
National Aeronautics and Space Administration
Langley Research Center • Hampton, Virginia 23681-0001

NASA Contractor Report 4772

The Volume Grid Manipulator (VGM): A Grid
Reusability Tool
Stephen J. Alter
Lockheed Martin Engineering & Sciences Company • Hampton, Virginia

April 1997

Prepared for Langley Research Center
under Contract NAS1-96014

Printed copies available from the following:

NASA Center for AeroSpace Information National Technical Information Service (NTIS)
800 Elkridge Landing Road 5285 Port Royal Road
Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171
(301) 621-0390 (703) 487-4650

Abstract

This document is a manual describing how to use the Volume Grid Manipulation (VGM)
software. The code is speci�cally designed to alter or manipulate existing surface and volume
grids to improve grid quality through the reduction of grid line skewness, removal of negative
volumes, and adaption of surface and volume grids to
ow �eld gradients. The software uses a
command language to perform all manipulations thereby o�ering the capability of executing
multiple manipulations on a single grid during an execution of the code. The command
language can be input to the VGM code by a UNIX style redirected �le, or interactively
while the code is executing.

This code has been written with ANSI FORTRAN 77 and C, o�ering portability to a wide
variety of computer platforms. Since most grid generation codes require Silicon Graphics
machines, this code has been thoroughly tested on such machines; though the code has been
successfully ported to the Sun architecture. To use this code it is recommended that grid
visualization software be used. The Flow Analysis Software Toolkit (FAST) works well, but
any good visualizer can be e�ectively applied. The visualization software is required to view
the surface and volume grids resulting from the manipulations performed.

The manual consists of 14 sections. The �rst is an introduction to grid manipulation;
where it is most applicable and where the strengths of such software can be utilized. The
next two sections describe the memory management and the manipulation command lan-
guage. The following 8 sections describe simple and complex manipulations that can be
used in conjunction with one another to smooth, adapt, and reuse existing grids for various
computations. These are accompanied by a tutorial section that describes how to use the
commands and manipulations to solve actual grid generation problems. The last two sections
are a command reference guide and trouble shooting sections to aid in the use of the code
as well as describe problems associated with generated scripts for manipulation control.

1

2

Contents

1 Introduction 13

2 Memory Management 15

2.1 Grid Blocks . 15

2.2 Internal Variables . 17

2.3 Memory Limits . 17

3 Language Speci�cs 19

3.1 Command Argument Ordering . 19

3.2 Script Readability . 20

3.3 Script Progress and Results . 20

4 Input and Output 21

4.1 Commands . 21

4.2. READ and WRITE Usage . 23

4.2.1 PLOT3D . 23

4.2.2 GRIDGEN . 24

4.2.3 Solution . 24

4.2.4 TECPLOTTM . 26

4.2.5 Re-orienting Coordinates . 26

4.3 Manipulative Capabilities . 27

4.3.1 Converting Grid Styles . 27

4.3.2 Coarsening Grids . 28

4.3.3 Surface and Curve Extraction . 28

4.3.4 Re-orienting Grid Data to Generate Volume Grids 30

5 Grid Based Parameters for Manipulations 31

5.1 Computing Grid Parameters . 32

5.2 SET and ALLOCATE Usage . 34

6 Extracting, Inserting, Merging and Combining Grids and Grid Parameters 37

6.1 Extracting and Inserting . 39

6.2 Merging Grid Blocks . 39

6.3 Combining Grid Blocks . 42

3

7 Copying Grids 45

7.1 COPYDIST Usage . 48
7.2 Manipulative Capabilities of COPYDIST . 48

8 Redistributing Grids 51

8.1 REDIST Usage . 52

9 Smoothing Grids 61

9.1 Parametric Re-mapping . 61
9.1.1 One-Dimensional Parametric Re-mapping 63
9.1.2 Two-Dimensional Parametric Re-mapping 72
9.1.3 Three-Dimensional Parametric Re-mapping 74

9.2 Smoothing with Trans-Finite Interpolation 76
9.3 Vector Interpolation . 78
9.4 Summary of Techniques . 82

10 CFD Adapting 83

10.1 Coarse Grid to Fine Grid Adaption . 83
10.2 Adaption by Changing Grid Densities . 86
10.3 Summary of Adaption Techniques . 88

11 Volume Generation 89

11.1 Three-Dimensional Trans-Finite Interpolation 89
11.2 Correcting Grid Coordinates . 96
11.3 Straight Line Generation . 97
11.4 Summary of Generation Capabilities . 99

12 Tutorials 101

12.1 Tutorial I: Coarsening a Volume Grid . 101
12.1.1 Purpose: . 101
12.1.2 Steps To Be Used . 101
12.1.3 VGM Script . 102
12.1.4 Results . 102

12.2 Tutorial II: Decomposing a Single Block Volume Grid 103
12.2.1 Purpose: . 103
12.2.2 Steps To Be Used . 103
12.2.3 VGM Script . 104
12.2.4 Results . 105

12.3 Tutorial III: TFI Grid Smoothing . 105
12.3.1 Purpose: . 105
12.3.2 Steps To Be Used . 105
12.3.3 VGM Script . 106
12.3.4 Results . 107

12.4 Tutorial IV: Conversion of an Inviscid Grid to a Viscous Grid 107
12.4.1 Purpose: . 107

4

12.4.2 Steps To Be Used . 108
12.4.3 VGM Script . 108
12.4.4 Results . 109

12.5 Tutorial V: Merging Multiple Block Decompositions Into a Single Block Vol-
ume Grid . 110
12.5.1 Purpose: . 110
12.5.2 Steps To Be Used . 110
12.5.3 VGM Script . 110
12.5.4 Results . 110

13 Command Index 113

13.1 Input and Output . 113
13.2 Distributions . 115
13.3 Variable Manipulation . 117
13.4 Block Manipulators . 119
13.5 Grid Generation . 121
13.6 Programming Language . 123

14 Trouble Shooting and Errors 125

14.1 Language Errors . 126
14.2 Manipulation Command Errors . 129

14.2.1 ALLOCATE Command . 129
14.2.2 BLEND Command . 129
14.2.3 COMBINE Command . 131
14.2.4 COPYDIST Command . 131
14.2.5 REDIST Command . 132
14.2.6 SET Command . 134
14.2.7 SMOOTH Command . 135
14.2.8 TFI Command . 136

14.3 Redistribution Errors . 137
14.4 Input and Output Errors . 142

References 146

5

6

List of Tables

2.1 VGM Memory limits; both computer and language. 17

3.1 VGM command summary. 19

5.1 VGM grid parameters (intrinsics). 31

6.1 Initial blocking strategy for NASA proposed SSTO. 39
6.2 New blocking strategy. 42

7

8

List of Figures

5.1 Arclength parameter space di�erences. 32

6.1 Initial multiple block decomposition of NASA proposed SSTO. 41

7.1 E�ects of the copydist command in normalized arclength domain. 46
7.2 E�ects of the linear and spline basis interpolation. 47
7.3 E�ects of arclength parameter used for grid adaption. 49

8.1 E�ects of equal, sin, -sin, and cos spacing functions. 53
8.2 Cell to cell scaling e�ects of sin, -sin, and cos distribution functions. . . . 54
8.3 E�ects of vinokur, cubic, vin2cub, and laura spacing functions. 55
8.4 Cell to cell scaling e�ects of vinokur, cubic, and vin2cub distribution functions. 56
8.5 E�ects of redist smoothing of a grid by retaining existing cell sizes. 58
8.6 E�ects of parametric and physical domain redistributions for grid adaption. 60

9.1 Initial outer domain of an adapted and non-adapted grid. 64
9.2 Domain based blending for smoothing/adapting a grid. 66
9.3 Domain based blending for blending a grid. 67
9.4 Linear and elliptic interpolation for smoothing/adapting a grid. 68
9.5 Kinked grid lines from poor adaption parameters. 69
9.6 Elliptic blending function used to smooth kinked grid lines in a speci�c region. 70
9.7 Spline blending function used to smooth kinked grid lines in the entire grid. . 70
9.8 Iterative smoothing of kinked grid lines with the spline blending function. . 71
9.9 TFI blending function used to smooth kinked grid lines in two dimensions. . 73
9.10 LARCS blending function used to smooth kinked grid lines in two dimensions. 74
9.11 Poor elliptic PDE orthogonal boundary condition at a symmetry plane. . . . 75
9.12 Improved boundary condition at a symmetry plane through the 3dp blending. 75
9.13 Poorly chosen boundaries used in the method of TFI for grid smoothing. . . 76
9.14 Appropriately chosen boundaries used in the method of TFI for grid smoothing. 77
9.15 Order of derivatives for one dimensional smoothing. 79
9.16 Identi�ed region for one-dimensional smoothing. 80
9.17 Three-dimensional smoothing of an improved grid to the original volume grid. 82

10.1 Initial coarse grid of a �ne grid used on a McDonnell Douglas proposed X33
con�guration. 84

10.2 Fine adapted grid based on the CFD solution of a coarse grid. 85
10.3 Initially adapted grid from ALGNSHK in the LAURA code. 87

9

10.4 Re-adapted grid to improve bow shock capture and modeling. 88

11.1 Full body sphere-cone-
are geometry. 91
11.2 Full body sphere-cone-
are geometry initially generated with 3DTFI. 92
11.3 Full body sphere-cone-
are geometry, re-generated with 3DTFI and two in-

termediate �xed surfaces to control grid quality. 94
11.4 I-planes being tracked, after 3DMAGGS generation and VGM insertion of the

nose and
ap regions. 94
11.5 Final full body sphere-cone-
are geometry, re-generated with 3DMAGGS gen-

erated zones and VGM smoothing. 95
11.6 HYPGEN generated grid from a wall to an outer domain with a corrupted

block edge. 98
11.7 HYPGEN generated grid �xed with VGM using a straight line generation and

other commands. 99

12.1 Results of thinning out a dense volume grid. 103
12.2 Results of decomposing a single block into multiple blocks. 105
12.3 Results of smoothing a volume grid with TFI. 107
12.4 Results of converting an inviscid grid to a viscous one. 109

10

List of Scripts

4.1 External grid extraction. 23

4.2 Gridgen face and curve extraction. 24

4.3 Solution I/O manipulation. 25

4.4 Variable speci�c solution output for PLOT3D style. 25

4.5 Variable speci�c solution output for TECPLOT style. 26

4.6 Coordinate transformation manipulation. 27

4.7 GRIDGEN faces to PLOT3D block conversion. 30

5.1 Computation of I-direction based arclength parameter. 34

5.2 Computation of I-direction based normalized arclength parameter. 34

5.3 Endpoint cell sizes for a region in the I-direction. 35

6.1 Internal grid extraction. 39

6.2 Grid block merging. 40

6.3 Domain decomposition through block splitting. 42

7.1 Insertion of design change for parametric studies. 48

7.2 Utilizing old grid data to adapt a new grid. 48

8.1 Grid-line smoothing by �xing endpoints for redistribution. 57

8.2 Grid-zone smoothing by �xing endpoints for redistribution. 57

9.1 Physical domain based grid smoothing by parametric re-mapping in 1D. . . . 65

9.2 Computational domain based grid smoothing by parametric re-mapping in 1D. 65

9.3 Algebraic grid smoothing with elliptic coe�cients in 1D. 67

9.4 Iterative algebraic smoothing via basis function manipulation in 1D. 71

9.5 TFI smoothing of distribution functions in 2D. 72

9.6 LARCS smoothing of distribution functions in 2D. 72

9.7 TFI smoothing of distribution functions in computationally 3D planes. . . . 74

9.8 Vector interpolation smoothing. 80

9.9 Single direction smoothing applied to 3D. 81

10.1 Coarse to �ne grid adaption with 1D smoothing. 84

10.2 Coarse to �ne grid adaption with 3D planar smoothing. 85

10.3 Coarse to �ne solution adaption using 1D smoothing. 86

10.4 Grid adaption using varying grid densities. 87

11

11.1 Volume generation from GRIDGEN data. 90
11.2 Zonal regeneration to augment volume generation. 93
11.3 Extraction of grid coordinates for manipulations. 96
11.4 Making an assumed plane, planar. 97
11.5 Straight grid-line generation. 97
11.6 Correction of a block boundary to smooth a grid. 98

12.1 Coarse grid generation from �ne grid de�nition. 102
12.2 Domain decomposition from a single block topology. 104
12.3 Grid smoothing using various TFI dimensions. 106
12.4 Conversion of inviscid grid to viscous grid. 108
12.5 Conversion of multiple block decompositions to a single block. 111

12

Chapter 1

Introduction

Current methods of generating domain discretizations for computational
uid dynamics use
the solution of algebraic and partial di�erential equations (PDE).1{4 These methods usually
o�er a variety of options to control grid line incidence at a boundary, cell spacings at a
boundary and grid line skewness. These controls usually produce usable grids, but not
always. There may be several instances that require an iterative approach to determine the
best controls for the algebraic and PDE solvers to obtain a usable surface or volume grid. A
few of these instances are:

� con
icting PDE controls for grid-line incidence angle at a boundary;

� improper point spacing at a boundary or in a region;

� poor grid adaptions based on
ow �eld gradients.

Throughout the Computational Fluid Dynamic (CFD) simulation process, there is a need
to reduce grid generation time by reuseing existing surface and volume grids. Some of the
procedures that can be used to take advantage of existing grids are:

� conversion of inviscid volume grids to viscous grids, and vice versa;

� expansion of grids to guarantee
ow �eld capture;

� changing of vehicle shapes to evaluate favorable aerodynamic characteristic trends (i.e.
parametric studies);

� single and multi-faceted grid adaption without the formation of skewed grid lines;

� topological changes to improve
ow solver modeling capacity.

The VGM code has been designed to meet all these needs, as well as other grid ma-
nipulations. The VGM code is comprised of 11 commands that when combined, provide
a powerful tool to manipulate existing surface and volume grids. This manual explains in
detail how these commands work and how to use them in conjunction with one another to
perform all the manipulations mentioned above and more. This manual has been written to
explain the uses of the VGM commands as opposed to describing each command separately.

13

Each chapter highlights a speci�c set of manipulations that can be used to augment grid
generation, grid adaption, and other grid related issues. Due to the fact that VGM is a
language, the commands have multiple uses among the manipulations described; hence the
capabilities of each command is spread throughout the manual.

The manual is comprised of 14 sections. The two sections following this introduction
describe the memory management and the manipulation command language. The next 8
sections describe simple and complex manipulations that can be used to smooth, adapt, gen-
erate, and reuse existing grids for various CFD computations. Each of these manipulations
can be used alone or in combination to change an existing grid to �t the users' needs. These
sections are accompanied by a tutorial section that explains how to use the commands to
solve actual grid generation problems. The last two sections comprise a command reference
guide and a trouble shooting section to aid in the use of the code.

Throughout this manual, when commands, command arguments, and VGM structures
are described, bold face lettering is used to identify actual commands, italicized lettering
identi�es command arguments, fg's identify optional command arguments, and []'s identify
limits of operation for a given array variable or volume grid.

14

Chapter 2

Memory Management

2.1 Grid Blocks

The VGM command language is built around a single data structure that represents the
dimensions of a volume grid. The code assumes that all subsequent grid types, including
surfaces, curves, and points, are a subset of a volume grid. The data structure for all grids
is: (in command like form)

XYZ[ngsys,nblk,I-limits,J-limits,K-limits]

where,

ngsys Grid System Number -
This number represents a group of blocks read in or created within VGM
using the combine, or redist commands. Every time a new block or set
of blocks is generated the ngsys maximum value increases and the data
is stored in the appropriate array with the ngsys denoting the beginning
pointer to the data (grid or array variable).

nblk Block Number -
Each grid system has to have at least one block. The nblk variable identi�es
this block and any other block in a speci�c grid system. For some commands
the nblk variable can be represented by the \limit" format, discussed below,
for identifying a range of blocks.

I-limits First Computational Index Limit

J-limits Second Computational Index Limit

K-limits Third Computational Index Limit

The limits speci�cation is as follows:

vb-ve:vc

or beginning index (vb) to ending index (ve) by an increment (vc). All computational index
limits used in the commands use this construct. Some commands also allow the use of the

15

limits on the block numbers to be operated on. Each of the values can be either a 1 denoting
the minimum value, a 0 denoting the maximum value or an actual number between the
minimum and maximum limits for a speci�ed grid block or array variable.

The various grid types that are representable occur when one or more of the index limits
are single valued. The representation of a surface has one index limit that is single valued,
a grid curve has two index limits that are single valued, and a grid point has all three index
limits as single valued. There are several rules that must be followed when using the xyz[...]
construct. These are:

1. If any limit is missing, the entire range with (vc=1) is assumed.

2. If the beginning or increment value is missing, they are assumed to have the value of
1.

3. If the ending value is missing, it is assumed to be the maximum value possible for a
speci�ed grid block or array variable.

4. If only one number is available for the entire range, the minimum and maximum value
is that number, with the increment set to 1.

5. If the increment value (vc) is 0, the actual value is the maximumvalue subtracted from
the minimum value.

For example:

xyz[1,1,1-0,1-5,3-22:4]

results in a volume being de�ned with the following characteristics:

ngsys = 1
nblk = 1
I-limits = Imin to Imax by 1
J-limits = Jmin to 5 by 1
K-limits = 3 to 22 by 4

and,

xyz[5,4,3,0,10]

results in a point being de�ned as:

ngsys = 5
nblk = 4
I-limits = 3 only
J-limits = Jmax only
K-limits = 10 only

16

2.2 Internal Variables

The VGM code also has internal variables that can be used for input to various commands.
There are two types, core or array, and temporary constant variables. The core variables are
generated with an allocate command and are referenced similarly to the grid blocks. For
example:

dsj1[1-0,,1-91:0]

results in the following values being assigned:

core variable = dsj1 (which may be a computed arclength in the J-direction
I-limits = Imin to Imax by 1
J-limits = Jmin to Jmax by 1
K-limits = Kmin to 91 by 90

Constant variables (i.e. temporary) are single valued, as compared to the core variables.

2.3 Memory Limits

The VGM command language has several limits with respect to command arguments and,
grid size and array space. These limits include:

Number of Grid Systems = 100
Number of Grid Blocks = 200
Number of Grid Points = 8,000,000
Number of Array Variables = 40
Number of Array Data Points = 8,000,000
Number of Constant Variables = 40
Number of Command Arguments = 40
Number of Consecutive Command Lines = 1,000

Table 2.1: VGM Memory limits; both computer and language.

Violation of these limits usually results in an error. If an error occurs, the code will stop
execution in a batch mode and stop processing a command in the interactive mode.

17

18

Chapter 3

Language Speci�cs

As with any computer language there are speci�c characteristics to the command structures
and how they can be used together to operate on data. The VGM code is no di�erent.
Special attention has been paid to ensure this language is as consistent as possible and as
general as possible without sacri�cing
exibility. Also, each of the arguments are descriptions
of the
ags they are setting, thereby making an input deck or script easy to read. Both the
command key words and the arguments do not need to be capitalized, as they will be
converted to the lower case.

3.1 Command Argument Ordering

Each command in the VGM code starts with a key word. This key word tells VGM which
command is to be issued. The commands and their uses are:

Command Description

allocate Create a new block or array variable
blend Interpolate between existing points in a variable
combine Regroup volume grids into a single grid system
copydist Copy a distribution from one grid line to another
quit End execution
read Input data
redist Redistribute a grid line based on a function
set Equate variables and data or compute data
smooth Smooth a grid with algebraic or PDE solvers
t� Perform Trans-Finite Interpolation on a region/zone
write Output data

Table 3.1: VGM command summary.

After each command there are any number of arguments. The order of the arguments is
not �xed. As long as all the arguments are available in the command line, VGM only requires
that the arguments come after the key word. There are two exceptions. The copydist
command requires a source and destination grid for the copying of grid-line distributions from

19

one grid to another. The order of these two grids is important, as explained in chapter 7. The
combine command requires a list of blocks to be combined to for a multiple block data set,
where the order of these block is based on the order of the block identi�ers. In addition, the
set command has a source and destination for data which is order dependent, as explained in
chapter 9. The copydist combine and set commands are the only commands that require
order speci�c arguments.

3.2 Script Readability

The VGM scripts or input decks have several features that improve readability. First, as
mentioned above, the commands and the arguments need not be capitalized because they
will be converted to the lower case. File names containing a mixture of upper and lower case
letters will be read as speci�ed. Internally generated variables will be converted to lowercase,
so uppercase characters in variables will have no e�ect.

