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1. Introduction and Literature Search

1.1 Justification for fault tolerance in robotics

Robots are finding new applications in critical space, nuclear, and underwater tasks.  These tasks are being

driven by the need for maintenance and construction operations to be performed in areas where it is

hazardous for humans to work.  While current advanced laboratory manipulators are capable of successfully

completing many of the tasks, it is difficult to convince mission planners to rely on robot completion of

critical tasks.  This lack of confidence necessitates expensive preparations for possibly dangerous human

intervention.

One reason for this lack of confidence is the fault tolerance of most existing laboratory robot designs.

Classically designed serial manipulators contain many single point failures.  Failures can lead to the

inability of the robot to complete the assigned tasks or, if not handled properly, robot runaway.  In the

robot engineer’s efforts to demonstrate the ability of the robot to complete a candidate task, the inclusion of

fault tolerance in the robot design or control system is normally an afterthought.  The lack of fault tolerance

in the resulting robot system can lead to spectacular failures further reinforcing the user’s decision to make

robotics an expensive convenience, not a necessity.

The ability to implement advanced machine intelligence which can guarantee high level task completion is

beyond the scope of current technology.  However, the ability to monitor robot systems to check for

mechanical or electrical failures is possible.  If properly designed, robot systems can detect and recover from

many failure modes.  The key is that the robot mechanisms must be properly designed.  A fault tolerant

control system added at the last minute can do little make a robot fault tolerant without proper sensor

information and robot mechanical ability.

Robot manipulator designs can incorporate redundant sensors and actuators and can be kinematically

designed to continue operation after  joint failure.  Most of these techniques require new robot designs or

major modifications to existing designs.  In practice, it is sometimes advantageous to use an existing,

proven robot design.  A new, fault tolerant design can be failure prone due to minor faults that have been

fixed in existing designs.  Existing designs may already be operational or in late planing stages.  The cost

of significant changes in these designs to incorporate fault tolerance using existing techniques can be

prohibitive.
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One failure mode that has received little attention is joint position sensor failure.  While joint position

sensors are arguably the most important type of sensor in robot designs, their failure has been dismissed as

easily compensated for by the inclusion of backup position sensors.  While including backup position

sensors is effective, it can force major changes to optimized robot joint designs.  Unfortunately, this chapter

will show that other existing techniques for joint position determination, while adequate for instantaneous

failure detection and identification, are not practical for extended use in unstructured environments.  The

trivial solution to this problem to lock the joint with the failed sensor as the control system would do with

a failed actuator.  Since the existing robot is not kinematically optimized for fault tolerance needlessly

locking a joint can be disastrous to the robot’s ability to complete a task.  As a result, position feedback

adequate for continued operation of the failed joint is even more essential in existing robot designs than in

fault tolerant designs.

The goal of this dissertation is to propose a new method for joint position determination and develop a

control system capable of satisfactory operation during position sensor failure.  Several key problems must

be solved by the proposed system:

1. The sensors required by the proposed system must currently be incorporated in advanced

robot designs or be proven sensors which can be incorporated into robot designs without

major changes to the robot system

2. The proposed system must be suitable for extended use in unstructured environments

3. The control system must be stable without position sensor feedback and track desired

trajectories adequately with the feedback from the backup sensors

4. The incorporation of fault tolerance should not significantly degrade performance during

normal operation

5. The control system must be implementable on reasonable computer hardware

An important consideration in developing techniques for sensor based control is the performance of the

control algorithms on a real system with real sensors.  Unexpected sensor effects in real systems can

invalidate control laws that worked well in simulation.  All new algorithms developed in this dissertation

will be experimentally tested on an advanced robot system of the type that would be considered for fault

tolerant modifications.

Sections 2 through 5 of this chapter will detail the state of the art in fault tolerant and robust design

techniques.  Special emphasis will be given to the applications of joint torque sensors and Cartesian

accelerometers in robotics.  Section 6 will introduce the proposed position sensor fault tolerant control

system utilizing virtual passive joint control for stability and two methods utilizing accelerometer feedback

for joint position determination without integration.
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1.2 General purpose fault tolerance

Fault tolerance is a necessary part of critical dynamic systems.   The fault tolerance process can be divided

into two major components.  First, a fault must be detected and identified by the system.  The system

must then decide how to recover from the fault and implement the appropriate actions.

1.2.1 Failure detection and identification (FDI)

Once a fault occurs, it must be detected and isolated before it can be corrected.  A good overview of  FDI

techniques can be found in a text by Patton et al. [1].   To determine whether a fault has occurred, the

effects of the fault must be observable.  For example, if a motor is supposed to turn at 1000rpm, a sensor in

the system must be able to detect that the motor is turning at that speed.  The simplest way to accomplish

this task is to place a tachometer on the motor and directly monitor the motor’s speed.  As the number of

system states that must be monitored increases, the number of sensors required for direct monitoring can

become impractical or some states may not be directly observable.  These problems lead to using analytical

methods to observe the system states that must be monitored.  These analytical methods incorporate a

system model along with available system outputs to produce the appropriate quantities.  Techniques

include banks of Kalman filters and Leunberger observers [2], parity space approaches [3], and parameter

estimation techniques [4].  These methods determine a residual, the difference between observed and desired

system states.  Unfortunately, due to errors in the system model used to determine the residual, a non-zero

residual does not imply a system failure.  Several authors have proposed techniques for robust residual

generation [5,6,7,8].  Limiting the number of false alarms due to modeling errors is currently one of the

main emphasis of FDI research.

1.2.2 Fault recovery

Once a fault has been identified, the operator or control system must determine how to handle the fault.

The main choices are to halt the appropriate parts of the system or to use other means to bypass the fault

and continue operation.  To be able to continue operation, the system must have some redundant

characteristics.  Direct redundancy, such as backup amplifiers, sensors, or motors, can be built into the

system.  When a failure occurs, the system is switched to the backup device.  Direct redundancy, while

very effective, can be expensive and difficult to implement because each critical system must have a backup

system capable of replicating its outputs.  A more complex method of failure recovery involves exploiting

the analytical redundancy in a system.  An example of an application utilizing analytical redundancy in a

multi-engine aircraft would be using differential engine thrust to control airplane yaw instead of a failed

rudder.  The use of analytic redundancy requires that the control system be reconfigured to utilize the
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working components to perform the task of the failed components.  Work on reconfigurable control systems

can be found in [9,10,11,12,13].

1.3 Robot fault tolerance

Existing general purpose FDI and fault recovery techniques can be applied to robot systems.  Due to the

highly nonlinear nature of robot systems, some general purpose methods become cumbersome quickly.

The following sections detail specific applications of fault tolerance in robot systems.

1.3.1 Robot joint failure detection and identification

Direct measurement of joint position and velocity is built into most robot systems.  As a result, the

control system can monitor the joint actuators to determine if they are performing as commanded.  A

problem occurs in this direct measurement when the system is moving.  Due to errors in the control

model, the robot may not track the desired trajectory exactly.  The FDI system must be able to determine if

this error is due to a failure or a control error.  Choosing constant, large acceptable error bounds to reduce

false alarms during movement will reduce the effectiveness of the FDI system.  Horak [14] proposed a

method to determine allowable tracking errors in general dynamic systems due to bounded modeling error.

The complex nature of robot systems makes this method computationally intensive.  Exploiting the

structure of the robot control equations, Visinsky et al. [15] developed an efficient method to determine

acceptable dynamic tracking errors due to modeling errors.

Parameter identification methods can be used in robot fault detection.  An example of this application can

be found in Feryermuth [16].  The author uses on-line parameter identification techniques to compare actual

parameters such as link inertia, link mass, and drive friction with previously computed quantities.  The

author then relates changes in these parameters over time to faults in the robot systems such as drive train

distortion, motor heating, overloads (dynamic and static), and brake defects.

In another paper by Visinsky et al. [17], the authors introduce some limited analytical sensor redundancy.

To monitor motor and sensor faults, the authors compare sensed position and sensed velocity, sensed

position and computed acceleration, sensed velocity and computed acceleration, and sensed velocity and

computed jerk.  By determining which of these quantities are outside acceptable error bounds, this

technique will allow for the isolation of the failed sensor or actuator.

1.3.2 Robot joint failure recovery
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When a robot joint failure occurs, the control system has three options.  If the failure is not recoverable, i.e.

is the robot does not have the direct or analytical redundancy to continue to operate, the control system

must halt the task.  If direct redundancy exists, the control system can switch to the backup system and

continue the task.  If analytical redundancy exists, the control system can be reconfigured to use other joint

actuators or sensors to complete the task.

Development work has been done on joint designs that incorporate direct actuator redundancy [18].  In

these designs, the innovative work is in reducing the weight and size of the redundant actuator package

while maintaining performance.  If a robot design does not incorporate directly redundant actuators, another

option is presented by Bergerman and Xu [19].  Assuming the failed actuator is not frozen and a joint brake

is available, the authors present a variable structure based control system to treat the failed joint as a

passive actuator and control its movement by dynamic effects.

If the joint is locked, the kinematic design of the robot will determine if it can still complete a task given a

set of locked joints.  Several papers present an analysis of crippled robot motion and discuss techniques to

design redundant and non-redundant robot kinematics to allow for specific task completion [20,21,22,23].

Paredis et al. [21] described techniques for fault tolerant robot design given a set of trajectory points a robot

must be able to reach.  Paredis and Khosla [24] presented global trajectory planning algorithms to avoid

unfavorable joint robot positions for fault tolerant manipulators before and after failure occurs.  When the

decision is made to lock a joint, the control system must be reconfigured.  This reconfiguration will change

the manipulator parameters resulting in a control discontinuity that could effect the current end-effector

trajectory.  Two papers by Ting et al. [25,26] detail methods to reduce this reconfiguration error.  Since the

other joints in the system must produce the torque required to complete the task in this failure recovery

mode, it is possible that some joints could be called upon to produce more torque than they are capable.

