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Abstract - A procedure is developed for obtaining
generalized flip-flop input equations, and a concise
method is presented for representing these equations.
The procedure is based on solving a four-valued
characteristic equation of the flip-flop, and can
encompass flip-flops that are too complex to approach
intuitively. The technique is presented using Karnaugh
maps, but could easily be implemented in software.

INTRODUCTION

A procedure is developed for obtaining the generalized
input equations of a flip-flop from the description of that
flip-flop. The method relies on Boolean calculus concepts
[1-4] and techniques for sclving Boolean equations [5-9].
Specifically the method is based on solving a four-valued
characteristic equation of a flip-flop for the two-valued input
variables to the flip-flop. A representation is presented for
concisely expressing the generalized input equations for any
flip-flop. This representation enables finite-state machines to
be synthesized using only a single set of Karnaugh maps,
one for each state variable, for any combination of different
types of flip-flops. The method can be applied not only to
the simple commonly used flip-flops but is equally
applicable to more complex flip-flops. The techniques
presented can easily be extended to express the effect of
clocks, and to precisely describe the combination of
synchronous and asynchronous inputs.

FLIP-FLOP DESCRIPTION

A flipflop, with output vy and inputs,
X =X,....X;,...,X,, can be described by the state diagram
shown in Fig. 1. The various transitions of the flip-flop are
specified by the functions f,..../5. All of these are functions
of the input variables x,,...,x,,...,x, . For some flip-flops,
there may be conditions under which the inputs,
Xps-en Xy, X, , are constrained not to assume certain
values. For these constrained conditions no transition is
specified by f, £, £, of f;. For example, the set-reset flip-
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flop requires that both the set and reset inputs are not “1” at
the same time.
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Fig. 1. The state diagram of a flip-flop.

Let 8y be a four-valued Boolean variable capable of
assuming a value of “0”, “17, “A”, or “V”. 8y will be used to
specify the relationship between the present value, y, and the
next value, ¥, of the output of the flip-flop. This refationship
is shown in Table 1.

Table 1. The definition of 8y, where Y is the next value of y.
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OBTAINING THE MAPS

The flip-flop input equations could be obtained by
expressing the flip-flop characteristic equation in terms of
four-valued 3y and solving this equation for each x;, 0 £/ <
n. Instead of expressing this four-valued characteristic
equation algebraically, we will express the same information
using a Karnaugh map for dy. This 8y-map is actually more
useful for our purpose than writing an equation for 8y. The
method of obtaining the dy-map is given by Algorithm 1.

Algorithm 1. To obtain the &y-map, from a flip-flop’s state
table or the state diagram, follow the steps given below:
1. Construct 2 Kamaugh map for 8y with coordinates

x,,...,x,-,...,x,,,y=(x,y).

2. On the &y-map obtained above, select each cell
individually. For each selected cell, two cases are



possible. (a). If the next state, Y, is not gpecified for the
(x, y) coordinates of the selected cell, enter a “-” in that
cell. (b). If the next state, Y, is specified for the (x, ¥)
coordinates of the selected cell, enter in that cell the
appropriate value (0, A, ¥V, or 1) of &y as specified in
Table I.

The *-" in step 2(a) above is used to specify conditions
that cannot occur because of constraints on the inputs.

Once the 8y-map of a flip-flop has been constructed, it
can be used to obtain a map for any particular x;. For
presenting the procedure to obtain this x;map, it is
convenient to let the vector z;=(x)....,x;_ |, X5 ,---2X,),

represent a vector comprising all input variables other than
some selected input variable, x;. Using this notation the 8y-
map represents some function of x;, y, and z; as in (1).

By = &y(x;, v,2,) (b

The problem is to solve (1) for x;. This results in a general
equation for xj, expressed as a function of &y and z; as
shown in (2).

x; = x48y,2;) V3]

The procedure for doing this is an extension of the method
introduced in [9]. It is convenient to define a z;-group to be
a group of Karnaugh map cells all with the same z;
coordinate. We will use a to represent some particular value
of z;, and « to represent some particular value of 8y. Thus, o
can be one of four values “0”, “1”, “A”, or “¥”. The concept
of z;-group leads to two obvious lemmas:

Lemma 1: On the 8y-map and the x;map, ¢ach z;-group
contains four cells.

Proof. On the 8y-map the coordinates of cells in a given
z;-group differ in only x; and y; thus, four cells are specified.
On the x;map, the coordinates of cells in a given z;-group
differ in only dy. Since &y can assume four values, four cells
are specified.

Lemma 2: On the 8y-map, a particular value of Sy
appears at most twice in any z;~group.

Proof: Any particular 8y value determines the value of v,
therefore, there are two cells, with coordinates differing only
in x;, that can contain the particular &y value,

With this background, the procedure for obtaining the x5
map from the Sy-map can be given.