Second, the language allows for the continuation of a command and its arguments onto
multiple consecutive lines by appending a n to the end of each line. Beware, the number of
arguments in a command line are limited. The limits are discussed in chapter 2 section 2.3.
VGM does not allow partial arguments to be on separate lines.

Third, the language allows blank lines and indentation of command lines. Whether the
command is entered in batch or interactively, the blank lines have no e�ect on the �nal grid
manipulations. However, if more than 9 consecutive blank lines are in a �le, the code will
stop, because it may have encountered a �le with no ending command.

Fourth, the language has comment lines to explain the manipulations about to be done.
It is strongly recommended that the comment lines be used in batch operated scripts because
the commands can be used over and over again in a series, resulting in serious confusion on
the manipulations being performed. The comment line is marked by placing a # as the �rst
character of the line. The # can not be indented, but the following text can be spaced at
the users' discretion.

All of these attributes are designed to make the scripting language more readable and
understandable. They are not intended to confuse the reader of the scripts, they are only
available to make the script \legible". Thus, use of the last two capabilities is recommended
for easy explanation of manipulations to be done on a surface or volume grid.

3.3 Script Progress and Results

Due to the nature of this code and the language, results of a manipulation is output to the
user. Each command will generate a set of information that should be used to identify grid
system numbers, block numbers and limits of any manipulation. It is recommended that
the user read the output and save it, if possible, for trouble shooting. The output from
each command is printed to the standard output device in UNIX, and is augmented by the
debugging �le produced from each execution of the VGM code as explained in chapter 14.

20

Chapter 4

Input and Output

4.1 Commands

In order to manipulate existing grid data, a method of inputting and outputting grids is
needed. The VGM code makes use of two simple commands read and write to input and
output data from various computer software, including LAURA,5 GRIDGEN,2 Tecplot,6 and
PLOT3D.7 The VGM command syntax for read and write is as follows:

read �lename ftypeg fstyleg fformatg fdimensiong

where,

�lename is the �le name of the data to be read. The �le name rules are as
follows:

1. Limited to 60 characters in length;

2. Can not be identical to read arguments;

3. Can not contain ['s,]'s, n's, or commas;

4. Are case sensitive;

5. May contain directory placement characters (./, ../ and �)

format is the data format, ASCII, unformatted, or binary. <default=unformatted>

style is the style the �le is in; gridgen, plot3d, laura, or tecplotTM. <default=plot3d>

type is the type of data in the �le; gridonly, solution(ngsys), or curve.
<default=gridonly>

NOTE: The solution(ngsys) option requires a grid system number
to attach the data to, to ensure there is one value for each grid
point in each block. The variables loaded in this manner will have
variable names of the form:

varname nNN blkBBB

where the NN represents the Grid System number and the BBB
represents the block number.

21

dimension represents the number of blocks in the grid set, single or multiple.
<default=single>

write �lename ftypeg fstyleg fformatg fdimensiong xyz[...] forientationg

where,

�lename is the �le name of the data to be written. The �le name rules are
identical to the readcommand.

format is the data format, ascii, unformatted, or binary. <default=unformatted>

style is the style the �le is in; gridgen, plot3d, laura or tecplot(variables).
<default=plot3d>

NOTE: The variables speci�able in the tecplot(variables) option
include the physical coordinates (X, Y, and Z), the computational
coordinates (I, J, and K), and array and constant variables in the
form:

tecplot(x,y,z,i,j,k,dsj1)

type is the type of data in the �le; gridonly, solution(ngsys), or curve.
<default=gridonly>

NOTE: The solution(variables) option requires a set of variables,
similar to the tecplot(...) argument.

dimension represents the number of blocks in the grid set, single or multiple.
<default=single>

xyz[...] is the block or region or set of blocks to be written as a data set.

NOTE: The block limits may be used in this command to select
a range.

orientation is the physical and computational orientation of the grid. It is
speci�ed with the following argument:

switch(x,y,z,i,j,k)

where the physical coordinates are speci�ed in the order to be written, and
same with the computational coordinates.

NOTE: The orientation basically changes the entire reference
frame of the grid written. Beware, no check is done to determine if
a left handed coordinate system is written.

As stated in the introduction, the arguments in the f g's are optional. The default values
for these optional arguments are given, but the write command does not use code initialized
defaults for grid systems that were read. The input settings used to read in the grid systems
is used as the defaults for the same grid systems when written. These can be overridden by
specifying the arguments on the command line.

22

4.2 . READ and WRITE Usage

4.2.1 PLOT3D

The following is an example illustrating the use of the read and write commands: These

read shuttle.g plot3d single unformatted grid

write tail.vol single unformatted grid plot3d xyz[1,1,121-0,1-15]

Script 4.1: External grid extraction.

commands read a grid from the �le named \shuttle.g" using the PLOT3D style, single block
dimension, unformatted format, and write a grid volume encompassed by I=121 to Imax,
J=1 to 15 and all K points. By using the defaults, the VGM script 4.1 can be reduced to:

read shuttle.g

write tail.vol [1,1,121-0,1-15]

because the �le is a PLOT3D style, unformatted format, single-block dimension grid. As
stated in the previous chapter, there is no order to the arguments of these commands.

If the �le was multiple block and/or in ascii, the defaults would no longer hold on the read
command. But if the output �le was to be identical, the defaults on the write command
would be those set by the read command. For example:

read shuttle-MULTI.g multiple ascii

write tail.vol [1,3]

would result in tail.vol being a PLOT3D style, ascii format, multiple-block dimension
grid, only containing one block. The PLOT3D style is the default on the read so it would
also be default on the write in this case only.

23

4.2.2 GRIDGEN

As most of the PLOT3D formats are supported, so to are the GRIDGEN surface and curve
formats. To load in a *.mlga �le that contains 6 surfaces per grid block, use the following:

read shuttle.mlga multiple ascii gridgen

The surfaces are then loaded as a series of 6 surfaces, each with I and J indices. The K-index
faces are not recognized because the style only has two index maxima. Likewise, to load in
a single surface (*.grda) just omit the multiple argument because the single block grid
dimension is the default.

To load in a GRIDGEN curve, use:

read edge1.dat ascii gridgen curve

Again, since there is only one computational index, the curve is loaded as an I-varying grid
line.

Similarly on output, the following can be used to output a *.mlga �le and a curve,
respectively: The curve that is written in this case is from grid system number 1, block 5,

write shuttle.mlga multiple ascii gridgen xyz[1,1-6]

write edge3.dat ascii gridgen xyz[1,5,6,15,2-57]

Script 4.2: Gridgen face and curve extraction.

with I=6, J=15, and K varying from 2 to 57. VGM will look for the index that is varying
and only output that curve. The curve argument is not needed on the output because the
xyz[...] has only one varying index, and the style is GRIDGEN.

4.2.3 Solution

If a volume grid has already been read into VGM, a solution can be read from various types
of input and attached to the grid points. This is done by using the solution(ngsys) option of

24

the read command:

read shuttle.q solution(1) plot3d

write tail.q solution(1) xyz[1,3]

Script 4.3: Solution I/O manipulation.

instructs VGM to read in the solution �le shuttle.q for an existing volume grid, and attach
it to grid system number 1. This �le is expected to be the standard PLOT3D solution style
for a \Q"�le. When the data is referenced on the output, the grid system number is 1 in the
solution(1) argument and block 3 of grid system 1 is to be written. Although the 1 in the
solution(1) argument is redundant, it is speci�ed for consistency.

There are other ways to write the solution for a grid, besides using the grid system
number in the solution(1) argument of the write command. The solution() argument
may also contain variable names. For example:

write tail.q solution(rho,u,v,w,e) xyz[1,3]

Script 4.4: Variable speci�c solution output for PLOT3D style.

is acceptable providing that the variables rho n1 b3, u n1 b3, v n1 b3, w n1 b3, and
e n1 b3 are de�ned and have the same I-, J-, and K-dimensions as the xyz[1,3] grid block.
Assuming the PLOT3D style, the data will be written as a PLOT3D solution �le. If too few
or too many variables are selected in the solution() argument, the code will not write the
�le and an error will result.

25

4.2.4 TECPLOTTM

Another way to read and write data is using the tecplot(variable1,variable2,...)

argument. The tecplot() argument allows for the input of TECPLOTTM ascii data sets
and the writing of data in the TECPLOTTM block format. For example:

read shuttle.dat tecplot ascii

write tail.q ascii tecplot(rho n1 b1,u n1 b1,v n1 b1,w n1 b1,e n1 b1) xyz[1,3]

Script 4.5: Variable speci�c solution output for TECPLOT style.

will read a TECPLOTTM �le and assign the physical coordinates to an xyz[...] grid block,
and the other variables based on the solution(ngsys) algorithm described above. On
output, the tecplot() command must contain those variables to be written. The physical
coordinates X, Y, and Z, and the computational coordinates I, J, and K are plain letters
in the variable list. Other variables have to be named exactly. In this case, since the data
was read in as a TECPLOTTM data set, the density (rho), the three velocity vectors (u, v,

and w) and the energy (e) are speci�ed with their respective grid system and block numbers
used in the reading process to generate the variable names.

NOTE: The variables listed in the output are not used in the input because
they already reside in the �le. Also, on output, all variables and coordinates have
to have the same dimension or the data can not be written.

4.2.5 Re-orienting Coordinates

The switch(x,y,z,i,j,k) argument is a powerful tool to change the orientation of a grid.
As explained above, the switch() argument allows for the re-orientation of a volume grid
by changing the physical and computational coordinates through the writing of them in
succession. VGM assumes that X, Y, and Z are written in I, J, and K computational
coordinates, but the orientation can be changed to anything, provided that all 6 coordinates
are written and not repeated. If any of the physical coordinates has a \-" in front, the sign
of the coordinate is reversed. Likewise, if the computational coordinate has a \-" in front,
that index will be written in reverse order. For example:

switch(y,-z,x,k,-i,j)

instructs VGM to write the Y-coordinate �rst, then the reversed Z-coordinate, then the X-
coordinate. The computational order of the data will be the current K-index �rst, then the
I-index in reverse order, and �nally the J-index.

The switch argument can be used with any of the styles, as the orientation only a�ects
the reference frame of the grid data.

26

4.3 Manipulative Capabilities

The read command has no manipulative capability. It is speci�cally designed to input data.
But the write command has many manipulative capabilities. These include:

1. Converting grid data from one style and format to another.

2. Coarsening an existing volume grid for grid convergence studies.

3. Extracting surface and curve grid data from volume grids.

4. Re-orienting a surface grid from a GRIDGEN *.mlga �le to use in the generation of a
volume grid.

5. Evaluating grid data by printing selected quantities.

4.3.1 Converting Grid Styles

In dealing with multiple grid generation codes such as GRIDGEN,2 3DGRAPE/AL8 and
3DMAGGS;1 CFD codes such as LAURA,5 GASP9 and TLNS3D;10 and visualization tools
such as FAST11 and TECPLOTTM,6 each require a surface or volume grid. The style used by
each may be di�erent, but the data is all the same. The VGM code can accommodate most
codes requiring surface and volume grids through the PLOT3D, GRIDGEN, TECPLOT and
LAURA grid data styles. Reading with one style and writing with another is trivial. The
only complexity that arises is when using surface and curve grids in volume grid styles and
vice versa.

When GRIDGEN styled data �le is read, it only has I and J maxima. To get the K-
dimension, the VGM code assumes it to be 1. This is signi�cant when writing data to be
used in PLOT3D style because the GRIDGEN surface may indeed have a K-dimension but
VGM does not know this. To ensure the K-dimension is written, the switch() command
can be used:

read shuttle.mlga gridgen multiple ascii

write face3.g plot3d single binary xyz[1,5] switch(x,y,z,j,k,i)

Script 4.6: Coordinate transformation manipulation.

The above command reads a *.mlga �le containing at least 6 surfaces. Using the TEAM12

nomenclature, face 3 is a constant J face, and when written in the PLOT3D style, the face
will have an I and K maxima while the J maxima will be one because the \k" in the
switch(x,y,z,j,k,i) command is 1.

27

When converting to and from the TECPLOTTM style, the grid dimension (single or
multiple) is not speci�ed. Rather it is located in the data �le. If this type of �le is read,
the user must beware of the dimensionality of the block so as to prevent confusion on the
computational coordinate limits.

4.3.2 Coarsening Grids

In the evolution of CFD simulations the necessity to do grid convergence studies usually
arises. Or to start a CFD simulation, it may be simpler to establish a
ow �eld about a
con�guration using a coarse mesh of the the discretized domain. In either case, the volume
grid can be coarsened in any of the computational coordinate directions by simply using a
non unity increment for the grid block to be written. For example:

read shuttle.g

write shuttle c8.g xyz[1,1,1-0:8,1-0:8,1-0:8]

will read a volume grid from the shuttle.g �le in PLOT3D style and write out a volume
grid skipping 8 points in all three computational directions. If the grid is \multigridable" by
3 levels, 1 subtracted from the computational dimension limits will be divisible by 8. If this
is not the case, the last point in the direction that is not divisible by 8 will not be written.
For example, if the computational limits are (161 X 133 X 65), with the skipping of every 8
points, the new dimension will be (21 X 17 X 9) because:

Idim =
161 � 1

8
+ 1 = 21:0 = 21 points

Jdim =
133 � 1

8
+ 1 = 17:5 = 17 points

Kdim =
65 � 1

8
+ 1 = 9:0 = 9 points

In actuality, the limits should be (21 X 18 X 9) to get the last point. With the full dimensions,
the 17 point would correspond to the J=129 which is 4 points shy of the limit at 133. But the
manipulation is a simple one and can be used over and over again for successive coarsening.

4.3.3 Surface and Curve Extraction

In the improvement an existing grid it becomes necessary to change de�ning grid block
surfaces. To change these surfaces, VGM can be used, but other tools such as GRIDGEN
and GRIDTOOL13 are viable for capabilities not in VGM, such as elliptic solving and surface
projection, respectively. To improve or change a surface in a volume grid, the VGM code
can be used to extract the surface by using the xyz[...] argument in conjunction with the
GRIDGEN style. For example:

28

read shuttle.g

write face4.grdb gridgen binary xyz[1,1,,0] switch(x,y,z,k,j,i)

will read in a volume grid representing the shuttle and write out a surface in GRIDGEN
style in K,I varying indices. Though these indices can be I,J or any other pair, in the TEAM
nomenclature, face 4 is a J-constant face with K,I varying indices. The VGM code will detect
the switch in coordinates and write out a surface grid for further manipulation, because the
0 in the xyz[1,1,,0] speci�es the maximum J index and the missing I and K ranges specify
the entire I and K index limits.

29

4.3.4 Re-orienting Grid Data to Generate Volume Grids

The GRIDGEN3D, 3DGRAPE/AL, and 3DMAGGS codes can all generate volume grids
based on the algebraic solution of Trans-Finite Interpolation (TFI). VGM can do the same,
but only requires the *.mlga �le from GRIDGEN or GRIDGEN2D. To generate the volume
grid, the surfaces in the *.mlga �le need to be oriented in the computational domain to be
properly placed in the volume grid block de�nition. To do this, the switch(x,y,z,i,j,k)
command is used to take the assumed I-J varying faces into I-J, J-K, and I-K faces using
the following commands:

#

Extract individual faces from a GridGen *.mlga file and re-orient

them to fit within a PLOT3D grid block:

#

read shuttle.mlga gridgen ascii multiple

write face1.g plot3d binary single xyz[1,3] switch(x,y,z,k,i,j)

write face2.g plot3d binary single xyz[1,3] switch(x,y,z,k,i,j)

write face3.g plot3d binary single xyz[1,3] switch(x,y,z,j,k,i)

write face4.g plot3d binary single xyz[1,3] switch(x,y,z,j,k,i)

write face5.g plot3d binary single xyz[1,3]

write face6.g plot3d binary single xyz[1,3]

#

Read in the new faces:

#

read face1.g

read face2.g

read face3.g

read face4.g

read face5.g

read face6.g

Script 4.7: GRIDGEN faces to PLOT3D block conversion.

After executing this sequence, the VGM code will have six new surfaces ready for assign-
ing to a grid block de�nition:

xyz[2], xyz[3] are constant I faces;
xyz[4], xyz[5] are constant J faces;
xyz[6], xyz[7] are constant K faces.

Using the set command as explained in chapter 11, the volume grid can easily be built with
VGM via 3DTFI.

30

Chapter 5

Grid Based Parameters for

Manipulations

One of the most powerful capabilities of the VGM code is the computation of grid related
parameters. Grid related parameters can be used to perform various manipulations, including
the generation of distribution functions upon which smoothing can be done or transition from
one grid to another in a blending type operation. These internally computed parameters form
the basis for most of the complex grid manipulations that VGM is capable of doing.

The grid related parameters are primarily arclength and normalized arclength parame-
ters, based on a computational direction of a surface or volume grid. The six possible grid
parameters or intrinsics are listed in table 5.1:

dsia = Arclength function in I-direction
dsja = Arclength function in J-direction
dska = Arclength function in K-direction
dsin = Normalized arclength function in I-direction
dsjn = Normalized arclength function in J-direction
dskn = Normalized arclength function in K-direction

Table 5.1: VGM grid parameters (intrinsics).

The di�erence between the normalized arclength and the standard arclength is the nor-
malized arclength varies from 0.0 to 1.0 in the computed direction (see �g. 5.1). The
normalized arclengths are typically used to redistribute a grid within its physical limits, and
the standard arclengths are used to change the physical limits of a grid.

These parameters are based on surface and volume grids through the following syntax:

dska(xyz[...])

where the xyz[...] is the region of a grid block to be used.

31

50 100
j

5

10

15

20

25

30

35

k

100 500 900 1300 1700 2100

Normalized Arclength Arclength

50 100
j

5

10

15

20

25

30

35

k

0 0.25 0.5 0.75 1

Figure 5.1: Arclength parameter space di�erences.

5.1 Computing Grid Parameters

Prior to computing these grid parameters, a variable array has to be created to store them
for later use. To create a variable array the allocate command is used:

allocate varname[I-limit,J-limit,K-limit]

where,

varname is the array variable name to store computed grid parameters. The
array variable name rules are as follows:

32

1. Limited to 60 characters in length;

2. Can not be identical to grid parameters (intrinsics);

3. Can not contain ['s,]'s, n's, or commas;

4. Are not case sensitive;

5. Computational limits may not exceed the grid-point limits of VGM.

I-limits First Computational Index Limit

J-limits Second Computational Index Limit

K-limits Third Computational Index Limit

The allocate command reserves memory for a computed intrinsic. It can also be used
to allocate a new grid block (see chapter 6). Once the variable has been created, the set
command is used to compute and assign the results of the computation to the variable:

set varname1[I-limit,J-limit,K-limit] = varname2[I-limit,J-limit,K-limit]

-or-

set varname1[I-limit,J-limit,K-limit] = ds*(xyz[ngsys,nblk,I-limit,J-limit,K-limit])

where,

varname1 is the destination array variable name to store computed grid param-
eters or other variables.

varname2 is the source array variable or intrinsic (ds*) to be equated or com-
puted, respectively. The only rule that must be followed is the computa-
tional region of each variable or intrinsic in the equate must be the same.

I-limits First Computational Index Limit of region to be set

J-limits Second Computational Index Limit of region to be set

K-limits Third Computational Index Limit of region to be set

NOTE: The set command has many other capabilities that will be discussed
later.

The capabilities of the set command also include:

� Extract grid data (see chapter/section 6.1);

� Insert grid data (see chapter/section 6.1);

� Merge grid data (see chapter/section 6.2); and

� Shift grid data (see chapter/section 11.2);

33

Once computed, these arclength parameters can be used as input into various VGM
commands for controlling cell sizing, grid-point distribution, and grid smoothness. All of
these functions are described in more detail in chapters 8 and 9. For grids that are
to remain within the same physical limits, the normalized arclength is the best choice as
it can be used to change a grid distribution without changing the length of the grid-line
being altered. Standard arclengths should be used for grids that are to be changed in both
distribution and grid-line length.

5.2 SET and ALLOCATE Usage

With the allocate and set commands, various grid parameters can be computed. For
example, to compute the distribution function in the I-direction of a volume grid with every
other point in the J-direction, use the following:

allocate dsi1[161,33,33]

set dsi1 = dsia(xyz[2,4,11-171,57-121:2,1-33])

Script 5.1: Computation of I-direction based arclength parameter.