Ting et al. [27] presents a method to properly redistribute the torque in kinematically redundant

manipulators during failure.

Another approach to joint failure recovery is to make the robot modular.  This modularity will allow joints

to be added and removed as necessary to bypass joint failures.  The design of the Reconfigurable Modular

Manipulator System is discussed in [28] and [29].  In Kelmar and Khosla [30], the authors present a

method to automatically determine the forward and inverse kinematics of the reconfigured robot.  The new

control system for the reconfigured manipulator can be implemented quickly and efficiently using the

Chimera real time operating system [31] in conjunction with the Onika graphical programming

environment [32].

The robot control system must have a high level control strategy to implement a fault detection and

isolation process and, when the fault is found, a fault recovery procedure.  Visinsky et al [17,33] propose a

layered approach to the high level control.  On the highest layer, the authors propose an expert system
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based supervisory system to reconfigure the system given inputs from the fault detection layer and the robot

servo layer.

1.4 Robust Control

Robust joint control methods can be important to fault tolerant architectures.   If a robot joint is locked

during failure, the two links to which it is attached must be treated as one.  Since the original links

contained modeling errors in their dynamic parameters, the dynamic parameters of the new link can have an

even greater modeling error.  Several texts and survey papers have summaries of existing techniques

[34,35,36].   The most popular robust control algorithms employ versions of the computed torque

controllers, variable structure controllers, and adaptive controllers.  Each controller type has its own

advantages.   Computed torque variations are the most popular and are very effective.  However, large gains

may be required to obtain robustness.  Variable structure controllers, while in theory robust to parameter

variations, require control switching that can excite high frequency modes and are not fully realizable in real

systems.  Adaptive controllers require some time to improve the initial parameters and, as a result, are best

suited to repetitive operations.

1.4.1 Applications of torque sensors in robust control

Although joint torque sensors have become an integral part of advanced robot designs, their range of

applications has been limited.  Their primary uses are to verify joint torque commands and to implement a

torque controller to allow for better torque command tracking.  Some attempts have been made to use all

joint torque sensors in the robot system along with the manipulator Jacobian to control end-effector forces.

This force control method proves inferior to end-effector force sensor based methods due to modeling errors

and the usually lower resolution of joint torque sensors.

An innovative application of joint torque sensors is in the area of robust control.  Papers by Kosuge et al.

[37] and Imura et al. [38] advocate using torque sensors to decouple the torque required to drive the joints

from the torque required to move the links.  In these implementations, joint motor parameters determine

the portion of the torque command required to make the motor respond to a joint position trajectory while

the torque sensor determines the resistance caused by the link to the joint motion.  That sensed resistance

is added to the torque required to drive the joint motor to form the complete torque command to the joint.

Both methods only consider direct drive joints.  Problems with the methods include the simplicity of the

joint model used and joint torque sensor effects such as bias, hysteresis, and noise.



1-7

1.5 Position sensor fault tolerance

Most robot control techniques, with the exception of pure force or velocity based control, are dependent on

accurate joint position sensing.  As a result, a fault tolerant manipulator must have a FDI and failure

recovery strategy for its position sensors.  The most basic method of accomplishing the FDI task is to

build directly redundant position sensors into the joint.  Analytical redundancy between joint position and

joint velocity sensors can also be exploited instantaneously as detailed in Visinsky et al. [17] for FDI.  If

the robot end-effector can be tracked, then a deviation from the trajectory calculated from the joint sensors

and that determined from the end-effector tracking would imply a joint sensor failure.  This method is

problematic due to the difficulty of accurate end-effector tracking in unstructured environments, possible

problems in identifying which joint sensor is in error (especially in redundant robots), and the slow update

rate of some tracking methods.

After a joint position sensor failure is identified, a recovery process must be undertaken.  If directly

redundant position sensors are available, then control is switched to the redundant sensor and operation can

continue.  However, if only analytical redundancy exists, then the reconfiguration decision is more difficult.

While joint velocity sensors can be used instantaneously to detect joint position sensor failure, integrating

the sensed velocity over time will lead to an unacceptable position offset.  The difficulty of end-effector

tracking in unstructured environments and its slow update rate make end-effector tracking an unsuitable

candidate to generate position feedback.  Although reasonable methods exist to determine if joint position

sensor failure has occurred using analytical redundancy, there does not appear to be a satisfactory method to

continue operation after a joint position sensor failure without direct sensor redundancy.   It would be

advantageous to have a system internal to the robot utilizing analytical redundancy that provides joint

position data at a high rate for FDI and failure recovery.

If a robot joint loses all position information, there is no other choice but to lock the joint in its current

position, at least temporarily.  At that point, hopefully some experiments can be conducted to verify the

final joint position and some crippled operation can continue.  The locking of the joint is usually

accomplished by engaging the joint brake.  Unfortunately, some robot designs do not incorporate joint

brakes and joint brakes can fail.  If the joint position information will be available from a recovery method

that takes a few seconds to calibrate or is intermittent from a partially failed sensor, repeatedly locking and

unlocking the joint brake can lead to unwanted vibrations and other wear on the joint drive.  It would be

advantageous to have a controller that could stabilize a robot joint without position information and would

not unnecessarily shock the system or otherwise degrade performance when active.  Such a controller could

be activated whenever position information was suspect.
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In the situation that a position sensor failure is detected but the failure is diagnosed as a position offset or

the recovery method has an offset problem, if the offset is not exactly known control stability problems

could occur.  Most robust control designs are not designed to deal with position error.  Due to the high

gains that some controllers use to overcome parameter error, the controllers could be especially susceptible

to position error.  The current robust control methods that utilize joint torque sensors could be resilient to

any errors caused by unknown link position due to their direct sensing of link static and dynamic effects

instead of relying on position dependent model calculations.

1.5.1 Applications of accelerometers in position sensor fault tolerance

Accelerometers have found applications in such diverse fields as automotive safety [39,40] and control of

space structures [41].  Accelerometers have also found applications in robotics.  The main use of

accelerometers in robotics has been in flexibility control [42,43,44].  Accelerometers have also been used in

system identification [45],  runaway detection [46,47],  orientation measurement in cooperation with

inclinometers [48], and sensing slip in grasping operations [49].  Of these applications, only the runaway

detection and orientation measurement applications relate to fault tolerance.  While the accelerometer based

runway detection systems are efficient in detecting rapid joint runaway conditions, they have problems with

slow drifts and provide no method to recover from the runaway condition.  Orientation measurement relates

to fault tolerance in that it could be used to compare the sensed orientation of robot links with the

orientation calculated from position sensors for FDI.  In the orientation measurement application, the

accelerometers are utilized only for high frequency components of the orientation.  An inclinometer provides

steady state and low frequency information canceling drifts and offsets caused by the double integration of

the accelerometer information.  Problems with the double integration of accelerations to obtain positions

due to various sensor effects has limited the utility of accelerometers in position sensor fault tolerance.

1.6 Research problems to be solved in dissertation and contributions

This literature search has identified that joint position sensor fault tolerance is an essential characteristic for

robust robot controller design.  While currently available methods can be used to detect and identify joint

position sensor failure, without direct sensor redundancy there is no satisfactory method to recover from the

failure.  It would be advantageous to have system internal to the robot utilizing analytical redundancy that

provides high rate joint position data for FDI and failure recovery.  The goal of this dissertation is to

provide a practical method for continued operation during joint position sensor failure.  An effort was made

to verify all theory in this dissertation on a real system.  To that end, Chapters 2 through 7 of this

dissertation contain three related pairs chapters, one with theory and simulation and the second with

experimental results.
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The predominate joint position sensors used in robotics currently, optical encoders and inductive resolvers,

provide the most noise free, accurate, directly measured position information currently available.  Any

analytical method developed will be nosier, less accurate, and more susceptible to bias error.  As a result,

the joint controller will need to be robust.  Analytical methods could require some startup time after a

failure is detected.  As a result, the controller must be able to tolerate the sudden, temporary loss of

position data without instability.  If the loss of position data continues and if the joint is not equipped with

a joint brake, the controller should attempt to slow the joint to a stop and attempt to resist further

movement to allow for continued operation of other joints.  Ideally, this controller would have other

beneficial qualities that would enhance operation of a joint with an operational joint position sensor.

Chapter 2 of this dissertation will present a controller with all the desired properties based on joint torque

sensor feedback, a linear joint model, and virtual passive control.  Chapter 3 will explore the characteristics

of this controller on three joints of a laboratory manipulator.  In chapters 5 and 7, up to six joints of the

manipulator will be controlled by this new method with position feedback of varying quality.

Although the controller developed can stabilize a joint without position feedback, it cannot servo to a

position without position feedback.  A method to provide joint position during sensor failure is still

required.  Utilizing double integration, perfect accelerometers would be ideal for this purpose.  Current

accelerometer designs are small, require little power, and are easily incorporated into existing robot

designs.  Unfortunately, sensor effects such as noise and bias make the double integration based technique

impractical.  This dissertation will develop two techniques for using accelerometers to determine joint

position without integration.  The first technique is a joint specific method presented in chapter 4.

Experimental results obtained by instrumenting three joints of a laboratory robot are presented in chapter 5.

Usage of this method in both FDI and failure recovery is discussed.  The other position determination

method is a system wide method discussed in chapter 6.  This method reduces the amount of

accelerometers required for fault tolerance over the joint specific method but has increased computational

complexity and reduced convergence properties.  Chapter 7 details experiments conducted using the system

wide method to provide fault tolerance to different sets of up to three simultaneously failed position sensors

in both FDI and fault recovery.  These techniques utilize the robot kinematic equations and a known

acceleration field.  Computational methods for real-time implementation of these techniques are also

presented.

