
Continued Development of the Discontinuous Galerkin Method

for Computational Aeroacoustic Applications

H. L. Atkins*
NASA Langley Research Center

Hampton, VA, 23681-0001

Abstract

The formulation and the implementation of
boundary conditions within the context of the
quadrature-free form of the discontinuous Galerkin
method are presented for several types of bound-
ary conditions for the Euler equations. An impor-
tant feature of the discontinuous Galerkin method
is that the interior point algorithm is well behaved
in the neighborhood of the boundary and requires
no modi�cations. This feature leads to a simple
and accurate treatment for wall boundary conditions
and simple in
ow and out
ow boundary conditions.
Curved walls are accurately treated with only minor
changes to the implementation described in earlier
work. The \perfectly matched layer" approach to
nonre
ecting boundary conditions is easily applied
to the discontinuous Galerkin. The compactness of
the discontinuous Galerkin method makes it better
suited for bu�er-zone-type methods than high-order
�nite-di�erence methods. Results are presented for
wall, characteristic in
ow and out
ow, and nonre-

ecting boundary conditions.

Introduction

Much of the recent work in computational aeroa-

coustics (CAA) has focused on improvements to tra-
ditional �nite-di�erence methods to increase the ac-
curacy and to implement specialized boundary con-
ditions. While this approach has promoted a rapid
growth of the �eld, these methods place constraints
on the mesh smoothness that make their application
to highly complex geometries problematic. Further-
more, the improved spatial operators are not appli-
cable in the neighborhood of some critical 
ow phe-
nomenon, such as shock waves, with out substantial
modi�cations. The goal of this work is to develop
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robust and e�cient methods that give accurate so-
lutions independent of grid smoothness.

The discontinuous Galerkin method is a highly
compact formulation that provides a method of ob-
taining the high accuracy required for CAA on non-
smooth unstructured grids. The ability to use an
unstructured grid greatly simpli�es the largest ob-
stacle in computing the 
ow around complex geome-
tries: the generation of the grid. In reference 1, the
discontinuous Galerkin method was formulated in
a quadrature-free form that reduced the computa-
tional e�ort and storage requirements. In that work,
the method was described in detail along with basic
benchmark cases that demonstrate the accuracy and
robustness of the method for the scalar advection
equation and for the linear Euler equations. That
work focused on the new implementation of the in-
terior point scheme and addressed only periodic do-
mains.

In this article, the formulation and implementa-
tion of several types of boundary conditions for the
linear Euler equations are described. Also discussed
are features of the discontinuous Galerkin method
that make the application of boundary conditions
relatively straightforward and robust. These ben-
e�cial features are all attributable to the inherent

compactness of the discontinuous Galerkin method.

Most methods used for CAA today fall in
the category of high-order �nite-di�erence meth-
ods such, as the widely used dispersion-relation-
preserving (DRP) scheme.2 E�orts to develop spe-
cialized boundary conditions for problems particu-
lar to aeroacoustics have focused on �nite-di�erence
methods, but much of the work is also applicable to
the discontinuous Galerkin method. In some cases,
such as the work on wall boundary conditions by
Tam and Dong,3 special boundary conditions are
needed to counter errors associated with the ap-
plication of �nite-di�erence methods near a bound-
ary: errors that do not occur in the discontinuous
Galerkin method.

The most problematic boundary in CAA is the
boundary that is produced when an in�nite or semi-
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in�nite domain is truncated to a �nite computa-
tional domain. In this case, precise 
ow conditions
are not known at the boundary of the computational
domain, and the boundary condition becomes more
of a goal than a precise mathematical statement. In
particular, the boundary condition seeks to make
the 
ow �eld behave as if the computational domain
were larger; waves are allowed to exit the computa-
tional domain with no nonphysical side a�ects. In
CAA, the boundary conditions appropriate for this
type of boundary are referred to as nonre
ecting

boundary conditions.