Or, to compute the normalized arclengths in separate regions of a volume grid, use:

allocate dsi2[129,197,65]

set dsi2[,1-17] = dsin(xyz[1,1,,1-17])

set dsi2[,41-73] = dsin(xyz[1,1,,57-89])

set dsi2[,101-121] = dsin(xyz[1,1,,141-161])

Script 5.2: Computation of I-direction based normalized arclength parameter.

The last example may be the matching of interfaces from one grid to another. At these in-
terfaces, the grid may require smoothing or improved interfacing, so the normalized arclength
function may be manipulated (see chapter 9). Regardless of the reason, grid parameters can
be computed by VGM for further processing.

Some of the inputs that can be generated from the allocate and set commands for grid
manipulations are cell heights. To compute cell heights, the following can be used to generate

34

a surface variable containing cell sizes to be used for re-distributing:

allocate dsi2[129,197,2]

allocate dsi2a[129,197,1]

allocate dsi2b[129,197,1]

set dsi2 = dsia(xyz[1,1,,,1-3:2])

set dsi2a = dsi2[,,2]

set dsi2 = dsia(xyz[1,1,,,32-33])

set dsi2b = dsi2[,,2]

Script 5.3: Endpoint cell sizes for a region in the I-direction.

These computations store the distance from the K=1 boundary to the K=3 boundary
as the cell heights in variable dsi2a and the current cell heights at Kmax in variable dsi2b.
This information can be very valuable for Vinokur's14 function used in a re-distribution (see
chapter 8).

35

36

Chapter 6

Extracting, Inserting, Merging and

Combining Grids and Grid

Parameters

One of the most important aspects of grid generation is topology. The topology determines
what a grid will look like as well as how well it can model a
ow �eld about a complex
aerodynamic con�guration. In the evolution of a volume grid, it usually becomes necessary
to consider blocking strategies that may or may not �t within the chosen topology. These
di�erent blocking strategies may be used to improve parallel processing load balancing, im-
proving grid smoothness across grid block boundaries, and even change the overall topology.
Modi�cation of existing volume grids to re
ect changes in blocking strategies can be di�cult
and time consuming.

However, using the VGM code to change blocking strategies signi�cantly reduces the
complexity by using the allocate and set commands repetitively. The syntax for these
forms of the allocate and set commands are:

allocate xyz[I-limit,J-limit,K-limit]

where,

xyz is a volume grid block, using the standard data structure.

I-limits First Computational Index Limit

J-limits Second Computational Index Limit

K-limits Third Computational Index Limit

NOTE: The grid system number and block number are not included in the
allocation of the new grid block; only the computational limits are required.
Also, this command will cause the grid system maximum to increase by 1 each
time it is used.

and,

set xyz[ngsys,nblk,I-limit,J-limit,K-limit] = xyz[ngsys,nblk,I-limit,J-limit,K-limit]

where,

37

xyz on the left hand side is the destination block to store the results from
extracting or merging grid blocks.

xyz on the right hand side is the source block to be extracted or merged. The
only rule that must be followed is the computational region of each grid
block in the equate must be the same.

I-limits First Computational Index Limit of region to be set

J-limits Second Computational Index Limit of region to be set

K-limits Third Computational Index Limit of region to be set

NOTE: The set command has many other capabilities that are discussed in
chapters 5 and 11.

The extraction, insertion and merging of grid blocks are easily accomplished with these
commands. But in some cases, it may be necessary to regroup a series of blocks into a single
grid system. This can be done using the combine command:

combine xyz[ngsys1,nblk1] xyz[ngsys2,nblk2] ...

where,

xyz is a source grid block. Subsequent xyz's are other blocks to be added. There
are some rules that can be used to govern which grid blocks are used:

1. xyz[ngsys] will get all the blocks in grid system ngsys

2. xyz[ngsys,nblk begin-nblk end:nblk increment]will get those blocks
that are referenced in the range from nblk begin to nblk end by nblk increment

NOTE: This command will cause the increasing of the grid system maximum
by 1 each time it is used.

When using the combine command, the computational limits are not used. If a portion
of a grid block is to be used in the regrouping, an extraction should be done prior to the
combine. The order of the blocks is signi�cant in this command as the order determines
which is the �rst block to the last. Also, the maximum number of arguments on a command
line is 40, so if the number of arguments needed to generate a multiple block decomposition
is larger than 40, multiple combine commands can be used to build up the �nal set of grid
blocks.

38

6.1 Extracting and Inserting

To extract a grid block, the following is used:

allocate xyz[11,17,65]

set xyz[2] = xyz[1,4,21-31,1-17]

Script 6.1: Internal grid extraction.

The grid block dimensions of the source would have to be at least (31 X 17 X 65) because
these are the maximum limits in the right hand side xyz[...] term.

To insert a grid block, the following is used:

set xyz[1,4,21-31,17-35] = xyz[2]

The limits are similar to the extraction, but these commands in succession would produce a
copy of the exact same grid in the exact same physical location but di�erent computational
locations.

6.2 Merging Grid Blocks

As stated above, some times it is necessary to merge multiple blocks into a single block
for topological changes. To merge multiple blocks into a single block, a single grid block
with large enough dimensions needs to be created to accommodate the source blocks. For
example, the following is a listing blocks to be combined for a NASA proposed SSTO:15

Block Computational Block Computational
Number Limits Number Limits

1 (81 X 65 X 33) 7 (41 X 21 X 33)
2 (81 X 65 X 33) 8 (41 X 23 X 33)
3 (41 X 21 X 33) 9 (41 X 23 X 33)
4 (41 X 45 X 33) 10 (41 X 30 X 33)
5 (41 X 57 X 33) 11 (41 X 28 X 33)
6 (41 X 9 X 33) 12 (41 X 9 X 33)

Table 6.1: Initial blocking strategy for NASA proposed SSTO.

39

These blocks are arranged, both computationally and physically in Fig. 6.1. To generate
a single block volume grid from this set of blocks, the dimensions in each series of blocks in
each computational direction need to be summed. The series in the J-direction are blocks
1-2, 3-6, and 7-12; and in the I-direction the blocks are the same sets or 1, 3, and 7. Since
the K-direction is constant at 33 points, the computational limits are computed by:

Imax = (81 + 41 - 1) + 41 - 1 = 161
Jmax = 65 + 65 - 1

= ((21 + 45 - 1) + 57 - 1) + 9 - 1
= ((((21 + 23 - 1) + 23 - 1) + 30 - 1) + 28 - 1) 9 - 1 = 129

Kmax = 33

To generate the single block volume grid the following commands are used:

allocate xyz[161,129,33]

set xyz[2,1,1-81,1-65] = xyz[1,1]

set xyz[2,1,1-81,65-0] = xyz[1,2]

set xyz[2,1,81-121,1-21] = xyz[1,3]

set xyz[2,1,81-121,21-65] = xyz[1,4]

set xyz[2,1,81-121,65-121] = xyz[1,5]

set xyz[2,1,81-121,121-0] = xyz[1,6]

set xyz[2,1,121-0,1-21] = xyz[1,7]

set xyz[2,1,121-0,21-43] = xyz[1,8]

set xyz[2,1,121-0,43-65] = xyz[1,9]

set xyz[2,1,121-0,65-94] = xyz[1,10]

set xyz[2,1,121-0,94-121] = xyz[1,11]

set xyz[2,1,121-0,121-0] = xyz[1,12]

Script 6.2: Grid block merging.

Now that the volume grid is a single block, the grid can be modi�ed as needed. If the
blocking strategy is to remain the same, the extraction and insertion principals can be used
to decompose the modi�ed single block volume grid into the original multiple block format.

40

1

2

3

7

8

9

12

Physical Domain Computational Domain

IJ

K
1

2
3

7891011

Figure 6.1: Initial multiple block decomposition of NASA proposed SSTO.

41

6.3 Combining Grid Blocks

If a di�erent blocking strategy is to be used for the above merging example, the grid can
be decomposed by using the extraction and insertion methods, then using the combine
command to generate a new block set. For example, if the New blocking strategy is the
following:

Block Computational
Number Limits
1 (161 X 33 X 33)
2 (161 X 33 X 33)
3 (161 X 33 X 33)
4 (161 X 33 X 33)

Table 6.2: New blocking strategy.

The commands to decompose the single block into this multiple block decomposition are:

allocate xyz[161,33,33]

allocate xyz[161,33,33]

allocate xyz[161,33,33]

allocate xyz[161,33,33]

#

Decompose single block:

#

set xyz[3,1] = xyz[2,1,,1-33]

set xyz[4,1] = xyz[2,1,,33-65]

set xyz[5,1] = xyz[2,1,,65-97]

set xyz[6,1] = xyz[2,1,,97-0]

#

Regroup new blocks into single grid system:

#

combine xyz[3] xyz[4] xyz[5] xyz[6]

Script 6.3: Domain decomposition through block splitting.

42

The results of these commands will generate xyz[7] which will contain 4 blocks where each
is then referencable as part of the grid system number 7.

43

44

Chapter 7

Copying Grids

In the analysis process of evaluating aerodynamic trends in the con�guration design pro-
cess, various changes are made to the con�guration to improve vehicle performance. These
changes, usually accomplished through parametric design studies, produce volume grids that
are very similar both in physical and computational limits. Reuse of a previous computation
can reduce the time to compute a new
ow �eld about a modi�ed vehicle de�nition.

Generating the grid about the new con�guration can be di�cult. One method is to use a
zonal approach16 which uses various re-distribution techniques to incorporate an elliptically
generated parametric design change. Instead of using the various re-distribution techniques
explained in ref. 11, copying the original grid spacings into the new elliptically generated grid
can accomplish the same task if the parametric design change represents only an incremental
modi�cation of the original con�guration, as shown in Fig. 7.1.

To copy the grid spacings from one grid into another, use the copydist command:

copydist interpolant basis direction xyz1[...] xyz2[...]

where,

interpolant is the parameterization to be used for the copy. The possible values
for the argument are arclength or normarc.

basis is the interpolation basis to be used. The possible values can be linear

or spline.

direction is the direction to copy the grid-point distributions, one for each com-
putational index. The possible values are I-direction, J-direction, or
K-direction.

xyz1[...] is the source grid block to get the grid-point distributions.

xyz2[...] is the destination grid block containing the grid-lines to be modi�ed.

The copydist command does require the number of grid-lines in the �rst xyz[...]

to match the grid-lines in the second xyz[...] in the two cross-computational directions
(i.e. the ones not identi�ed by the direction argument). But the number of points in the
computational index referenced by the direction argument can di�er.

45

Original Grid

Inserted
Parametric

Copied
Distributions

onto Parametric

Figure 7.1: E�ects of the copydist command in normalized arclength domain.

The spline basis function is recommended for most of the copydist command execu-
tions, but the spline function is unclamped which can lead to the generation of negative
volumes because of interpolated line over shoot. This occurs because of the way the copying
is done. This command copies one grid to another by computing the function of the physical
coordinates with respect to the arclength-point distribution on the source and using it as
the distribution on the destination grid, as shown in Fig. 7.2. To correct this problem, VGM
checks to make sure the arclength function resulting from the spline interpolation is never
negative. If a region is negative the region is isolated and a linear interpolation is placed
between the positive arclengths.

Also in Fig. 7.2, the di�erences between linear and spline basis interpolation are also
illustrated. In the plot of the physical coordinates, the dashed line is straight between the
original grid points while the spline is curved. The e�ect the spline has on the grid is
very di�erent than the linear basis, because the spline has a tendency to improve grid line
orthogonality at a boundary where that type of PDE solver boundary condition was active.
Adapting with spline interpolation on a coarse basis grid can improve the orthogonality at
a boundary. The spline basis is recommended because it usually results in the least amount
of change along the grid line from manipulation to manipulation.

46

-1 -0.8 -0.6 -0.4
x

33

34

35

36

37

38

39

y

Spline
Linear
Original grid

Interpolation Basis types:
Spline versus Linear

Spline
Original

Figure 7.2: E�ects of the linear and spline basis interpolation.

The capabilites of the copydist command are explained primarily in this chapter, but
the command can use used to:

� Adapt volume grids based on previously grid-adapted, computed
ow �elds; and

� Inserting one grid into another (see chapter/section 10.1).

47

7.1 COPYDIST Usage

As stated earlier, one use of the copydist command is to insert a vehicle design parametric
into an existing volume grid for parametric design studies. To do this, use the following:

copydist normarc spline k-direction xyz[1,1,81-0,17-65] xyz[2]

set xyz[1,1,81-0,17-65] = xyz[2]

Script 7.1: Insertion of design change for parametric studies.

This command copies the distributions from grid system number 2 in the k-direction to the
design parametric in the volume grid of grid system number 1. Then the set command inserts
the adapted vehicle parametric into the original grid to change the vehicle con�guration. The
results of this copy were shown in Fig. 7.1.

7.2 Manipulative Capabilities of COPYDIST

Besides using copydist to augment grid generation processes of parametric design studies,
the command �nds uses in adapting new grids based on old ones. As stated previously,
reusing a previous solution to a similar vehicle or
ow conditions as the starting point for
another solution can reduce CFD simulation time. The copydist command can be used
to adapt a new grid based on an old grid. There are two types of adaption that can be
done. The �rst is adaption of a volume grid to change the outer boundary and cluster points
based on an old grid. This is accomplished by performing the copydist in the arclength
parameter space:

copydist arclength spline k-direction xyz[1] xyz[2]

Script 7.2: Utilizing old grid data to adapt a new grid.

The e�ects of this type of command is illustrated in Fig. 7.3.
The second type of adaption is one based on clustering only. This is done using the

normalized arclength (normarc) parameter space, and was both explained and illustrated in
section 7.1.

48

 Adapted
 Parametric
via COPYDIST

Solution
 Adapted
 Grid

 Original
 Inserted
Parametric

J

K

Figure 7.3: E�ects of arclength parameter used for grid adaption.

49

50

Chapter 8

Redistributing Grids

Utilizing the copydist command is one method for employing grid reusability techniques.
A second technique is to use grid-point redistribution in a computational direction for a
group of grid lines. Redistributing a grid line or set of grid lines in a computational direction
retains the original grid line along the speci�ed direction, but alters the point distribution.
If the grid lines in the redistribution direction have relatively smooth characteristics, the
other computational direction grid lines can be modi�ed to improve smoothness or remove
poor quality cells and volumes. All redistributing in the VGM code is controlled with the
redist command. The syntax of this command is:

redist domain basis direction interpolants points=# distribution function newblock= xyz[...]

where,

domain is the physical or computational domain to be used for the redistribu-
tion. The possible values for the argument can be physical or parametric.

basis is the interpolation basis to be used. The possible values can be linear

or spline.

direction is the direction to redistribute the grid-point distributions, one for each
computational index. The possible values are I-direction, J-direction,
or K-direction.

interpolants is the type of parameterization to be used. The possible values are
arclength and normarc (i.e. normalized arclength).

points=# is the number of points to be generated as a result of the redistribu-
tion.

distribution function this is the function to be used for the redistribution. The
functions possible are:

1. equal

2. vinokur14(�sbegin,�send)

3. cubic(�sbegin,�send)

4. vin2cub(�sbegin,�send,ratio)

51

5. sin

6. -sin

7. cos

8. laura(�sbegin,Smax,fstr,ep0,fsh)

9. func(�lename) or func(array variable)

newblock= speci�es if the results of the redistribution are to be stored in a new
grid system and grid block. Possible values are yes or no.

xyz[...] is the region of a grid block to be redistributed distributions.

The capabilities of the redist command are numerous, as this command performs the
basis of many types of manipulations, including:

� Copying distributions from one grid to another;

� Adapting grids from a solution adapted grid to a non-adapted grid (see chapter/section 10.1);

� Smoothing grids based on a technique called parametric re-mapping (see chapter/section 9.1);

� Smoothing grids based on retaining cells at limits and placing a smooth distribution
function between the �xed cells;

� Converting inviscid grids to viscous grids (see chapter/section 12.4);

� Altering the dimensional limits of a grid while preserving grid quality;

� Improving grid resolution to capture
ow �eld gradients (see chapter/section 10.2);
and

� Generating straight line segments (see chapter/section 11.3).

8.1 REDIST Usage

All of the redistributions done with the redist command require a distribution function. The
VGM code supports eight basic internal functions, and one general function. The internal
functions of equal, sin, -sin, and cos are based on the grid data at hand. The equal

function redistributes a grid line to be of equal spacing, while the other three are based on
sinusoidal functions. The sin function generates a distribution based on the equation:

�s = Smax sin

"
�

2

� � 1

�max � 1

!#

where, � is the computational coordinate of a point in the direction of the redistribution.
The -sin and cos functions use the following equations, respectively, for generating a dis-
tribution:

�s = Smax

(
1 � sin

"
�

2

� � 1

�max � 1

!#)

52

 Equal
Spacing

 Sine
Spacing

 -Sine
Spacing

 Cosine
Spacing

K

J

Figure 8.1: E�ects of equal, sin, -sin, and cos spacing functions.

�s =
1

2
Smax

(
1 � cos

"
�

� � 1

�max � 1

!#)

The e�ects of these distributions are shown in Fig. 8.1.

NOTE: With all grid-lines originating from the Kmin boundary near the center,
the sin function clusters points to the Kmax, the -sin function clusters points
to the Kmin, and the cos function clusters points at both ends of a grid line.

Illustrated in Fig. 8.2, the cells produced along a computational direction are inversely
dependent on the distribution function used (i.e. the sin distribution looks like a reversed
sine curve from �/2 to 0). The regions of high curvature on the sine waves produce the
smallest change in cell size at the opposite ends to which they are applied. Likewise, the cos
distribution function produces the smallest cells and largest cell to cell scaling at the end
points with near equal spacing on the interior.

Each of these distribution functions �nd use in computational
uid dynamics by clustering
points near a wall for capturing various gradients in a boundary layer with the -sin function
to improving continuity in grid spacings along a computational direction using the cos

function. The strength of these distribution functions is that they are not dependent on cell
size conditions at the ends of a grid line; they can be used to eliminate such dependency and
foster grid quality through such independence.

In some instances, dependency on cell sizes at the ends of grid lines is necessary to
promote improved grid quality. The internal functions of vinokur, cubic, vin2cub, and
laura provide this dependency by requiring input parameters to control the distribution
function. The �rst three require the cell spacings at the beginning and end of a grid line,
�sbegin and �send respectively, while the vin2cub requires a ratio. The ratio is a blending

53

10 20 30 400

0.5

1

1.5

2

2.5

3

3.5

∆s Equal
Sine
-Sine
Cosine

Cell Spacing versus Computational Coordinate

K

Figure 8.2: Cell to cell scaling e�ects of sin, -sin, and cos distribution functions.

factor between the vinokur and cubic functions, using the following equation:

�s = (ratio)�svinokur+ (1 � ratio)�scubic

The last internal function generates a distribution based on the ALiGN SHoCK5 function
in the LAURA code, which is used to adapt volume grids based on
ow �eld parameters.
The adaption is usually done in the body to shock (outer domain) direction. This func-
tion requires the beginning cell height, which is used to obtain a local Reynolds number of
approximately 1, an ending total arclength to the bow shock, and three control parameters:

1. fstr is the percentage of cells to be placed between the body and the outer bow shock,
located at Smax.

2. ep0 controls the amount of clustering at the bow shock (no clustering if this value is
zero).

3. fsh controls where the bow shock, located at Smax, will be with respect to the distance
along the grid line from the body to the outer domain.

The e�ects of these distributions are shown in Fig. 8.3. The input cell sizes were:

�sbegin = 0.5

�send = 0.5

ratio = 0.5

Smax = 47.0

fstr = 0.8

54

LAURA
Spacing

vin2cub
Spacing

 Cubic
Spacing

Vinokur
Spacing

Figure 8.3: E�ects of vinokur, cubic, vin2cub, and laura spacing functions.

ep0 = 0.0

fsh = 0.0

Each of these spacing dependent functions provide di�erent grid characteristics by the cell
to cell scaling of the resulting distibution. Illustrated in Fig. 8.4, the vinokur distribution
provides nearly equally spaced cell sizes at the end points with considerable stretching on the
interior, while the cubic distribution exhibits a more subtle stretching on the entire grid line
with large changes in cell sizes at the ends. The vin2cub distribution blends the character-
istics of both the vinokur and cubic to produce a hybrid of stretching characteristics with
reduced cell to cell scaling changes at the ends of the grid line and a moderate stretching on
the interior. The vinokur distribution is primarily used to provide grid point densities near
the wall of a con�guration for proper boundary layer modeling and the vin2cub function is
used to smooth grid lines with poor distributions or large cell to cell scalings that can reduce
CFD solver accuracy.17

55

10 20 300

1

2

3

4

5

6

∆s

Vinokur
Cubic
Vin2Cub
LAURA

Cell Spacing versus Computational Coordinate

K

Figure 8.4: Cell to cell scaling e�ects of vinokur, cubic, and vin2cub distribution functions.