Existing fault tolerant control systems can incorporate the new controller and position determination

methods.  The position determined by the joint specific or system wide methods can be used by existing

FDI methods to determine if a joint position sensor has failed.  At failure, the fault tolerant control system

decides if recovery is possible given the characteristics of the system and the task.  If recovery is possible,

the position determined by the either accelerometer based algorithm can be used along with the virtual

passive based torque controller to continue operation as shown in this dissertation.  The scope of this
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dissertation does not include the advancement of FDI or reconfiguration techniques.  The goal is to produce

a sensor/controller combination with the desired characteristics to provide for continued operation without

joint position feedback utilizing existing FDI and reconfiguration techniques.

The research contributions presented in this dissertation will be:

1. The design, development, and experimental testing of a virtual passive joint torque controller which

improves position tracking performance during normal joint operation without a complex dynamic

model and can stabilize a robot joint without position feedback.

2. The design, development, and experimental testing of a joint specific method of determining joint

position using Cartesian accelerometers without integration for FDI and the integration of the joint

specific position determination method and the virtual passive torque control method for failure

recovery.

3. The design, development, and experimental testing of a system wide method of determining joint

position using Cartesian accelerometers without integration for FDI and the integration of the system

wide position determination method and the virtual passive torque control method for failure recovery.
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2. Dissipative Controller Design for Robot Systems Using Joint

Torque Sensors and a Joint Model

2.1 Introduction

Control of robotic systems is a difficult problem due to the nonlinearity of the complex system equations.

Several techniques to control these nonlinear system equations have been studied.  Some methods, such as

Jacobian linearization[50] and pseudolinearization[51], have attempted to linearize the system and apply

classical linear system control techniques to the problem.  These methods are only valid close to a

linearization point or trajectory.  The feedback linearization[52] technique attempts to linearize the

equations over a large workspace and has been popular in the robotic control literature for some time.

Feedback linearization requires good knowledge of the system parameters and states, else some of the

nonlinearity will not be canceled out.  Variable structure control is a purely nonlinear control method

which has been a popular research topic[53].  Although variable structure control is robust, the fast

switching required by the controller to maintain this robustness is difficult to achieve without chatter.

These are only a few of the many control methods that have been applied to robot systems.

The main reason for the nonlinearity in the equations is the need to calculate the dynamic effects on the

structure.  Controlling the nonlinear plant based on the full dynamic equations is not the only method for

controlling a multi-body dynamic system such as a robot manipulator.  If the joints have a torque sensor

along the drive axis, the problem can be reduced to controlling the individual joint dynamics.  Work in

this area has been published recently[37,38].  These methods use known, mostly linear, electric motor

driven joint models to control joint acceleration and velocity.  These methods still require measurement of

joint position and velocity to compute the control inputs.

Passivity based control methods have been applied to multi-body dynamic control in robotics [54,55] and

vibration control of space structures[56].  The problem with the basic passivity control approach is that it

requires velocity feedback.  The virtual passive dynamic control approach [57] has been successful in

stabilizing systems with displacement, velocity, or a combination of acceleration with displacement and

velocity feedback.

This chapter develops a method to stabilize a robot manipulator with joint torque sensors without directly

measuring joint position, velocity, or acceleration.  The torque sensor output will be used in conjunction

with a simple joint model and the virtual passive dynamic-based control technique to quickly dissipate the

kinetic energy in the robot system.  A Lyaponov stability proof will be presented for the control technique.
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The robustness of the system will be discussed and simulations of the control system will be shown.

Chapter 3 will discuss experimental results.

2.2 Dynamic Model

The following derivation is based on a model of a direct drive, electric motor driven, revolute joint with an

output torque sensor presented in Kosuge[37].  This joint is assumed to be part of a serial linkage

consisting of other revolute joints and rigid links.  The structure of the proposed joint is shown in Fig.

2.1.  Each joint is assumed to have two parameters, rotor inertia and viscous friction.

link i

Stator

τ i

τsi

Rotor

θi

link i-1

Figure 2.1: Diagram of proposed direct drive joint

Paraphrasing the development in Kosuge[37], the model of the joint is determined by applying a Newton-

Euler iterative dynamics[58] approach to a rigid, serially linked structure with revolute joints.  This

derivation included the motor inertial and viscous friction terms.  The full equation for the joint torque was

computed.  The terms required to compute the torque were divided into three groups: terms which depend

only on the ith joint, terms depending on other joints which effect the ith joint, and terms that involve link

inertias, masses, and lengths.  All equations in this chapter are given in the robot base coordinate system

for consistency with Kosuge.  The joint torque model resulting from this derivation is found in Eq. (2.1).

τ θ τ θi i i si i i im v f= + + +˙̇ ˙ (2.1)

M A M Ari i i
i≡ −
−

1
0

0
1 (2.2)

m z M zi
T

ri≡ 0 0 (2.3)

ω ω θi i i iz= +− −1 1
˙ (2.4)

˙ ˙ ˙̇ ( ˙ )ω ω θ ω θi i i i i i iz z= + + ×− − − −1 1 1 1 (2.5)
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× + ×
− − −

−
− − −

0 1
0

1 1
0

1
1

0
1

0
1 0

[ ( ˙ ) ( )

( ) ( ˙ )]

ω ω

ω ω θ
(2.6)

Where,

Mi Inertia matrix of the rotor of the ith joint

vi Coefficient of the viscous friction torque acting on the rotor around the joint axis zi-1

Aj
i Rotation matrix

Mri Rotor inertia matrix in reference frame

τ i Torque at joint input

τsi The sensed torque  along the z axis at the joint output

θi Joint position

ω i Angular velocity

z0 Unit z vector [0 0 1]T

Joint specific terms are evident in the model while link specific terms are contained in the torque

measurement along the axis of rotation. With the exception of the nonlinear term fi, the elements of Eq.

(2.1) depend only on values of the ith joint.

In later sections, the goal will be to develop a controller that will produce ui , the control input, that will

stabilize a joint described by  Eq. (2.1).  If τi=ui, the control input, then Eq. (2.1) can be solved in terms

of the sensed torque.

τ θ θsi i i i i i im v f u= − − − +˙̇ ˙ (2.7)

where

τ τsi xi if= +  (2.8)

and

τ θ θxi i i i i im v u= − − +˙̇ ˙ (2.9)

In section 2.4, exact knowledge of the term τxi
  is assumed to derive a stabilizing control input for the

system.  In section 2.5, the robustness of the system to inexact knowledge of τxi is discussed.

2.3 Virtual passive dynamic control

The controller design technique used in section 2.4 is similar to the passive dynamic control technique

presented in Juang[51].  This technique is based on the concept that a mechanical system can be
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represented by a second order system with inertial, damping and stiffness related parameters.  An active

feedback controller can be designed with its dynamics equivalent to a mechanical system.  The resulting

controller is

H x H x H x g y uM c D c K c s˙̇ ˙ ( )+ + + = (2.10)

where ys  is the measured system output, g is a user defined function, xc is the controller state vector of

dimension nc, and HM, HD, and HK are the controller mass, damping, and stiffness matrices respectively.

These matrices are design parameters and can be chosen to meet performance and stability requirements.

The function g is an arbitrary function of the measured system output, ys.  These outputs can be system

states or combinations of system states.

The Lyaponov proof of the stability of the chosen control law will depend on the rate of change of the

system kinetic energy.  Let T be the total kinetic energy of a mechanical system (linear or nonlinear) with p

control actuators at p physical locations described by p generalized coordinates xai and p control inputs ui ,

i=1,2,...,p.  These generalized coordinates and their derivatives are physical quantities of the system.  If a

mechanical system is holonomic and scleronomic (no explicit time dependence), a basic result of analytical

mechanics [53] that relates the time derivative of the total kinetic energy to the applied forces is:

dT

dt
u xT

a= ˙   (2.11)

where xa = (xa1,xa2,...,xap)
T.

Choose the Lyaponov candidate function to be of the type:

L T q x x x xa a c c= + ( , ˙ , , ˙ ) (2.12)

where q is an arbitrary function of the actuator and controller states and their rates.  Taking the time

derivative and substituting Eq. (2.11) yields,

dL

dt
u x q x x x x x xT

a a a a c c c= +˙ ˙( , ˙ , ˙̇ , , ˙ , ˙̇ ) (2.13)

If the control inputs, ui, are designed to cause the rate of change of the Lyaponov function to be negative,

the stability of the system is guaranteed by Lyaponov stability theory.  This stability implies a constant

decrease in the kinetic energy of the system.
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Remembering that u is a function of system outputs, states, and controller states, it can be designed to

cancel out and combine with terms in the derivative of the Lyaponov candidate function to result in an

equation of the following form:

dL

dt
x Dx x R x x x x x xa

T
a c

T
a a a c c c= − −˙ ˙ ˙ ( , ˙ , ˙̇ , , ˙ , ˙̇ ) (2.14)

Where R is a linear function and D is a matrix involving the system damping.  The desired function which

implies a constantly decreasing Lyaponov function is,

dL

dt
x Dx x D xa

T
a c

T
c c= − −˙ ˙ ˙ ˙ (2.15)

that can be obtained by making the equality,

R x x x x x x D xa a a c c c c c( , ˙ , ˙̇ , , ˙ , ˙̇ ) ˙= (2.16)

The controller state can be calculated using Eq. (2.16) and substituted into Eq. (2.10) to determine the ui

required to maintain the Lyaponov stability condition.

