
this capability has been added to the VICONOPT code.
Non-linear curved-plate equilibrium equations have
been formulated, and linearized stability equations were
derived following the application of several simplifying
assumptions.  Modifications to these equations were
then made to allow the reference surface of the plate to
be located at a distance zc from the centroidal surface.

The analysis described in the present paper
improves upon the analysis existing previously in the
VICONOPT code which required that curved-plate
geometries be subdivided into several flat-plate
elements that are joined along their longitudinal edges
to approximate the curved-plate geometry.  The new
analysis formulation includes either classical plate
theory (CPT) and first-order shear-deformation plate
theory (SDPT), and anisotropic laminates with fully
populated A, B , and D stiffness matrices can be
analyzed.

The option to use plate elements (flat or curved)
that are based upon nonlinear strain-displacement
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relations that contain terms from either physical or
tensorial strain measures has also been added to the
VICONOPT code.  The option to include the effect of
terms associated with in-plane transverse and in-plane
shear loading in the in-plane stability equations has
been added as well.

Results from the present curved-plate analysis
capability compare very well with a closed-form
solution and the existing segmented-plate analysis for
the linear bifurcation buckling of a long isotropic
cylinder subjected to uniaxial compression.  Results
from the present analysis also compare well with results
for unsymmetrically laminated plates that include the
effect of extension-bending and shear-extension
coupling.  No appreciable effects of using tensorial
versus physical strains were noted in these examples.

Finally, the present curved-plate analysis was used
to conduct a design-optimization study of two
cylindrical shells subject to uniform axial compression.
One shell was constructed with a honeycomb-
sandwich-wall, and the other was a solid-wall
construction.  The values of mass for the optimized
solid-wall design were much higher than those for the
honeycomb-sandwich-wall construction.  There was no
difference between results using CPT and SDPT for the
solid-wall cylinder.  However, the values of core
thickness and mass for the optimized honeycomb-
sandwich-wall cylinder using CPT were less than those
for SDPT as the applied loading was increased.  This
result occurred because CPT overestimates the wall
stiffness by neglecting transverse-shear flexibility
which results in higher buckling loads and a lower
optimum mass.
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Table 1. Material properties for boron/epoxy plies and 2024 aluminum (SI units).

Material E
11
x10

-10

,

N/m2

E
22
x10

-10

,

N/m2

G
12
x10

-10

,

N/m2

ν
12 ρ, kg/m

3

Boron/epoxy 20.69 1.86 0.48 0.21 2006.8
Aluminum 2024 7.38 7.38 2.76 0.33 2768.0

Table 2. Material properties for aluminum and KorexTM honeycomb core (English Engineering units).

Material
E

11
x10

-6
,

lb/in2

E
22

x10
-6
,

lb/in2

G
12

x10
-6
,

lb/in2

G
13

x10
-6
,

lb/in2

G
23

x10
-6
,

lb/in2

ν
12 ρ, lb/in

3

Aluminum 10.0 10.0 3.846 3.846 3.846 0.3 0.1
Korex

TM
 H/C core 0.0001 0.0001 0.0001 0.012 0.004 0.3 0.00116

Table 3. Design-optimization results for a honeycomb sandwich cylinder subjected to N11 loading.

N11,
lb/in.

    Classical plate theory (tensorial strains)   
tfs, in. tcore, in. mass, lbm

    Transverse shear plate theory (tensorial strains)   
tfs, in. tcore, in. mass, lbm

1,000 0.010 0.310 213.53 0.010 0.313 213.85
2,000 0.020 0.334 397.00 0.020 0.338 397.43
3,000 0.030 0.324 576.88 0.030 0.331 577.64
4,000 0.040 0.280 753.17 0.040 0.349 760.47
5,000 0.050 0.270 933.02 0.050 0.367 943.44

10,000 0.100 0.250 1,835.8 0.100 0.606 1,873.2
15,000 0.150 0.194 2,734.7 0.150 0.909 2,809.7
20,000 0.200 0.135 3,633.3 0.200 1.212 3,746.3

Table 4. Design-optimization results for a solid-wall cylinder subjected to N11 loading.

N11,
lb/in.

    Classical plate theory (tensorial strains)   
twall, in. mass, lbm

    Transverse shear plate theory (tensorial strains)   
twall, in. mass, lbm

1,000 0.102 924.68 0.102 924.69
2,000 0.143 1,296.8 0.143 1,296.8
3,000 0.179 1,622.0 0.179 1,622.0
4,000 0.207 1,873.8 0.207 1,873.9
5,000 0.230 2,082.1 0.230 2,082.2

10,000 0.324 2,931.8 0.324 2,931.9
15,000 0.409 3,697.5 0.409 3,697.7
20,000 0.474 4,291.3 0.474 4,291.6
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Figure 1. Typical longitudinally stiffened plate 
structures.

Figure 2. Segmented representation of curved-plate 
geometry currently used by VICONOPT.
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Figure 3. Curved-plate geometry and sign convention 
for buckling displacements, rotations, 
moments, and forces.
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Figure 4. Sign convention for applied in-plane loads and 
relation of reference surface to centroidal 
surface.
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Figure 5.  Curved-laminate geometry.

Figure 6. Positive applied in-plane loads on a long 
curved plate.
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Figure 8. Convergence of VICONOPT segmented-
plate results as a function of the number of 
elements used in the approximation.
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Figure 9. Unsymmetrically laminated curved plate with 
simply supported edges subjected to applied in-
plane loads. 
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Figure 7. Long isotropic (aluminum) cylinder 
subjected to uniaxial compression.
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Figure 10. Critical value of N11 for buckling of an 
unsymmetrically laminated curved plate 
with simply supported longitudinal edges.
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Figure 11. Critical value of N12 for buckling of an 
unsymmetrically laminated curved plate 
with simply supported longitudinal edges.
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Figure 12. Cylindrical shell subjected to uniform axial compression (N11 loading).
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