56

The input values for the internal functions can be constants speci�ed in the distribution
function argument, but these values can also be internal constants, array variables or �le
names. Using the set command, constant variables can be extracted from VGM intrinsics
to generate the input to the distribution function arguments. For example, to redistribute
a grid line using a vinokur function but retain the current cell sizes at the end points, the
following can be used:

allocate dsi1[2,1,1]

set dsi1 = dsia[1,1,45-46,1,0]

set dsi1a = dsi1[2]

set dsi1 = dsia[1,1,60-61,1,0]

set dsi1b = dsi1[2]

redist i-direction spline arclength physical points=17 vinokur(dsi1a,dsi1b) n

xyz[1,1,45-61,1,0] newblock=no

Script 8.1: Grid-line smoothing by �xing endpoints for redistribution.

This set of commands will redistribute a grid line from I=45 to I=61 using the current
point spacings at the ends, but place a vinokur distribution between the beginning and
ending grid points. This is a common manipulation in VGM for smoothing grids, as will be
explained in chapter 9. An added feature is the capacity to use array variables to do the
same manipulation, but on several cross-direction paired grid lines, (J,K) indexed lines in
this case. To do this type, simply replace the dsi1a and dsi1b with arrays:

allocate dsi1[2,31,65]

allocate dsi1a[1,31,65]

allocate dsi1b[1,31,65]

set dsi1 = dsia[1,1,45-46]

set dsi1a = dsi1[2]

set dsi1 = dsia[1,1,60-61]

set dsi1b = dsi1[2]

redist i-direction spline arclength physical points=17 vinokur(dsi1a,dsi1b) n

xyz[1,1,45-61] newblock=no

Script 8.2: Grid-zone smoothing by �xing endpoints for redistribution.

57

Naturally, these command lines assume the J and K limits are 31 and 65, respectively. These
command lines are used to smooth a grid, illustrated in Fig. 8.5, where the thick solid grid
lines represent �xed cell size boundaries.

RedistributedOriginal

K

I

Figure 8.5: E�ects of redist smoothing of a grid by retaining existing cell sizes.

NOTE: When using array variables as input to the vinokur, cubic, vin2cub,
and laura distribution functions, the number of cross-direction paired grid lines
identi�ed by the xyz[...] argument must match the limits of each array vari-
able.

One more internal function is available for the redist command. This is the func() argu-
ment. The func() argument allows for any distribution function to be used, both internally
and externally generated. For an externally generated distribution function, the func()

requires a �le name containing a single function curve in either arclength or normalized ar-
clength, as indicated by the domain type in the redist command arguments. An example
�le is shown in table 8.1. The �rst line indicates the number of points in the function, and
the rest of the data is the function in listed form. This format is only used for single line
function data. If a surface of data is to be used, it has to be generated internally to VGM.

The func() argument can also take an internally generated function. Since the redist
command redistributed based on a grid line, the function used for the redistribution can be

58

11
0.0000
0.1000
0.2100
0.3200
0.4500
0.6000
0.7300
0.8200
0.9100
0.9500
0.9750
1.0000

an arclength parameter. The generation of this type of function is done in chapter 9 because
this function is primarily used for smoothing grids.

The arguments in the redist command are numerous because this command is the back-
bone of many possible grid manipulations in VGM. The interpolants, are identical to those
explained for the copydist command in chapter 7. But an added twist to the redist com-
mand is the use of di�erent domains to perform the redistribution. The physical domain
instructs VGM that all parameters used in the distribution function are based on physical
grid related values, just as used in the copydist command. But the parametric domain
tells VGM that the distribution function parameters are based on computational domain
values, not the physical coordinates. For example, in the physical domain to keep the cur-
rent values of cell sizes at the end points of a grid line to be redistributed with a vinokur()
function, the cell sizes have to be computed using a grid intrinsic. But to specify the same
cell size at an end point in the parametric domain, the value of 1.0 is used because there
is one cell between the end point and the next point onto the interior of the grid line be-
ing redistributed. Specifying unity at both end points of the vinokur() function in the
parametric domain will have very little e�ect because the distribution will be nearly equal
in the parametric domain.

To harness the power of the parametric domain redistribution, a non-unity value at an
end point will change the parametricity of the domain being used for redistribution, but will
not signi�cantly change the overall distribution. Only the density of the grid points at an
end will change. For example, a grid can be adapted so that the overall grid line character
remains the same but the clustering or grid point density is increased at one end in a
ow
�eld. For instance, at the wall of a con�guration. The e�ects of specifying physical and
parametric domains is illustrated in Fig. 8.6.

Notice that the parametric grid retains the same grid line character in the cross-sectional
direction, but the points are more clustered at the wall of the con�guration. The physical
domain redistribution changed the distribution function and the point densities to be equal
at all beginning and ending points. Also notice that the grid line curvature in the J-direction
in the physical domain redistribution is more discontinuous than the parametric. Utilizing
parametric domain redistribution in the K-direction retains the grid-line curvature in the
cross-directions thereby only modifying grid-point densities in the redistribution direction.

59

Original
Physical
Domain

Redistribution

Parametric
Domain

Redistribution

K K K

Figure 8.6: E�ects of parametric and physical domain redistributions for grid adaption.

This example illustrates the strength of the parametric redistribution. These redistributions
were produced by using the following VGM commands:

redist j-direction spline arclength physical points=31 vinokur(.25,1.) n
xyz[1] newblock=yes

redist j-direction spline arclength parametric points=31 vinokur(.25,1.) n

xyz[1] newblock=yes

This discussion describes the basic manipulative capabilities of the redist command.
More powerful capabilities are incorporated into separate sections in the chapters on smooth-
ing (chapter 9), and grid adaption (chapter 10).

60

Chapter 9

Smoothing Grids

The VGM code was initially designed to do the insertion of design parametrics into existing
volume grids for parametric design studies. During this process, a zone is inserted and
blended into the original volume grid that was used to de�ne the region to be modi�ed. In
so doing, there are many instances in which grid smoothing is required, especially to resolve
grid point spacing mismatches that may have been generated in the development of a design
parametric volume grid.

There are other instances where grid smoothing may be necessary, including:

� Highly oscillatory grid lines in one direction resulting from poor elliptic solver boundary
conditions;

� Open volumetric spaces due to inadequately de�ned de�nition boundaries;

� Previous manipulations correct one problem but create another;

� Kinked grids resulting from poor adaptions to
ow gradients; and

� General improvement of existing grids.

Since VGM is a manipulation language that contains numerous commands, there are many
di�erent methods available for smoothing volume grids. The types of grid smoothing that
will be explained in this chapter include:

� Parametric Re-mapping - changing of the arclength parameter space with dependent
or directionally dependent functions;

� Trans-Finite Interpolation

� Vector Interpolation - interpolates vectors computed from derivatives derived from
existing grid lines.

9.1 Parametric Re-mapping

The underlying technique that will be exploited for Parametric Re-mapping, is the notion
of using the arclength parameter as a distribution function for manipulating the location of

61

grid points. This is done by computing the arclength function in a computational direction
using equation 9.1:

�Si;j =
q
�x2i;j +�y2i;j +�z2i;j (9.1)

where,
�xi;j = xi;j � xi;j�1

�yi;j = yi;j � yi;j�1

�zi;j = zi;j � zi;j�1

if the direction of the arclength is J. The initial function, when mapped to the physical
domain, locates the grid points in their original positions but creates a bridge between the
coordinates. This will be referred to as the basis function. By changing the distribution
function for the length of the curve that passes through the grid points in the said com-
putational direction, the grid point locations along the basis function (i.e. curve) will be
changed. The arclength parameter is one dimensional, which o�ers a simple link to the three
dimensional physical domain. By grouping a series of arclengths to form a region (i.e. zone)
the new distributions used for the arclengths in a computational direction can be created
with a single function or multiple dependent functions. The modi�cation of the arclength
parametric domain through the use of single or multiply dependent functions to create new
distribution functions, is termed parametric re-mapping.

The copydist and redist commands, by virtue of their arguments and implementation,
change the distribution of grid points with single functions. But the redist command has an
added feature, the func() argument. This argument can take a computational zone of ar-
clength parameters in a single direction to de�ne the new distribution functions to be applied
to a surface or volume grid. To generate the computational zone of arclength parameters,
an initial domain needs to be de�ned using the allocate command. Then, using one of
the intrinsics in table 5.1, an arclength parameter is computed in a computational direction
for the allocated region. Now a new command is used to develop a dependent function
across the region in one or both directions computationally orthogonal to the direction used
to compute the arclength parameter. This command is called blend and the syntax is as
follows:

blend varname[I-limit,J-limit,K-limit] direction dimension domain interpolation= fxyz[...]g

where,

varname is the core variable containing an arclength parameter to be blended
for smoothing a grid.

direction is the direction to blend the arclength parameters. The possible values
are I-direction, J-direction, or K-direction.

dimension is the dimension of the blend. This can be either:

1. 1d - single dimension

2. 2d - two dimensions

3. 3dp - two dimensions but planar by stepping through the third dimen-
sion

62

4. 3dw - three dimensions

domain is the physical or computational domain to be used for the blending.
The possible values for the argument can be physical or parametric.

NOTE: If the parametric domain is used, the parameterization
of the domain being blended is based on the computational coor-
dinates, and the xyz[...] need not be speci�ed. Conversely, if the
physical domain is to be used, the xyz[...] argument must be
present and must have the same dimensions of the variable being
blended.

interpolation= this is the interpolation scheme to be used to blend from one
know index to another. The schemes possible are:

1. linear

2. elliptic18

3. spline

4. tfi

5. larcs(#,#,#)19

NOTE: The linear, elliptic, and spline interpolation schemes
are only available in one dimensional interpolation; the last two are
for 2d, 3dp and 3dw interpolation.

xyz[...] is the region of a grid block to be used for computing arclength blending
functions if the domain is physical.

The capabilities of the blend command include:

� Iterative grid smoothing through the altering of basis distribution functions;

� Grid smoothing through the use of parametric re-mapping;

� Blending from a solution adapted grid to a non-adapted grid; and

� Adapting grids based on a solution adapted grid (see chapter/section 10.1).

9.1.1 One-Dimensional Parametric Re-mapping

This command operates on a single grid based quantity, such as the internal intrinsics.
The command performs the blending by using the interpolation scheme to blend between
boundaries of known data. For example, to linearly interpolate an outer boundary of a
volume grid, the arclength function on a speci�ed region is computed using the dska intrinsic,
in the wall to outer domain direction in Fig. 9.1.

As shown in Fig. 9.1, the forebody grid has been adapted using some unknown scheme.
The aftbody is not adapted because it has not been computed, but the interface between
the fore- and aftbodies is highly discontinuous. To correct this problem and blend between
the adapted and non-adapted grids, a blending region is identi�ed, and the arclength pa-
rameter in the wall to outer domain direction is computed. To blend between the adapted

63

Figure 9.1: Initial outer domain of an adapted and non-adapted grid.

and non-adapted grids, the endpoints of the region are �xed in the streamwise direction
(i-direction) and blending occurs on the K-direction based arclengths in the i-direction.
Two types of domain dependent blendings are available, computational and physical. The
blending is done by �xing the endpoints at the I-limits, and linearly blending between the
endpoints to determine (i.e. compute) the interior K-direction based arclengths. This is done
by specifying the limits in the varname[...] as 1-0:0 for the I-direction. The new K-direction
based arclengths are used to alter the existing volume grid using the func() argument of the
redist command because the new arclengths are the new dependent distribution functions
for the identi�ed region in the K-direction. To apply these new arclengths, the following
VGM commands were used for the physical domain blending:

64

allocate dsk1[33,91,33]

set dsk1 = dska(xyz[1,1,41-71])

blend dsk1[1-0:0] 1d i-direction physical interpolation=linear n

xyz[1,1,41-71:0]

redist k-direction spline arclength physical points=33 func(dsk1) n

xyz[1,1,41-71:0] newblock=no

Script 9.1: Physical domain based grid smoothing by parametric re-mapping in 1D.

and for the computational domain based blending:

allocate dsk1[33,91,33]

set dsk1 = dska(xyz[1,1,41-71])

blend dsk1[1-0:0] 1d i-direction parametric interpolation=linear n

xyz[1,1,41-71:0]

redist k-direction spline arclength physical points=33 func(dsk1) n

xyz[1,1,41-71:0] newblock=no

Script 9.2: Computational domain based grid smoothing by parametric re-mapping in 1D.

Illustrated in Fig. 9.2 are the results of both domain interpolant types. Though not clear
in this example, there is a di�erence between computational and physical domain based
interpolants. The computational domain interpolants are best when the grid is uniformly
spaced, as in Fig. 9.2. If the grid is non-uniform in the direction of the blend the com-
putational based interpolants will cause dramatic changes in the blending because of the
missing dependency on the grid. On the other hand, the physically based interpolants are
well suited for both non-uniform and uniform spacing because of the added dependency on
the grid physical coordinates. For example, if the blending region of a grid is that of Fig. 8.5,
and the region is blended from the wall to the outer boundary (i.e. k-direction), the results
are shown in Fig. 9.3.

Clearly, the physically based arclengths are best suited to this problem, but only because
the cell spacings in the K-direction are non-uniform. Uniform spacing in the blending direc-
tion should result in nearly identical results to the computational domain based interpolants,
as shown earlier. This described process is known as parametric re-mapping because the K-
direction based arclengths were re-computed using a blending function that inherently makes

65

Physical DomainComputational DomainOriginal

Figure 9.2: Domain based blending for smoothing/adapting a grid.

all the grid lines dependent upon one another; thereby re-mapping the arclength parameter.
The parametric re-mapping process is not limited to linearly based interpolation. For

the above example, an elliptic blending function could also be used. Illustrated in Fig. 9.4,
are the di�erences between linear and elliptic interpolation schemes. Notice that the
elliptic scheme has more continuous grid lines in the blending direction than the linear.
This is primarily due to the elliptic function having C-I and C-II continuous derivatives at
the endpoints.

This e�ect of continuous derivatives at the endpoints can be further exploited for smooth-
ing grids. For example, in Fig. 9.5, the grid lines in the surface grid are highly oscillatory
(i.e. kinked).

Smoothing this grid by simply applying the elliptic scheme of the blend command on
a region encompassing the poor grid line characteristics should be su�cient. Note that K-
direction grid lines are fairly straight with respect to the I-direction. Due to the straightness
of the K-direction lines, these lines will be used to compute the arclength parameters for
smoothing, and the blending will be done in the I-direction. To do this, the following VGM
commands are used:

66

Physical DomainComputational Domain

K

I

Figure 9.3: Domain based blending for blending a grid.

allocate dsk1[7,1,61]

set dsk1 = dskn(xyz[1,1,28-34,1])

blend dsk1[:0] 1d j-direction parametric interpolation=elliptic

redist k-direction spline normarc physical points=61 func(dsk1) n
xyz[1,1,28-34,1] newblock=no

Script 9.3: Algebraic grid smoothing with elliptic coe�cients in 1D.

67

Original Elliptic Interpolation Linear Interpolation

Figure 9.4: Linear and elliptic interpolation for smoothing/adapting a grid.

68

K

I

Figure 9.5: Kinked grid lines from poor adaption parameters.

69

The resulting smoothed grid is shown in Fig. 9.6.

Smoothed
RegionOriginal

K

I

Figure 9.6: Elliptic blending function used to smooth kinked grid lines in a speci�c region.

The increment on the limits do not always have to be the maximum. If a surface is to
be broken into multiple regions, the increment can be less than the maximum. If multiple
regions are used, the spline scheme can be used to smooth surface and volume grids, by
simply �xing intermediate curves or surfaces to be used in the control of the blending. For
the above grid, if the increment is set to 5, the smoothed grid appears as shown in Fig. 9.7.

SmoothedOriginal

K

I

Figure 9.7: Spline blending function used to smooth kinked grid lines in the entire grid.

Although this grid is smoother than the original grid, it still exhibits some grid dis-
continuities on the interior. These can be removed by iteratively applying the parametric
re-mapping, because each time the grid is redistributed the basis functions will be di�er-
ent. Usually 2 or 3 passes is adequate. For the above example, two passes of the spline

interpolation with multiple regions were done, resulting in the grid shown in Fig. 9.8.

70

Second Smoothing
Pass

First Smoothing
Pass

K

Figure 9.8: Iterative smoothing of kinked grid lines with the spline blending function.

The VGM commands used to iteratively smooth this grid were:

allocate dsk1[101,1,61]

Iteration 1:

set dsk1 = dskn(xyz[1])

blend dsk1[:5] 1d i-direction physical interpolation=spline n

xyz[1,1,:5,1]

redist k-direction spline normarc physical points=61 func(dsk1) n

xyz[1] newblock=no

Iteration 2:

set dsk1 = dskn(xyz[1])

blend dsk1[:5] 1d i-direction physical interpolation=spline n

xyz[1,1,:5,1]

redist k-direction spline normarc physical points=61 func(dsk1) n
xyz[1] newblock=no

Script 9.4: Iterative algebraic smoothing via basis function manipulation in 1D.

A secondary reason this iterative method works is that the spline function creates a
dependency on each zone, as identi�ed by the non-maximum increment in the I-direction.
Other multiple zonal approaches will be discussed, but they do create a dependency from

71

zone to zone, and are therefore not worth applying to iteratively smooth a grid.

9.1.2 Two-Dimensional Parametric Re-mapping

Another scheme could have been used to smooth these kinked grid lines, the two dimension
trans-�nite interpolation, as detailed in the following VGM commands:

allocate dsk1[101,1,61]

set dsk1 = dskn(xyz[1,1,,1])

blend dsk1[:5,,:0] 2d j-direction physical interpolation=tfi n

xyz[1,1,:5,1,:0]

redist k-direction spline normarc physical points=61 func(dsk1) n

xyz[1,1,,1] newblock=no

Script 9.5: TFI smoothing of distribution functions in 2D.

or through the use of LARCS interpolation:

allocate dsk1[101,1,61]

set dsk1 = dskn(xyz[1,1,,1])

blend dsk1[:5,,:0] 2d j-direction physical interpolation=larcs(2,2,2) n
xyz[1,1,:5,1,:0]

redist k-direction spline normarc physical points=61 func(dsk1) n
xyz[1,1,,1] newblock=no

Script 9.6: LARCS smoothing of distribution functions in 2D.

NOTE: The direction of interpolation is (J). This is due to the plane being a
constant J-surface in an existing volume grid. The limits have also changed; the
I- and K-limits are the maximum. These limits tell VGMwhich varname function
to compute, and which boundaries are to be held �xed. For the two dimensional
interpolation, the speci�ed limits must have two computational directions to be
determined.

The trans-�nite scheme is well documented in other literature, but the LARCS usage can
be found in the 3DMAGGS manual. Basically the LARCS method uses linear or elliptic

72

blends between opposing edges and then uses either of the blends between the edges as the
new computed arclengths, or a hyperbolic combination of both opposing edge paired blends.
The LARCS scheme is controlled through the 3 numbers in the parentheses:

� Number 1: Linear (1) or Elliptic (2) blend between opposing edges of the �rst compu-
tational index in the right handed coordinate system of the surface to be blended;

� Number 2: Linear (1) or Elliptic (2) blend between opposing edges of the second
computational index in the right handed coordinate system of the surface to be blended;

� Number 3: First opposing pair (1), second opposing pair (2) or a hyperbolic combina-
tion of both blends (3).

Illustrated in Fig. 9.9 and Fig. 9.10 are the results of trans-�nite and LARCS interpolation,
respectively. The LARCS method used was the blending of arclength parameters between

TFI BlendedOriginal

K

I

Figure 9.9: TFI blending function used to smooth kinked grid lines in two dimensions.