2.4 Torque Feedback

The goal of this section is to provide a Lyaponov stability proof for using virtual passive dynamic control

with torque sensor feedback to stabilize a system.  For simplicity of the proof, let the quantity τxi be known

exactly.  Inexact knowledge of τxi and its relationship to τsi will be dealt with in section 2.5.  Choose the

Lyaponov function similar to Eq. (2.12) with xa=θ.  A candidate Lyaponov function for the stability proof

is:

L T x x K M x x x K xa c
T

rz a c c
T

c c= + + + +1

2

1

2
( ˙ ˙ ) ( ˙ ˙ )τ (2.17)

M diag m mrz p= ( ,..., )1 (2.18)

Where Kτ and Kc are design matrices and Mrz represents the rotor inertia along the z axis of joints in the

system.  Differentiating (2.17),

dL

dt
u x x x K M x x x K xT

a a c
T

rz a c c
T

c c= + + + +˙ ( ˙̇ ˙̇ ) ( ˙ ˙ ) ˙τ (2.19)
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Now, select the control input u to be a function of τxi, the controller state vector, the rotor inertia, and the

controller design matrix Kτ such that

u K K M x K Vxx rz c c= − +τ τ ττ ˙̇ ˙ (2.20)

V diag v vp= ( ,..., )1 (2.21)

τ τ τx x xpdiag= ( ,..., )1 (2.22)

where τxi is defined in Eq. (2.9). Substituting the equation for  τx into Eq. (2.20) yields

u K M x x K V x x K urz a c a c= − + − − +τ τ τ( ˙̇ ˙̇ ) ( ˙ ˙ ) (2.23)

Let,

R I K Kτ τ τ= − −( ) 1 (2.24)

Substituting (2.24) into (2.23),

u R M x x R V x xrz a c a c= − + − −τ τ( ˙̇ ˙̇ ) ( ˙ ˙ ) (2.25)

If RτV and RτMrz are chosen symmetric, replacing u in the time derivative of the Lyaponov function Eq.

(2.19) produces:

dL

dt
x x R M x x x R Vx

x x R M x x x K x

a c
T

rz a a c
T

a

a c
T

rz a c c
T

c c

= − + − −

+ + + +

( ˙̇ ˙̇ ) ˙ ( ˙ ˙ ) ˙

( ˙̇ ˙̇ ) ( ˙ ˙ ) ˙

τ τ

τ

(2.26)

Canceling terms and reformatting,

dL

dt
x R Vx x R Vx

x R M x x x K x

a
T

a c
T

a

c
T

rz a c c
T

c c

= − +

+ + +

˙ ˙ ˙ ˙

˙ ( ˙̇ ˙̇ ) ˙

τ τ

τ

(2.27)

or

dL

dt
x R Vx x R Vx

R M x x K x
a
T

a c
T

a

rz a c c c

= − +
+ + +

˙ ˙ ˙ [ ˙

( ˙̇ ˙̇ ) ]
τ τ

τ

(2.28)
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Now, define the following equality

R Vx R M x x K x D xa rz a c c c c cτ τ˙ ( ˙̇ ˙̇ ) ˙+ + + = − (2.29)

where Dc is a symmetric and positive-definite matrix.  This equality produces a set of equations that

calculate the controller state vector as a function of the sensed torque.  Substituting Eq. (2.29) into Eq.

(2.28), the time derivative of the Lyaponov function becomes:

dL

dt
x R Vx x D xa

T
a c

T
c c= − −˙ ˙ ˙ ˙τ (2.30)

This function results in a constantly decaying Lyaponov function if RτV and Dc are chosen to be positive

definite and xc is calculated using a reformatted version of Eq. (2.29),

R M x D x K x R M x Vxrz c c c c c rz a aτ τ˙̇ ˙ ( ˙̇ ˙ )+ + = − + (2.31)

Since only τx is known, substitute Eq. (2.9) and Eq. (2.22) into Eq. (2.31) and add Rτu to both sides to

replace dependence on measured joint acceleration and velocity with τx,

R M x D x K x R u Rrz c c c c c xτ τ τ τ˙̇ ˙+ + + = (2.32)

Using Eq. (2.32) and Eq. (2.20), the control input required to stabilize the system can be calculated as:

u R R M R M D x K x
M R Vx

x rz rz c c c c

rz x c

= − − −
+ +

−

−
τ τ τ

τ

τ
τ

[( ) ( ˙ )
)] ˙

1

1 (2.33)

If Rτ and Mrz are invertible, as they should be since Rτ can be chosen positive definite and Mrz is the full

rank diagonal joint rotor inertia matrix, Eq. (2.33) reduces to:

u R V D x K xc c c c= + +( ) ˙τ (2.34)

Although the torque sensor related term cancels out of u, the control input is not independent of τx because

τx is used to form xc and its derivative.  With τx as the input, u′ as the current torque command, and u as

the output, the control signal required to stabilize the system can be calculated by the following set of

linear equations.
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˙

˙̇ ( ) ( ) ˙

x

x

I

R M K R M D

x

x

M M u

c

c rz c rz c

c

c

rz rz

x









 =

− −



















+
−
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− −

− −

0

0 0

1 1

1 1

τ τ
τ (2.35)

u K R V D
x

xc c
c

c
= +[ ]







τ ˙

(2.36)

2.5 Stability robustness

The previous Lyaponov proof concentrated on a non-directly measured value, τxi, instead of the directly

measured term, τsi.  It was also assumed that no modeling errors were present and that the nonlinear term,

fi, was calculable.  If the joint in question does not have a position sensor and/or the controller did not

have information from other joints, the nonlinear term is not calculable. If additive modeling errors are also

present, the joint model becomes:

u m m v v fi i i i i i i si i= + + + + +( ) ˙̇ ( ) ˙θ θ τ (2.37)

Reformatting and solving for τsi and treating fi as an error,

τ τsi xi ie= −  (2.38)

e m v fi i i i i i= + +˙̇ ˙θ θ (2.39)

From Eq. (2.39), it can be seen that if the kinetic energy in the joint declines, then the effects of the

additive error terms are reduced.  The magnitude of these errors should never be very high because the mi

term, which represents the rotor inertia along the z axis, should be known precisely from the motor

manufacturer and vi, the viscous friction term, while not easily modeled precisely can be closely

approximated by a simple linear model.  Since higher frictional forces enhance the dissipation of energy,

stability will not be effected if the modeled friction is less than the actual friction.  Due to the low relative

magnitude of these errors, they can be considered disturbances and do not effect the overall stability of the

system.

For the ith joint, it is evident that the additive errors will decline with the kinetic energy of the system, but

it is not evident that the fi term shares this property.  The fi term represents the dynamic effects of moving

the joint through space.  Each term of fi is multiplied explicitly by the angular acceleration or the angular
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velocity of the ith or (i-1)th link.  If the base frame’s angular acceleration and velocity are zero, Eq. (2.4) and

Eq. (2.5) can be rewritten as:

ω θi n n

n

i

z= −
=

∑ 1
1

˙ (2.40)

˙ ˙̇ ˙ ( ˙ )ω θ θ θi n n

n

i

n n

n

i

i iz z z= +








 ×−

=
−

=
−∑ ∑1

1
1

1
1 (2.41)

The z axes in Eq. (2.40) and Eq. (2.41) are in base frame coordinates.  The angular acceleration and

velocity will decline as joint kinetic energy is dissipated because all terms in angular acceleration and

velocity equations are multiplied by joint acceleration or velocity.  Since all terms of fi are multiplied by

the declining angular terms, fi will also decline with kinetic energy.  An argument must still be made that

the controller will remain passive during the disturbance caused by the nonlinear dynamic effect.

With the non-moving base frame assumption, the first joint has no nonlinear term because the first joint is

not moving through space.  Utilizing the previous discussion on the robustness to parameter error, the first

joint will remain dissipative.  As the first joint dissipates its kinetic energy, the components of the

nonlinear terms in later joints in the kinematic chain are lowered.  The nonlinear term of the second joint

in the chain only depends on the motion of the first and second joints.  If the motion of the first joint tends

towards zero, only an increase in the velocity or acceleration of the second joint can cause the nonlinear

term to increase in magnitude.  In view of Eq. (2.6), the equation for fi, the terms involving the velocity

and acceleration of the second joint are in squared relationships and are multiplied by the full rotor inertia

term, Mri.  Due to the size of practical rotor inertias and link velocities, these numbers can be considered to

be of the same order of magnitude as the parameter errors and treated as a disturbance.  Therefore, the

second joint will remain dissipative.  As the kinetic energy of the first and second joints decreases, the

nonlinear  effect on the third joint decreases.  This argument can be continued for n joints.  Note that the fi

term does not necessarily need to be treated as an unknown disturbance if the necessary sensing required to

calculate it is available.

The previous arguments contend that the ei term is small for a real system. Since ei is based on physical

parameters, it is bounded.  The control system parameters can be tuned to deal with this bounded

disturbance and maintain system stability.  In addition, if stability is maintained, due to the dissipative

nature of the controller, the ei term will be reduced  as the kinetic energy dissipates.  With this argument,

the ei term can be ignored in the τsi model.  With these changes, τsi can be modified to be approximately

τxi and used to calculate the stabilizing control input.
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The stability of the system is not only effected by disturbances that decay with kinetic energy.  Sensor

noise and unknown torque bias between the torque input and torque sensor output can be problematic.

These errors will cause the control system to believe that the motor is rotating at a different velocity and

acceleration.  System noise will cause  movement about the zero kinetic energy point as the signal to noise

ratio decreases.  Sensor bias will lead to the inability of the system to reach the zero kinetic energy point.

In both cases, assuming reasonable error levels, as the system kinetic energy increases due to controller

error, the signal due to the real motor parameters increases.  The higher signal to error ratio then allows the

controller to move back towards zero energy.  Depending on the controller gains, the magnitude of the

error, and the duration of the error, this reaction can lead to unstable behavior.  Unfortunately, due to the

low signal magnitude for real motors and the reduction of signal magnitude as energy decreases, the small,

non-dissipating errors can adversely effect performance.

2.6 Extension to Geared Joints

The extension of the stability theory to a geared joint is reasonably straightforward.  The motor model now

considers a gear ratio, ni, and a geartrain viscous friction term, vi
G,

τ θ
τ

θ
θ

i i ig
si

i
i ig

i

i

i
G

ig

i

m
n

v
f

n

v

n
= + + + +˙̇ ˙

˙

2 (2.42)

Note that nonlinear geartrain properties such as backlash and hysteresis will be discussed later in this

section.  The θig terms in the geared joint model refer to the motor side of the joint, not the link side.