Boundary conditions used for steady and unsteady
aerodynamic calculations have relied primarily on
characteristic formulations, such as the simple rela-
tions proposed by Jameson et al.4 to ensure that the
correct information enters and leaves the domain;
however, these methods become less accurate as the
size of the computational domain is reduced. E�orts
to improve on this have taken many forms, which
range from e�orts to analytically solve a simpli�ed
equation in the in�nite domain outside the computa-
tional domain5; 6 to methods that solve specialized
equations at the boundary or in a small region near
the boundary.2; 7; 8; 9; 10; 11 The methods work well
when an acoustic wave exits the domain normal to
the boundary; however, in other cases these meth-
ods produce predictable re
ections that depend on
the angle of incidence in a manner that is fairly well
understood in most cases.

Two exceptions to this are the perfectly matched
layer (PML) method of Hu10 and the asymp-

totic method of Hagstrom8 and Goodrich and
Hagstrom.11 Hagstrom's approach is similar to that
of Engquist and Majda7 Giles,9 and many others,
except that the use of a Pad�e series approximation
leads to a convergent sequence of equations in which
the error associated with the wave incidence is re-
duced as more terms are retained. In the PML ap-
proach, a split and damped form of the governing
equations is solved in a �nite region near the bound-
ary. Under certain constraints, no re
ection of a
wave of any incidence occurs at the interface be-
tween the main computational domain and the re-
gion where the PML method is applied. Within the
PML region, waves are damped such that any re
ec-
tion of the wave o� the outer boundary of the PML
zone is insigni�cant. Because of the compact na-
ture of the discontinuous Galerkin method, the PML
method is more easily implemented for the discon-
tinuous Galerkin method than for �nite-di�erence
methods.

The �rst section of this article brie
y describes the
discontinuous Galerkin method and the quadrature-

free form of the implementation; the reader is re-
ferred to reference 1 for complete details. The second
section describes issues related to boundary condi-
tions and outlines the general approach to applying
boundary conditions. The remaining sections deal
with special issues of curved-wall and nonre
ecting
boundary conditions. Treatment of curved walls re-
quires a minor modi�cation to the basic formulation.
Two types of nonre
ecting boundary conditions are
presented: a simple characteristic approach and the
PML method.

Discontinuous Galerkin Method

The discontinuous Galerkin method is applicable
to systems of �rst-order equations of the form

@U

@t
+r � ~F (U ) = 0 (1)

de�ned on some domain �
 with a boundary @
,
where U = fu0; u1; : : :g and ~F = f~f0; ~f1; : : :g. The
domain is partitioned into a set of nonoverlapping
elements 
i that cover the domain �
 = [

8 i

i.

Within each element, the following set of equations
is solved:Z
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@Vi
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Ji d
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~Fi(V )Ji d
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i

bkJ
�1

i
~FR � Ji ~ds = 0 (2)

for k = 1; 2; : : : ; N , where fbk; k = 1; 2; : : : ; Ng is a
set of basis functions,

U � Vi =

NX
j=1

vi;jbj ; Ji =
@(x; y; z)

@(�; �; �)
;

and Ji = jJij. Equation set (2) is obtained by pro-
jecting equation (1) onto each member of the basis
set and then integrating by parts to obtain the weak
conservation form. In the present work, the basis set
is the set of polynomials that are de�ned local to the
element and are of degree � n. In two dimensions,
for example, the basis set is f1; �; �; �2; ��; �2; : : :g,
where (�; �) are the local coordinates. The solu-
tion U is approximated as an expansion in terms of
the basis functions; thus, both V and ~F are discon-
tinuous at the boundary between adjacent elements
(hence, the name discontinuous Galerkin). The dis-
continuity in V between adjacent elements is treated
with an approximate Riemann 
ux, which is denoted
~FR; Ji is the Jacobian of the transformation from
the global coordinates (x; y; z) to the element coor-

dinates (�; �; �) of element i. Research has shown12
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that the upwind bias provided by the Riemann 
ux
plays an important role in ensuring the stability of
the discontinuous Galerkin method.
In the usual implementation of the discontinu-

ous Galerkin method,? the integrals are evaluated
with quadrature formulas. This approach is prob-
lematic for even moderately high-order implementa-
tions in multidimensions and has limited most ef-
forts to n = 2 or 3. The di�culties arise in part
because the number of quadrature points in multidi-
mensional formulas of the required accuracy usually
exceeds N (the number of terms in the expansion) by
a considerable margin. In the quadrature-free form,
the integral evaluations are reduced to a summa-
tion over the coe�cients of the solution expansion,
which is an operation of order N . To implement the
quadrature-free approach, the 
ux ~F must also be
written as an expansion in terms of basis functions:

~F (U ) � ~G(Vi) =

NX
j=1

~gj(Vi)bj

(a similar expansion is made for the approximate

Riemann 
ux ~FR.) This procedure is trivially ac-
complished for linear equations, such as those of in-
terest here. Several approaches to treating nonlinear
equations are discussed and demonstrated in refer-
ence 1. With the additional assumption that Ji and
Ji are constant within each element, the integrals
can be evaluated exactly, and the equation set can
be rewritten in matrix form as

JiMi

@Vi

@t
� ~Ai � JiJ

�1

i
~Gi

+

miX
k=1

Bi;k

�
JiJ

�1

i
~GR

i;k

�
� ~si;k = 0 (3)

where mi is the number of sides around element i,
~si;k is the outward unit normal on side k, Vi =

[vi;0; vi;1; : : :]
T , ~Gi = [~gi;0; ~gi;1; : : :]

T , and ~GR

i;k
=

[~gR
i;k;0; ~g

R

i;k;1; : : :]
T . The mass matrixMi and the vec-

tor matrix ~Ai are NxN matrices given by

Mi = [mk;l]; ~Ai = [~ak;l]

mk;l =

Z

i

bkbl d
; ~ak;l =

Z

i

blrbk d


for 1 � k; l � N .
Derivation of the boundary integral terms is com-

plicated only by the fact that the solutions on ei-
ther side of the element boundary are represented
in terms of di�erent coordinate systems. This prob-
lem is resolved by expressing the solution on both

sides of the element boundary in terms of a common
edge-based coordinate system (a simple coordinate
transformation). This allows the boundary integral
to be expressed in terms of an edge matrixBi;k times
a vector that is composed of the coe�cients of the
approximate Riemann 
ux expressed in terms of the
edge-based coordinate system ~GR

i;k
(instead of the

local element coordinate system as in the case of
~Gi).

In addition to the requirement that Ji and Ji
be constants within the element, most elements are
constrained to shapes that map into one of a few
�xed simple computational elements (such as a unit
square or an equilateral triangle in two dimensions).

With this last constraint, the matrices Mi, ~Ai and
Bi;k are the same for all elements of a given type,

and the products M�1 ~A and M�1~Bk can be pre-
computed and stored at a considerable savings in
terms of both computer storage and computational
time. This constraint is only to facilitate an e�cient
implementation and can be relaxed at selected ele-
ments if the need arises (e.g., to treat curved walls).

A detailed derivation of the matrices M, ~A, and
Bk is given in reference 1. The special case of ele-
ments with curved sides is described in a later sec-
tion. Because equation (3) is of the same form for
all elements, the element index i will be dropped for
clarity.

Equation (3) is advanced in time by using
the three-stage Runge-Kutta method of Shu and
Osher.16 Analysis of the stability of this approach
can be found in reference 1.

General Features of Boundary Conditions

The �rst two terms of equation (3) depend only on
the solution within the element, and communication
between adjacent elements occurs only through the
Riemann 
ux ~GR. An important feature of the dis-
continuous Galerkin method is that the approximate
Riemann 
ux is the only mechanism through which
an element communicates with it surroundings, re-
gardless of whether the element boundary is in the
interior of the domain or coincides with the domain
boundary. A notable consequence is that the usual
interior algorithm is valid in elements adjacent to
the boundary. In contrast, the interior point oper-
ator of most high-order �nite-di�erence and �nite-
volume methods cannot be applied at points near
the boundary without some modi�cations. These
modi�cations usually result in reduced accuracy, and
careful attention is required to prevent the introduc-
tion of instabilities.17 Thus, by use of the discontin-
uous Galerkin method, a major source of error com-
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mon to many high-order �nite-di�erence and �nite-
volume methods is completely avoided.

