
National Aeronautics and Space Administration
Langley Research Center • Hampton, Virginia 23681-0001

NASA Contractor Report 4764

Frequency Response Calculations of Input
Characteristics of Cavity-Backed Aperture
Antennas Using AWE With Hybrid FEM/MoM
Technique
C. J. Reddy
Hampton University • Hampton, Virginia

M. D. Deshpande
ViGYAN, Inc. • Hampton, Virginia

February 1997

Prepared for Langley Research Center
under Cooperative Agreement NCC1-231



1

CONTENTS

Abstract 2

List of Symbols 3

1.0 Introduction 5

2.0 Hybrid FEM/MoM Technique 7

3.0 AWE Implementation 11

4.0 Numerical Results 12

5.0 Concluding Remarks 16

Acknowledgments 17

            Appendix 18

References 20



2

Abstract

Application of Asymptotic Waveform Evaluation (AWE) is presented in conjunction with

a hybrid Finite Element Method (FEM) / Method of Moments (MoM) technique to calculate the

input characteristics of cavity-backed aperture antennas over a frequency range. The hybrid FEM/

MoM technique is used to form an integro-partial-differential equation to compute the electric

field distribution of the cavity-backed aperture antenna. The electric field, thus obtained, is

expanded in a Taylor series around the frequency of interest. The coefficients of Taylor series

(called “moments”) are obtained using the frequency derivatives of the integro-partial-differential

equation formed by the hybrid FEM/MoM technique. Using the moments the electric field in the

cavity is obtained over a frequency range. Using the electric field at different frequencies, the

input characteristics of the antenna are obtained over a wide frequency band. Numerical results

for an open coaxial line, probe fed cavity, and cavity-backed microstrip patch antennas are pre-

sented. Good agreement between AWE and the exact solution over the frequency range is

observed.



3

List of Symbols

Del operator

Del operator over the source coordinates

Dielectric permittivity of the medium in the cavity

Dielectric permittivity of the medium in the coaxial feed line

Kronecker delta defined in equation (22)

Dielectric permeability of the medium in the cavity

-coordinate of the cylindrical coordinate system

Unit normal vector along the -axis

Angular frequency

AWE Asymptotic Waveform Evaluation

qth derivative of  with respect to ; , evaluated at

Reflection coefficient at the input plane

Excitation vector

qth derivative of  with respect to ; , evaluated at

ds Surface integration with respect to observation coordinates

Surface integration with respect to source coordinates

Electric field

Electric field at the input plane

Electric field coefficient vector

Incident electric field due to coaxial line at the surface

Reflected electric field into the coaxial line at the surface

Magnetic field at the surface

∇

∇′

εr

εrc

δqo

µr

ρ ρ

ρ̂ ρ

ω

A
q( )

ko( ) A k( ) k
k

q

q

d

d
A k( ) ko

ao Sinp

b k( )

b
q( )

ko( ) b k( ) k
k

q

q

d

d
b k( ) ko

ds′

E

Einp Sinp

e k( )

einc Sinp

eref Sinp

Hap Sap



4

Magnetic field at the surface

Frequency

j

Wavenumber at any frequency

Wavenumber at frequency

Magnetic current at the surface

nth moment of AWE (n=0,1,2,3,4 .......)

Normal unit vector

q! Factorial of numberq

Distance between the source point and the observation point

Radius of inner conductor of the coaxial feed line

Radius of outer conductor of the coaxial feed line

Vector testing function

Vector testing function at the surface

Normalized input admittance of the antenna

Unit normal along Z-axis

H inp Sinp

f

1–

k f

ko fo

M Sap

Mn

n̂

R

r1

r2

T

Ts Sap

Yin

z



5

1. Introduction

Cavity-backed aperture antennas are very popular in aerospace applications due to their

conformal nature. These antennas can be analyzed using the integral equation or differential

equation methods. The integral equation approach involves the solution of a fully dense matrix

equation and mathematically complex for inhomogeneous material and arbitrarily shaped

cavities. The differential equation method can easily handle the arbitrarily shaped cavities with

inhomogenous materials, but requires boundary truncation. Hybrid techniques have become

attractive for numerical analysis of these type of problems due to their ability to handle arbitrary

shape of the cavity and complex materials that may be required for the antenna design. The

combined Finite Element Method (FEM) and Method of Moments (MoM) technique in particular

has been used to analyze various cavity-backed aperture antennas[1,2]. In the combined

FEM/MoM technique, FEM is used in the cavity volume to compute the electric field, whereas

MoM is used to compute the magnetic current at the aperture.  Using Galerkin’s technique and

forming simultaneous equations, the electric field is solved. For the combined FEM/MoM

technique, the cavity is divided into tetrahedral elements and the aperture is discretized by

triangles. Simultaneous equations are generated over the subdomains and are added to form a

global matrix equation. This results in a partly sparse and partly dense symmetric complex matrix,

which can be solved either by a direct solver or by an iterative solver. The electric field hence

obtained is used to compute the radiation characteristics and input characteristics of the antenna.