Because the sensed torque is physically on the link side of the geartrain, its value are divided by the gear

ratio.  The nonlinear term is also divided by the gear ratio because its value is composed entirely on joint,

not motor, output terms.  Due to being on the reduced speed and torque side of the geartrain, the geartrain

friction term is divided by the square of the gear ratio.  The τsi term can be recalculated for the geared joint

as:

τ θ θsi i i ig i i
i
G

i
ig i i in m n v

v

n
f n u= − − + − +˙̇ ( ) ˙ (2.43)

Changing to link coordinates, θig=niθi.

τ θ θsi i i i i i i
G

i i i in m n v v f n u= − − + − +2 2˙̇ ( ) ˙ (2.44)
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As before, a τxi term can be introduced in the τsi equation.

 τ τsi i xi in f= −2 (2.45)

τ θ θxi i i i
eq

i
i

i

m v
u

n
= − − +˙̇ ˙ (2.46)

v v
v

n
i
eq

i
i
G

i

= + 2 (2.47)

By simple substitution of vi
eq for vi and multiplying the input torque by a constant in the Lyaponov

stability proof in section 2.4, it can easily be seen that the proof holds for geared joints.

The robustness arguments of section 2.5 can be extended to the geared joint.   The magnitude of the

additive rotor parameter errors are multiplied by the same squared gear ratio constant as the nominal rotor

parameters.   The relative magnitude of the nonlinear term has been reduced by the gear ratio.  Since the

relative magnitudes of these disturbances with respect to the dominant terms have remained unchanged or

been reduced, the robustness arguments from section 2.5 still hold.  Likewise, the same friction

approximation arguments made for vi in the direct drive joint case also apply to the vi
eq term.

Some nonlinear geartrain effects will be seen by the torque sensor.  Geartrain backlash will show up as a

discontinuity in the torque sensor output about zero torque.  Its effect on system stability will depend on

the duration of the zero torque output while the geartrain unloads and loads, and the magnitude and its rate

increase in output torque when the geartrain loads.

Geartrain hysteresis will not be seen by the torque sensor but will effect the joint model.  The hysteresis

effect implies that more effort is required to drive the geartrain in one direction than in the other.  This effect

manifests itself in the inability of the joint to be driven back to its initial starting position using the inverse

of the control input required to move it away from the starting position.  This effect can be considered a

bias on the geartrain viscous friction term, vi
G, that varies with the direction of joint motion.  In the geared

system, this offset is proportionally reduced by the square of the gear ratio.  As a result, although an

unmodeled, variable friction term is added by the hysteresis, that unknown friction torque  is disadvantaged

by the geartrain.  In addition, if the hysteresis friction increases total friction it will add the dissipative

nature of the system, thus enhancing stability.
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2.7 Simulation

The controller described in section 2.4 was simulated to test the stability robustness of the system.  A

planar, 3 degree-of-freedom robot arm, shown in Fig. 2.2, was used as the plant.  Table 2.1 details the

parameters of this robot arm.  The quantities α, a, d, and θ are Denavit-Hartenberg robot parameters[58]

which describe the robots kinematic configuration.  The motor parameters were taken from real brushless

DC motors.

Figure 2.2: Planar 3-DOF robot

Table 2.1: Robot physical parameters

Parameter Joint 1 Joint 2 Joint 3

α 0 0 0

a 1.0m 0.8m 0.4m

d 0 0 0

θ θ1 θ2 θ3

link mass 19.4kg 15.1kg 8.0kg

motor mass 5.6kg 4.9kg 4.0kg

link inertia (Iz) 1.6167N-m-

s2

0.8053N-m-

s2

0.1067N-

m-s2

motor inertia

(Mrz)

0.00128N-

m-s2

0.00112N-

m-s2

0.00091N-

m-s2

motor viscous

friction (V)

0.00024N-

m-s

0.00019N-

m-s

0.00016N-

m-s

Maximum

motor torque

38.3N-m 32.4N-m 26.5N-m
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The robot link dynamics were simulated using a set of dynamic equations generated by Robotica[60], a

Mathematica based robot kinematics and dynamics generation package.  Those equations were converted to

a Matlab script and simulated using Matlab and Simulink.  The joint simulation was independent from the

link simulation.  The joint simulation accounted for the effects of the motor and geartrain producing the

output torque for the torque sensor and the link simulation.  The controller was implemented as a set of

state space equations detailed in Eqs. (2.35) and (2.36).

At the start of the simulation, the robot joints were positioned at [-0.8 -0.5 1.3] radians and were not

moving. This was the initial starting position for all zero gravity simulations.  To create an initial velocity

and acceleration condition for the controller, the robot was given a constant joint torque input of [17 5 0.8]

N-m for 0.2 sec.  During this 0.2 sec period, the controller inputs were connected to the system but its

output was not.  At 0.2 sec, the constant joint torque was turned off and the controller output connected to

the robot.

2.7.1 Simulation 1

This simulation utilized perfect knowledge of Mrz and V.  The nonlinear term, fi, was not considered in the

plant or controller for this simulation.  The simulation was in zero gravity.  Figures 2.3-2.5 show the time

histories of the joint velocities, joint accelerations, and the motor inertia and friction torques.  The

controller quickly dissipated the joint kinetic energy.  Figure 2.5 shows the difference between the

commanded and sensed torque values.  This difference results from the transmission loss caused by the

inertia and friction of the motor.  This loss is what is used by the controller to determine the energy in the

motor.  The small size of this loss accounts for the large Kτ gain required to quickly dissipate the energy.
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Figure 2.3: Joint velocities: exact joint

model

Figure 2.4: Joint accelerations: exact joint

model
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Figure 2.5: Motor inertial and friction torques

2.7.2 Simulation 2

This simulation considers controlling a system that is not exactly known.  Figures 2.6-2.8 show the effect

of having 10%, 20%, and 40% errors in the parameters of the motor model.  The error on the second joint

was added in the direction opposite to the first and third joint’s errors.  The percentage error used was the

same for both the motor inertia and the motor friction.  The nonlinear term was ignored in both the

controller and plant.  Although the parameter errors do effect the performance of the controller to a small

extent, the system still remains stable.  The small change in the system response is interesting.  This

small change implies that the controller has a high parameter error rejection capability.  The error in

commanded torque caused by the 20% parameter error can be seen in Fig. 2.9.
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Figure 2.6: Joint velocities: 10%

parameter errors

Figure 2.7: Joint velocities: 20%

parameter errors
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Figure 2.8: Joint velocities: 40%

parameter errors

Figure 2.9: Torque error caused by 20%

parameter errors

2.7.3 Simulation 3

This simulation considers the nonlinear term, fi, in the plant model.  The controller model, as it will with

all simulations, does not include the nonlinear term.  For a planar manipulator, this nonlinear term is a

function of only the rotor inertia and the joint accelerations of the i-1 preceding joints in the kinematic

chain.  The nonlinear velocity terms drop out due to the parallel z axes of the link frames.  An exact model

is assumed in Fig. 2.10 and a model with 20% parameter errors is considered on Fig. 2.11.  The inclusion

of the nonlinear term in the plant does slow the convergence rate of the controller to the zero kinetic energy

state.  The torque error caused by ignoring the nonlinear term can be found in Fig. 2.12. The performance

of the controller ignoring the nonlinear term shows the stability robustness of the system with regards to

this term.  The magnitude of the nonlinear term, even in the simple planar model considered, is significant.

If the robot has a fixed base, as it did in this simulation, then the first joint has no nonlinear terms.
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Figure 2.10: Joint velocities: Nonlinear

term included in simulation with exact

model

Figure 2.11: Joint velocities: Nonlinear

term included with 20% parameter errors
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Figure 2.12: Torque error produced by nonlinear term

2.7.4 Simulation 4

This simulation considers a realistic situation of having parameter errors, the nonlinear term, and sensor

noise.  Figure 2.13 shows the effect of noise on the system.  The response of a noise-free system of the

same type can be seen in Fig. 2.7.  The noise does not decay as kinetic energy decays.  As a result, at low

energy state, the noise dominates.  As the system gains energy due to controller error caused by the noise,

the magnitude of the inertial and friction related terms increase and the controller moves the system back

towards zero energy. Due to the small size of the dynamic effects that are being considered, the noise levels

that produce the signal to noise ratio in Fig. 2.14 are small.  The signal to noise ratio and the magnitude
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of the additive noise can be found in Figs. 2.15 and 2.16, respectively.  The signal to noise ratio, by

averaging approximately 0db after an initial peak, implies that the magnitude of the signal is very close to

the magnitude of the noise in this simulation.  Torque sensor data will need to be heavily filtered to give

acceptable response at low joint energy levels.  To give the results shown in the simulations, the controller

gains were high.  Lower controller gains should lead to better noise rejection.
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Figure 2.13: Joint velocities: System with

noise, 20% parameter errors, and nonlinear

term

Figure 2.14: Signal to noise ratio
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Figure 2.15: Magnitude of noise added to sensed torque

2.7.5 Simulation 5

This simulation looks at the effect of gravity on the controller response.  A model with parameter errors and

the nonlinear term but without noise is considered.  To introduce another nonlinear effect, the motor torque
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limits, although increased, are not raised enough to keep the motors from saturating.  Figures 2.16-2.18

show the controller response to different gravity loadings induced by different starting positions.  The same

initial starting torque was used in the gravity simulations as was used in the non-gravity simulations.  The

torques were not designed to compensate for gravity.  As a result, the system accelerations are much larger

than in the zero gravity case at the end of the 0.2sec startup period.  The torque saturation of the joint

motors during the simulation shown in Fig. 2.18 can be seen in Fig. 2.19.  Although not shown, all three

initial positions resulted in some joint motor saturation. To show how the response would be improved if

the motors did not remain saturated much of the time, the simulation with initial position [0.8 0.0 0.5]

was recalculated with a torque limit four times higher than the previous simulation.  The results are shown

in Figs. 2.20 and 2.21.
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Figure 2.16: Joint velocities - gravity loaded

with initial joint position [-0.8 -0.5 1.3]

