DEVELOPMENT OF CURVED-PLATE ELEMENTS FOR THE EXACT BUCKLING ANALYSIS OF
COMPOSITE PLATE ASSEMBLIES INCLUDING TRANSVERSE SHEAR EFFECTS

David M. McGowan Melvin S. Anderson
NASA Langley Research Center and Eagle Aeronautics, Inc.
Hampton, VA 23681-0001 Newport News, VA 23606
Abstract

The analytical formulation of curved-plate non-linear equilibrium equations that include transverse-shear-
deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and
tensorial strain measures is used. Using several simplifying assumptions, linearized, stability equations are derived
that describe the response of the plate just after bifurcation buckling occurs. These equations are then modified to
allow the plate reference surface to be located a distanfrerz the centroidal surface which is convenient for
modeling stiffened-plate assemblies. The implementation of the new theory into the VICONOPT buckling and
vibration analysis and optimum design program code is described. Either classical plate theory (CPT) or first-order
shear-deformation plate theory (SDPT) may be selected in VICONOPT. Comparisons of numerical results for
several example problems with different loading states are made. Results from the new curved-plate analysis
compare well with closed-form solution results and with results from known example problems in the literature.
Finally, a design-optimization study of two different cylindrical shells subject to uniform axial compression is
presented.
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often exploit the increased structural efficiency that can
be obtained by the use of advanced composite
materials. Therefore, any analysis tool used to design
these structures must include the effects of anisotropy
and through-the-thickness or transverse-shear
deformation. The transverse-shear deformation

distance from the plate centroidal surface to thecapability is especially important when the plate

plate reference surface

distance from laminate reference surface to the of compliant lamina.

kth layer in the laminate

Lamé parameters

angle included by a curved plate
vector containing strairg,, €,,, andy;,
in-plane direct strains

in-plane shear strains

transverse shear strains

rotations

rotation about the normal to the plate middle
surface

vector containing curvatures,, K,,, and,
middle surface changes in curvature

middle surface twisting curvature

half wavelength of buckling mode

Poisson’s ratio

angular orientation of ply k in a laminate with
respect to the laminate coordinate system
density

vector containing stresses,;, 0,,, andt;,
in-plane direct stresses

in-plane shear stress

&., &, &5 coordinate measures in the 1, 2, and 3-

directions, respectively

Subscripts and Superscripts

cr
k
n
1,23

critical value for buckling

kth layer in a laminated composite plate
normal to middle surface

1, 2, and 3-directions, respectively
value at centroidal surface

Introduction

elements are thick compared to their width or are made
Additionally, to satisfy the
current demands more cost-effective  and
structurally efficient aerospace vehicles, these
structures are frequently optimized to obtain minimum-
mass designs that satisfy a wide range of constraints.
Two particularly important phenomena that must be
accounted for when performing a design optimization
of a stiffened-plate structure are buckling and vibration.
Constraints on buckling loads, vibration frequencies, or
a combination of both usually appear as design criteria
in the design-optimization process. Therefore, an
analytical tool that is economical and predicts
accurately the structural response of stiffened-plate
structures is highly desirable. One such analytical tool
is the VICONOPT computer codé].

The VICONOPT computer code is an analysis and
design-optimization code for the buckling and vibration
analyses of prismatic assemblies of flat- or curved-plate
elements subjected to in-plane-loads. The code
includes the capability to model anisotropic stiffened-
plate structures that have fully populatedB andD
stiffness matrices. The user can select either classical
plate theory (CPT) or first-order transverse-shear-
deformation plate theory (SDPT3][ The SDPT used
in VICONOPT and in the present study uses the usual
first-order assumption that straight material lines that
are originally normal to the centroidal surface of a plate
remain straight and inextensional during deformation of
the plate, but not necessarily normal to the centroidal
surface. The formulation used in VICONOPT to model
plate elements is referred to herein as an exact finite-
strip method (FSM) 3] because it uses the exact
solution to the differential equations that describe the
behavior of a plate element to formulate the
corresponding stiffness matrices. Examples of other
exact FSM analyses of curved plates are given in Refs.
[4, 5 and6]. Other FSM analyses that formulate the

for

Longitudinally stiffened plate structures occur stiffness matrices from a variational approach are

frequently in aerospace vehicle structures.

Thusteferred to as approximate FSM's.

Examples of

analysis and optimization capabilities that can be usedpproximate FSM analyses of curved plates are given in
economically for their design are of great importanceRefs. [7 and 8].

One approach to modeling these structures is to

As the use of advanced composite materials has

represent the stiffened panel mathematically by longincreased in the design of aerospace vehicles, stiffened-
thin, flat or curved-plate elements that are rigidly plate structures with one or more curved-plate elements

connected along their longitudinal edges as shown ihave become more common.