In most practical applications, input characteristics such as input impedance or input

admittance are of interest over a frequency range. To obtain the frequency response of the

antenna, one has to repeat the above calculations at every incremental frequency over the

frequency band of interest. If the antenna is highly frequency dependent, one needs to do the
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calculations at fine increments of frequency to get an accurate representation of the frequency

response. This can be computationally intensive for electrically large cavity with a large aperture

and in some cases  computationally prohibitive. To alleviate the above problems, the application

of Asymptotic Waveform Evaluation (AWE) [3] to the combined FEM/MoM technique is

proposed. Recently a detailed description of AWE was applied to frequency domain

electromagnetic analysis and is presented in [4]. AWE has also been used to predict radar cross

section (RCS) of perfect electric conductor (PEC) bodies over a frequency range [5].

In this report, we describe the application of AWE for calculating the input characteristics

of a cavity-backed aperture antenna over a band of frequencies using the combined FEM/MoM

technique. In the AWE technique, the electric field is expanded in Taylor’s series around a

frequency. The coefficients of Taylor series (called ‘moments’) are evaluated using the frequency

derivatives of the combined FEM/MoM equation. Once the moments are obtained, the electric

field distribution in the cavity can be obtained at any frequency over the frequency range. Using

this field distribution, the input characteristics of the cavity-backed aperture antenna are obtained.

The rest of the report is organized as described below.  In section 2, the combined

FEM/MoM formulation is presented. In section 3, AWE implementation for the combined

FEM/MoM technique is described. Numerical results for an open coaxial line, a coaxial cavity,

and a cavity-backed microstrip patch antenna are presented in section 4. The numerical data are

compared with the exact solution over the bandwidth. CPU time and storage requirements for

AWE formulation are given for each example and are compared with those required for exact

solution at each frequency. Concluding remarks on the advantages and disadvantages of the AWE

technique are presented in section 5.
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2. Combined FEM/MoM Technique for Cavity-Backed
Aperture Antennas in Infinite Ground Plane

The geometry of the problem to be analyzed is shown in figure 1. For linear, isotropic, and

source free region; the electric field satisfies the vector wave equation:

(1)

where ,  are the relative permeability and relative permittivity of the medium in the cavity.

The time variation  is assumed and suppressed throughout this report. Applying the

Galerkin’s technique, equation (1) can be written in “weak form” as [6]

                                                                       = (2)

where  is the vector testing function,  is the aperture surface, and  is the input surface

(see figure 1).  is the magnetic field at the aperture and  is the magnetic field at the input

surface.

In accordance with the equivalence principle [7], the fields inside the cavity can be

decoupled to the fields outside the cavity by closing the aperture with a  PEC and introducing the

equivalent magnetic current.

(3)
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(4)

where  andR is the distance between source point and the observation point. indi-

cates del operation over the source coordinates and indicates the surface integration over the

source region.

Though the analysis presented in this report is not restricted to any specific input feed

structure, we restrict the presentation of the formulation to the coaxial line as the input feed

structure. The cross section of the coaxial line is shown in figure 2. Assuming that the incident

electric field is the dominant transverse electric and magnetic (TEM) mode and the reflected field

also consists of TEM mode only, the electric field at the input plane  is given by

(5)

where

(6)

and

(7)
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(8)

 is the outer radius and  is the inner radius of the coaxial line.  is the relative permittivity

of the coaxial line.