Figure 2.17: Joint velocities: Gravity loaded

with initial position [1.2 0.5 -1.3]
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Figure 2.18: Joint velocities - Gravity

loading with initial position [0.8 0.0 0.5]

Figure 2.19: Joint torques: Gravity loaded

with initial position [0.8 0.0 0.5]
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Figure 2.20: Joint velocities: Gravity

loaded with initial position [0.8 0.0 0.5]

and 4x torque limits

Figure 2.21: Joint Torques: Gravity

loaded with initial position [0.8 0.0 0.5]

and 4x torque limits

2.7.6 Simulation 6

This simulation details the effect of adding a 100:1 gear ratio into the system.  To maintain some equity

with the direct drive results presented earlier, the motors in the geared simulations have been reduced to

keep the maximum torque output the same as in the direct drive simulations.  For realism, these smaller

motors also have smaller inertial and friction parameters as shown in Table 2.2.  The mass of the smaller

motor and the geartrain are assumed to be equal to the mass of the direct drive motor.   The gains were

changed to reflect the lower motor torque output required by the geared system, the different motor inertial

and viscous terms due to the change in motor parameters, and the motor speed increase caused by the

gearing.  Some of the previous simulations done for a robot with direct drive joints were repeated for a gear

drive robot with an ideal geartrain (no geartrain viscous friction, hysteresis, or backlash).

The case using exact model and no nonlinear term is shown in Figs. 2.22 and 2.23.  The nonlinear term is

then included and some results are shown in Figs. 2.24 and 2.25.  The effect of the nonlinear term on the

system is less significant in a geared system because the nonlinear term is based entirely on link velocities

and accelerations.  Errors in the linear joint parameters will also exist in the geared model  (see Fig. 2.26).

Although these errors will be magnified by the higher motor speeds and accelerations, they have the same

relative magnitudes to the nominal parameters as in the direct drive system.  The numbers here will be

slightly different than in the direct drive simulations because  the geared motor parameters are not exactly

1/100th the parameters of the direct drive motors.  A realistic system will also have sensor noise.  As

shown in Figs. 2.27-2.29, the geared simulation will be better able to handle sensor noise in that the noise

occurs on the link side of the system and is thus disadvantaged by the gear ratio.  Given identical motor
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parameters, this advantage can be quite dramatic.  In this simulation, the geared simulation is able to

handle a factor of 10 times higher average noise power and give a similar response to the direct drive

simulation even with the smaller motor inertial and friction terms in the geared joint.  Gravitational effects

can also be handled by the controller as shown in Figs. 2.30 and 2.31.  As in the direct drive simulation,

the system accelerations are higher due to the initial condition torques inability to overcome gravity.  The

same gains were used for the gravity simulation as were used for the zero gravity simulation. The motors

saturated at the torque limits in both simulations.  The torque limits were raised in the second plot to

reduce the time in saturation.

Table 2.2: Gear drive motor parameters

Joint 1

Joint 2

Joint 3

0 1 2 3 4 5 6
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (sec)

Jo
in

t V
el

oc
ity

 (
ra

d/
se

c)

   

Joint 1

Joint 2

Joint 3

0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

Time (sec)

Jo
in

t A
cc

el
er

at
io

n 
(r

ad
/s

ec
^2

)

Figure 2.22: Joint velocities: Geared

model with exact motor parameters

Figure 2.23: Joint accelerations: Geared

model with exact motor parameters

Joint 1 Joint 2 Joint 3

Motor inertia

(Mrz) 1.6x10-7N-m-s2 1.9x10-7N-m-s2 2.7x10-7N-m-s2

motor viscous

friction (V) 2.0x10-7N-m-s 8.8x10-8N-m-s 4.0x10-7N-m-s
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Figure 2.24: Joint velocities: Geared

model with nonlinear term

Figure 2.25: Joint torques resulting from

nonlinear terms: Geared model

Joint 1

Joint 2

Joint 3

0 1 2 3 4 5 6
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (sec)

Jo
in

t V
el

oc
ity

 (
ra

d/
se

c)

   

Joint 1

Joint 2

Joint 3

0 1 2 3 4 5 6
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (sec)

Jo
in

t V
el

oc
ity

 (
ra

d/
se

c)

Figure 2.26: Joint velocities: Geared

model with nonlinear term and 20%

parameter error

Figure 2.27: Joint velocities: Geared

simulation with nonlinear term, 20%

parameter error, and noise
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Figure 2.28: Signal to noise ratio Figure 2.29: System noise
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Figure 2.30: Joint velocities: Gravity

loaded with nonlinear term and 20%

parameter error

Figure 2.31: Joint velocities: Gravity

loaded with nonlinear term, 20%

parameter error, and 4x joint torque

limits

2.7.7 Simulation 7

The previous simulation dealt with an ideal geartrain.  Now, real geartrain effects will be considered.  First,

geartrain viscous friction will be considered.  The geartrain viscous term is selected to be [0.005 0.004

0.002] N-m-sec.  The simulation was done without gravity.  Adding a geartrain friction term changes the

equivalent friction between the motor input and the torque sensor.  As a result, the controller gains will be

modified for the new system.
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Figure 2.32: Joint velocities: Geartrain

viscous friction with nonlinear term,

20% parameter error on all parameters

Figure 2.33: Joint velocities: Geartrain

with hysteresis, non-linear term, and

20% error on all parameters

Figure 2.32 shows better performance with the geartrain friction than Fig. 2.26 did with ideal geartrain.

This simulation accomplished this performance with lower controller gains.  These lower gains imply less

noise sensitivity and lower power consumption.  The geartrain friction enhances the stability of the system

by causing energy to dissipate quicker.  Another geartrain effect is hysteresis.  Hysteresis manifests itself in

making the geartrain harder to turn in one direction than in the other.  This implies that the geartrain

viscous friction is different in different directions.  To show the hysteresis effect (see Fig. 2.33), the usage of

a constant viscous friction coefficient was replaced by a constant that is half as high as in the negative

direction than in the positive direction.  The controller model still assumes a constant viscous friction term

in both directions.  This reduction decreases overall friction, which should result in slightly worse

performance.

Hysteresis and viscous friction terms are well behaved terms that decay with the velocity of the system.

Backlash is a hard discontinuity in the torque sensor output.  This type of nonlinearity can cause problems

for most controllers.  The stability of the passive dynamic controller detailed here is not guaranteed during

backlash.

The model of backlash used in the following simulation was simplistic.  The simulation waits for a change

of direction in the motor input torque.  When the direction change occurs, the torque output is set to zero.

The motor is then considered to have a different velocity than the link, but initially its velocity is the

link’s velocity multiplied by the gear ratio.  The motor’s velocity will be independent of the link until it

moves enough to contact the geartrain again.  The gap between geartrain contacts was chosen to be

approximately one degree.  The motors movement during the time when it is not in contact with the



2-24

geartrain is represented by Eq. (2.48).  When the motor contacts the geartrain, the output torque returns

instantaneously to the normal, geared motor torque for the non-backlash system.

˙̇θ τ= −Mrz
1 (2.48)

Due to the discontinuous torque outputs, the controller gains were changed for this simulation.  The

damping gain, Dc, reacted badly to what it perceived as a large velocity change at the discontinuity.  As a

result, the Dc gain was reduced.  The Kτ gains were lowered to prevent large control signal changes at the

discontinuity.
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Figure 2.34: Joint velocities: Geared joints

with backlash

Figure 2.35: Joint torques: Geared joints

with backlash

2.7.8 Simulation 8

This simulation deals with a torque bias.  The bias in this situation is defined as a constant error  in the

torque sensor output or in the input command.  Either of these situations effects the magnitude of the

difference between the torque input and the sensor output which is the interesting quantity for the controller.

In some of the previous simulations, errors due to bad joint parameters or ignoring nonlinear terms were

considered.   These quantities decreased as system acceleration and velocity decreased.  The simulations

that included noise did have stability problems as the signal to noise ratio decreased.  The sensor bias

errors can also induce instability as the signal to error ratio decreases.  Figures 2.36 and 2.37 show direct

drive simulations with constant bias terms of different magnitudes.  The differing magnitudes can lead to a

steady state error or instability. Gear driven joints will have similar problems.  The main difference is that,

considering biases of equal magnitudes, the system will be more sensitive to a joint input bias than to a

torque sensor bias because the magnitude of the torque sensor bias will be reduced by the gear ratio.
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Figure 2.36: Joint velocities: Direct drive

joint with torque bias of [5.0 3.0 -6.0]x

10-6 N-m

Figure 2.37: Joint velocities: Direct drive

joint with torque bias of [5.0 3.0 -6.0]x

10-4 N-m

2.8 Summary

A control technique to stabilize a robot system using joint torque feedback and a joint model was

presented.  A Lyaponov stability proof for this method utilizing the passivity of a dynamic system was

presented and the stability robustness of the technique discussed and shown in simulation.  Given good

joint torque sensor data, the system provides good stabilization performance with large parameter errors and

treating nonlinear dynamic effects as a disturbance.   If sensor data contains bias errors, noise errors, or

backlash, then, depending on the magnitude of the signal to error ratio, the system can become unstable.