I-bounded zone edges because that direction was more indicative of they type of smoothing
needed. To use the hyperbolic blend of both would produce unfavorable results as the only
values being blended are 0.0 to 1.0, (i.e. the normalized arclengths). The hyperbolic blending
would take 50% of both blended opposing edge functions at the middle of each boundary
edge, thereby increasing the value of the normalized arclengths in the K-direction and cause
the grid to oscillate more regularly. The blended edges of the �rst opposing pair, in the
K-direction, would exaggerate the oscillatory grid lines in the I-direction; eliminating its
usage.

Notice the slope continuity in the TFI blended grid versus the LARCS blending. The
TFI algorithm in this case produced an acceptable grid, while the LARCS did not, because it
still has some kinks. This may be due to the fact that the LARCS methods do not have the
correcting terms as the TFI methods do. Irregardless, the LARCS methods are available as
an alternative to TFI. Consecutive iterative manipulations with the TFI or LARCS methods
will not improve the grid because there is no dependency from zone to zone, as identi�ed by
the non-maximum increments in the blending direction.

73

LARCS BlendedOriginal

K

I

Figure 9.10: LARCS blending function used to smooth kinked grid lines in two dimensions.

9.1.3 Three-Dimensional Parametric Re-mapping

In most cases, a one-dimensional or two-dimensional blend is adequate for smoothing surface
and volume grids. There are some instances where three-dimensional blends can produce
the most favorable results. Such instances usually occur where slope continuity is a must
at multiply bounded regions, as opposed to two or four bounds for the one-dimensional and
two-dimensional blends, respectively. In these rare instances, the 3dp and 3dw interpolation
schemes can be used. For example, the results of running the 3DMAGGS code on a sphere-
cone are shown in Fig. 9.11. Notice that the wall to outer domain grid lines are relatively
straight, but the J-directional lines are highly curved, just before the frustum. Here, a one-
dimensional blend in the J-direction may not produce the most favorable results because
the grid will no longer be dependent in the I-direction. To ensure a continuous dependency
on the grid, applying a trans-�nite interpolation on the K-direction arclengths in the I- and
J-directions for each successive plane should be best. To do this type of plane-by-plane
interpolation the 3dp interpolation scheme is used:

allocate dsk1[56,363,33]

set dsk1 = dska(xyz[1,1,1-56])

blend dsk1[1-0:0,1-0:0] 3dp k-direction physical interpolation=tfi n
xyz[1,1,1-56,:0,:0]

redist k-direction spline arclength physical points=33 func(dsk1) n
xyz[1,1,1-56] newblock=no

Script 9.7: TFI smoothing of distribution functions in computationally 3D planes.

74

Original

J

K

Figure 9.11: Poor elliptic PDE orthogonal boundary condition at a symmetry plane.

The e�ects of this interpolation scheme are shown in Fig. 9.12. The resulting volume

Original TFI-3DP

Figure 9.12: Improved boundary condition at a symmetry plane through the 3dp blending.

grid maintains some consistency between the modi�ed grid and the unmodi�ed grid, as well
as improving the orthogonality at the symmetry planes. Use of this type of manipulation
eliminates the necessity to change the elliptic solver boundary conditions and can signi�cantly
reduce the time required to generate a usable volume grid, by reusing good potions of poor
quality grids.

75

9.2 Smoothing with Trans-Finite Interpolation

Smoothing surface and volume grids utilizing computational or physical based interpolants
as basis functions is one set of methods that can be used. Another method that is not
as powerful but just as important is the use of trans-�nite interpolation (TFI), with the
following syntax:

t� dimension domain fiterations=g xyz[...]

where,

dimension is the dimension of the TFI. This can be either 2d or 3d.

domain is the physical or computational domain to be used for the TFI inter-
polants. The possible values for the argument can be physical or parametric.

iterations= this is the number of iterations to be performed to optimize the
interpolants in three-dimensional TFI; 16 is su�cient.

NOTE: This argument is only necessary when three-dimensional
TFI is performed.

xyz[...] is the region of a grid block to be regenerated.

Besides grid smoothing, the capabilities of the t� command include surface and volume
grid generation (see chapter/section 11.1).

To employ TFI properly, the de�ning bounds of a region to be regenerated needs to be
well posed.20 For example, the de�ning edges or faces, of a surface or volume, respectively
can not have sharp changes in grid line character. Illustrated in Fig. 9.13 are a set of regions
that were chosen to perform TFI for smoothing purposes. The sharp changes in the edges

Original TFIed Regions

Figure 9.13: Poorly chosen boundaries used in the method of TFI for grid smoothing.

of the surface get propagated into the interior of the domain. The lack of orthogonality at
the edges is also propagated onto the edges of the regions regenerated with TFI.

76

Conversely, applying the TFI regeneration to more appropriately chosen regions, the
grid qualities at the boundaries that are good can be propagated onto the region. In the
above example, di�erent regions for performing TFI are chosen and a better grid results, as
illustrated in Fig. 9.14. If good boundaries are available, TFI smoothing can be very robust.

Original TFIed Regions

Figure 9.14: Appropriately chosen boundaries used in the method of TFI for grid smoothing.

But it can also do harm by not maintaining a smooth transition of cell sizes, as shown
in Fig. 9.14. On the top of the con�guration, the grid lines look much better. But there
are spacing mismatches in the cross-sectional direction on the bottom. To help reduce the
spacing mismatches, the parametric re-mapping may be needed. Although the TFI methods
are robust and can o�er a much easier alternative to parametric re-mapping, the latter may
still be needed. Together, these methods create a powerful smoothing tool.

77

9.3 Vector Interpolation

Parametric re-mapping and TFI/LARCS methods do work well when combined with one
another to do grid smoothing. But these approaches exclusively create smooth grids. The
results will always be smooth, but other constraints such as clustering and grid line orthogo-
nality may be compromised. Because parametric re-mapping and the TFI/LARCS methods
are implicit, a more direct (i.e. explicit) method was developed and implemented into VGM.

The explicit method of doing grid smoothing that is in VGM is called hermite vector
interpolation. The method is accessed through the smooth command, with the following
syntax:

smooth dimension direction de�nition type order distribution function xyz[...] boundary condition

where,

dimension is the dimension of the smoothing. As implemented, this can only be
1d. The 2d or 3d capabilities will be added to VGM in the future for PDE
solving.

direction is the direction to smooth the grid. The possible values are I-direction,
J-direction, or K-direction.

de�nition type determines whether the de�ning grid that describes a surface or
volume retains the current shape or is permitted to change (similar to the
subface parametric mode of GRIDGEN). The possible values are fixed or
general.

NOTE: Only the general option is implemented.

order is the degree to which the derivatives are computed in a speci�ed direction
of smoothing. It is speci�ed by order=# where #+1 points are used to
construct the necessary derivatives.

distribution function this is the function to be used for the smoothing. The
functions possible are:

1. equal

2. vinokur14(�sbegin,�send)

3. cubic(�sbegin,�send)

4. vin2cub(�sbegin,�send,ratio)

5. sin

6. -sin

7. cos

8. laura(�sbegin,Smax,fstr,ep0,fsh)

9. func(�lename) or func(array variable)

NOTE: To retain the existing distribution or existing cell sizes for
the distribution functions that require control parameters, include
the argument keepcurrent with the smooth command.

78

xyz[...] is the region of a grid block to be smoothed.

boundary conditions are speci�ed as Dirichlet or �xed grid boundary conditions.
The possible values are speci�ed by dirichlet=(...) and the control pa-
rameters are dependent on the direction of smoothing; if smoothing is to
be done in the I-direction, Dirichlet BC's are possible at jmin, jmax, kmin,
and kmax.

NOTE: If one of the Dirichlet BC's is missing, that edge will have
a Neumann boundary condition in which the grid will be smoothed
at that edge.

The smooth command currently supports one dimensional smoothing. But this type
of smoothing can do two and three dimensional smoothing, implicitly. The smoothing of
grid lines is done by computing the derivatives at end points of the bounding region of the
grid to be smoothed, in the direction of the smoothing. These derivatives are then used
to interpolate from the beginning index to the ending index in the direction chosen. The
derivatives determine the continuity and precision of smoothness that will result from the
interpolation, as shown in Fig. 9.15. Typically, the second order derivatives are su�cient to

0 500 1000 1500
-1600

-1500

-1400

-1300

-1200

-1100

-1000

-900

-800

-700

-600

Original (2nd order)

Smoothed (2nd order)

Original (1st order)

Smoothed (1st order)

∆s

Z

Figure 9.15: Order of derivatives for one dimensional smoothing.

produce the smoothest grids.
The one dimensional smoothing has boundary conditions that control the extent to which

the region is smoothed at the boundaries. The method uses a blending of four grid points in
the cross-directional (i.e. directions not including the direction of smoothing) indices from

79

the region boundary to the interior. There are two type of boundary conditions that can
be applied, Dirichlet and Neumann. As pertaining to the solution of PDE's, the Dirichlet
boundary condition keeps a boundary �xed thereby using the four point blend to the interior,
while the Neumann boundary condition allows the boundary to move to satisfy a derivative
condition. For one dimensional smoothing, the Neumann derivative condition is slope con-
tinuity from the interior to the boundary edge or surface that is allowed to move from its
original positions. For example, to smooth a surface with kinked grid lines, as illustrated in
Fig. 9.16 the grid lines in the identi�ed region between the darker grid lines needs smoothing.
Clearly, smoothing in the I-direction would be best because the discontinuity occurs along

Original Smoothed
w/1D method

No Dirichlet BC

Dirichlet BC

Figure 9.16: Identi�ed region for one-dimensional smoothing.

the I-varying grid lines. To smooth these grid lines, the following commands can be used:

Do not use Dirichlet boundary conditions:

smooth 1d i-direction general order=2 keepcurrent equal n
xyz[1,1,...] dirichlet=()

Use Dirichlet boundary conditions:

smooth 1d i-direction general order=2 keepcurrent equal n
xyz[1,1,...] dirichlet=(jmin,jmax)

Script 9.8: 1D smoothing by vector interpolation with Neumann and Dirichlet boundary
conditions.

80

The e�ect of this smoothing is illustrated on the right in Fig. 9.16. Notice that the non-
Dirichlet boundary condition does not preserve the cross-directional boundary. This may be
appropriate if the non-Dirichlet applied boundary does not match to another volume grid,
or is not at the wall of a con�guration.

Applying the one-dimensional smoothing in three dimensional space can provide a pow-
erful mechanism to recover from parametric re-mapping or TFI type smoothing. As per-
formed earlier, a blending of the sphere-cone grid in the 3dp portion of the blend command
for smoothing in the K-direction, can be done in the I direction as well. The I-direction
smoothing may result in a better grid in the K-direction because that would be one of the
dependent directions of the TFI. By blending in the K-direction, a decoupling of the redis-
tribution dependency occurs and can produce crossed grid lines in the K-direction because
of the non-dependency. Application of the 3dp blend in the I-direction establishes the de-
pendency in the J- and K-directions and can lead to a grid that may not have crossed grid
lines in the I-direction, but could produce a grid that is kinked at the interface to the undis-
turbed grid. This kinked interface could be easily smoothed with 3DTFI and the smooth

command, as performed by the following commands:

Redistribute region of poor elliptic PDE boundary conditions:

allocate dsk1[45,363,33]

set dsk1 = dska(xyz[1,1,1-45])

blend dsk1[1-0:0,1-0:0] 3dp k-direction physical interpolation=tfi n
xyz[1,1,1-45,:0,:0]

redist k-direction spline arclength physical points=33 func(dsk1) n
xyz[1,1,1-45] newblock=no

Improve continuity from corrected grid to original block:

t� 3d arclength iterations=16 xyz[1,1,45-51]

smooth 1d i-direction general order=2 keepcurrent equal n

xyz[1,1,43-47] dirichlet=(jmin,jmax,kmin,kmax)

Script 9.9: Single direction smoothing applied to 3D.

and illustrated by Fig. 9.17. As is evident by the smooth grid lines and the improved
orthogonality at the symmetry planes on the sphere-cone grid, this blending and smoothing
is an alternative to a K-directionally based 3dp blend _This also illustrates one of the strengths
of the VGM language; there is more than one way to solve a problem, given the command
structure and capability.

81

TFI-3DP in
I-direction

J

K

1D Smoothing
in 3D Space

Figure 9.17: Three-dimensional smoothing of an improved grid to the original volume grid.

9.4 Summary of Techniques

As identi�ed by the Parametric Re-mapping, TFI, and Hermite Vector Interpolation schemes
presented, there are numerous ways to smooth surface and volume grids. The VGM language
supports a variety of commands that when used in conjunction with one another form the
basis for a powerful set of tools. Each command by itself is unique and simple, but when
combined create tools of increased complexity. This
exibility, when used appropriately can
enable the smoothing of poorly de�ned or otherwise generated surface and volume grids
quickly and e�ciently.

82

Chapter 10

CFD Adapting

10.1 Coarse Grid to Fine Grid Adaption

One of the main purposes of developing the blend command of section 9.1.3, was to imple-
ment a coarse grain to �ne grain grid adaption technique for Computational Fluid Dynamic
(CFD) simulations. CFD solutions are often started on coarse grids for computational ef-
�ciency, then interpolated to �ner grids for the �nal analysis. Examples of �ne and coarse
grids are illustrated in Fig. 10.1. After the
ow �eld is established, the coarse grid is some-
times adapted to some
ow �eld characteristics such as pressure to resolve a shock wave.
The solution is continued with the adapted grid until a relatively converged
ow solution is
completed. Then the coarse grid is used as a template for adapting the �ne grid and the
solution is interpolated onto the adapted �ne grid for �nal analysis.

The grid adaption is accomplished by copying the arclength distributions from the body
to the outer domain from the coarse grid to the �ne grid. Then the blend command is
used to interpolate with a spline blending function in the I-direction holding the copied
K-lines constant and parametrically re-mapping the regions between the K-lines. Then a
similar re-mapping of arclengths is done in the J-direction and an adapted grid results. The
commands used to do this adaption are illustrated in script 10.1 and the results are shown
in Fig. 10.2.

This adaption technique can also use the 3dp blend in the body to outer domain direction
after the distributions from the coarse grid are copied into the �ne grid, as illustrated in
script 10.2. This method may produce dependency problems in the K-direction (body to
outer domain) and result in crossed grid lines, as explained in section 9.3 of chapter 9. But
it is an alternate and may be necessary, depending on the extent of the adaption.

83

Original Fine Grid Original Coarse Grid Flow Adapted Coarse
 Grid

Figure 10.1: Initial coarse grid of a �ne grid used on a McDonnell Douglas proposed X33
con�guration.

copydist k-direction spline arclength xyz[1] xyz[2,1,:4,:4]

allocate dsk1[161,197,65]

set dsk1 = dska(xyz[2])

blend dsk1[:4,:4] 1d i-direction physical interpolation=spline n

xyz[1,1,:4,:4]

blend dsk1[,:4] 1d j-direction physical interpolation=spline n

xyz[1,1,,:4]

redist k-direction spline arclength physical points=65 func(dsk1) n
xyz[2] newblock=no

Script 10.1: Coarse to �ne grid adaption with 1D smoothing.

Both of the above methods can also be used to adapt or blend solution data from the
coarse grid to the �ne grid. As discussed in chapter 4 section 4.2.3, the
ow �eld solutions
to a grid can be loaded into VGM and each will be assigned a unique variable. This variable
can be used in place of the grid blocks (xyz[...]) to do the same type of blending as
performed on the grid. The only e�ect the blending has is on the dimensionality of the

84

Flow Adapted Coarse
 Grid

Fine Grid w/Coarse
 Grid Inserted

Fine Grid Adapted
 from BLENDs

Figure 10.2: Fine adapted grid based on the CFD solution of a coarse grid.

copydist k-direction spline arclength xyz[1] xyz[2,1,:4,:4]

allocate dsk1[161,197,65]

set dsk1 = dska(xyz[2])

blend dsk1[:4,:4] 1d i-direction physical interpolation=spline n
xyz[1,1,:4,:4]

blend dsk1[:4,:4] 1d j-direction physical interpolation=spline n
xyz[1,1,:4,:4]

blend dsk1[:4,:4] 3dp k-direction physical interpolation=tfi n
xyz[1,1,:4,:4]

redist k-direction spline arclength physical points=65 func(dsk1) n
xyz[2] newblock=no

smooth 1d i-direction general order=2 keepcurrent equal n

xyz[1,1,56-59] dirichlet=(jmin,jmax,kmin,kmax)

Script 10.2: Coarse to �ne grid adaption with 3D planar smoothing.

85

solution and trends in the data may not re
ect actual phenomenon. Assuming a density (�)
for grid system 3 and block 2, the following commands can be used to interpolate a coarse
grid solution to a �ne grid:

#

In lieu of copydist insert the coarse solution into the fine:

#

allocate rho n3 b2 fine[161,197,65]

set rho n3 b2 fine[:4,:4] = rho n3 blk2

blend rho n3 b2 fine[:4,:4] 1d i-direction physical interpolation=spline n
xyz[1,1,:4,:4]

blend rho n3 b2 fine[,:4] 1d j-direction physical interpolation=spline n
xyz[1,1,,:4]

Script 10.3: Coarse to �ne solution adaption using 1D smoothing.

NOTE: The redist is not needed because the function space is being manipu-
lated not the grid.

Using the procedure, a coarse grid can be used as a template to adapt a �ne grid and the
respective
ow solution, in preparation for a complete body CFD simulation.

10.2 Adaption by Changing Grid Densities

A second technique that can be used for adaption is the use of the redist command. If a
volume grid is adapted with the shock alignment procedure within the LAURA code, the
outer domain (i.e. bow shock) may need improved grid resolution. To improve the resolution,
two separate regions limited by the body to outer domain index (K) can be created such that
the bow shock is isolated at some point close to the outer domain, as illustrated in Fig. 10.3.

86

Figure 10.3: Initially adapted grid from ALGNSHK in the LAURA code.

Then these two regions can be adapted using the computational domain, keeping the wall
cells at the current heights, and reducing the bow shock index cell points by 50%, using the
following commands:

redist k-direction spline arclength parametric points=57 vinokur(1.,0.5) n
xyz[1,1,,,1-61] newblock=yes

redist k-direction spline arclength parametric points=9 vinokur(0.5,1.) n
xyz[1,1,,,61-0] newblock=yes

Merge the blocks:

allocate xyz[161,197,65]

set xyz[4,1,,,1-57] = xyz[2]

set xyz[4,1,,,57-0] = xyz[3]

Script 10.4: Grid adaption using varying grid densities.

87

and is illustrated in Fig. 10.4. Clearly this technique is fast and e�cient and can provide

Figure 10.4: Re-adapted grid to improve bow shock capture and modeling.

improved grid resolution in the vicinity of the bow shock. This method can also be used in
other directions to capture wing leading edge bow shock gradients, or any other gradients
requiring improved grid resolution.

10.3 Summary of Adaption Techniques

Though the techniques of grid adaption are limited, each provides a tool not available by
other software. The grid adaption techniques of VGM are also augmented by the rest of the
manipulation language which can o�er increased
exibility towards the application of grid
adaption. Poor grid adaptions can be smoothed while new adaptions can be performed in a
completely di�erent manner. Either way, VGM provides a powerful set of tools to do grid
adaption and can be very useful when used properly.

88

Chapter 11

Volume Generation

While VGM is inherently designed to do grid manipulations there are a few methods available
for doing grid generation. These methods include:

� Three-Dimensional Trans-Finite Interpolation (3DTFI);

� 3DTFI coupled with intermediate de�nition planes;

� Straight line generation for grid repair;

� Coordinate corrections for planar assumptions.

Though the list is not very long, each o�ers an opportunity to keep the manipulations internal
to VGM (items 1 and 3) or enables complex grid generation not available via standard 3DTFI
methods (item 2). Each will be explained in further detail below.

11.1 Three-Dimensional Trans-Finite Interpolation

To generate a volume grid, the six de�ning faces of the volume need to be generated. Usually
a code such as GRIDGEN is used to generate these faces. The volume is then generated
by porting the faces to a volume grid generator and the code is executed to create the grid
algebraically with 3DTFI. The porting and execution of a large grid generation such as
GRIDGEN3D need not be done, for VGM can do the same generation.