Using equation (5) to calculate , the surface integral over  in equation (2) can be

written as

(9)

Substituting equation (4) and (8) in equation (2), the system equations for the combined FEM/

MoM technique can be written as
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(10)

The volume of the cavity is subdivided into small volume tetrahedral elements. The

electric field is expressed in terms of the edge vector basis functions [6], which enforce the

divergenceless condition of the electric field explicitly. The vector testing function is also

expressed in terms of the edge vector basis functions following the Galerkin’s method. The

discretization of the cavity volume into tetrahedral elements automatically results in discretization

of the surfaces  and  into triangular elements. The volume and surface integrals in

equation (10) are carried out over each element to form element matrices and the element

matrices are assembled to form global matrices. Equation (10) can be written in matrix form as

(11)

 is a partly sparse, partly dense complex symmetric matrix,b(k) is the excitation vector, and
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(16)

(17)

The matrix equation (11) is solved at any specific frequency,  (with wavenumber )

either by a direct method or by an iterative method. The solution of the equation (11) gives the

unknown electric field coefficients which are used to obtain the electric field distribution. Once

the electric field distribution is known, the input reflection coefficient can be calculated using

equation (8).  The input plane is placed at , and the reflection coefficient is calculated as

(18)
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(20)

with the moments  given by [4]

(21)

 is theqth derivative with respect tok of A(k) given in equation (12) and evaluated at

. Similarly,  is theqth derivative with respect tok of b(k) given in equation (16) and
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obtained is used to compute the input characteristics of the cavity-backed aperture antenna over a

frequency range.

4. Numerical Results
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inverse of matrix  is found once and is used repeatedly to find AWE moments. Due to the

hybrid FEM/MoM technique, matrix  is partly sparse and partly dense. The Complex

Vector Sparse Solver (CVSS) [10] is used to LU factor the matrix  once and the moments

are obtained by backsolving the equation (21) with multiple righthand sides. All the computations

reported below are done on a CONVEX C-220 computer.

(a) Open Coaxial line:

An open coaixial line radiating into an infinite ground plane (fig. 3a) is considered. A

finite length of the line is used for FEM discretization. The input plane is placed at

plane and the radiating aperture at . The discretization of the coaxial line resulted in

1119 total unknowns, and the order of the dense matrix due to MoM is 144.  The frequency

response of the input admittance is calculated with 6 GHz as the expansion frequency. The AWE

moments are calculated at 6 GHz and are used in the Taylor series expansion. The frequency

response from 4 GHz to 8 GHz is plotted in figure 3(b) along with the exact solution calculated at

different frequencies. A good trend in frequency response is predicted by the 2nd order AWE1,

whereas a very good agreement can be seen between the 5th order AWE frequency response and

the exact solution over the frequency range. The 1119X1119 hybrid FEM/MoM matrix exact

solution took around 150.7 secs of CPU time to fill the matrix and 10 secs to LU factor the matrix

at each frequency. The 5th order AWE frequency response calculation took 328 secs of CPU time

to fill the matrices including the frequency derivative matrices and 10 secs to LU factor the

 matrix. The exact solution was carried out at nine frequency points with (160.7X9)

1446.30 secs of total CPU time. With AWE, the frequency response was calculated with 0.1 GHz

frequency increments. It can be seen that there is a substantial amount of savings in CPU time by

1. As AWE is a purely mathematical approximation to the solution, it is observed that at some frequencies,
2nd order AWE results in unrealistic values of conductance.

A ko( )

A ko( )

A ko( )

Sinp z 0=

z 1cm=

A ko( )
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using AWE, when frequency response of input characteristics are required with fine frequency

increments.

(b) Open Coaxial Cavity:

An open coaxial cavity fed by a 50Ω coaxial line (fig. 4) is considered as a second

example. The input plane  is placed at  plane and the radiating aperture at

 plane. The cavity volume is discretized using tetrahedral elements, which resulted

in 4541 total unknowns and the order of the dense matrix due to MoM is 666.  The frequency

response of the return loss (= ) is calculated with 6 GHz as the expansion frequency. The

AWE moments are calculated at 6 GHz and are used in the Taylor series expansion. The

frequency response from 5 GHz to 7 GHz is plotted in figure 5 along with the exact solution

calculated at different frequencies. It can be seen from figure 5 that 2nd order AWE could not

predict the frequency response over the frequency range,  whereas a very good agreement can be

seen between the 5th order AWE frequency response and the exact solution over the frequency

range. The 4541X4541  hybrid FEM/MoM matrix exact solution took around 2027 secs of CPU

time to fill the matrix and 264 secs to LU factor the matrix at each frequency. The 5th order AWE

frequency response calculation took 4867 secs of CPU time to fill the matrices including the

frequency derivative matrices and 264 secs to LU factor the  matrix. The exact solution

was carried out at nine frequency points with (2,291X9) 20,619 secs of total CPU time. With

AWE the frequency response was calculated with 0.1 GHz frequency increments with 5,140 secs

of total CPU time.