Because each element communicates with its
neighbors only through the approximate Riemann

ux, most boundary conditions will be imposed via
the approximate Riemann 
ux. In this respect, the
imposition of boundary conditions for the discon-
tinuous Galerkin method is quite similar to that of
low-order �nite-volume methods. This similarity is
especially true for the quadrature-based discontinu-
ous Galerkin method, in which the approximate Rie-
mann 
ux is evaluated at discrete boundary points
and then numerically integrated. In the quadrature-
free form of the discontinuous Galerkin method, the
approximate Riemann 
ux is a polynomial function
of the edge coordinate and is never evaluated at spe-
ci�c points. Thus, boundary conditions are applied
to each component of the 
ux polynomial, rather
than to the 
ux at speci�c points.

Boundary conditions can be imposed either by
providing the exterior side of the Riemann 
ux with
a complete solution or by reformulating the bound-
ary 
ux subject to the speci�ed boundary conditions
such that only the interior data is needed. However,
either approach can be expressed exactly in terms of
the other when the equations are linear. The �rst
approach seems trivial to implement; however, this
approach has the drawback that in most cases the
complete solution is not known. Instead, the com-
plete exterior solution must be reconstructed from
the given boundary condition data and the interior
solution. The work involved in a carefully derived re-
construction procedure is usually equivalent to the
work required to evaluate a completely reformulated

ux, although the use (or misuse) of simple extrap-
olation formulas is common. In this work, the ap-
proximate Riemann 
ux on the boundary is replaced
by a reformulated boundary 
ux.

In the following discussion and examples, the lin-
ear Euler equations in two dimensions will be used:

U =

2
664

� � P

p

u

v

3
775 ; ~F = ~MU +

2
664

0
~V

{̂P

|̂P

3
775 (4)

where ~M � [Mx;My], ~V � [u; v], and {̂ and |̂ are the
Cartesian unit vectors [1; 0] and [0; 1], respectively.
The components of U are normalized perturbation
quantities from a free-stream condition about which
the linearization has been performed. The compo-

nent of the 
ux normal to the boundary is given by

F (U ) � ~F (U ) � ~n =MnU +

2
664

0
Vn
�P

�P

3
775 (5)

where Mn = ~M � ~n, Vn = ~V � ~n, � = {̂ � ~n, � = |̂ � ~n,

and ~n = J�1
T

J ~ds is the boundary-normal vector for
an arbitrary edge.

Wall Boundary Conditions

Wall boundary conditions correspond to the case
in which Mn = 0 and Vn is speci�ed. Both
symmetry-plane and hard-wall boundary conditions
state that no 
ow passes through the boundary;
thus, Vn = Mn = 0. The symmetry-plane bound-
ary condition should be simply a special case of a
general, hard-wall boundary condition in which the
wall is planar; however, most �nite-di�erence and
�nite-volume methods must treat the two di�erently
in order to obtain accurate results. With the dis-
continuous Galerkin method, the treatment of the
two is identical because the discontinuous Galerkin
method is valid without modi�cation in the element
next to the boundary.
A transpiration wall condition is one in which 
uid

passes through the boundary at a speci�ed rate. An
example is a 
ow in which blowing or suction is ap-
plied to a surface. Another example that is relevant
to aerocoustic applications occurs when a 
ow is
separated into incident and scatter components and
each component is simulated individually. Occasion-
ally, the form of the incident wave is known exactly,
so that only the scattered wave needs to be simu-
lated. With these assumptions, the 
ux through the
boundary is given by

F (U )wall =

2
664

0bVn
�P

�P

3
775 (6)