Currently, the

Figure 1. Furthermore, the designs for these structuredlCONOPT code approximates the geometry of a
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curved plate by subdividing or discretizing it into arespectto a reference surface which may be offset from
series of flat-plate elements that are joined to form th¢he centroidal surface of the plate. These modified
complete curved plate as shownHigure 2. Thus, the stability equations are needed to simplify the numerical
analyst must ensure that an adequate number of flgprocedure used to implement the present analysis into
plate elements is used in the analysis. This procedure ke VICONOPT code.
analogous to the discretization approach used in finite
element analysis, and it is referred to herein as th&eometry, Loadings, and Sign Conventions
segmented-plate analysis in the VICONOPT code. The geometry of the basic curved-plate element
Although this approach it not very difficult, it would be this is being studied in this section is given in Figure 3
more efficient to have an exact method for modelingrhis figure depicts the orthogonal curvilinear
curved-plate elements within VICONOPT. coordinate systenty, &,, &;) used in the analysis. The
The present paper describes an analysis method f§;- and§,-axes shown in the figure are along lines of
modeling curved-plate elements exactly that has beeprincipal curvature and they have radii of curvature R
implemented into the VICONOPT code. This newand R, respectively. Lines of principal curvature
analysis capability is referred to herein as the curvedeoordinates are sufficient for the analysis because twist
plate analysis in VICONOPT. Several featuresof the curved-plate reference surface is absent in
accompanying this analysis that have been added to tlpgismatic curved-plate assemblies. The reference
VICONOPT code are described in the present papesurface for a curved-plate element used herein is its
The current version of VICONOPT only analyzes flat- middle surface, and the corresponding first fundamental
plate elements based on a tensorial strain-displacemefarm is given by
relation. However, the choice of strain-displacement
relations can affect the magnitude and distribution of ds® :G%OE% +a%c£% (1)
prebuckling stresses in curved plates. Therefore, §nere o, and o, are the Lamé parameters. The
unified set of nonlinear strain-displacement relations;gordinatest, andé, are measured as arc lengths along
that contains terms from both physical and tensorigfhe &,- and &,-axes, respectively. The result of
strain measures is used to derive the curved-platgeasuring the coordinates in this manner,is a, = 1.
equilibrium equations.  This unified set of strains isthe sign conventions for buckling displacements,
used throughout the derivation of the equilibriummoments, rotations, and stress resultants are also shown
equations, and the selection of either physical of, Figure 3 The sign convention for the applied in-
tensorial strains is achieved by setting appropriaig|ane loadings and the relationship of the reference
coefficients in the equilibrium equations equal to one Okyrface of the plate to the centroidal surface of the plate
zero. Another addition to the code is the option toye shown inFigure 4 The centroidal surface is
include the effects of in-plane transverse loads that agjefined to be located at the centroid of the face of the
perpendicular to the longitudinal edges of a platgyanel that is normal to thg-axis. Observe that the
element and in-plane shear loads in the in-plangentroidal surface can be offset from the reference
equilibrium equations.  These effects are currentlygyrface by a distance.z This offset is useful in
ignored in the VICONOPT code (see [1]). All of these majntaining a smooth outer-surface mold line when
features have been implemented such that they affates of different thicknesses are linked together (as in
available for use in the analysis of both flat and curvedihe analysis of a stringer-stifiened panel). The loading

plate elements. The methodology used to accomplisRy,, shown in Figure 4s referred to in the present paper
this enhancement of the code and results obtained usiRg an in-plane transverse loading.

this new capability are presented.
Strain-Displacement Relations
The unified set of nonlinear strain-displacement

Analytical Formulation relations used for the present study for small strains are
The analytical formulation of the present theory isgiyen by
described. The geometry, loadings, and sign w 10 u D2
conventions used in the present study are described g;; = Upg+—+=[Wy ——15
first. The unified set of strain-displacement relations Ri 20" RiQ 5
used in the present theory is then presented. Next, the 0 W Dz (2)

derivation of a set of non-linear equilibrium equations +=(u21)2 "'gDJll*'—D
and linearized stability equations is described. The ' 207 Rig
stability equations are then modified such that they
describe the response of the curved-plate segment with
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w 10 U, f rotations about the normal neglected to simplify the
€2 =Uppt ——+ o Wo — == analysis.
R, 20 R2 D0 (2b) Y
E > ED W f Derivation of.StabiIity Eg. ugtions -
+=(U12) S22t o0 The nonlinear equilibrium equations for the curved
2 2 R0

plate illustrated inFigure 3 are derived using the
_ _ P principle of virtual work 12]. The present derivation
2810 = =Uqpt+tUst W — W . . .
12 = V12 12t Ut W 2m W, 2 uses the principle of virtual work in the manner of

Sanders [13] that is written in the following form

—W,2ﬁ+&—§[u1’2u2,2+ UpqU1g . .
Ri RiR; 118817+ NoDE o+ 2N 19€ 15 O
+UL2£ + Uzlﬂg+ ﬂ[ulzull+ UziUz2 o afr{eagfnlla( 11’: Mafe 22+ 2M 13k agfacky

R, | 21R H MM Y13+ DY 23 H
+UL2ﬂ+U2,1£E g N120Ug + N DU+ Q PW= M 190 %Ez @

Ry R20O cTM1200; 0
P _ %le5“1+ N 20U, + Q 8w~ '\/|12<5(P1%|‘E o

13=Y13=W1 Ry ] (2d) Y 5M 5050, Eot
The terms i}, and My, are the effective membrane-