Algorithm 2. To obtain the x;-map from the dy-map.
1. Construct a map for x; with coordinates (&y, z;).

2. On the dy-map and the x;-map, form all possible z;-
groups.

3. Considering each zj-group separately; use Table 2
to determine the value to enter in each cefl of the x;-
map.

Table 2: The rules for obtaining the x/map from the dy-
map. o is some particular value (0, 1, A, or V), of 8y, and a
is some particular value of z;.

Value to be entered in
x;-map cell with
coordinate (c, a)

Number of dy-map
cells in (z; = @)-group
containing ct.

0 -

1 x; coordinate of Sy-map
cell containing o

2 d

Example 1.
Consider the Set-reset flip-flop with the state diagram
shown in Fig. 2.
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Fig. 2. The state diagram for the set-reset flip-flop.

The Karnaugh map for Y is shown in Fig. 3(a). The
equivalent Sy-map can be obtained by applying Algorithm 1
and is shown in Fig. 3(b).
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Fig. 3(a) The next value of y Karnaugh map for the set-
reset flip-flop, (b) The Gy Kamaugh map for the set-reset
flip-flop. The “-” is used to indicate the constraint that SR =
0.

The S and R maps can be obtained from the dy-map by
using Algorithm 2. As shown in Fig. 4(a) and Fig. 4(b), the
S-map is obtained by forming the two R-groups on the &y-
map. One R-group has a coordinate of R =0, the other has a
coordinate of R = 1. The R-group with coordinate of R = 1
determines the values to be entered in the four bottom cells
of the S-map. The R-group with coordinate of R = 0
determines the values to be entered in the top four cells of
the S-map. Considering the four top cells, the values are




obtained as follows: In the (R = 0)-group on the dy-map
there is one “0” with an S coordinate of **0™; therefore, a “0”
is entered in the top 8y = 0 cell of the S-map. The (R = 0)-
group of the Jy-map contains a single “A” with an S
coordinate of “1”; therefore, a “1” is entered in the top &y =
A cell of the S-map. The (R = 0)-group of the dy-map has
two cells containing “1"; therefore, “d” is entered in the top
Sy =1 cell of the S-map. No cells in the (R = 0)-group of the
Sy-map contains “V”; therefore “-” is entered in the top 8y
= ¥ cell of the S-map. A similar procedure is used to obtain
the values to be entered in the (R = 1)-group of the S-map.

To solve for R, we form S-groups on the dy-map and
again apply Algorithm 2. The result is shown in Fig. 4(¢)
and Fig. 4(d).
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Fig. 4(a) The 8y-map with R-groups circled. (b) The S-map
with R-groups circled. (c) The &y-map with S-groups
circled. (d) The R-map with S-groups circled.

OBTAINING THE INPUT EXPRESSIONS

Once the maps for S and R have been obtained,
equations for S and R can easily be derived. These equations
will be expressed using a variation of notation introduced in
[7]. We will first describe the notation in its simplest form
and generalize it later. The simpler form of the notation is
sufficient whenever the x; input equation is independent of
z;. When this is the case, x; ¢an be expressed in the form

x{(8y) = Zay(a],...,a,;d,am,...,a_‘.) 3)

Where oy, 0 <€) <5, is some particular value (0, A, 1, or V)
of dy. The generalized input expression given by (3) is
obtained from the §y-map description of the flip-flop with
inputs x; and z;. Once obtained, (3) can be used to realize the
logic equations to implement a finite state machine. These
implementation equations are obtained using the dy-maps
of the state variables of the finite state machine. To do this,
the expression given in (3) is interpreted as follows: The
equation for x; is obtained from a state variables 8y-map by

assigning to x;, the value of “|™ for the coordinates of all

8y-map cells containing ¢,,...,c,. The value of x; is a

-
don’t-care, “d”, for the coordinates of all cells containing
C,ppyee Oy, 0T “d”. For the coordinates of all other cells, the
value of x; is “0”. The procedure for obtaining (3} is given
below.

Algorithm 3. Obtaining the expression for x; when x; does
not depend on the other input variables.
1. Form the four dy-groups on the x;-map. These four
groups are the (8y = 0)-group, the (&y = 1)-group, the
{dy = A)-group and the (8y = V)-group.
2. Verify that each dy-group that contains a “1” does
not contain a “0” or a “d”, and that each &y-group that
contains a “d” does not contain a “0” or a “1”. Unless
this condition is satisfied, x; is not independent of the
other input variables and can not be expressed in the
simple form given by (3).
3. Ifa&y-group contains “1,” use that 8y value as one
of the o,...,, symbols.
4, 1fady-group contains “d,” use that 3y value as cne
of the «,,,,...,&, symbols,

To illustrate the use of this algorithm return to the set-
reset flip-flop example. Applying Algorithm 3 to the S-map
in Fig. 4 results in the generalized input expression for S:

S =Y, (A:d1) (4)

The above equation is interpreted as follows: For any 8y-
map, S must be “1” for the coordinates of all dy-map cells
containing a “A”, and S is don’t-care for the coordinates atl
Sy-map cells containing a “d” ora “17.