The 
ux is evaluated by using the pressure from the
interior element and a speci�ed function for bVn. The
function for bVn must be expressed as a polynomial
of the edge coordinates. This expression can be ob-
tained by either a Taylor's expansion or a projection
procedure. Because the solution within each element
is a known polynomial function, the interior solution
at the edge is always available without the use of ex-
trapolation formulas.
Figure 1 illustrates a simple application of wall

boundary conditions. An acoustic pulse is generated
by a pressure disturbance in the initial condition of
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an otherwise undisturbed Mach 0.5 
ow. The ini-
tial pressure disturbance is a Gaussian distribution
with a half-width of 0.05, centered at (-0.25, 0.25) in
the domain 0 < x; y < 1. A hard-wall condition is
speci�ed on the y = 0 boundary, and through-
ow
boundary conditions (to be discussed later) are spec-
i�ed on the other three sides of the domain. The re-
sults shown are for a discontinuous Galerkin method
with n = 4 (�fth order) and with the domain parti-
tioned by an 18 x 18 triangulated grid. At t = 0:4,
the incident pulse has reached the lower wall and
has produced a re
ection. In this case, the hard-wall
boundary is equivalent to a symmetry plane. Figure
1(b) shows similar results in which the computation
included the mirror image of the original compu-
tational domain. The maximum di�erence between
the solutions is less that 0.1 percent and is attributed
to the treatment of the 
ux at y = 0. In the �rst case
in which y = 0 is a wall, the 
ux at y = 0 is given
by F (U ) = [0; 0; 0; �P ]

T
. In the case for which the

y = 0 line is within the domain, the 
ux is evaluated
by using the Lax-Friedrichs 
ux as the approximate
Riemann solver1

F(Uu; Ul) � [F (Uu) + F (Ul)� �(Uu � Ul)] =2

where subscripts u and l denote the upper and lower
sides of the 
ux and � is greater than or equal to the
magnitude of the largest eigenvalue of @F

@U
. Assum-

ing that the solution above and below y = 0 evolve
symmetrically, Uu is the same as Ul except for the
v component, which is an odd function of y. Thus,
the 
ux at y = 0 becomes

F(Uu; Ul) = [0; 0; 0; �Pu+ �vu]

Because of the symmetry of the solution and the
convergence properties of the discontinuous Galerkin
method, vu goes to zero at the rate of �xn+1; thus,
both formulas are accurate representations of the

ux and exhibit the expected convergence proper-
ties as the mesh is re�ned. Note, however, that a
low-order error may be introduced if the solution
is not symmetric, and if wall boundary conditions
are implemented by retaining the approximate Rie-
mann 
ux and evaluating the exterior solution with
a re
ection of the interior solution (as is commonly
done on low-order �nite-volume methods.) The spe-
ci�c form of the error depends on the form of the
approximate Riemann solver.

Conditions at Curved Walls

Walls that are smoothly curved can be mod-
eled with at least second-order accuracy by straight
line segments. To improve the accuracy requires a

few simple modi�cations to the implementation de-
scribed previously. The �rst change is to compute
distinct matrices M�1~A and M�1Bk for each ele-
ment and each side of that element that lies on a
curved boundary. The only other change is simply
to recognize that the edge normal vector ~ds is now
a polynomial function instead of a constant vector;
thus, �P and �P in equation (6) are products of
polynomials. Illustrated for triangles in �gure 2,
a general triangle with one curved side is mapped
(with constant Jacobian) to a simple regular trian-
gle in which the deviation of one side from its usual
straight line path is approximated by a polynomial
�(�)wall. Because the Jacobian J is constant within
the element, it can be taken outside the integral;
thus all integrations, matrix inversions, and matrix
multiplications can be done in advance of the simu-
lation as in the usual implementation. The primary
overhead associated with a curved element is the ad-
ditional storage required to store a distinct copy of
the matrices for each curved element.

Figure 3 shows two solutions in which an acoustic
pulse has passed over a cylinder to produce a re-

ection. In the extreme case shown, the cylinder is
modeled with only two elements. In �gure 3(b) the
curved sides are approximated by cubic polynomials.
In this test case, the cylinder has a radius of 1/2,
and the incident pulse is produced by a Gaussian
pressure disturbance in the initial solution at x = 3,
y = 0. This case is similar to problem 2 of Cate-
gory I of the recent workshop The Second Workshop

on Benchmark Problems for CAA,18 except that the
Gaussian half-width of the initial disturbance has
been increased to 1.6 (8 times larger) so that the
incident pulse is well resolved on extremely coarse
grids and the error is dominated by the resolution of
the cylinder. Figure 4 gives the convergence history
of the solution as the resolution is increased. The
average length scale of an element is de�ned as