2893=Y23=W, z—ﬁ—(pz (2e) shear and bending stress measures, respectively,

R2 defined by Sanders iflB]. The termsg; and g, are

where the following notation for partial derivatives is the effective transverse-shear stress measures defined
ou; _ S by Cohen in 14]. The uppercase terms in Eq. @

! In order to derive a set of non-linear equilibrium

(2a)-(2e) are displacements of the centroidal surface - ;
the curved-plate element. The constBy€, E, F, and %Iquatlons that adequately models the behawc_)r of an
assembly of curved or flat-plate elements, the issue of

H are set equal to one afiis set equal to zero in Egs. continuity of rotations at a plate junction must be

(2a)-(2c) to obtain tensorial strain measures. Th : o
constants, E, andG are set equal to one aBgF, and xamined. When t.wo _platgs are joined together such
that one cross-section is oriented at an arbitrary angle,

H are set equal to zero to obtain physical stramO‘, to the other, rotations about the normals to the

measures. Note that the linear portions of the teNsoNRentroidal surfaces of the two plates must be included

and physwal_ strain measures are |dent|cal.. Th?o satisfy continuity of rotations. However, this
tensorial strain measures are those of Novozhi8jv [ rotation, @, has been neglected in the kinematic

The physical strains used in the present thesis a.rgquations used in the present paper. To account for this

derived in a manner similar 1o that presentgd by Stem_'@ffect, a procedure to maintain continuity of rotations
[10] and they were communicated to the first author iNhat was developed by Cohen itS[ is used in the
terms of lines of curvature coordinates by Dr. Michaelpresent study and in VICONOPT. This procedure

P. Nemeth introduces the shear strailyy;, as a fundamental

The defmmons. for the changes in curvature of thedisplacement variable instead of the rotatign,by
centroidal surface in terms of surface rotations used for

both theories are replacingg, with the expressiorw,; —% —Yy13 inthe
1
K11="0y (38)  poundary integral oveg, in Eqg. (4). Although a
Koo = —@29 (3b)  detailed discussion of this topic is given in reference
Kqp = _((Plz + (PZJ) (3c)  [16], a brief discussion of the justification for using this

approach is presented subsequently. As shown in
These changes in curvatures are equivalent to thogeference [16] the equations for continuity of rotations
given by Sanders in1[] with the terms involving at a plate junction will be satisfied if the transverse
shear strainy,; equals zero for any non-zero value of
! Structures Division, Structural Mechanics Branch, the anglea. Therefore, if y; is a fundamental
NASA Langley Research Center, Hampton, Virginia, displacement variable, it may easily be set equal to zero
23681-0001
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by simply striking out the appropriate rows andand two sets of boundary conditions given in reference
columns in the stiffness matrix of the plate. The[16]. These assumptions are:
equations of continuity of rotations at a plate junction
presented in referencéf] also indicate that fax = 0,
the values of,; in each plate are equal.

To derive a set of nonlinear equilibrium equations,
the variations of Eqgs. (2) and (3) are substituted into Eq.  The form of the stability equations used herein is a
(4) and the resulting equation is integrated by parts tform that describes the response of the curved plate
yield an integral equation that consists of an areavith respect to a reference surface of the plate that is
integral and two line integrals. This integral equation idocated a distance. from the centroidal surface shown
given in reference [16]. Recall that, per Cohen'sin Figure 4. To obtain this form of the stability
procedure, ¢, is replace with the expression equations, the following information is used:

1) The relationships of the displacements at the
centroidal surfaceuy? and (3, to the displacements at
(4). For arbitrary displacements, w,, w, @, and @,  the reference surface, and y are:
the coefficients of the displacements in the area integral o _
are the five equilibrium equations. The coefficients of Up = Uy = 2@ (7a)
the displacement variables in the line integrals are the U2 = Up = Zc®@ (7b)

na_tural or force_boundary conditions for the edges 2) The relationships of the moments at the centroidal
&,=constant and,=constant.

0] [0} .
A set of linear perturbation equilibrium equations SU/faC€: Mi1, M2z, and nf>, to the displacements at
that govern the stability of the plate, referred to hereirf€ reference surfacen;;, mzz, and m are:

1) Prebuckling deformations, moments and
transverse shear stress are negligible
2) The in-plane prebuckling stress state is uniform

W,l—;—ll—ym in the boundary integral ovés in Eq.

as the ;tablllty or Ilngar blfurcat!on buckling equations, m®; = myq— 2. g (8a)
is obtained by taking the difference between the M%s = Mo — (8b)
equilibrium equations evaluated for a stable equilibrium 22 T2 % M2

state just prior to bifurcation buckling and an adjacent M2 = M2~ Z: M2 (8¢c)