The face de�nitions of the blocks that are to be generated, in the GRIDGEN format, are
listed by K=constant faces, I=constant faces and J=constant faces, in the *.mlga �le. To
use these de�ning faces to develop a volume grid, each face has to be read in as a GRIDGEN
surface and converted to the PLOT3D format by writing out the surface in that format.
Since the J=constant faces have indices of K by I, these computational directions need to be
switched on the output. The faces are then re-read, assigned to a grid block and the volume
generated in VGM, using the following commands:

89

Step 1: Load the GRIDGEN *.mlga file:

read example.mlga ascii gridgen multiple

Step 2: Write out each face for each block, switching coordinates where

appropriate:

write blk1-face1-plt3d.g plot3d xyz[1,3] switch(x,y,z,k,i,j)

write blk1-face2-plt3d.g plot3d xyz[1,4] switch(x,y,z,k,i,j)

write blk1-face3-plt3d.g plot3d xyz[1,5] switch(x,y,z,j,k,i)

write blk1-face4-plt3d.g plot3d xyz[1,6] switch(x,y,z,j,k,i)

write blk1-face5-plt3d.g plot3d xyz[1,1]

write blk1-face6-plt3d.g plot3d xyz[1,2]

Step 3: Read in the new faces:

read blk1-face1-plt3d.g

read blk1-face2-plt3d.g

read blk1-face3-plt3d.g

read blk1-face4-plt3d.g

read blk1-face5-plt3d.g

read blk1-face6-plt3d.g

Step 4: Allocate a new block to hold the block:

allocate xyz[101,248,65]

Step 5: Set the faces into the new block:

set xyz[8,1,1] = xyz[2,1]

set xyz[8,1,0] = xyz[3,1]

set xyz[8,1,,1] = xyz[4,1]

set xyz[8,1,,0] = xyz[5,1]

set xyz[8,1,,,1] = xyz[6,1]

set xyz[8,1,,,0] = xyz[7,1]

Step 6: Perform 3DTFI on the new block:

t� 3d arclength iterations=16 xyz[8,1]

Step 7: Write out the new block:

write example1.vol plot3d xyz[8,1]

Step 8: Done

quit

Script 11.1: Volume generation from GRIDGEN data.

90

Like any volume generated with 3DTFI, with faces that have discontinuities or encompass
large volumes about con�gurations, the grid may not have grid-line characteristics that are
suitable to CFD simulations. There may be a lack of near wall orthogonality or crossed grid
lines creating negative volumes. To improve the quality of such grids, the volume can be
subdivided into multiple blocks after the initial generation with 3DTFI and the interfaces
smoothed with an elliptic PDE solver or VGM. Then these new interfaces can be imported
into the original volume grid fromwhich they came, and the volume grid updated with 3DTFI
between the arti�cial boundaries created by the insertion of the interfaces. For example, the
sphere-cone grid of the parametric re-mapping exercises is a truncated version of the full
body sphere-cone-
are, illustrated in Fig. 11.1.

Figure 11.1: Full body sphere-cone-
are geometry.

91

For the purposes of the explanation of volume grid generation, the I-planes of 21, 101,
241 and 271 will be used to illustrate the e�ects of the grid being manipulated. These
planes from the initial 3DTFI generation of the sphere-cone-
are geometry are illustrated in
Fig. 11.2.

I=21 I=101 I=241 I=271

Figure 11.2: Full body sphere-cone-
are geometry initially generated with 3DTFI.

Close examination of this volume grid reveals that there are less than adequate grid
line characteristics of orthogonality at the wall and negative volumes on the interior near
the
apped portion of the
are. To improve this volume grid the planes of I=51, I=200 and
I=255 were exported to GRIDGEN2D, smoothed and reinserted and the volume regenerated,
using the VGM script above and script 11.2. The resulting grid is illustrated in Fig. 11.3.

Although the grid is by no means ready for CFD computing, the grid exhibits improved
grid qualities because the crossed grid lines in I-plane of 101 are gone, and the orthogonality
near the wall has improved. To further re�ne this volume grid, the 3DMAGGS code was em-
ployed to generate the nose portion and a
ap region to establish better K-lines to use VGM
smoothing techniques. Shown in Fig. 11.4 are the I-planes resulting from these elliptically
generated blocks being inserted into the previous volume grid.

The �nal grid used for computations, after another set of grid manipulations to insert
the nose and
ap regions, as well as blend the new grids into the original volume grid, is
illustrated in Fig. 11.5.

NOTE: The extra grid manipulations consisted of the sphere-cone 3dp blending
and a call to the smooth command to improve the grid line slope continuity from
the 3DMAGGS generated grid to the original grid from which the zone originated.

92

#

Step 8: (new) Read in the new interfaces and convert them

to PLOT3D format:

#

read xi51-new.grda gridgen ascii

read xi200-new.grda gridgen ascii

read xi255-new.grda gridgen ascii

write xi51-new.g plot3d xyz[9] switch(x,y,z,k,i,j)

write xi200-new.g plot3d xyz[10] switch(x,y,z,k,i,j)

write xi255-new.g plot3d xyz[11] switch(x,y,z,k,i,j)

read xi51-new.g

read xi200-new.g

read xi255-new.g

#

Step 9: Insert the new interfaces:

#

set xyz[8,1,51] = xyz[12]

set xyz[8,1,200] = xyz[13]

set xyz[8,1,255] = xyz[14]

#

Step 10: Regenerate the volume grid:

#

t� 3d arclength iterations=16 xyz[8,1,1-51]

t� 3d arclength iterations=16 xyz[8,1,51-200]

t� 3d arclength iterations=16 xyz[8,1,200-255]

t� 3d arclength iterations=16 xyz[8,1,255-0]

#

Step 11: Write out the new block:

#

write example1-intermed.vol plot3d xyz[8,1]

#

Step 12: Done

#

quit

Script 11.2: Zonal regeneration to augment volume generation.

93

I=21 I=101 I=241 I=271

Figure 11.3: Full body sphere-cone-
are geometry, re-generated with 3DTFI and two inter-
mediate �xed surfaces to control grid quality.

I=21 I=101 I=241 I=271

Figure 11.4: I-planes being tracked, after 3DMAGGS generation and VGM insertion of the
nose and
ap regions.

94

I=21 I=101 I=241 I=271

Figure 11.5: Final full body sphere-cone-
are geometry, re-generated with 3DMAGGS gen-
erated zones and VGM smoothing.

95

11.2 Correcting Grid Coordinates

In some cases of generating surface and volume grids, regions or entire faces of a surface or
volume may be assumed to be
at or planar. During the evolution of a volume grid, these
planar surfaces may be perturbed unintentionally. The VGM code can be used to correct
these surfaces and force them to become planar, by using an extended set of grid intrinsics
coupled with the set command. These extended grid intrinsics include:

� x(xyz[...]) to extract the X-coordinate of a grid;

� y(xyz[...]) to extract the Y-coordinate of a grid; and

� z(xyz[...]) to extract the Z-coordinate of a grid.

The following VGM script is an example of how to use these intrinsics:

#

Create core variables to extract a plane from a grid:

#

allocate xvar[161,1,65]

allocate yvar[161,1,65]

allocate zvar[161,1,65]

#

Extract the coordinates with intrinsics:

#

set xvar = x(xyz[1,1,,1])

set yvar = y(xyz[1,1,,1])

set zvar = z(xyz[1,1,,1])

Script 11.3: Extraction of grid coordinates for manipulations.

These intrinsics are used in conjunction with the set command to extract existing grid data,
converting the physical coordinates into internal variables. As internal variables they can
be manipulated with the blend and set commands to do some re-generation and selective
smoothing towards grid generation. For example, to force the Y-coordinate to be zero in the
above example, thereby producing an X-Z symmetry plane, the following VGM script can
be added:

96

set yvar = 0.0

set xyz[1,1,,1] = xvar yvar zvar

Script 11.4: Making an assumed plane, planar.

The last command above instructs VGM to set the physical coordinates of X, Y and
Z for the appropriate grid locations to be the contents of variables xvar, yvar and zvar,
respectively. Using the above construct to reset the physical coordinates of a volume grid,
the internal variables are reconverted back to the grid data. One note of caution is due here;
the left hand side of the last set command must have variables with the same physical limits,
and can not be anything other than three internal variables in this construct (i.e. intrinsics
are not allowed). Aside from this, the language construct for changing grid data and thereby
re-evaluating or re-generating grid data can be done easily.

11.3 Straight Line Generation

During the adaption processes with some codes, a redistribution from VGM or the generation
of a grid using the solution to hyperbolic PDE's, one of the 12 bounding edges of a block or 4
bounding edges of a surface may be corrupted. Such corruption usually requires regeneration
of that edge using various line and curve types including ellipses, cubics, conics and in some
cases straight lines. Though VGM is not designed to handle the former geometry types, the
straight lines are possible through the use of the redist command. Utilizing the linear

basis function construction argument of the redist command a line can be placed between
two points, using any of the distribution functions explained in this manual. To generate a
straight line, simply use the following command:

redist k-direction linear arclength physical points=9 vinokur(.1,1.) n
xyz[1,1,0,1,1-9:0] newblock=yes

set xyz[1,1,0,1,1-9] = xyz[2]

Script 11.5: Straight grid-line generation.

This set of commands will generate a straight line between points I=Imax, J=1 and K=1
to 9, add a vinokur distribution with an initial cell size of 0.1 and an ending cell size of 1.0

97

and place the new line into the original location from which it was extracted. This construct
can be used to �x a volume grid, generated by HYPGEN, as illustrated in Fig. 11.6.

I=Imax
I=Imax - 4

Figure 11.6: HYPGEN generated grid from a wall to an outer domain with a corrupted
block edge.

To �x this grid, a straight line is placed between the K=1 and K=9 points at the exit
of the volume grid on the top symmetry plane. Then the de�ning face grids are regenerated
with 2DTFI and the volume updated with 3DTFI, using the following script:

redist k-direction linear arclength physical points=9 vinokur(.1,1.) n
xyz[1,1,0,1,1-9:0] newblock=yes

set xyz[1,1,0,1,1-9] = xyz[2]

Re-generate the block faces that use this edge:

t� 2d arclength xyz[1,1,141-0,1,1-15]

t� 2d arclength xyz[1,1,0,1-15,1-15]

t� 3d arclength iterations=16 xyz[1,1,141-0,1-15,1-15]

Script 11.6: Correction of a block boundary to smooth a grid.

The resulting volume grid is illustrated in Fig. 11.7. As evident by the straight line inserted
into the top back corner of the volume grid, this �x is more than adequate for CFD purposes

98

I=Imax
I=Imax - 4

Figure 11.7: HYPGEN generated grid �xed with VGM using a straight line generation and
other commands.

as the grid line orthogonality at the wall has been signi�cantly improved and the volume
grid freed of the corrupted de�ning block edge.

Also notice the trailing edge of the wing. A region about the negative volumes was
regenerated simply by applying 2DTFI to the maximum I-plane and 3DTFI on a small
region encompassing the �xed grid lines. These simple manipulations were added to the
scripts modifying the top of the vehicle, thereby performing all necessary �xes at one time.

11.4 Summary of Generation Capabilities

Although VGM was never designed to do grid generation, the use of 3DTFI, the extended
grid intrinsics and the generation of straight lines can provide an alternative to multiple
codes used to generate or �x surface and volume grids. The techniques are simple, but once
again, when combined with other VGM commands, create a powerful tool to manipulate
existing grids.

99

100

Chapter 12

Tutorials

This chapter contains 6 individual simple operational tutorials, including:

1. Coarsening a volume grid;

2. Decomposing a single block volume grid into multiple blocks;

3. TFI grid smoothing;

4. Conversion of an inviscid grid to a viscous one;

5. Merging multiple blocks into a single block;

6. Combination of tutorials 3 and 4.

12.1 Tutorial I: Coarsening a Volume Grid

12.1.1 Purpose:

The purpose of this tutorial is to thin out or coarsen a dense volume grid to an ordered
subset for CFD computing. The coarse grid will be used by CFD solvers to establish the
true domain of the
ow �eld, which is expected to lie within the limits of the existing grid.
Upon adapting the grid to established
ow �eld, this coarse grid can be used as a template
to adapt the �ne volume grid.

12.1.2 Steps To Be Used

To coarsen a volume grid, the following steps are used:

1. Read in the volume grid (/VGM/tutorials/ssv001f.g). The �le is in PLOT3D, single
block, Fortran Unformatted (binary) style, dimension and type, respectively.

2. Write out the coarse grid to ssv001f-coarse.g, by writing out every 4th point in the
I-direction, every other point in the J-direction and every 4th point in the K-direction,
using the LAURA code coordinate system.

101

These commands are coded into a script and executed either interactively or as a background
process. Once the script has been executed, results must be viewed using appropriate graph-
ics software such as TECPLOTTM or FAST.

12.1.3 VGM Script

The script to perform this operation is:

#

This script coarsens a volume grid of unknown size:

#

Step 1: Read in the volume grid into grid system 1.

#

read /VGM/tutorials/ssv001f.g plot3d single binary

#

Step 2: Write out every 4th I-point, every 2nd J-point and every 4th K-point:

#

write /VGM/tutorials/ssv001f-coarse.g plot3d single binary xyz[1,1,:4,:2,:4]

#

Step 3: Done; exit VGM.

#

quit

Script 12.1: Coarse grid generation from �ne grid de�nition.

12.1.4 Results

The results of this script are illustrated in Fig. 12.1: Notice that the dimensions of the
original grid are (161 X 129 X 33), and by using increments of 4, 2 and 4 for the I-, J-, and
K-directions, respectively, the dimensions of the coarse grid are (41 X 65 X 9). The wall
features are preserved by the coarse grid even though it contains signi�cantly fewer points.
This coarse grid can be used to reduce the time required to establish a CFD simulation on
this vehicle.

102

Original Coarsened

Figure 12.1: Results of thinning out a dense volume grid.

12.2 Tutorial II: Decomposing a Single Block Volume

Grid

12.2.1 Purpose:

The purpose of this tutorial is to decompose a volume grid from a massive single block into
a set of multiple blocks. By doing so the grid becomes more manageable and applicable to
parallel processing.

12.2.2 Steps To Be Used

To decompose a single block into multiple blocks, the following steps are used:

1. Read in the volume grid (/VGM/tutorials/ssv001f.g). The �le is in PLOT3D, single
block, Fortran Unformatted (binary) style, dimension and type, respectively.

2. Allocate internal blocks for 4 individual grids and extract the volume grids represented
by:

� Block 1: I=1-81, J=1-129, K=1-33;

� Block 2: I=81-161, J=1-69, K=1-33;

� Block 3: I=81-161, J=69-87, K=1-33; and

� Block 4: I=81-161, J=87-129, K=1-33

3. Combine the blocks into a new grid set.

103

4. Write out the new multiple block decomposition to ssv001f-decomp.g.

12.2.3 VGM Script

The script to do this tutorial should be:

#

This script decomposes a volume grid into 4 blocks:

#

Step 1: Read the volume grid into grid system 1 (xyz[1]).

#

read /VGM/tutorials/ssv001f.g plot3d single binary

#

Step 2: Allocate internal grid blocks and decompose the domain:

Grid System 2, block 1 will contain new Block 1.

Grid System 3, block 1 will contain new Block 2.

Grid System 4, block 1 will contain new Block 3.

Grid System 5, block 1 will contain new Block 4.

#

allocate xyz[81,129,33]

allocate xyz[81,69,33]

allocate xyz[81,19,33]

allocate xyz[81,43,33]

set xyz[2] = xyz[1,1,1-81]

set xyz[3] = xyz[1,1,81-0,1-69]

set xyz[4] = xyz[1,1,81-0,69-87]

set xyz[5] = xyz[1,1,81-0,87-0]

#

Step 3: Combine the new blocks into a set for writing the decomposition:

#

combine xyz[2] xyz[3] xyz[4] xyz[5]

#

Step 4: Write the decomposed volume grid:

#

write /VGM/tutorials/ssv001f-decomp.g plot3d multiple binary xyz[6]

#

Step 5: Done; exit VGM.

#

quit

Script 12.2: Domain decomposition from a single block topology.

104

NOTE: Remember that the Grid System number always increments upon the
allocation of a new grid block or combination of multiple blocks.

12.2.4 Results

The results of this script are illustrated in Fig. 12.2:

Original 4-Blocks

Figure 12.2: Results of decomposing a single block into multiple blocks.

12.3 Tutorial III: TFI Grid Smoothing

12.3.1 Purpose:

The purpose of this tutorial is to smooth a volume grid with either poor grid lines or negative
volumes resulting from volume generation or grid adaption. In this example, parts of the
interior grid and a portion of one of the grid boundaries (I=161) have been corrupted. Two
dimensional TFI will be initially used to smooth the grid boundary the 3-D TFI will be used
to repair the grid interior. The method, as detailed in chapter 9 section 9.2, o�ers a possible
\quick �x" to problem regions.

12.3.2 Steps To Be Used

To smooth a volume grid using TFI, the following steps are used:

1. Read in the volume grid (/VGM/tutorials/ssv001f.g). The �le is in PLOT3D, single
block, Fortran Unformatted (binary) style, dimension and type, respectively.

105

2. Modify the regions of:

� Zone 1: I=161, J=34-52, K=1-35; (Grid boundary smoothing using 2-D TFI)

� Zone 1: I=141-161, J=34-52, K=1-35; (3-D TFI)

� Zone 2: I=81-161, J=104-129, K=1-33; (3-D TFI) and

� Zone 3: I=106-115, J=36-98, K=1-23. (3-D TFI)

3. Write out the new smoothed volume grid ssv001f-t�.g.

12.3.3 VGM Script

The script to do this tutorial should be:

#

This script smoothes a volume grid using TFI:

#

Step 1: Read in the volume grid

read /VGM/tutorials/ssv001f.g plot3d single binary

#

Step 2a: Smooth Zone 1 (I=161, J=34-52, K=1-15):

t� 2d arclength xyz[1,1,0,34-52,1-15]

#

Step 2b: Smooth Zone 1 (I=141-161, J=34-52, K=1-15):

t� 3d arclength iterations=16 xyz[1,1,141-0,34-52,1-15]

#

Step 2c: Smooth Zone 2 (I=81-161, J=104-129, K=1-33):

t� 3d arclength iterations=16 xyz[1,1,81-0,104-0]

#

Step 2d: Smooth Zone 3 (I=106-115, J=36-98, K=1-23):

t� 3d arclength iterations=16 xyz[1,1,106-115,36-98,1-23]

#

Step 3: Write the smoothed volume grid:

write /VGM/tutorials/ssv001f-tfi.g xyz[1]

#

Step 4: Done; exit VGM.

quit

Script 12.3: Grid smoothing using various TFI dimensions.

106

12.3.4 Results

The results of this script are illustrated in Fig. 12.3:

I=161 I=151 I=121 I=109

Figure 12.3: Results of smoothing a volume grid with TFI.

This script performs many operations, and o�ers a glimpse into what can be done in
the VGM frame work. First, TFI is not limited to two or three-dimensions, only; both can
be done in a single script as is typically the case. Second, to smooth a zone that abuts
to a boundary, may require the generation of that boundary with TFI or other forms of
smoothing, as done in zone 1. If the boundary is better than the volume grid, it is held
�xed while the zone or volume is re-generated, as done in zone 2. Third, just because a zone
has been re-generated with TFI does not mean that more precise zones internally cannot be
re-generated. This o�ers the
exibility of establishing good boundaries and still providing
enhanced smoothing, as done in zone 3.

12.4 Tutorial IV: Conversion of an Inviscid Grid to a

Viscous Grid

12.4.1 Purpose:

The purpose of this tutorial is to convert a grid used for inviscid computations into one
that is suitable for viscous computations. Inviscid grids typically have fewer points than a
viscous grid because the shear and viscous e�ects are not being modeled. By comparison,

107

to do a viscous computation, more points are needed to resolve the viscous e�ects including
the packing of points near the wall to capture gradients in a boundary layer. To convert
an inviscid grid to a viscous grid, the grid dimensions usually have to be increased in the
direction of the strongest gradients, typically from the body to the outer boundary, and the
spacing at the wall must be reduced.

12.4.2 Steps To Be Used

To convert an inviscid grid into a viscous one, the following steps are used:

1. Read in the volume grid (/VGM/tutorials/ssv001f.g). The �le is in PLOT3D, single
block, Fortran Unformatted (binary) style, dimension and type, respectively.

2. Increase the body to outer domain dimension (K) from 33 to 65 points and cluster
points towards the wall (K=1) to capture boundary layer gradients.