(c) Cavity-Backed Square Microstrip Patch Antenna:

A cavity-backed square microstrip antenna radiating into an infinite ground plane (fig. 6)

is considered. The input plane  is placed at  plane and the radiating aperture at

Sinp z 0=

z 0.952cm=

20 Γlog

A ko( )

Sinp z 0=
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. The discretization of the cavity volume resulted in 2,160 total unknowns and the

order of the dense matrix due to MoM is 544.  The frequency response of the input impedance

( ) is calculated with 4 GHz as the expansion frequency. The AWE moments are calculated

at 4GHz and are used in the Taylor series expansion. To obtain an accurate frequency response

over a wider frequency range, another set of moments are calculated at 4.3 GHz. The frequency

response from 3.8 GHz to 4.5 GHz is plotted in figure 7 along with the exact solution calculated at

different frequencies.  A very good agreement can be seen between the 5th order AWE frequency

response and the exact solution over the frequency range. The 2160X2160 hybrid FEM/MoM

matrix exact solution took around 1558secs of CPU time to fill the matrix and 122secs to LU

factor the matrix at each frequency. The 5th order AWE frequency response calculation took 3754

secs of CPU time to fill the matrices including the frequency derivative matrices and 122 secs to

LU factor the  matrix. The exact solution was carried out at nine frequency points with

(1,680X9) 15,120 secs of total CPU time. With two expansion points, AWE took 7,752s ecs of

total CPU time. With AWE the frequency response was calculated with 0.01 GHz frequency

increments.

(d) Cavity-Backed Circular Microstrip Patch Antenna:

A cavity-backed circular microstrip antenna radiating into an infinite ground plane is

shown in figure 8. The input plane  is placed at  plane and the radiating aperture at

. The discretization of the cavity volume resulted in 6,363 total unknowns and the

order of the dense matrix due to MoM is 469.  The frequency response of the input impedance

( ) is calculated with 6 GHz as the expansion frequency. The AWE moments are calculated

at 6 GHz and are used in the Taylor series expansion. To obtain an accurate frequency response

over a wider frequency range, another set of moments are calculated at 5.8 GHz. The frequency

z 0.16cm=

1 Yin⁄

A ko( )

Sinp z 0=

z 0.16cm=

1 Yin⁄
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response from 5.6 GHz to 6.2 GHz is plotted in figure 9 along with the exact solution calculated at

different frequencies. A very good agreement can be seen between the 5th order AWE frequency

response and the exact solution over the frequency range. The 6,363X6,363 hybrid FEM/MoM

matrix exact solution took around 1,250 secs of CPU time to fill the matrix and 112secs to LU

factor the matrix at each frequency. The 5th order AWE frequency response calculation took

2,967 secs  of CPU time to fill the matrices including the frequency derivative matrices and 112

secs to LU factor the  matrix. The exact solution was carried out at seven frequency points

with (1362X7) 9,534 secs of total CPU time. With two expansion points, AWE took 6,178secs of

total CPU time. With AWE the frequency response was calculated with 0.01 GHz frequency

increments. Considering the fact that with AWE around 60 frequency calculations could be

carried out with less CPU time compared to calculate 7 frequency points with exact solution,

AWE has a distinct advantage and is essential if one has to determine the exact resonant

frequency.

5. Concluding Remarks

The AWE technique is applied to the hybrid FEM/MoM technique to obtain the frequency

response of the input characteristics of cavity-backed aperture antennas. The frequency response

of input characteristics of an open coaxial line, coaxial cavity, square microstrip patch anetnna,

and a circular patch antenna are computed and compared with the exact solution. From the

numerical examples presented in this work, AWE is found to be superior in terms of CPU time to

obtain a frequency response. It may be noted that although calculations are done in frequency

increments of  0.1 GHz or 0.01 GHz for the examples presented, the frequency response at even

finer freqeuncy increments can also be calculated with a very nominal cost. The application of

A ko( )
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AWE to three dimensional cavity-backed aperture antennas (without the infinite ground plane) is

of interest for  future research. The accuracy of AWE over a desired frequency band and its

relation to the order of AWE to be used are also of interest for  future research. With all of these

topics addressed, AWE will be a good computing tool for the design of cavity-backed aperture

antennas.

Acknowledgements

The authors would like to thank Dr. Olaf Storaasli of NASA Langley and Dr. Majdi

Baddourah of National Energy Research Scientific Computing (NERSC) Center for providing the

Complex Vector Sparse Solver (CVSS).