(perturbed) equilibrium state (not necessarily stable) 3) The following quantities do not vary through the
just after bifurcation buckling has occurred.  Thehickness (witrts):

prebuckling state is represented herein by: Niz, Nog N Nqp Nop N1a Q1 G 2 and v

My =-Niy Np=-Np3 N1p=-Nyp 4) The applied in-plane stress resultants,, N,
M1 =-Mjy Mo=-Mog M1=-M 1p (5) and N, act at the centroidal surface.
“Qu §=-Q, Uy Uy W Substitution of Egs. (7) and (8) into the original
b2 2 Y F2 linear stability equations yields the following modified
where the minus signs in the loading terms reflect thdinear stability equations:
sign convention used in which the applied loads are g Ny O Un — n
+ oot oL - 11 N Zh
opposite in direction to the loads that develop afterMiii1tNiz2 R, R %N’l R E
1 1 1
buckling. The adjacent equilibrium state just after

bifurcation buckling has occurred is represented herein Nj, 0 - u, - Zc((’zD Ow O
-1z -CN +Ujq— 9a
by: Ry H"27T R, H MR T MTRMH ©
[]11 =M1~ Nay r122= oz Nap +GNyo[Up— chpz]’ll‘t”\hz[ U Zc(P]]Jz =
M2 =Npp=Nip M= My Mgy
My = Myp— Moy Mip= My Mgp (6) n121+ﬁ222+&—MD 2_U2—2c<PzD
G =q-Qu U=0U- Q ut+ Uy ' Rz Ry a Ry, O
up, +U,, w+W Nqo O Up —
‘R—lz E’V,l‘—l chplg‘ BN13(uz - 29)
where the lower-case variables are perturbation "2 (9b)

variables. Taking the difference between the two Ow,, O
equilibrium states represented by Eqgs. é)d (6) +9N12HR1 +[U1_ZC‘91],115
linearizing the resulting equations with respect to the - .
perturbation variables, and applying several simplifying_ HN oL +[u2 _Zcq’Z]le: 0
assumptions yields the set of five stability equations ERZ
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stiffness matrix of a finite-strip element must relate the

U —zc(pllj forces along the longitudinal edges of the plate in the
Ou1+ 022~ ___Nlle"’l original coordinate directions to the corresponding
'1 displacements along those edges. Note that the term
N zC(pZD my,, which appears in the Kirchhoff shear term of CPT
12%"' 2" 1 also appears in the expression fpr for SDPT when
' (90) Y15 IS used as a fundamental displacement quantity.
CN1 +[u chpl] Modified expressions for the last two stability
Rl R) ! 1H equations are obtained by substituting expressions for

§N12[U2— Zc(Pz]l ﬂle[Ul‘ Zc(Pl] , the quaﬁtities(nll-ﬁ Nip 2) and (n12’1+ Noo 2) that
+ =+ ==0 are obtained by using Eq9a) and (10a), and Egs. (9b)

Ry Ry and (10b)in the appropriate places in Egs. (Sfd
(9e), respectively. The definitions for the effective
Myt Myg2- ZC(”lll+ ”12)_ a0 (9d)  forces given in Egs (10a)-(10c) are needed since the
Mypq+ Moy o- zc(n121+ nzz)‘ q=0 (9e) terms n, and p, that appear in the quantities in

] ) ) . parentheses above are the perturbation values, not the
As will be discussed subsequently, a sinusoidagective forces. Substitution of the expressions for the
variation of the displacements and forces in &e .0 quantities in parentheses above into Eqs. (o)

direction will be assumed to simplify the analysis by ge) respectively, yields the final form of the last two
reducing the linear stability equations to a system o tability equations

ordinary differential equations. Therefore, the
boundary conditions for an eddg = constant are
ignored. The remaining natural boundary conditions
for an edg€, = constant are

Loy
my11+ Myp2- qgrt ch_
1 2 .

Ny O up—zeg Npp O up —zepp U
Rq HN e Ry H Ry HN"Z Ro E

Ny, = ”12‘_EN22[ ug— Zc‘PJ],z

0 0
w O ‘QNllgRﬂl Tl1T 2P - ENpo( 1y - ?c<PJ)Y22 (11a)
+§N12§U2‘ Zc(Pz],z +R_2 (10a) 1
‘fGlenN’2 +[uz = ze92] 1 W2 — 202) )
w O =M2HR, 11 22
‘HN12§U1 - Zc(pl]’l *RET 0
1 Ow,» 0
_ﬂlegR—l +2ug - Zc@l]’lz%: 0
. w L
= -FN - +—
Moz = Na2™ - 23@”2 Z:‘Pz],z m121+m222—Q2
+GNyp| U1~ Z0y (10b) NopO Uz~ 2c9p Zc(Pz
o e
~ANg| U2~ ZcP2f 1 = Nio O
R122 BN _up- Zc 1@_ BN11(U2 Zc‘Pz) "
Uy = Ze@y|U (11b)
d2 =0z~ N125W 1~ %IH —ENZZBR;ZZ +[uz - thpz],zzg
(10c)
a - 0 Clw,
‘szg"vz - [qu—zc(%lgf [mip-2zenig +9N125R_11 +up = ze0] H{w - ZC‘Pl],zz)
, :
ZHN _ nEg
M1z = ZcNp =0 (10d) HNlZE@ “4u Zc(pz]’lz%_ °
Moo —ZNop = 0 (106)

where the terms with a caret (%) are forces per unif hese modified equations are used to simplify the
length at an edgé,=constant that are aligned with the numerical procedure used to implement the present
original (undeformed) coordinates. These forces hav@nalysis into the VICONOPT code. The stability
been introduced herein because of the fact that th@dquations in the form given in Eq®a)-(9c) and Egs.
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(11a)-(11b) are those implemented into the VICONOPTplate theory into VICONOPT follows very closely the

code. procedure described in [2]. Therefore, for convenience,
the following discussion is presented in a form similar
Constitutive Relations to that in [2].