Chapter 3 will describe a series of experiments used to confirm the theoretical properties of the virtual

passive torque controller.  This chapter has concentrated on stability robustness to modeling errors, treating

the nonlinear term as a disturbance, and the inclusion of geartrain effects using a simulated 3 degree of

freedom planar robot with a simple dynamic model.  The goal of these simulations was to prove the

concept of the virtual passive controller and indicate possible problems that would be encountered in a real

system.  In the next chapter, three wrist joints of a 7 degree of freedom revolute manipulator will be

controlled using the virtual passive controller.  The usage of the virtual passive controller with a position

controller for position tracking along with the practical implementation of the control system will be

discussed.  The goal of the experiments in chapter 3 is not to replicate the simulations in this chapter.  The

experimental goal is to show stability robustness properties similar to those simulated and explore real-

world stability and performance issues.
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3. Experimental Verification of Virtual Passive Torque Controller

The purpose of this chapter is to describe the experiments used to determine the performance characteristics

of the virtual passive joint torque controller described in chapter 2 on a real system.  The experiment hopes

to show that, on a system with imprecisely known parameters, the virtual passive torque controller will:

1) In the absence of a joint command, drive the joint velocity to zero stopping any existing joint motion

and resist changes from the zero velocity state

2) Improve the position tracking of the position controller by sensing gravitational and dynamic loading

3) Be robust to the nonlinear term it treats as a disturbance

4) Be stable over multiple trajectories with a single controller gain set

Specific tests will be done to show the first three controller characteristics.  Any stability problems

encountered during the three tests will be discussed.

3.1 Experimental Apparatus

The robot used in the experiment was a Robotics Research 807i manipulator with a Robotics Research

type II controller.  (The Robotics Research type II controller will be hereafter referred to as the RRC

controller).  The robot was located at the NASA Langley Research Center in Hampton, VA.  The 807i is a

0.8m long, 7 degree of freedom manipulator with an approximately 20lb tip payload capacity.  The

Devanit-Hartenberg parameters defining the robot may be found in Table 3.1 and a photograph of the robot

in Fig. 3.1.

Figure 3.1: Robotics Research 807i
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At the beginning of the experiment preparation, the RRC controller was interfaced to a VME card cage via a

BIT3 Multibus to VME adapter.  This adapter allowed devices in the VME card cage to address a portion

of RRC controller’s system memory as if it were VME memory.  The RRC controller has a memory

mapped architecture allowing joint position, velocity, torque, and current to be controlled by writing to

memory locations.  Likewise, sensed joint position, velocity, and torque can be read from the RRC

controller’s memory.

In addition to the Multibus to VME adapter, the VME card cage contained a 33Mhz 68040 single board

processor, a 25Mhz 68040 single board processor, and assorted memory mapped input/output devices

including digital to analog and analog to digital converters.  For this experiment only the 33Mhz 68040

and the bus interface were used.

The operating environment chosen for the 68040 board was the VxWorks real-time operating system by

Wind River Systems with the ControlShell and Stethoscope products by Real Time Innovations.  The

VxWorks operating system gave the 68040 the flexibility of an operating system while allowing

predictable, real-time synchronization.  The ControlShell product provided a graphical programming

interface, similar to the Simulink product by Mathworks, which allowed for quick interfacing and reuse of

C++ program modules.  The ControlShell product also provided a menu system for operation of the

system at runtime.  The Stethoscope product provided real-time data displays for debugging.  The

programming environment was hosted on a Sun SparcStation.  The 68040 received its programs from the

Sun and returned data to the Sun via an ethernet connection.

3.2 Experiment Design

For this experiment, the three wrist joints (joints 5,6, and 7) were chosen to be controlled by the passive

controller.  The arm joints (joints 1-4) would be controlled by the position controller built into the RRC

controller.  This decision was made to reduce the time required for the experiment and to limit possible

damage to the robot while debugging of the controller.  The wrist can be given interesting velocities and

accelerations by the arm joints and can be easily subjected to different loading conditions by changing end-

 Table 3.1: Devanit-Hartenberg Parameters

Joint i Name αi-1 ai-1 di θi

1 Shoulder roll 0 0 0 θ1

2 Shoulder pitch -π/2rad -85.725mm 0 θ2

3 Elbow roll π/2rad 85.725mm 363.22mm θ3

4 Elbow pitch -π/2rad -71.12mm 0 θ4

5 Wrist roll π/2rad 71.12mm 363.22mm θ5

6 Wrist pitch -π/2rad -49.2mm 0 θ6

7 Toolplate roll π/2rad 49.2mm 0 θ7
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effector weights.  Using three consecutive joints should disclose problems with controller interactions

among joints.  It was felt that running the entire arm under passive torque control would not yield

significantly more data than the wrist alone.  However, in chapters 5 and 7 the robot arm joints will be

controlled with the virtual passive controller but will not be analyzed in this depth.

Unfortunately, no detailed joint parameters were available.  Without the ability to mount the individual

joints in a proper test facility, accurate system identification of small joint parameters through the gearbox

would be difficult.  It was decided to use rough joint parameters gained from experimental experience.  The

use of these rough parameters, if successful, should show the robustness of the controller design to

parameter error.

In the RRC controller used, there was not a one to one relationship between commanded torque units and

sensed torque units.  The RRC controller incorporates a torque controller which attempts to overcome

gearbox effects.  When in torque command mode, this controller cannot be bypassed or altered.  Changing

to a current command mode will bypass the torque controller, but a current input to torque output map was

difficult to achieve due to various gearbox and temperature effects in the system.  As a result, it was decided

to use the torque command mode with a constant multiplier to convert torque input to torque output.  The

initial value of this constant was derived by comparing steady state torque commanded and sensed data.

As will be discussed later, this parameter was changed to improve system performance.  While keeping the

RRC controller’s torque controllers in the control flow does make the robot act more like a robot with

direct drive joints, the joint torque offsets acted upon by the RRC controller’s torque controllers produced

some problems which had to be overcome by the passive joint controller.

A block diagram of the implemented torque control system can be found in Fig. 3.2.  The position

controller is a simple PD controller acting on actual and desired position inputs.  The output of the

position controller is a torque used to bias the sensed torque.  The passive controller, perceiving the

position controller induced bias as joint movement, attempts to compensate by moving the joint in the

direction desired by the position controller.

Sensed Joint
Position and 
Velocity from 

Robot

PD Position
Control

Trajectory
Generator

Lowpass
Filter

Lowpass
Filter

Sensed Torque
from Robot - Virtual Passive

Torque Control

Torque 
Command
to Robot

Figure 3.2: Controller block diagram
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All the internal torque calculations are done in sensed torque units.  The lowpass filters acting on sensed

and commanded torques were Butterworth filters with a cutoff frequency of 6Hz.  The commanded torque

was filtered to remove high frequencies induced by the position controller and to match the phase of the

filtered sensed torque.  The position controller gains were tuned to give reasonable position tracking

performance in the absence of the passive torque controller.  Both the position and passive torque

controllers for the wrist joints were run on the 68040 board at 200Hz.  Position commands for joints 1-4

were generated at 200Hz and sent to the position controllers in the RRC controller.  Position trajectories

for all joints were created in Matlab and loaded onto the 68040 board.  Data was collected and saved in

Matlab format for ease of comparison.

To exercise the controller the arm was commanded along 4 joint trajectories.  Each trajectory was tested

with 3 different end-effector weighting conditions, 0lb, 5lb, and 10lb.   Four trajectories were chosen to

transition the wrist joint through several loading conditions.  Trajectories 1 and 2 involved only wrist

joint movements.  These trajectories can be seen in Figs. 3.3-3.4.  The main difference in these two

trajectories is that joint 6, the wrist pitch joint, is heavily loaded in the initial position of trajectory 1

while it is unloaded in the initial position of trajectory 2.  In trajectory 2, the load is transferred through the

robot structure.  Trajectories 3 and 4 have the same wrist joint trajectories as trajectories 1 and 2,

respectively.  In trajectory 3, joints 1 and 4 were moving.  In trajectory 4, joints 2 and 3 were moving.

The trajectories of the arm joints are shown in Figs. 3.5-3.7.  By moving the four arm joints, the wrist is

exposed to different loading conditions and the disturbance of the nonlinear term.
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Figure 3.3: Trajectory 1: Wrist Joints Figure 3.4: Trajectory 2: Wrist Joints
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Trajectory 3: Arm Joints

Figure 3.5: Trajectory 1&2: Arm Joints Figure 3.6: Trajectory 3: Arm Joints
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Trajectory 4: Arm Joints

Figure 3.7: Trajectory 4: Arm Joints

The end-effector weights were chosen to produce significantly different joint torques in different weighting

conditions.  The weights were representative of a load usually carried by an arm of this size and did not put

excessive stress on the arm mechanism.  An offset of 9 inches from the center of the end-effector allowed

joints 5 and 7, the wrist and toolplate roll joints, to be loaded easily.

3.3 Active joint braking

The first property of the controller examined was its ability to drive the velocity of a joint to zero in the

absence of a joint command.  This is an important mode of operation for fault tolerant applications.  As the

theory describes, this is done without position information.  As a result, the controller cannot hold an

absolute position.  The resulting control achieves a very highly damped state which will significantly resist
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a change in joint velocity from the zero velocity state.  As will be seen later, this highly damped mode of

operation does not impair the position controller when the position controller is operational.

To exercise the passive torque controller, the position controller was allowed to run until three seconds

into the trajectory.  This activity induced a joint velocity and acceleration into the joints with the passive

torque controller.  At three seconds, the torque sensor bias generated by the position controller was

deactivated for the remainder of the data collection run.  Figs. 3.8-3.10 show the response of the wrist

joints in all loading conditions during trajectory 1 while Figs. 3.11-3.13 show the same loading

conditions in trajectory 2.

command

0lb    

5lb    

10lb   

0 1 2 3 4 5 6 7 8 9 10
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time (seconds)

Jo
in

t P
os

iti
on

 (
ra

di
an

s)

Position of joint 5 with only passive controller after 3 seconds 

   

command

0lb    

5lb    

10lb   

0 1 2 3 4 5 6 7 8 9 10
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Time (seconds)

Jo
in

t P
os

iti
on

 (
ra

di
an

s)

Position of joint 6 with only passive controller after 3 seconds 

Figure 3.8: Trajectory 1 - Joint 5 Figure 3.9: Trajectory 1 - Joint 6
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Figure 3.10: Trajectory 1 - Joint 7 Figure 3.11: Trajectory 2 - Joint 5
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Figure 3.12: Trajectory 2 - Joint 6 Figure 3.13: Trajectory 2 - Joint 7

The resulting sensed position plots show a smooth, consistent response to the controller change by joint 5.