18

Appendix

Derivatives ofA(k) and b(k) w.r.t. k

The frequency derivatives ofA(k) and b(k) are evaluated and are given below. From

equation (12):

q=0,1,2,3,........ (A.1)

From equation (13)

(A.2)

(A.3)

(A.4)

(A.5)

From equation (14)

(A.6)

(A.7)

for q>1(A.8)

A
q( )

k( ) d
q
A k( )

dk
q

------------------- A1
q( )

k( ) A2
q( )

k( ) A3
q( )

k( ) A4
q( )

k( )+ + += =

A1
0( )

k( ) 1
µr
----- T∇×( ) E∇×( ) dv•

V
∫∫∫ k

2
– εr T Edv•

V
∫∫∫=

A1
1( )

k( ) 2k– εr T Edv•
V
∫∫∫=

A1
2( )

k( ) 2– εr T Edv•
V
∫∫∫=

A1
q( )

k( ) 0 q 3≥=

A2
0( )

k( ) k
2

2π
------ Ts M

jkR–( )exp
R

---------------------------- s′d
Sap

∫∫
 
 
 • sd

Sap

∫∫–=

A2
1( )

k( ) Ts M
j

2π
------ 

  2k k
2

jR–( )+
jkR–( )exp

jR–( )
---------------------------- s′d

Sap

∫∫
 
 
 • sd

Sap

∫∫=

A2
q( )

k( ) Ts M
j

2π
------ 

  q!
q 2–( ) !

-------------------- jR–( ) q 3–
2qk jR–( ) q 2–

k
2

jR–( ) q 1–
+ + jkR–( )exp s′d

Sap

∫∫
 
 
 • sd

Sap

∫∫=
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From equation (16)

(A.9)

(A.10)

From equation (17)

(A.11)

(A.12)

(A.13)

From equation (18)

(A.14)

(A.15)

Equation  (A.15) is written in a compact form, however, it must be simplfied before evaluating at

.

A3
0( )

k( ) 1
2π
------ Ts∇•( ) ∇′ M•( ) jkR–( )exp

R
---------------------------- s′d

Sap

∫∫
 
 
 

sd
Sap

∫∫=

A3
q( )

k( ) Ts∇•( ) ∇′ M•( ) j
2π
------– 

  jR–( ) q 1–( )
jkR–( )exp s′d

Sap

∫∫{ } sd
Sap

∫∫=

A4
0( )

k( )
jk εrc

2π
r2

r1
----

 
 
 

µrcln

-------------------------------- T
ρ̂
ρ
--- 

 • sd
Sinp

∫∫
 
 
 

E
ρ̂
ρ
--- 

 • sd
Sinp

∫∫
 
 
 

=

A4
1( )

k( )
A4

0( )
k( )

k
---------------------=

A4
q( )

k( ) 0 q 2≥=

b
0( )

k( )
2jk εrc jk εrcz1– 

 exp

µrc 2π
r2

r1
----

 
 
 

ln

------------------------------------------------------------ T
ρ̂
ρ
--- 

 • sd
Sinp

∫∫=

b
q( )

k( ) j εrcz1– 
  q

1 q

jk εrcz1

---------------------– b
0( )

k( )=

z1 0=
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Figure 1 Geometry of a cavity backed aperture in finite ground plane.
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Figure 2 Cross section of the coaxial line.
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Figure 3 (a) Open coaxial line in an infinite ground plane. Inner radius r1=1cm, Outer
radius r2=1.57cm, =1.0 and L=1.0cm

(b) Normalized input admittance as a function of frequency.
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Figure 4 Geometry of a coaxial cavity in an infinite  ground plane.   Outer radius of the
coaxial cavity=1”, Inner radius of the coaxial cavity=0.0181” and  L=3/8”. The
cavity is fed by a 50  coaxial line.
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Figure 5 Return loss versus frequency of the coaxial cavity (figure 4).
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Figure 6 Cavity-backed square microstrip patch antenna in an infinite ground plane fed by a
50Ω coaxial line.
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Figure 7 Normalized input impedance versus frequency of the cavity-backed square
microstrip antenna (figure 6).
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Figure 8 Cavity-backed circular microstrip patch antenna in an infinite ground plane fed by
a 50Ω coaxial line.
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Figure 9 Normalized input impedance versus frequency of the cavity-backed circular
microstrip antenna (figure 8).
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