The through-the-thickness geometry and the
geometry of an arbitrary lamina of a general, curvedSimplifications to the Theory
laminate is given in Figure.5The number of layers in The theory implemented into the VICONOPT code
the laminate is nand as shown in the figure, the arc-is for structures that are prismatic in the longitudinal
width of the laminate is b. THg.- and¢,-axes are the direction. Therefore, for the curved-plate elements that
principal material axes of the kth specially orthotropicare considered in the present paper, the radius of
lamina that makes an angl with the &;-axis in the curvature in the longitudinal direction,;,Rs infinite;
middle surface tangent plane at a given point of th
plate. = The laminatef ;-axis is aligned with the

longitudinal edges of the plate. The overall isothermal|though these terms are set equal to zero in the
constitutive relations for a thin, elastic laminatedcgjculation of the terms of the stiffness matrix, they

> . . L1
e., any terms involving the quantltyR— are zero.
1

composite shell are defined in reference [17] as have been retained for completeness of the theory
OINO A |BIerC presented herein. Another simplification to the theory
5\]%: B D%Z% (12)  involves limiting the capability to locate the reference

surface a distance from the centroidal surface. This
The stress and moment resultants acting on theapability has only been implemented for the case
laminate, \} and {M}, respectively, are defined as where the effects of Mland N,, loads in the in-plane
stability equations are neglected. The expressions for

Ny O (01,0 .
EN O % Qg Qg 13 the stiffness terms that result when,Mnd N,, are
22> kél ZI 0220083 (13 included in the in-plane  stability equations are
H\lle kﬂHHzH prohibitively long. Therefore, in the derivation of the
stiffness matrix that follows, only the following two
(M1, 0 2 0oq1,0 cases are included:

g_a g 0O i i in-
EMzzD: S [ D Es diy (14) 1) Ny and Ny, are included in the in-plane
H\/I E K=1 74 Hle stability equations and, s zero (i.e., reference surface

12

is coincident with the centroidal surface)
The extensional, coupling, and bending stiffnress 2) Ny and Nj, are neglected in the in-plane

matricesA, B, andD, respectively, are defined as stability equations and,zis non-zero (i.e., reference

n surface may be shifted from the centroidal surface)

(a8 D=3 T[a*

k=1 zg—

(18, 23) c&s (9

Derivation of the Curved-Plate Stiffness Matrix
The constitutive relations for transverse shear used Throughout this section, reference is made to force

in VICONOPT are those presented by Cohenli] [ quantities. Although these quantities are force per unit

The constitutive relations for transverse shear aréength,. they are, deS|gn§1 t?d forceg herein  for
written in inverted form as convenience. The first step in implementing the present

theory into VICONOPT is to derive a stiffness matrix
EV13E: Ckas klZD[qlE (16) that relates the force quantiies along the two
%/235 H<12 kzz%z[ longitudinal edges (referred to herein as simply forces),

b .
where K] is a symmetric 2-by-2 transverse shearEz=iE.t0 the displacements along those edges. The

compliance matrix whose terms are defined in [14]. desired force and displacement quantities are in the

direction of the original (undeformed) coordinates. The

Implementation into VICONOPT displacement and force variables are
The implementation of the present theory into the O up C O NypC
VICONOPT code is described in this section. Several Oy, C A, C
simplifications made to the present theory are described d=5 w E and  f= % g E (17)
first. Then the derivation of the curved-plate stiffness 0 C 0 2 C
matrix based upon the analysis of the present study is 0% ¢ 0M22
presented. The implementation of the present curved- H visE H mqoE
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where the shear straiy,;, has been introduced as a expression fork,, is re-written after substituting
fundamental displacement quantity instead of theexpressions obtained fag, andg, from Egs.(2d) and
rotation, ¢,. Note that the effective forces per unit (2e) and using the linear portion&f, that is,
length at the boundaries, defined by E(i€a)-(10c), 0 01 10 0
are used as forces since they are equal to forces in thek,, = -y, + E— +—H12 +20,00
direction of the original (undeformed) coordinates. g Ri R B

The curved-plate element equations may now be
reduced to ordinary differential equations &g by
assuming that the response of the plate in the
longitudinal &,-direction varies sinusoidally.  For Using the partially inverted constitutive relations and
isotropic or orthotropic plate assemblies without sheaFd. (19) the strain displacement equations, E@s),
loading, a sinusoidal response in thedirection is  (2b), (2e), (3b) and (3c), and the stability equations,
exact for simply supported end conditions. A series oEgs. (9a)-(9c) and Eqélla) and (11lbpre written in
sinusoidal modes is used with a Lagrangian multiplieterms of the elements afas
technigue to obtain results for other loadings and end T 2z’ =p 2 or 7 =Tlpz (21)
conditions [2]. Applying the assumption of a sinusoidal
variation in the&,-direction, the variables of Egs. (17)
may be written as