Applying Algorithm 3 to the R-map in Fig. 5 results in
the expression for R:

R(&)=3.,,(V:d.0) (5)

SUCCESSIVE ELIMINATION

in the above example, the expression for § was
obtained from the 8y-map, and then the expression for R
was also obtained from the Sy-map. As an alternative, the R-
map could have been obtained from the S-map using the
successive elimination method presented in [7]. This process
of successive elimination will not always result in an
identical input expression as produced by obtaining each
input equation directly from the y-map, but the expressions
obtained in each case will always be equivalent. In general,
using successive elimination will reduce the amount of
computation and simplify the result for some inputs. This



general process of successive elimination is described
below:

Algorithm 4. Given a map for xj, j # i, with coordinates of x;,
z;, and &y, the map for x; with coordinates of z; and 8y can
be obtained as follows:
1. Construct a map for x; with coordinates 8y and z;.
2. On the x; -map, form all possible (8y,z;)-groups.
3. For each (8y,z;}-group on the xj map, enter the
values, as shown in Table 3, in the corresponding cells
of the x; map.

Table 3: The rules for mapping a (8y, z;)-group on the Xj-
map inte the comresponding cell on the x;-map. The “*”
represents “07, “17, or “d”.

Contents of the (8y, z;}~ | Value to be entered
group on the x;-map. in the (8y, z;) cell of |
(xj=0)cell | (xj=1)cell | the x;-map.

- * 1

* - 0

* * d

An intuitive understanding of the reason for the entries in
Table 3 can be obtained as follows: When both the cells of
some (By, z;)-group on the xj-map contain a “-”, then, for
that value of (8y, z;), the variable x; can assume neither the
value “0” or “1”. Thus, a “-” is entered in the {8y, 2;) cell of
the x;map to indicate that the Sy and z; values of these
coordinates are not permitted. If only one of the two cells of
some (8y, z;)-group on the xj-map contains a “-”, then for
that value of (Sy, z;), the only value x; can assume is the x;
coordinate of the cell that does not contain the “-”. If no cell
of some (dy, z;)-group on the xj-map contains a “-”, then
there 1s no restriction on the value of x;;; therefore, for that
value of (dy, z;), the variable x; can assume the value of
either “0” or “1”.

The result of applying successive elimination to the set-
reset flip-flop to obtain the R-map from the S-map is shown
in Fig. 5. Applying Algorithm 3 to the R-map in Fig. 4{d)
results in the same ecxpression as given in (5). In this
example the S-map has coordinates of only R and 8y; thus,
there are no z; variables.
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Fig. 5. Obtaining the R-map from the S-map by successive
elimination. The &y-groups are circled on the S-map.

COMPLEX FLIP-FLOPS

The representation given by (3) is sufficient for most
commonly used flip-flops; however, more complex flip-
flops require an extension to the notation. This extension is
necessary to take into account the effect of interdependence
between various inputs. In general, the input equation for x;
can be expressed as

x,-(&y,z) = Zay(tq,. NIRRT ..,u.\.) (6)

where each uj, 1 <j<s, can be one of three forms. The there
forms for uj are: o, j-aj, or aj where aj is some function of
Z; or a subset of z;, and a; is some particular value (0, A, 1,
or V) of 8y. A cell on the dy-map is said to be specified by uj
if any of the following conditions are satisfied: (1) uj is of
the form o, and the cell contains ay. (2) uj is of the form
o aj, the cell has a z; coordinate covered by aj, and the ceil
contains aj. (3) uj is of the form aj, and the cell has a z;
coordinate covered by of aj. With this notation, the
expression given by (6) is interpreted as follows: x; is
obtained from the a state variables 8y-map by assigning to
x;, the value of “1” in all cells specified by u,,..., #. The
value of x; is a don’t-care, “d” in all &y-map cells containg a
“d”, or specified by wp....., #g. In all other cells x; is
assigned a value of “0”., It should be observed that with this
notation, terms such as 0-x¥, may appear inside the
summation in (6). This term is used simply to express the
condition when “8y = 0 and x;X, =17, It does not imply that
the term can be simplified to “0”.