3. Write out the new multiple block decomposition to ssv001f-decomp.g.

12.4.3 VGM Script

The script to do this tutorial should be:

#

This script converts an inviscid grid into a viscous one:

#

Step 1: Read in the volume grid

read /VGM/tutorials/ssv001f.g plot3d single binary

#

Step 2: Increase the K-dimension and cluster points near the wall at K=1:

redist k-direction spline arclength parametric points=65 vinokur(.1,1.)n
xyz[1] newblock=yes

#

Step 3: Write the new volume grid:

write /VGM/tutorials/ssv001f-redist.g plot3d single binary xyz[2]

#

Step 5: Done; exit VGM.

quit

Script 12.4: Conversion of inviscid grid to viscous grid.

108

12.4.4 Results

The results of this script are illustrated in Fig. 12.4:

I=151

I=109

Inviscid Viscid

Figure 12.4: Results of converting an inviscid grid to a viscous one.

As explained in section 8.1, the parametric domain of the redistribution command
enables the modifying of the number of grid points in one direction, while maintaining the
overall grid line character of the source volume grid. This capability is exploited here, as
well as the capability to scale the cell sizes at a boundary using the vinokur function with

109

scaling percentages as opposed to physical cell sizes. In this tutorial, the cell sizes at the wall
were scaled down to 10% of their current values, while the outer boundary cells were kept
at their current values. Furthermore, by increasing the number of points from 33 to 65, the
density of grid points from the wall to the outer boundary varies more smoothly than if the
number of points were kept constant. Use of this technique can reduce the time to generate
viscous grids for computations about complex geometries. Initiating a viscous
ow solution
with inviscid computations which are conservative (i.e. Euler computations which place the
outer boundary farther from the wall than required), can ensure proper
ow capture, an
assumption of numerous CFD algorithms.

12.5 Tutorial V: Merging Multiple Block Decomposi-

tions Into a Single Block Volume Grid

12.5.1 Purpose:

The purpose of this tutorial is to convert the decomposition of a volume grid from multiple
blocks into a single block. This may be advantageous for the manipulation of volume grid
decompositions that have too many blocks to be tracked, or the reducing of the total number
of blocks for a computation.

12.5.2 Steps To Be Used

To convert a multiple block volume grid into a single block, the following steps are used:

1. Read in the volume grid (/VGM/tutorials/ssv001f-decomp.g) from tutorial 2. The
�le is in PLOT3D, multiple block, Fortran Unformatted (binary) style, dimension and
type, respectively.

2. Allocate one large volume grid to contain the 4 individual grids, and place them ac-
cordingly.

3. Write out the new single block decomposition to ssv001f-merge.g.

12.5.3 VGM Script

The script to do this tutorial is illustrated in script 12.5.

12.5.4 Results

Since the resulting volume grid is the same as in Tutorial 2, see Fig. 12.2.

110

#

This script converts a multiple block decomposition into a single block:

#

Step 1: Read in the volume grid of Tutorial 2:

read /VGM/tutorials/ssv001f-decomp.g multiple

#

Step 2: Allocate internal grid block to contain all 4 blocks:

#

allocate xyz[161,129,33]

set xyz[2,1,1-81] = xyz[1,1]

set xyz[2,1,81-0,1-69] = xyz[1,2]

set xyz[2,1,81-0,69-87] = xyz[1,3]

set xyz[2,1,81-0,87-0] = xyz[1,4]

#

Step 3: Write the single block volume grid:

#

write /VGM/tutorials/ssv001f-merge.g plot3d single binary xyz[2]

#

Step 4: Done; exit VGM.

#

quit

Script 12.5: Conversion of multiple block decompositions to a single block.

111

112

Chapter 13

Command Index

This chapter provides a comprehensive listing of all VGM commands and their individual
syntaxes. This should be used for a reference only; the explanation of all the commands are
in the previous chapters.

13.1 Input and Output

read �lename ftypeg fstyleg fformatg fdimensiong

where,

�lename is the �le name of the data to be read. The �le name rules are as
follows:

1. Limited to 60 characters in length;

2. Can not be identical to read arguments;

3. Can not contain ['s,]'s, n's, or commas;

4. Are case sensitive;

5. May contain directory placement characters (./, ../ and �)

format is the data format, ascii, unformatted, or binary. <default=unformatted>

style is the style the �le is in; gridgen, plot3d, laura or tecplotTM. <default=plot3d>

type is the type of data in the �le; gridonly, solution(ngsys), or curve. <default=gridonly>

NOTE: The solution(ngsys) option requires a grid system number
to attach the data to, to ensure there is one value for each grid
point in each block. The variables loaded in this manner will have
variable names of the form:

varname nNN blkBBB

where the NN represents the Grid System number and the BBB
represents the block number.

113

dimension represents the number of blocks in the grid set, single or multiple.
<default=single>

write �lename ftypeg fstyleg fformatg fdimensiong xyz[...] forientationg

where,

�lename is the �le name of the data to be written. The �le name rules are
identical to the readcommand.

format is the data format, ascii, unformatted, or binary. <default=unformatted>

style is the style the �le is in; gridgen, plot3d, laura, or tecplot(variables).
<default=plot3d>

NOTE: The variables speci�able in the tecplot(variables) option
include the physical coordinates (X, Y, and Z), the computational
coordinates (I, J, and K), and array and constant variables in the
form:

tecplot(x,y,z,i,j,k,dsj1)

type is the type of data in the �le; gridonly, solution(ngsys), or curve. <default=gridonly>

NOTE: The solution(variables) option requires a set of variables,
similar to the tecplot(...) argument.

dimension represents the number of blocks in the grid set, single or multiple.
<default=single>

xyz[...] is the block or region or set of blocks to be written as a data set.

NOTE: The block limits may be used in this command to select
a range.

orientation is the physical and computational orientation of the grid. It is
speci�ed with the following argument:

switch(x,y,z,i,j,k)

where the physical coordinates are speci�ed in the order to be written, and
same with the computational coordinates.

NOTE: The orientation basically changes the entire reference
frame of the grid written. Beware, no check is done to determine if
a left handed coordinate system is written.

114

13.2 Distributions

copydist interpolant basis direction xyz1[...] xyz2[...]

where,

interpolant is the parameterization to be used for the copy. The possible values
for the argument are arclength or normarc.

basis is the interpolation basis to be used. The possible values can be linear

or spline.

direction is the direction to copy the grid-point distributions, one for each com-
putational index. The possible values are I-direction, J-direction, or
K-direction.

xyz1[...] is the source grid block to get the grid-point distributions.

xyz2[...] is the destination grid block containing the grid-lines to be modi�ed.

redist domain basis direction interpolants points=# distribution function newblock= xyz[...]

where,

domain is the physical or computational domain to be used for the redistribu-
tion. The possible values for the argument can be physical or parametric.

basis is the interpolation basis to be used. The possible values can be linear

or spline.

direction is the direction to redistribute the grid-point distributions, one for each
computational index. The possible values are I-direction, J-direction,
or K-direction.

interpolants is the type of parameterization to be used. The possible values are
arclength and normarc (i.e. normalized arclength).

points=# is the number of points to be generated as a result of the redistribu-
tion.

distribution function this is the function to be used for the redistribution. The
functions possible are:

1. equal

2. vinokur14(�sbegin,�send)

3. cubic(�sbegin,�send)

4. vin2cub(�sbegin,�send,ratio)

5. sin

6. -sin

7. cos

115

8. laura(�sbegin,Smax,fstr,ep0,fsh)

9. func(�lename) or func(array variable)

newblock= speci�es if the results of the redistribution are to be stored in a new
grid system and grid block. Possible values are yes or no.

xyz[...] is the region of a grid block to be redistributed distributions.

116

13.3 Variable Manipulation

allocate varname[I-limit,J-limit,K-limit]

where,

varname is the array variable name to store computed grid parameters. The
array variable name rules are as follows:

1. Limited to 60 characters in length;

2. Can not be identical to grid parameters (intrinsics);

3. Can not contain ['s,]'s, n's, or commas;

4. Are not case sensitive;

5. Computational limits may not exceed the grid-point limits of VGM.

I-limits First Computational Index Limit

J-limits Second Computational Index Limit

K-limits Third Computational Index Limit

blend varname[I-limit,J-limit,K-limit] direction dimension domain interpolation= fxyz[...]g

where,

varname is the core variable containing an arclength parameter to be blended
for smoothing a grid.

direction is the direction to blend the arclength parameters. The possible values
are I-direction, J-direction, or K-direction.

dimension is the dimension of the blend. This can be either:

1. 1d - single dimension

2. 2d - two dimensions

3. 3dp - two dimensions but planar by stepping through the third dimen-
sion

4. 3dw - three dimensions

domain is the physical or computational domain to be used for the blending.
The possible values for the argument can be physical or parametric.

NOTE: If the parametric domain is used, the parameterization
of the domain being blended is based on the computational coor-
dinates, and the xyz[...] need not be speci�ed. Conversely, if the
physical domain is to be used, the xyz[...] argument must be
present and must have the same dimensions of the variable being
blended.

117

interpolation= this is the interpolation scheme to be used to blend from one
know index to another. The schemes possible are:

1. linear

2. elliptic18

3. spline

4. tfi

5. larcs(#,#,#)19

NOTE: The linear, elliptic, and spline interpolation schemes
are only available in one dimensional interpolation; the last two are
for 2d, 3dp and 3dw interpolation.

xyz[...] is the region of a grid block to be used for computing arclength blending
functions if the domain is physical.

set varname1[I-limit,J-limit,K-limit] = varname2[I-limit,J-limit,K-limit]

-or-

set varname1[I-limit,J-limit,K-limit] = ds*(xyz[ngsys,nblk,I-limit,J-limit,K-limit])

where,

varname1 is the destination array variable name to store computed grid param-
eters or other variables.

varname2 is the source array variable or intrinsic (ds*) to be equated or com-
puted, respectively. The only rule that must be followed is the computa-
tional region of each variable or intrinsic in the equate must be the same.

I-limits First Computational Index Limit of region to be set

J-limits Second Computational Index Limit of region to be set

K-limits Third Computational Index Limit of region to be set

dsia = Arclength function in I-direction
dsja = Arclength function in J-direction
dska = Arclength function in K-direction
dsin = Normalized arclength function in I-direction
dsjn = Normalized arclength function in J-direction
dskn = Normalized arclength function in K-direction

118

13.4 Block Manipulators

allocate xyz[I-limit,J-limit,K-limit]

where,

xyz is a volume grid block, using the standard data structure.

I-limits First Computational Index Limit

J-limits Second Computational Index Limit

K-limits Third Computational Index Limit

NOTE: The gridsystem number and block number are not included in the
allocation of the new grid block; only the computational limits are required.
Also, this command will cause the grid system maximum to increase by 1 each
time it is used.

combine xyz[ngsys1,nblk1] xyz[ngsys2,nblk2] ...

where,

xyz is a source grid block. Subsequent xyz's are other blocks to be added. There
are some rules that can be used to govern which grid blocks are used:

1. xyz[ngsys] will get all the blocks in grid system ngsys

2. xyz[ngsys,nblk begin-nblk end:nblk increment]will get those blocks
that are referenced in the range from nblk begin to nblk end by nblk increment

NOTE: This command will cause the increasing of the grid system maximum
by 1 each time it is used.

set xyz[ngsys,nblk,I-limit,J-limit,K-limit] = xyz[ngsys,nblk,I-limit,J-limit,K-limit]

-or-

set xyz[ngsys,nblk,I-limit,J-limit,K-limit] = x-variable y-variable z-variable

where,

xyz on the left hand side is the destination block to store the results from
extracting or merging grid blocks.

xyz on the right hand side is the source block to be extracted or merged. The
only rule that must be followed is the computational region of each grid
block in the equate must be the same.

119

I-limits First Computational Index Limit of region to be set

J-limits Second Computational Index Limit of region to be set

K-limits Third Computational Index Limit of region to be set

x-variable is the internal variable containing the X-coordinate of the block to be
set

y-variable is the internal variable containing the Y-coordinate of the block to
be set

z-variable is the internal variable containing the Z-coordinate of the block to be
set

120

13.5 Grid Generation

smooth dimension direction de�nition type order distribution function xyz[...] boundary condition

where,

dimension is the dimension of the smoothing. As implemented, this can only be
1d. The 2d or 3d capabilities will be added to VGM in the future for PDE
solving.

direction is the direction to smooth the grid. The possible values are I-direction,
J-direction, or K-direction.

de�nition type determines whether the de�ning grid that describes a surface or
volume retains the current shape or is permitted to change (similar to the
subface parametric mode of GRIDGEN). The possible values are fixed or
general.

NOTE: Only the general option is implemented.

order is the degree to which the derivatives are computed in a speci�ed direction
of smoothing. It is speci�ed by order=# where #+1 points are used to
construct the necessary derivatives.

distribution function this is the function to be used for the smoothing. The
functions possible are:

1. equal

2. vinokur14(�sbegin,�send)

3. cubic(�sbegin,�send)

4. vin2cub(�sbegin,�send,ratio)

5. sin

6. -sin

7. cos

8. laura(�sbegin,Smax,fstr,ep0,fsh)

9. func(�lename) or func(array variable)

NOTE: To retain the existing distribution or existing cell sizes for
the distribution functions that require control parameters, include
the argument keepcurrent with the smooth command.

xyz[...] is the region of a grid block to be smoothed.

boundary conditions are speci�ed as Dirichlet or �xed grid boundary conditions.
The possible values are speci�ed by dirichlet=(...) and the control pa-
rameters are dependent on the direction of smoothing; if smoothing is to
be done in the I-direction, Dirichlet BC's are possible at jmin, jmax, kmin,
and kmax.

121

NOTE: If one of the Dirichlet BC's is missing, that edge will have
a Neumann boundary condition in which the grid will be smoothed
at that edge.

t� dimension domain fiterations=g xyz[...]

where,

dimension is the dimension of the TFI. This can be either 2d or 3d.

domain is the physical or computational domain to be used for the TFI inter-
polants. The possible values for the argument can be physical or parametric.

iterations= this is the number of iterations to be performed to optimize the
interpolants in three-dimensional TFI; 16 is su�cient.

NOTE: This argument is only necessary when three-dimensional
TFI is performed.

xyz[...] is the region of a grid block to be regenerated.

122

13.6 Programming Language

quit

This command is used to end all VGM scripts. Each script must have one. This
command is also augmented by stop, exit, halt, end, bye, and by.

...

This command is used to identify comment lines. Itmust be the beginning character on
a line.

...n

This command is the line continuation marker. If a command and its arguments can not
�t on a single 80 character line, the continuation marker allows the remaining arguments to
be placed on the next line.

123

124

Chapter 14

Trouble Shooting and Errors

Since the VGM code is more of a language, there are numerous places that error checking
occurs. Though not inclusive of all the possible errors that can be detected, the VGM code
does identify as many as possible. This chapter lists all the possible errors that are detected
and explains each.

The VGM code also writes a debug �le, generated based on the UNIX process identi�-
cation number (PID). The construct of the �le name is:

VGM_debug-######

where, the #'s represent the PID.
The next sections are arranged in order of speci�cs:

Language Errors - errors resulting from general language anomalies,
including syntax and spelling.

Command Errors - unique errors resulting from arguments of a speci�c command.
Redistribution Errors - errors that are common to the redist and smooth commands.
Input and Output Errors - errors that result from read and write commands.

There is no particular order to the errors listed in each section. Just the error and the
meaning of it with respect to the command or commands.

125

14.1 Language Errors

*** ERROR: Number of consecutive lines skipped > 10.

*** Issuing QUIT command sequence.

The maximum number of blank lines allowed in VGM is 10. To use any more, causes this
error to be displayed, and the code will gracefully stop. This was implemented because if
the script does not have an �nishing command such as quit the end of �le is re-read and
re-read.

*** ERROR: Domain not specified (parametric or physical)!

*** line:iline cmdline(iline)

Those commands that require a domain argument must have that argument on the command
line or this error will result. Usually the user has forgotten to add this argument.

*** ERROR: Type of interpolants not specified!

*** Command Line: cmdline(icmd)

The copydist redist and smooth commands require the bridging function to be used to
generate the basis curves for all interpolations.

*** ERROR: Interpolation method not specified.

*** Command Line: cmdline(icmd)

-or-

*** ERROR: Multiple occurrences of interpolation methods found.

*** Command Line: cmdline(icmd)

The interpolation basis type is required for all commands requiring the computation of
arclengths to form basis functions for redistribution. The possible types are linear or
spline.

126

*** ERROR: Incorrect limit specifications:

*** Specification: cmdpart(nuse)

The limits chosen for a grid block or an array variable have been exceeded. Check the limits
of these storage types.

*** ERROR: Direction entered is not available:

*** Direction: cmdline(icmd)

Most commands require a direction of interpolation, computation or blending. The possible
types are i-direction, j-direction, or k-direction. Any other direction chosen will
result in this error message.

*** ERROR: Type of arc-length not specified.

*** IARC=iar

*** Command Line: cmdline(icmd)

-or-

*** ERROR: Multiple occurrences of <arclength> found.

*** IARC=iar

*** Command Line: cmdline(icmd)

Each command that uses an arclength function can utilize a physical or computational
domain dependency on the arclengths, except the smooth command. Those commands re-
quiring the computation of the arclength need to have the type speci�ed. The possible values
are arclength for the physical domain, and parametric for the computational domain.

*** ERROR: Incorrect command on line icmd!

There are only 12 commands, including # for comment lines. Check the spelling of the
command requested.

127

*** ERROR: File not found!

The �le in a read or redistribution command does not exist. Check the spelling of the �le
name.

128

14.2 Manipulation Command Errors

14.2.1 ALLOCATE Command

*** ERROR: Core Variable chosen does not exist:

*** cmdpart(ivar)

This should be fairly straight forward. If you assumed an array variable exists and use it in
specifying block limits, and the variable has never been de�ned via an allocate command,
this error will identify which argument of the current command has that unde�ned variable.
Check the spelling of the array variable and the spelling of the variable used in it's allocation.

14.2.2 BLEND Command

**

** POLE identified, switching to

** J=

** K=

**

This warning tells the user that a singularity has been detected on a face or in a volume grid
that has requested the computing of the physical arclength parameter. This waring comes
from the blend command, where the processes is trying to establish an arclength parameter
space. To account for the singularity, the code �rst changes the index at which it computes
the arclength, to search for a non-singular grid line. If it does not, the physical domain
will be changed to parametric domain.

*** ERROR: Blending not performed.

*** Direction and limits are not conducive:

*** For direction, # to blend < direction MAX

The increment on the direction of the blend command produces intervals that are not
equal. To properly blend multiple regions, the intervals resulting from the limits in a one
dimensional direction blend must be equal. Check the increment.

*** ERROR: 1D Interpolation not possible with the following method:

When blending a variable in one dimension, the TFI and LARCS blending types are not
allowed. This error can result from either requesting a non-one-dimensional interpolation
type, or a syntax error in the blending type.

129

*** ERROR: Dimension of blending/interpolation not specified!

*** Command Line: cmdline(icmd)

The blend command requires the type of blending to be used, speci�ed with the interpolation=
argument.

*** ERROR: Extrapolation can not be done!

*** X(1)=x(1) X(Idim)=x(idim)

*** U(J)=u(j)

This error results from using the elliptic interpolation type for the blend command. If
the limits of the blend require extrapolation beyond the the limits of available data, elliptic
extrapolation can not be done, only linear extrapolation is possible. Check the limits of the
array variable and the arclength domain to be used if and only if the physical domain is in
use.

*** ERROR: Not enough values to use for interpolation!

Number of values required: 2

Number of values given: n

When using the linear or elliptic interpolation types in the blend command, at least
two data points have to be used, a beginning and ending point. This error usually results
from choosing the increment of the blending zones to be too large. Check the limits of the
array variable and the arclength domain to be used if and only if the physical domain is in
use.

*** WARNING: No values need to be interpolated.

When using the linear or elliptic interpolation types in the blend command, at least
one point should be interpolated. This error usually results from choosing the increment of
the blending zones to be too small. Check the limits of the array variable and the arclength
domain to be used if and only if the physical domain is in use.

*** ERROR: Input abscissas out of order.

130

When using the linear or elliptic interpolation types in the blend command, the de-
pendent variable has to be in order, but the independent can vary wildly. This error usually
results from crossed grid lines being chosen for a particular manipulation. Check the grid.

*** ERROR: Volume identified for 2D manipulation!

LARCS interpolation type is only available for 2d and 3dp blending. A volume zone has
been requested, which can not be blended with LARCS. Check the interpolation type or the
dimensionality of the blend command.