(20)

€12
+ == 4 VlZ

where a prime denotes differentiation with respeétto
The square matriX appears in the present study as a
- result of the inclusion of the effects of,Nand N, in
O m &[] C the in-plane stability equations. When these terms are
Z(&q, :expai , z= 18 . L : . !
(El EZ) A g(ﬁz) Ep‘ E (18) neglected, this matrix is shown to be the identity matrix

where A is the half-wavelength of the response in the " reference g]. The use of the modified stability

&,-direction. Since a sinusoidal variation in the equations given n Eqs. (11a)_ and (LEbjiso required
L . for T to be the identity matrix. The presence of off-
direction is assumed, the vectar will involve the

amolitudes of the disolacement and forces. Th diagonal terms inT is a fundamental difference
ampll dIsp . ' Detween the present theory and that presented in
imaginary number, i, has been used in EdS) to

. . reference [2].
account for the spatial phase shift that occurs between The elements af are now assumed to be given by

the displacement and force quantities when an in-plane

shear loading is prgsent and to res_ult in real_plate Z = G ex O B Ez% (22)
stiffnesses when using the exponential expression of E b
Eq. (18).

] o where B is a characteristic root of the system of
The next step in the derivation is to express alyitterential equations. The number of valuespofs

unknowns in terms of. A partially inverted form of o451 to the order of the differential equation system.
the constitutive relations is used to express the requ're§ubstituting Eq. (22)into Eq. (21) results in the
guantities as functions of the fundamental variables in following equation

and f, or terms that may be derived from the
fundamental variables. The partially inverted (R-Bl)c=0, where R=bTlp (23)

constitutive relations are given in reference [2]. .. wherel is the identity matrix. The vectarconsists of

. ; PO %he ¢ of Eq. (22) The eigenvalues of the matiikare
express the relationship betwegragd gz without any the characteristic roots of the differential equation.

&-derivatives so that a first-order system of differentialrhis matrix is not symmetric; however, it can be made
equations is maintained. This expression is real by multiplication or division of appropriate rows

0 0 [Ul‘ Zc(pl][j 0 and columps by the imagingry n.umber, i. The elements
flo + leHN,l—ig 0 of the matrice§” andP are given in referencd]. For
O Ry O each eigenvalue oR, there exists an eigenvectar,
O O i
D+N22(q’2_ h gy ]) +[m 1 Z ”1111D The upper hglf of each eigenvector, denoteds
Up = ' (19) associated with displacements, and the lower half,
1-Npzhgg denoted, is associated with forces.

The next step in the derivation is to determine the

where h; and hg are terms from the partially inverted : .
By e P y amplitudes of the displacements and forces at the two

constitutive relations given in referencgl.[ As with b
the stability equations, only the linear portion of theedges of the plate. Quantities evaluated at= ——
strain-displacement relations (Egs. (2c), (2b), (2e), (3b), 2

and (3c)) are considered in the present derivation. Th&™ identified with a superscript 1 and quantities
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results based upon CPT and SDPT are compared. The

b . . . .
=+ —
evaluated att, 2 are identified with a superscript positive sense of the applied loadings for all of the

2 as follows: following examples is given in Figure 6.
N .
d= 3 gk ex@ﬂg (24a)  Convergence of the Segmented-Plate Approach
k:ll ] 2 The convergence of bifurcation buckling results
dj2: 5 3ijeXp§ BkE (24b) obtained usjng thg segmented-plate anaIysi; in
k=1 2 VICONOPT is examined for the long, compression-
N . . . . X
1_ _ i BKE loaded aluminum cylinder illustrated Figure 7 The
fi= kélblkrk ex % 2 (24c) values of the material properties used for this example
5 N i By are E = 10.0 x 10psi andv,, = 0.33. The wall
fi© = |(Z_lbjk X eXPQTE (24d)  thickness, t, is 0.1 in., and the radius,i®R60 in. As

shown in Ref. 19, the critical value for the applied

where the r are constants determined from the edgestress resultan(,Nll) o for the axisymmetric buckling

values and N is the order of the system of differential;; 5 long isotropic cylindrical shell is
equations. Equations (24a)-(24djay be written in

matrix form as Et2

=10193541b/in.  (28)

1 1 (Nll)cr = R 53(1_\}2)
gzngr and gzngr (25) 2y
and the corresponding critical half wavelength, is
Eliminatingr from Egs. (25) yields W
1 1 Mg =T 4—2° _=174/R,t= 4255in. (29)
o e e T i)

Results that illustrate the convergence of the

whereK is the stiffness matrix given by VICONOPT segmented-plate results f{K ;) , as a