The expression given by (6) is obtained from the x;-
map as follows:

Algorithm 5. Obtaining the expression for x; from the x;-
map with coordinates 8y and z;.
t. Form the four §y-groups on the x; map.
2. Each “i” on the x;-map must be covered by some
uy,..., up. If a (By = a)-group contains only the symbols
“1" and “-", then the “1’s” in that dy-group may be
covered by u; = «. If a (z; = a)-group contains only the
symbols “1" and “-", then the “1's” in that group may
be covered by #; = a. If a (3y = o)-group contains a “1”
that is not covered by the above, then that “1™ must be
covered by u; =a-a, where a is the z; coordinate of the
cell containing the “1” or a subset of z; coordinate of a
group containing the *“1” and other cells containing only
the symbols “1”” and -,
3. Each “d” on the x;-map must be covered by some
Upsis..., Hg. The rules for covering the “d” are the same
as those given in step 2 with the “1” replaced by “d”.



Example 2

Consider a DE flip-flop. This flip-flop is similar to a
standard D flip-flop except that the D input is only enabled
when the E input is “17”. When E is “0”, the flip-flop remains
in its current state. The y-map for the DE flip-flop is shown
in Fig. 6.
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Fig. 6. The 8y-map and the D-map for the DE flip-flop.

The D-map in Fig. 6 is obtained from the 8y-map in Fig.
6 using Algorithm 2. Note that the (8y = 1)-group on the D-
map contains both “d” and “1”, and the (8y = 0)-group on
the D-map contains both “d” and “0”. Thus, D cannot be
independent of E. Using Algorithm 5, the expression below
is obtained for D.

DEv.E)=3, (At Ed,E) %)

The above expression is interpreted as follows: D must
have the value of *“1” for the coordinates of those Sy-map
cells containing “A”. The 1-E term includes “”. This
indicates that I must be assigned the value of “1” for the
dy-map coordinates of those cells containing “1” provided
E is assigned the value of “1” for those same &y-map
coordinates. D is don’t-care for the 8y-map coordinates of
thase cells of the dy-map containing a “d” or for those
coordinates where E is assigned a value of “0”. The
expression for E can be obtained from the 8y-map or it can
be obtained by elimination from the D-map. Fig. 7 shows
the E-map as shown below:

dy=0 A 1 V E
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Fig, 7. The E-map obtained by successive elimination
from the D-map shown in Fig. 6,

Since the E-map in Fig. 7 is not a function of other input

variables, the expression for R can be obtained using
Algorithm 2. This results in

E=3,,(4,9;d,10) (8)

CONCLUSION

Despite the widespread use of computer tools for
synthesis of finite state machines, occasions still arise for
manual synthesis. Flip-flop input expressions obtained
using techniques presented here enable sequential circuits to
be synthesized for virtually any flip-flop using only one 8y-
map for each state variable. The method presented for
obtaining the input equations for flip-flops is considerably
more powerful and general than previous techniques. The
effect of clocks and a combination of both synchronous and
asynchronous inputs can easily be handled using this
method. The presented method may thus aid in the
development of improved synthesis techniques.

In addition to providing an example of the benefit of
applying Boclean equation techniques to a classical
problem in switching theory, this paper is also of interest
because of its utilization of a four-valued Boolean variable
to describe conventional two valued logic.

REFERENCES

[1] | H. Tucker, M. A. Tapia, and A. W. Bennett, “Boolean
Differentiation and Integration Using Karnaugh Maps,”
Proceedings of  IEEE Southeast-Conference,
Williamsburg, Va., April 4-7, 1977.

[2]M. A. Tapia and J. H. Tucker, “Complete Solution of
Boolean Equations,” IEEE Transactions on Computers,
Vol. C-29, July, 1980, pp. 662-6635.

[31). H. Tucker, M. A. Tapia, and A. Wayne Bennett,
“Boolean Integral Calculus for Digital Systems,” IEEE
Transactions on Computers, Vol. C-34, No. 1, January
1985, pp. 78-81.

[4] J. H. Tucker, M. A. Tapia, and A. W. Bennett, “Booclean
Integral  Calculus,” Applied Mathematics and
Computation Vol 26, 1988, pp. 201-236.

[51S. Rudeanu, Beoolean Functions and Equations, North
Holland Publ. Co. & American Elsevier, Amsterdam -
Londan - New York, 1974,

[6] F. M. Brown, Boolean Reasoning The Logic of Boolean
Eguations, Kluwer Academic Publishers, 1990.

[7] §. H. Tucker and M. A. Tapia, “Using Kamaugh Maps to
Solve Booiean Equations by Successive Elimination,”
Proceedings of IEEE Southeastcon, pp. 589-591,
Birmingham, Al. April 13-15, 1992,

[8]1. H. Tucker and M. A. Tapia, “Minimum Parameter
Solution of Switching Equations,” Proceedings of IEEE
Southeastcon, pp. 180-184, Miami, Fl. April t1-13,
1994,

[9] J. H. Tucker and M. A. Tapia, “Solution of a Class of
Boolean Equations,” Proceedings of I[EEE Southeastcon,
March 26-29, 1995,