14.2.3 COMBINE Command

*** ERROR: Current combination of blocks will exceed the available

*** block limits!

*** Maximum Blocks: limblk

*** Blocks Needed: mxblkm + delmblk

The combine command works by increasing the block reference list by a speci�ed number of
blocks, given in the combine command, instead of making duplicate copies of a block. The
new blocks placed in the reference list are done so by noting the counters to the positions in
the physical coordinate arrays. This error results if the number of blocks to be duplicated
causes the maximumnumber of blocks in the current VGM execution to exceed the maximum
number of blocks available to the code.

14.2.4 COPYDIST Command

*** ERROR: Incorrect destination grid limit specifications:

*** Specification: cmdpart(nuse)

-or-

*** ERROR: Number of sources does not match

*** number of destinations:

*** INDEX Source Destination

*** ===== ====== ===========

131

The copydist command requires the number of destination grid lines to be identical to the
number of source grid lines. If this is not true, this error message will appear. Check the
limits in the cross-direction to the direction of the copy (i.e. if the I-direction is the copying
direction, the cross-directions are J and K).

**

** POLE identified in basis.

** Resulting points will have basis values.

** J=j

** K=k

**

-or-

**

** POLE identified in basis.

** Resulting points will have basis values.

** I=i

** K=k

**

-or-

**

** POLE identified in basis.

** Resulting points will have basis values.

** I=i

** J=j

**

The copydist command will identify pole boundaries in the direction chosen for the desti-
nation grid. If a pole boundary exists the resulting grid will not be changed from its original
positions. This is just a warning to tell the user that a switch of operations has been done.

14.2.5 REDIST Command

*** ERROR: Incorrect New Block specifier:

*** cmdpart(iblk)

This error can be produced by the redist and set commands. For the redist command, the
only two answers to the newblock= argument are \yes" and \no", and any thine else will
generate this error message. The set command uses this error message to tell the user that
you can not set a grid block equal to a single array variable. The set has to be to another
grid block.

*** ERROR: Number of new points not specified!

132

*** Command Line: cmdline(icmd)

In the redist command, the number of points to be placed along the basis curves must be
speci�ed, with the points= argument.

*** ERROR: No new block specifier conflicts

*** with other inputs.

*** Implied condition: ITOTAL=NEWPTS

*** ITOTAL=itot NEWPTS=',newpts

-or-

*** ERROR: No new block specifier conflicts

*** with other inputs.

*** Implied condition: JTOTAL=NEWPTS

*** JTOTAL=',jtot,' NEWPTS=',newpts

-or-

*** ERROR: No new block specifier conflicts

*** with other inputs.

*** Implied condition: KTOTAL=NEWPTS

*** KTOTAL=',ktot,' NEWPTS=',newpts

The number of points speci�ed in the direction of a redistribution does not match the number
of points already in that direction for the limits chosen in the grid block speci�cation. This
is con
icting with the non-newblock speci�cation; so the manipulation is not done. Check
the limits of the grid block to be redistributed and the number of new points to be placed
along that grid line; if these two limits are not identical this error results.

133

14.2.6 SET Command

**

** This feature is not available.

** It can be done by:

**

** allocate xvar[...]

** set xvar[...] = 0.0

** set xyz[1] = xvar y(xyz[1]) z(xyz[1])

-or-

** allocate yvar[...]

** set yvar[...] = 0.0

** set xyz[1] = x(xyz[1]) yvar z(xyz[1])

-or-

** allocate zvar[...]

** set zvar[...] = 0.0

** set xyz[1] = x(xyz[1]) y(xyz[1]) zvar

The feature being requested is to place a grid intrinsic on the left hand side of the equal sign
in the set command. This is not allowed. To set a single coordinate of a grid block to a
number, the code gives the user 3 di�erent command sequences.

*** ERROR: Trying to assign a temporary variable

*** more than one value.

*** TEMPVAR = ctmpv(ntmpvar)(1:ncpertmpv(ntmpvar))

Temporary variables can only have one value. To try to set multiple values to a constant is
impossible. Remember that temporary variables are constants in VGM.

*** ERROR: Core variable value type unrecognizable.

*** CMDPART=cmdpart(4)

The capability to assign a constant value to an array variable exists, but the constant has to
be either a variable or a number. This error will result if the constant is not another array
variable, constant, or a number. Check the spelling of the variable on the right hand side.

134

*** ERROR: General Math not allowed:

*** cmdline(1)

When using the set command, general equations of math are not allowed. The only types
of values that can be set are constants, array variables, grid blocks and intrinsics. Each can
have a \-" sign in front of the value, but that is all. This error can also be given if the
variable or value on the right hand sign is not one of the possible values or if it is misspelled.

*** ERROR: No match of limits can be found:

*** cmdline(1)

The set command requires the indices on the left to match the indices on the right of the
equal sign for block manipulations such as grids and array variables. If the limits do not
match, one side does not have enough memory to be equated to the other.

14.2.7 SMOOTH Command

*** ERROR: Number of points to be used for 1D vector construction'

*** not specified.

*** Command line:

*** cmdline(icmd)

When smoothing a grid with the hermite vector interpolation, the order of the vector needs
to be speci�ed with order=#. If not this error will result from that argument not on the
command line.

*** ERROR: Dirichlet boundaries not specified.

*** Command line:

*** cmdline(icmd)

When smoothing a grid with the hermite vector interpolation, the boundary condition ar-
gument (dirichlet=(...)) needs to be on the command line. If the user does not want
any boundaries held �xed, the argument still has to appear, but no control words are to be
placed inbetween the parentheses.

135

**

** WARNING: Distribution problems detected.

** Locations written to fort.8 and fort.20

**

The vinokur and cubic distribution functions may not work with the speci�ed control
parameters. This can produce NaN or in�nity for results. If this happens, try changing the
limits of the smoothing or the sizes of the beginning and ending cells. Also check the length
to which the cells are being applied. There may not be enough distance to accommodate
the cell sizes or there may be too much.

14.2.8 TFI Command

*** ERROR: Number of 3DTFI iterations not specified!

*** Command Line: cmdline(icmd)

To do three-dimensional TFI, the number of optimization iterations needs to be speci�ed
with the iterations= argument. In two-dimensional TFI, there is no optimization.

136

14.3 Redistribution Errors

*** ERROR: Surface and redistribution control variable limits do not match:'

*** Surface:

*** Itot=itot

*** Jtot=jtot

*** Ktot=ktot

*** Control Variables: <vinokur & cubic>

*** Ltot(DSB)=ld_dsb Mtot(DSB)=md_dsb

*** Ltot(DSE)=ld_dse Mtot(DSE)=md_dse

*** Control Variables: <vin2cub>

*** Ltot(DSB)=ld_dsb Mtot(DSB)=md_dsb

*** Ltot(DSE)=ld_dse Mtot(DSE)=md_dse

*** Ltot(RATIO)=ld_ratio Mtot(RATIO)=md_ratio

*** Control Variables: <laura>

*** Ltot(DSB)=ld_dsb Mtot(DSB)=md_dsb

*** Ltot(DSE)=ld_dse Mtot(DSE)=md_dse

*** Ltot(FSTR)=ld_fstr Mtot(FSTR)=md_fstr

*** Ltot(EP0)=ld_ep0 Mtot(EP0)=md_ep0

*** Ltot(FSH)=ld_fsh Mtot(FSH)=md_fsh

*** Control Variables: <vin2cub>

*** Ltot(NEWPOINTS)=ld_junk Mtot(NEWPOINTS)=md_junk

*** <<< AND/OR>>>

137

*** JTOT != LTOT -or- KTOT != MTOT

*** ITOT != LTOT -or- KTOT != MTOT

*** ITOT != LTOT -or- JTOT != MTOT

When specifying the control parameters for a distribution function argument in the redist
and smooth commands, if arrays are used, each array used as a control parameter has to
have the same dimensional limit in the cross-directional indices. Note that each distribution
function has di�erent control parameters that are checked; hence the extent of the above
error message. The code will only print out the message that identi�es the function chosen.

*** ERROR: Cross-direction limits of core variable do not match grid limits:

*** Jtot=jtot Mtot=mtot

*** Ktot=ktot Ntot=ntot

-or-

*** Itot=itot Ltot=ltot

*** Ktot=ktot Ntot=ntot

-or-

*** Itot=itot Ltot=ltot

*** Jtot=jtot Mtot=mtot

When specifying the control parameters for the distribution function arguments of the re-
dist and smooth commands, the index limits of the face or point identi�ed by the cross-
directional indices to the direction of the redistribution must match the index limits of the
array or constant variables. If there is no match of these limits, the code can not perform the
redistribution because there is not enough data for the chosen function. This error usually
results from indices being incorrect in the grid block speci�er, or misspelled variable name
or even an unde�ned variable. The latter is more di�cult to track because an allocate may
have created a misspelled array variable. Check the indices of all variables, and grid blocks
being referenced and check the dimensions.

*** ERROR: Distribution function not found.

The redist and smooth commands require a distribution function. If one is not selected,
this error message will appear.

138

*** ERROR: Core Variable chosen and Block limits do not match:

*** Block Limits:

*** IDIM=idima(nblku)

*** JDIM=jdima(nblku)

*** KDIM=kdima(nblku)

-or-

*** Itot=itot

*** Jtot=jtot

*** Ktot=ktot

-and-

*** Core Variable Limits:

*** LDIM=ldim(mcorv)

*** MDIM=mdim(mcorv)

*** NDIM=ndim(mcorv)

-or-

*** Ltot=ltot

*** Mtot=mtot

*** Ntot=ntot

When specifying the index limits for the blend command with interpolation in the physical
domain, the limits of the grid block must match the limits of the blending, including the
increments. Otherwise, the amount of data needed to compute the arclengths is incorrect.

*** ERROR: File for variable not read.

*** GRIDGEN format assumed.

If a variable that represents a �le name, used as a control parameter for the distribution
function of a redist or smooth commands, does not exist or is in the incorrect format,
this error will result. Each of the distribution commands can hold at most, a 2D surface
of control parameters for a distribution function. The format of these control parameters is
GRIDGEN because it is surface based. Check the format of the �le being used to load a
control variable.

139

*** ERROR: Specified limits of core variable must be in 2D computational space!

*** One of the following has to be 1:

*** Ltot=ltot

*** Mtot=mtot

*** Ntot=ntot

If a variable used as a control parameter for the distribution function of a redist or smooth

command does not represent at most a 2D surface, this error will result. Check the limits
of the variable being used to specify the control parameters.

*** ERROR: Problem w/internal-read.

*** CVAR=cvar(nvar)

*** FILEU=fileu

*** NC=ncf

If a constant is used for a control variable to a distribution function in the redist or smooth

commands, and the constant is not discernible due to characters other than \E" for exponen-
tial notation, an error will result. This error will also result if the constant is not determined
to be an array variable or �le name. Check the constant requested.

*** ERROR: Unrecognizable distribution.

*** DIST option: ',dist

There are only 9 di�erent distribution functions available. The one you have requested does
not exist. This usually occurs if the distribution function is misspelled.

*** ERROR: Could not correct poor parameterization:

*** I-Direction REDIST

*** MP1,MP2=mp1,mp2

*** JPT,DSnew(JPT)=jpt,dsnew(jpt)

*** i,j,k: i,j,k

-or-

*** ERROR: Could not correct poor parameterization:

140

*** J-Direction REDIST

*** MP1,MP2=mp1,mp2

*** JPT,DSnew(JPT)=jpt,dsnew(jpt)

*** i,j,k: i,j,k

-or-

*** ERROR: Could not correct poor parameterization:

*** K-Direction REDIST

*** MP1,MP2=mp1,mp2

*** JPT,DSnew(JPT)=jpt,dsnew(jpt)

*** i,j,k: i,j,k

When the spline function is used to construct the basis function for a redistribution, since
the spline is unclamped, the resulting curve could produce negative volumes by reversing
the direction of the basis curve. If this occurs, the VGM code will attempt to correct it by
isolating the region that is bad and redistributing it to correct the curve. The correction
changes the parameterization slightly, but does reduce the risk of generating negative cells or
volumes. This error will tell the user if the code can not re-parameterize the basis function
to alleviate the possible generation of negative cells or volumes. Try using linear basis
function generation.

141

14.4 Input and Output Errors

*** ERROR: TECPLOT binary file can not be read!

The only format available to read TECPLOT data �les is ASCII. Rewrite the TECPLOT
�le as ASCII to get VGM to read it.

*** Nothing read due to flags not set.

Although the input command has defaults, some of the argument types may be speci�ed
incorrectly or not at all. Check to make sure there is a �le to be read or written.

*** ERROR: Input command not found.

*** INPUT COMMAND: cmdpart(npart)(1:ncperpart(npart))

The read command has found an argument that makes no sense. Usually VGM will try to
interpret this as a �le name. If it is not, check the spelling of the argument.

*** ERROR: Data block form incorrect or file not complete!

*** BLOCK: nblk

During the input phase of the read command, an end-of-�le (EOF) was found or the data
types are incorrect (i.e. trying to read a
oating point number into an integer variable).
Check the format of the �le.

*** ERROR: File to be appended not found.

*** FILE: fileu(1:nc)

*** Above filename being set up anew.

The �le requested to be appended does not exist. The VGM code will create this �le for
the output of data. If this action is not adequate, check the spelling of the �le name to be
appended.

142

*** ERROR: TECPLOT variable limit mismatch:

*** I2=i2 LDIM=ldim(mcorv)

*** J2=j2 MDIM=mdim(mcorv)

*** K2=k2 NDIM=ndim(mcorv)

When data is being written in TECPLOT form, the array variables being written must have
at least the number and range of indices available for the write. If the limits of writing a
variable exceeds the limits of that variable, this error will result and no data will be written.

*** ERROR: Grid System not specified for Solution output.

The solution argument of the input and output commands requires a grid system number
to attach and reference the solution data to a grid. Change the solution argument to re
ect
the grid system number.

*** ERROR: Mach, Alpha, Re, Time does not exist for solution data set: ngsys

The
ow constants in the PLOT3D styled solution �le are not in the �le or are not readable.
Check the solution �le to verify the correct data is in the header.

*** ERROR: Number of variables for solution data is incorrect.

*** Only 5 variables can be written.

The PLOT3D style of solution data �le can only support 5
ow variables. To request more,
another solution �le needs to be written.

*** ERROR: Grid System and Block does not have Solution variables.

To reference
ow variables in the writing of data into the PLOT3D style, they must be of
the form discussed in section 4.1 or listed separately in the solution argument.

*** ERROR: Grid System and Block does not have LAURA variables.

143

The grid system number chosen to write out a LAURA restart �le does not have
ow variables
attached to it. Check the grid system number in the LAURA argument.

*** ERROR: Conflicting arguments:

*** TECPLOT and Switching of coordinates is not possible.

The switch argument can not be used on array variables, so it can not be used with the
TECPLOT output style.

*** ERROR: Conflicting arguments:

*** Core variable output and Switching of coordinates is not possible.

The switch argument can not be used on array variables, just physical grid blocks.

*** ERROR: Conflicting arguments:

*** Binary TECPLOT files are not possible.

Currently, only the ASCII mode of TECPLOT data style is available for reading and writing.

*** ERROR: Conflicting arguments:

*** Different number of TECPLOT variables for an append.

When appending a data set to a previously opened �le, the number of variables must match
the number of variables in the �le. The VGM code does not keep track of multiple �les, only
the previously written TECPLOT �le. If the number of variables requested to be written
does not match the number already written, this error message will result. Check the number
of variables for each �le to be appended and be sure that, that number is identical.

*** ERROR: Conflicting arguments:

*** Solution output of no solution data.

144

To output solution data, solution data must exist. This could be caused by not referencing
the correct grid system number. Check the grid system number and the solution argument.

*** ERROR: Incorrect source grid limit specifications:

*** Specification: cmdpart(npart)(1:ncperpart(npart))

*** I=i1 to i2

*** J=j1 to j2

*** K=k1 to k2

The limits chosen for a grid block or an array variable have been exceeded. Check the limits
of these storage types.

*** ERROR: Output command not found.

*** OUTPUT COMMAND: cmdpart(npart)(1:ncperpart(npart))

The write command has found an argument that makes no sense. Usually VGM will try to
interpret this as a �le name. If it is not, check the spelling of the argument.

*** ERROR: Grid System number to output, not valid.

*** GRID SYSTEM REQUESTED: ngsys

The grid system being identi�ed for output in a grid block or solution argument or an array
variable is incorrect. Check the grid system number requested.

145

References

1S. J. Alter and K. J. Weilmuenster, \The Three{Dimensional Multi{block Advanced
Grid Generation System (3DMAGGS)," NASA TM{108985, April 1993.

2J. P. Steinbrenner, J. R. Chawner, and C. L. Fouts, \The GRIDGEN 3D Multiple
Block Grid Generation System," Wright Research and Development Center Report WRDC{
TR{90{3022, October 1989.

3R. W. Noack and D. A. Anderson, \Solution Adaptive Grid Generation Using Parabolic
Partial Di�erential Equations," AIAA paper 88{0315, January 1988.

4W. M. Chan, I. Chiu, and P. G. Buning, \User's Manual for the HYPGEN Hyperbolic
Grid Generator and the HGUI Graphical User Interface," NASA TM{108791, October 1993.

5P. A. Gno�o, \An Upwind{Biased Point{Implicit Relaxation Algorithm for Viscous,
Compressible Perfect{Gas Flows," NASA Technical Paper 2953, February 1990.

6I. Amtec Engineering, \Tecplot: version 5 User's Manual," Amtec Engineering publi-
cation V5.0/92{14, January 1992.

7P. P. Walatka, P. G. Buning, L. Pierce, and P. A. Elson, \PLOT3D User's Manual,"
NASA TM 101067, March 1990.

8R. L. Sorenson and S. J. Alter, \3DGRAPE/AL: The Ames/Langley Technology Up-
grade," NASA CP{3291, pp. 447{462, May 1995.

9R. W. Walters, D. C. Slack, W. M. Eppard, M. Applebaum, C. B. Fury, A. G. Godfrey,
and W. D. McGrory, GASP 3: User Manual. Blacksburg, VA: Aerosoft, �rst ed., May 1996.

10V. N. Vatsa and B. W. Wedan, \Development of a Multigrid Code for 3{D Navier{
Stokes Equations and Its Application to a Grid{Re�nement Study," vol. 18, pp. 391{403,
Computers & Fluids, June 1990.

11P. P. Walatka, J. Clucas, R. K. McCabe, T. Plessel, and R. Potter, \FAST User Guide,"
NASA Ames Research Center RND{93{010, June 1993.

12P. Raj, J. E. Brennan, J. M. Keen, K. K. Mani, C. R. Olling, J. S. Sikora, and
S. W. Singer, \Three-Dimensional Euler Aerodynamic Method (TEAM)," Flight Dynamics
Laboratory, Wright Research and Development Center AFWAL{TR{87{3074, June 1987.

13J. Samareh, \GridTool: A Surface Modeling and Grid Generation Tool," in Surface
Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD)
Solutions, pp. 821{831, NASA CP{3291, �rst ed., May 1995.

14M. Vinokur, \On One-Dimensional Stretching Functions for Fininte-Di�erence Calcu-
lations," NASA CR{3313, 1993.

15K. J. Weilmuenster, P. A. Gno�o, F. A. Greene, C. J. Riley, H. H. Hamilton III, and
S. J. Alter, \Hypersonic Aerodynamic Characteristics of a Proposed Single-Stage-to-Orbit
Vehicle," AIAA Paper 95{1850, June 1995.

16S. J. Alter and F. M. Cheatwood, \Elliptic Volume Grid Generation for Viscous Com-
putations in Parametric Design Studies," AIAA Paper 96{1999, June 1996.

17D. D. R. Olynick, \Importance of 3{D Grid Resolution and Structure for Calculating
Reentry Heating Environments," AIAA Paper 96{1857, June 1996.

18S. J. Alter and F. M. Cheatwood, \Volume Grid Expansion Techniques for Computa-
tional Fluid Dynamic Algorithms," AIAA Paper 96{0029, January 1996.

19A. S. J. and K. J. Weilmuenster, \Cell Volume Control at a Surface for Three{

146

Dimensional Grid Generation Packages," in Software Systems for Surface Modeling and Grid
Generation (R. E. Smith, ed.), pp. 273{298, NASA CP{3143, 1992.

20B. K. Soni, \Two{ and Three{Dimensional Grid Generation for Internal Flow Appli-
cations of Computational Fluid Dynamics," AIAA Paper 85{1526, 1985.

147