— -1
K=FE (27) " function of the number of flat-plate elements used to

For CPTK is real and symmetric. For SDPR,is real ~ approximate the cylinder are shown in Figurel® this

and symmetric for orthotropic plates without in-planefigure, the results of the segmented-plate analysis are
shear loading, and it is Hermitian otherwise. Referencéhown as the solid curve. The theoretical value
[2] presents a discussion of techniques used to ensupdtained from Ref. [19] is shown as the dashed
that accurate numerical results forare obtained from horizontal line. The value obtained by using the present
Eq. (27) The stiffness matriX is a transcendental curved-plate analysis is shown as the open symbol. All
function of the load factor and half wavelength of theresults in this figure were calculated for the valué of
buckling modes of the structure. Therefore, thediven in Eq. (29) The VICONOPT results presented in
eigenvalue problem for determining bifurcation this figure were obtained using CPT with tensorial
buckling load factors is transcendental. The iterativestrain measures. As shownfigure § the segmented-
analysis procedure used in VICONOPT to solve thiplate results converge to the theoretical value of
eigenvalue problem is based upon the Wittrick-1019.354 Ib/in. when 120 flat-plate elements are used.
Williams eigenvalue algorithm described ibg8[. This  Therefore, to ensure that converged results are obtained

algorithm will not be discussed in the present paper. When the segmented-plate approach is used to analyze
the remaining example problems, sixty elements will be

used when analyzing curved plates with an included
Numerical Results angle of 180 degrees or less, and 120 elements will be

Numerical results are presented in this section thatsed when analyzing full cylinders.
were obtained using the new curved-plate analysis
derived herein that has been implemented into th&uckling of an Unsymmetrically Laminated Curved
VICONOPT code. Results for several known example2late
problems are presented to verify the results obtained This example problem includes the effect of
with this new capability. Comparisons of analyses thabending-stretching coupling and shear-extension
use both physical and tensorial strain measures af®upling on the buckling of an unsymmetrically
made for selected examples, and, where appropriati@minated curved plate with simply supported
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longitudinal edges (i.e.,;& w = m,, =0). The pre- The results of this study, including the mass of the
buckling deformations associated with bending-optimized cylinder and the final values of the design
stretching coupling are neglected in the analysis. Theariables are given in Table 3 for the honeycomb-
geometry of the curved plate is shown in FigureT®  sandwich-wall concept and in Table 4 for the solid-wall
allow for direct comparison of results with those concept. Results obtained using both CPT and SDPT
presented in [6], Sl units are used. As shown in thaith tensorial strains are given in these tables. The
figure, the laminate that is being studied consists of aptimized mass values are also plotted as a function of
0.508-cm.-thick layer of 2024 aluminum that isthe applied loading iRigure 13 As seen in the tables
reinforced on the inner surface with pairs ©5° and the figure, the values of the optimized mass
boron/epoxy plies. The material properties for aobtained using CPT are slightly less than those for
boron/epoxy lamina and 2024 aluminum are given irSDPT for the honeycomb-sandwich-wall cylinder as the
Table 1. For this example, the number of paira4®° applied loading is increased. However, the values of
boron/epoxy plies is increased from one to seven. Botthe core thickness obtained using CPT become
physical and tensorial strains are used with the newignificantly less than those for SDPT as the loading is
curved-plate analysis, while only physical strains arencreased. This trend is expected because CPT results
used with the segmented-plate analysis. The analysis of an overly stiff approximation since transverse-shear
[6] uses physical strains. All analyses use CPT. EigHtexibility is neglected. This overly stiff approximation
curved-plate elements are used for the curve-plateesults in higher buckling loads for a given core
analyses, and 60 flat-plate elements are used for thhickness. Therefore, the core thickness and the
segmented-plate analysis. The critical value of theptimum mass obtained using CPT is less than that
applied stress resultants;;Nand N,, at buckling are obtained using SDPT. The optimized mass values for
plotted as a function of the number of boron/epoxythe solid-wall construction are much greater than those
plies used in the laminate in Figure &Ad Figure 11  for the honeycomb sandwich construction. The results
respectively. The agreement between all the analysesfier CPT and SDPT are nearly identical for the solid-
very good. As shown in the figures, there is nowall construction with Rt = 600, as expected.
appreciable difference in the results obtained using
physical and tensorial strains.

Concluding Remarks

Design Optimization of a Cylindrical Shell Subject to The VICONOPT computer code is an exact
Uniaxial Compression analysis and optimum design program that includes the

The final example utilizes the new curved-platebuckling and vibration analyses of prismatic assemblies
analysis with the design optimization capability of of flat, in-plane-loaded anisotropic plates. In the
VICONOPT to perform a structural optimization of two present paper, the capability to analyze structures by
different cylindrical shell concepts subject to uniformusing curved-plate elements has been described, and
axial compression (N loading). The two concepts are this capability has been added to the VICONOPT code.
solid-wall construction and honeycomb-sandwich-wallNon-linear curved-plate equilibrium equations have
construction. The geometry of this example problem ibeen formulated, and linearized stability equations were
shown in Figure 12 As shown in the figure, the derived following the application of several simplifying
facesheets of the honeycomb-sandwich-wall concepassumptions. Modifications to these equations were
are aluminum, and the core is Koféxaramid paper then made to allow the reference surface of the plate to
honeycomb core 200]. The solid-wall concept is be located at a distancgfrom the centroidal surface.
aluminum. The material properties used for the  The analysis described in the present paper
facesheets and core are presented in Table 2. Tensorialproves upon the analysis existing previously in the
strains are used for the analysis. VICONOPT code which required that curved-plate