�s =

r
area of domain

number of elements

and the error is measured relative to reference solu-
tion computed on a �ne grid (�s = 0.0498). The
error is de�ned as the the L2 norm of the di�erence
in pressure at a large number of points uniformly dis-
tributed in the region 0.63 < r < 2.0, 0 < � < �/2.
The case with the cubic approximation for the wall
maintains a �fth-order rate of convergence over the
range of grids tested. The rate of convergence for
the case with the linear approximation for the wall
drops to less then third order as the mesh is re�ned.
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In
ow and Out
ow Boundary Conditions

In
ow, out
ow, and nonre
ective boundary con-
ditions are often treated as di�erent entities; how-
ever, for any system of equations such as the Euler
equations at subsonic conditions, characteristic in-
formation simultaneously enters and leaves the do-
main through these boundaries. Typically, in
ow
and out
ow boundary conditions have concentrated
on ensuring that the correct information enters the
domain; nonre
ective boundary conditions have con-
centrated on ensuring that waves that are leaving the
domain can do so as if the boundary did not exist.
The simplest form of an in
ow and out
ow bound-

ary condition is obtained by splitting the 
ux into
characteristic components and grouping the compo-
nents according to whether their associated wave
is entering or leaving the domain. The splitting is
given by

F = P [�]P�1U

= P
�
�+
�
P�1Uinterior +P

�
��
�
P�1Uexterior

where P and [�] are the eigenvector matrix and the
diagonal matrix composed of the eigenvalues of @F

@U

respectively, and [��] are diagonal matrices com-
posed of just the positive or negative elements of
[�]. The exterior solution is usually set to zero; how-
ever, the solution could be set to any desired value
to accommodate the case in which a speci�ed wave
is to enter the domain. This approach has been used
in the results shown thus far and provides a crude,
nonre
ective boundary condition in that waves that
are nearly aligned with the boundary will exit with
little re
ection. The method of Thompson19 is an
analogous procedure formulated for �nite-di�erence
methods.

The reason for the re
ection is that when an out-
going wave that is not aligned with the boundary is
decomposed into boundary-normal and boundary-
tangent characteristic components, the inbound
boundary-normal characteristic component is not
exactly 0. Yet in almost all characteristic-based
boundary conditions the inbound boundary-normal
component set set either to 0 or to some speci�ed
value that has no relation to any outgoing wave that
might exist. Most attempts to improve the nonre-

ective boundary condition involve derivation of a
means to reconstruct an inbound boundary-normal
characteristic contribution associated with outgoing
waves. The most accurate of these methods7; 9; 11

involves the solution of an additional partial di�er-
ential equation along the boundary. Thus far, these
boundary conditions have only been formally de-
rived for smooth (if not planar) boundaries for which

the mean 
ow is strictly in
ow or out
ow over the
entire boundary.
Another approach, the �nite-wave model,20 pro-

vides a simple (algebraic) method for improving the
accuracy in some cases. This boundary condition
was developed to deal with nonlinear e�ects of the
Euler equations; however, the method also accounts
for wave orientation in a way that is applicable to
the linear case. The linear analog of the �nite-wave
mode is a simple modi�cation to the standard char-
acteristic approach and will be referred to as the
modi�ed characteristic method. The directionality
inherent in the usual characteristic splitting arises
because the boundary 
ux is the 
ux in the direc-
tion of the boundary normal. The direction associ-
ated with the 
ux cannot be altered; however, char-
acteristic decomposition could certainly be based on
another direction. In fact, because the boundary of
the domain may not have any relation to the sound
produced within the domain, other directions should
be considered for the characteristic decomposition.
If a single identi�able acoustic source is assumed,
then the �nite-wave model performs a characteristic
decomposition along the assumed path of the wave.
The decomposition is obtained from the characteris-
tic variables associated with the 
ux in a prescribed
direction:

Fw(U ) � ~F (U ) � ~w =MwU +

2
664

0
Vw
�wP

�wP

3
775

where ~w is a unit vector in a prescribed direc-
tion and other quantities are de�ned as in equa-
tion (5) with ~n replaced by ~w. The solution at
the boundary associated with waves that are leav-

ing the domain in the direction of ~w is given by
Ub = Pw [I+]P�1

w
Uinterior, where Pw are the eigen-

vectors of @Fw

@U
and [I+] is a diagonal matrix with

elements equal to 1 if the corresponding eigenvalue
of @Fw

@U
is positive and equal to 0 otherwise. The 
ux

through the boundary is given by evaluating equa-
tion (5) with the solution Ub.
The standard and modi�ed characteristic meth-

ods are compared in �gure 5. The test case is the
cylinder problem previously described with the non-
re
ecting boundary conditions imposed at r � 5:3.
At time t = 10 most of the physical waves have
exited the domain, and the remaining disturbances
are caused by unwanted re
ections. The modi�ed
characteristic boundary condition has reduced the
re
ection to less than half that of the standard char-
acteristic boundary condition but the general form
of the re
ection is unchanged.
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The PML Method

The PML method is a bu�er-zone technique
that solves a modi�ed set of equations in a region
that surrounds the primary computational domain.
The modi�ed equations are obtained by splitting
the equations in boundary-normal and boundary-
tangent directions and adding low-order damping to
the boundary normal equations. For example, at
boundaries aligned with either {̂ or |̂,

@U1

@t
+

@
�
{̂ � ~F (U )

�
@x

= ��xU1 (7)

and

@U2

@t
+

@
�
|̂ � ~F (U )

�
@y

= ��yU2 (8)

where U = U1+U2. The damping coe�cients �x and
�y must be chosen such that the component of � that
is tangent to the boundary does not vary along the
boundary. This condition leads to the constraint on
� in corner regions illustrated in �gure 6. Research
has shown that,10 for the ideal case of plane waves
and straight boundaries that intersect at right angles
(i.e., rectangular domains), no re
ection of acoustic
or convective waves will occur at the interface be-
tween the primary computational domain and the
PML zone, regardless of the angle at which waves
strike the interface. The underlying theory places
no constraint on the variation of � in the direction
normal to the boundary, but in applications to �nite-
di�erence methods � must vary smoothly. In numer-
ical tests by Hu,10 the boundary-normal component
of � was increased quadratically as a function of the
distance from the interface.

When the PML method is applied to the discon-
tinuous Galerkin method, � does not need to be var-
ied smoothly. Furthermore, using a constant value
of � throughout a PML zone is advantageous. In
the present application of the PML method to the
discontinuous Galerkin method, the equations are
solved in a di�erent, but equivalent, form. In PML
zones that border on the physical domain, the sum
of the two split equations is solved in combination
with the boundary-tangent equation. For example,
on a boundary where x = Constant, �y = 0 and the
equations can be rewritten as

@U

@t
+r � ~F (U ) = ��x(U � U2) (9)

and

@U2

@t
+

@
�
|̂ � ~F (U )

�
@y

= 0 (10)

The �rst equation is the standard interior operator
modi�ed only by a zeroth-order dissipation term;
thus, this equation is easily implemented within the
existing program structure. In a corner region, the
sum of the split equations is solved in conjunction
with either equation (7) or (8):

@U

@t
+r � ~F (U ) = ��xU + (�x � �y)U2 (11)

and

@U2

@t
+

@
�
|̂ � ~F (U )

�
@y

= ��yU2 (12)

Note, however, that if �x = �y = Constant through-
out the corner region, then the individual compo-
nents U1 or U2 do not contribute to equation (11);
thus, only equation (11) needs to be solved.
In �gures 7 and 8, solutions obtained with the