The design variables for the structural optimizationgeometries be subdivided into several flat-plate
are the thicknesses of the facesheets and the core for thlements that are joined along their longitudinal edges
sandwich concept and the wall thickness for the solidio approximate the curved-plate geometry. The new
wall construction.  There is no minimum gageanalysis formulation includes either classical plate
restriction on these design variables. The nominatheory (CPT) and first-order shear-deformation plate
values for these variables are 0.1 in., 0.5 in., and 0.1 intheory (SDPT), and anisotropic laminates with fully
respectively. The design constraints are that the strajpopulated A, B, and D stiffness matrices can be
in the facesheets or the solid wall cannot exceed 0.00&nalyzed.
in/in and that the stress in the core cannot exceed 115 The option to use plate elements (flat or curved)
psi in theg; direction and 55 psi in thg direction. that are based upon nonlinear strain-displacement
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relations that contain terms from either physical or
tensorial strain measures has also been added to the
VICONOPT code. The option to include the effect of
terms associated with in-plane transverse and in-plane
shear loading in the in-plane stability equations ha®.
been added as well.

Results from the present curved-plate analysis
capability compare very well with a closed-form
solution and the existing segmented-plate analysis for
the linear bifurcation buckling of a long isotropic
cylinder subjected to uniaxial compression. Result
from the present analysis also compare well with results’
for unsymmetrically laminated plates that include the
effect of extension-bending and shear-extension
coupling. No appreciable effects of using tensorial7.
versus physical strains were noted in these examples.

Finally, the present curved-plate analysis was used
to conduct a design-optimization study of two
cylindrical shells subject to uniform axial compression.©

One shell was constructed with a honeycomb-
sandwich-wall, and the other was a solid-wall
construction. The values of mass for the optimize

solid-wall design were much higher than those for the
honeycomb-sandwich-wall construction. There was no
difference between results using CPT and SDPT for th
solid-wall cylinder. However, the values of core
thickness and mass for the optimized honeycomb-
sandwich-wall cylinder using CPT were less than those
for SDPT as the applied loading was increased. Thigq

result occurred because CPT overestimates the wall

stiffness by neglecting transverse-shear flexibility

which results in higher buckling loads and a lowerq2.

optimum mass.
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Table 1. Material properties for boron/epoxy plies and 2024 aluminum (Sl units).

Material E 10, E,X10, G_x10 Vi p, kg/m
N/m? N/m? N/m?
Boron/epoxy 20.69 1.86 0.48 0.21 2006.8
Aluminum 2024 7.38 7.38 2.76 0.33 2768.0

Table 2. Material properties for aluminum and KdteRoneycomb core (English Engineering units).
6 6 6 6 6 _ 3
E,x10, E,x10, G,x10, G, x10, G,x10, Vi, p,lbfin

Material Ib/in? Ib/in? Ib/in? Ib/in? Ib/in?
Aluminum 10.0 10.0 3.846 3.846 3.846 0.3 0.1
Korex " H/C core 0.0001 0.0001 0.0001 0.012 0.004 0.3 0.00116

Table 3. Design-optimization results for a honeycomb sandwich cylinder subjectgddading.

Ny, Classical plate theory (tensorial strains) Transverse shear plate theory (tensorial strains)

Ib/in. t, iN. toe IN. mass, Ih t iN. toe IN. mass, Ih

1,000 0.010 0.310 213.53 0.010 0.313 213.85

2,000 0.020 0.334 397.00 0.020 0.338 397.43

3,000 0.030 0.324 576.88 0.030 0.331 577.64

4,000 0.040 0.280 753.17 0.040 0.349 760.47

5,000 0.050 0.270 933.02 0.050 0.367 943.44
10,000 0.100 0.250 1,835.8 0.100 0.606 1,873.2
15,000 0.150 0.194 2,734.7 0.150 0.909 2,809.7
20,000 0.200 0.135 3,633.3 0.200 1.212 3,746.3

Table 4.  Design-optimization results for a solid-wall cylinder subjected tading.

N, Classical plate theory (tensorial strains) Transverse shear plate theory (tensorial strains)
lb/in. tyau iN. mass, | tyou iN. mass, |h
1,000 0.102 924.68 0.102 924.69
2,000 0.143 1,296.8 0.143 1,296.8
3,000 0.179 1,622.0 0.179 1,622.0
4,000 0.207 1,873.8 0.207 1,873.9
5,000 0.230 2,082.1 0.230 2,082.2

10,000 0.324 2,931.8 0.324 2,931.9

15,000 0.409 3,697.5 0.409 3,697.7

20,000 0.474 4,291.3 0.474 4,291.6
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Figure 3. Curved-plate geometry and sign convention

for buckling displacements, rotations, Figure 6. Positive applied in-plane loads on a long
moments, and forces. curved plate.
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Figure 9. Unsymmetrically laminated curved plate with
simply supported edges subjected to applied in-
plane loads.
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Figure 12. Cylindrical shell subjected to uniform axial compressianl@dding).
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Figure 13. Optimized cylinder mass as a function of the applied loading for a
cylindrical shell.
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