PML method are compared with those obtained
with characteristic boundary conditions. The test
problem is a square domain (�50 < x; y < 50) with
hard-wall boundary conditions applied on the top,
bottom, and left boundaries and either a PML zone
or a characteristic boundary condition applied at the
right boundary. The unsteady 
ow is initiated by
a unit Gaussian pressure disturbance with a half-
width of 3, positioned at x = 25, y = 0. The pri-
mary domain is partitioned with an 18x18 triangu-
lated grid; the PML case has two layers of elements
in which the values of � are constant: �x = 0:2 and
�y = 0. The solutions are compared with a base-
line case in which the right boundary is extended to
x � 161. Figure 7 shows the solutions at t = 40,
which is just after the initial pulse has reached the
boundary. The solution obtained with characteristic
boundary conditions has weak re
ections, and the
solution obtain with the PML method agrees well
with the baseline. Figure 8 shows the solutions at
a much later time (t = 180) when re
ections o� the
solid walls have produced a complex wave pattern.
The solution obtained by using the PML method
still agrees well with the baseline solution, while
the standard characteristic method shows additional
features that can only be attributed to nonphysical
re
ections o� the right boundary.

Figure 9 shows the e�ect of increasing the thick-
ness of the PML layer (xb � 50) and varying the
values of �x. The error metric is the maximum de-
viation of pressure from that of the baseline solu-
tion measured along the line x = 48 for t < 200.
The solid line denotes the case in which �x was var-
ied quadratically, as described in reference 10; the
dashed lines denote cases in which �x is �xed at one
of several values. Note that the data at xb = 50 re-
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sult from use of the standard characteristic bound-
ary condition.

Finally, the PML method is applied to the cylinder
problem show earlier in the region r > 5:3. Figure
10 shows the maximumpressure di�erence from the
baseline solution measured at r = 5, t < 12. In this
case, the PML method is implemented by assigning
a normal direction to each element in the PML zone.
Even though the boundary is curved and the normal
direction varies in each element, the PML method
shows a considerable improvement over the modi�ed
characteristic method (rb � 5:3).

Concluding Remarks

The application of several types of boundary con-
ditions for the discontinuous Galerkin method is pre-
sented. Because of the compact form of the method,
the discontinuous Galerkin method is applicable
near boundaries without modi�cation; this feature
eliminates a major di�culty encountered by most
high-order methods. As a consequence, boundary
conditions such as symmetry-plane, curved-wall, and
characteristic in
ow out
ow, are easy to implement
and highly accurate. With modi�ed characteristic
boundary conditions that account for the direction
of wave propagation, re
ections are reduced to about
half that of the standard characteristic method. The
perfectly matched layer (PML) method is easily ap-
plied to the discontinuous Galerkin method. The
discontinuous Galerkin method allows the damping
parameters to be abruptly turned on and then held
constant within the PML zone. Re
ections are re-
duced by an order of magnitude below that of char-
acteristic boundary conditions, even in cases with
curved boundaries.
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a. Wall condition at y = 0.

b. Computed mirror image of primary domain.

Figure 1. Re
ection of cylindrical pressure pulse o�
a 
at wall compared with direct computation of pri-
mary domain plus mirror image.
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η

η(ξ)  =  a  + b ξ + c ξ + ...2

x

y

Figure 2. Mapping of curve-wall element.

a. Linear wall segments.

b. Cubic wall segments.

Figure 3. Re
ection of cylindrical pressure pulse o�
of solid cylinder.
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Figure 4. Convergence of solution error with grid
re�nement.

a. Standard characteristic boundary conditions.

b. Modi�ed characteristic boundary conditions.
Pmin = �0:0914 Pmax = 0:021

Figure 5. Comparison of nonre
ecting boundary
conditions applied at r � 5:3: pressure at t = 10:
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σ  = 0y

σ  = 0x

σ  = g(y)y

σ  = f(x)x

σ  = g(y)y

physical domain

PML zones

zone interfaces

Figure 6. PML zones with consistent values of �.

a. Baseline solution.

b. Characteristic boundary condition.

c. PML zone.

Figure 7. Comparison of pressure with di�erent
treatment of right boundary: t = 40.
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a. Baseline solution.

b. Characteristic boundary condition.

c. PML zone.

Figure 8. Comparison of pressure with di�erent
treatment of right boundary: t = 180.
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Figure 9. E�ect of thickness of PML layer and value
of � for 
ow shown in �gures 7 and 8.
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Figure 10. E�ect of thickness of PML layer and value
of � for 
ow shown in �gure 5.
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