Joint 6 and 7 show some variance in the different loading conditions.  The response of joint 6 to trajectory

1, seen in Fig. 3.9, shows the highest variance in final position, +/- 0.0125 radian.  Joint 6 is heavily

loaded in this configuration and the error grows in the direction of the load with the magnitude of the load.

The response of joint 7 to trajectory 1, seen in Fig. 3.10, shows a discontinuity at the time the position

controller was deactivated.  In this case, the controller suddenly changes position in the direction of

loading.  This could be due to slightly low passive controller gains or different joint characteristics in

different directions.  The case for different joint characteristics is made by the response of joint 7 in

trajectory 2, seen in Fig. 3.13.  In this data set, the loading is similar in magnitude but in a different

direction.  The resulting discontinuity is less severe.

To show that the effectiveness of the passive torque control in the previous six figures is not a result of high

joint friction that exists in the robot, Figs. 3.14-3.16 show the response to having both the passive torque

controller and the position controller disabled three seconds into the trajectory.  After three seconds, the

torque command to all wrist joints was zero.  These plots are for the 0lb condition.
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Figure 3.14: Joint 5 with/without control Figure 3.15: Joint 6 with/without control
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Figure 3.16: Joint 7 with/without control

Joints 5 and 6 reached their steady state condition at the physical joint stop.  Joint 7 was still moving at

the end of the data collection run.  These plots show that the wrist joints, with the low level joint

controller running, exhibit the lightly damped properties of direct drive joints.  In a perfect implementation,

the direct drive assumption could be accurate.  Due to joint torque sensor bias, the manipulator exhibits a

non-direct drive property.  Joint 6 runs rapidly past the gravity equilibrium state to firmly engage the joint

stop.  This bias makes the torque controller drive to a non-zero torque state in the unloaded condition.

This property of joint 6 caused problems in tuning the passive controller.

The sensed torque response to trajectory 1 is shown in Figs. 3.17-3.19.  Each joint is shown at the three

loading conditions.  As expected, the steady state torque increases with the higher loading conditions.

When the position controller’s torque bias is removed at three seconds, the passive torque controller reacts

by driving the joint velocity to zero.  The magnitude of this response is related to the magnitude of the



3-9

load.  After the transient response ends, the controller produces a steady state joint torque command

resulting in the sensed torque shown.  The position controller gains in this test were high and the sensed

velocity was not filtered.  As a result, the position controller caused most of the oscillations before three

seconds.
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Figure 3.17: Sensed Torque Response -

Joint 5

Figure 3.18: Sensed Torque Response -

Joint 6
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Figure 3.19: Sensed Torque Response - Joint 7

The commanded and sensed torques resulting from trajectory 1 are shown in Figs. 3.20-3.28 for the

different weight conditions.  All plots are in sensed torque units.  Bias in sensed torques have been

compensated for in the data..
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Figure 3.20: Torques - Joint 5 - 0lb Figure 3.21: Torques - Joint 5 - 5lb
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Figure 3.22: Torques - Joint 5 - 10lb Figure 3.23: Torques - Joint 6 - 0lb
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Figure 3.24: Torques - Joint 6 - 5lb Figure 3.25: Torques - Joint 6 - 10lb
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Figure 3.26: Torques - Joint 7 - 0lb Figure 3.27: Torques - Joint 7 - 5lb
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Figure 3.28: Torques - Joint 7 - 10lb

The sensed torque tracks the commanded torque well with some exceptions.  In the 0lb weighting cases,

the position controller commands much more than is sensed.  Without a weight to resist the movement,

the torque sensor maintains a low reading.  At steady state, all plots develop a constant offset between

commanded and sensed torques which is proportional to the loading of the joint.  In Figs. 3.20-3.28, the

commanded torque always settles to a torque value lower in magnitude than the sensed torque.  This

difference is caused by a commanded to sensed torque constant that is too low.  Lowering the torque

constant is equivalent to placing an output gain on the controller by artificially increasing the difference

between sensed and commanded torques.  The result is more joint torque output at the cost of increased

system instability.  Without proper choices for the passive controller gain matrices Dc and Kc, the lower

than actual torque constant will cause the system to vibrate.  Higher output at the cost of increased

instability can also be accomplished through the Rτ matrix.  While the Rτ matrix is explicitly involved in

the controller’s A matrix, lowering the torque constant changes the plant, not the controller.  Increasing
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this effective output gain with the commanded to sensed torque constant gives the system designer more

flexibility to change system performance without altering the eigenvalues of the system A matrix.

3.4 Position Tracking

To show that the passive torque controller enhances position trajectory tracking, trajectories 1 and 2 were

allowed to complete, i.e. the position controller was enabled at all times.  Test runs were made with the

passive torque controller in the loop and with the passive torque controller bypassed.  In the bypassed

configuration, the position controller’s bias torque that was used to alter the sensed torque input to the

passive controller is sent directly to the robot as the commanded torque.  Figs 3.29-3.34 show the position

error between commanded and actual position for trajectory 1 while Figs 3.35-3.40 show the error for

trajectory 2.  Please note the differences in scale between plots.
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Figure 3.29: Position Error - Joint 5 -

Traj. 1 with Passive Controller

Figure 3.30: Position Error - Joint 5 -

Traj. 1 without Passive Controller
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Figure 3.31: Position Error - Joint 6 -

Traj. 1 with Passive Controller

Figure 3.32: Position Error - Joint 6 -

Traj. 1 without Passive Controller
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Figure 3.33: Position Error - Joint 7 -

Traj. 1 with Passive Controller

Figure 3.34: Position Error - Joint 7 -

Traj. 1 without Passive Controller
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Figure 3.35: Position Error - Joint 5 -

Traj. 2 with Passive Controller

Figure 3.36: Position Error - Joint 5 -

Traj. 2 without Passive Controller
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Figure 3.37: Position Error - Joint 6 -

Traj. 2 with Passive Controller

Figure 3.38: Position Error - Joint 6 -

Traj. 2 without Passive Controller
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Figure 3.39: Position Error - Joint 7 -

Traj. 2 with Passive Controller

Figure 3.40: Position Error - Joint 7 -

Traj. 2 without Passive Controller

To better analyze the errors due to the different controllers and trajectories, the mean and standard deviation

of the errors were computed.  The results of these computations may be found in Tables 3.2 and 3.3 and

Figs. 3.41-3.46.

Table 3.2: Trajectory 1 Statistics

                     Mean          Standard Deviation

Joint Weight w/ passive w/o passive w/passive w/o passive

5 0 0.001554 0.002301 0.000911 0.001968

5 5 0.001786 0.008859 0.000771 0.00204

5 10 0.001983 0.014995 0.00114 0.004377

6 0 0.000787 0.002936 0.002079 0.002324

6 5 0.00408 0.024447 0.002288 0.005922

6 10 0.007204 0.045508 0.002519 0.012615

7 0 0.005896 0.003101 0.002392 0.001823

7 5 0.007805 0.021298 0.002507 0.009274

7 10 0.009431 0.037379 0.002945 0.017043
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Table 3.3: Trajectory 2 Statistics

                     Mean          Standard Deviation

Joint Weight w/ passive w/o passive w/passive w/o passive

5 0 -0.000601 0.008255 0.000966 0.000894

5 5 -0.001085 0.005257 0.000805 0.003517

5 10 -0.00137 0.003187 0.000573 0.006735

6 0 -0.007081 -0.012039 0.002636 0.004669

6 5 -0.006772 -0.003544 0.00376 0.014053

6 10 -0.005812 0.002678 0.003961 0.023715

7 0 0.005568 0.001433 0.002511 0.00199

7 5 0.003798 -0.020853 0.002775 0.002386

7 10 0.003056 -0.041634 0.002311 0.00416

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 2 4 6 8 1 0

Weight (lbs)

E
rr

o
r 

(r
a

d
ia

n
s

)

w/ passive
w/o passive

   

-0 .01

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 1 0

Weight (lbs)

E
rr

o
r 

(r
a

d
ia

n
s

) w/ passive

w/o passive

Figure 3.41: Statistics - Joint 5 - Traj. 1 Figure 3.42: Statistics - Joint 6 - Traj. 1
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Figure 3.43: Statistics - Joint 7 - Traj. 1 Figure 3.44: Statistics - Joint 5 - Traj. 2

-0 .025

-0 .02

-0 .015

-0 .01

-0 .005

0

0.005

0.01

0.015

0.02

0.025

0.03

0 2 4 6 8 1 0

Weight (lbs)

E
rr

o
r 

(r
a

d
ia

n
s

) w/ passive

w/o passive

   

-0 .05

-0 .04

-0 .03

-0 .02

-0 .01

0

0.01

0 2 4 6 8 1 0

Weight (lbs)

E
rr

o
r 

(r
a

d
ia

n
s

) w/ passive

w/o passive

Figure 3.45: Statistics - Joint 6 - Traj. 2 Figure 3.46: Statistics - Joint 7 - Traj. 2

In Figs 3.41-3.46, the data points are the mean values or the position error and the error bars are +/- the

standard deviation.  At the zero weight conditions, both the position controller only and the position

controller with passive controller have similar mean values in most cases and standard deviations in all

cases.  Similar results were expected because there is little torque loading to cause the passive controller to

react.  The exception is a difference in the mean value of joint 5 in trajectory 2.  This was due to a

substantial position error in the initial position that was never overcome by the position controller.  In the

higher weight conditions, the position controller only configuration exhibits standard deviations which

increase with weight implying more variance in error about the mean value.  The error mean values also

increase in magnitude except in the cases of joint 5 and 6 in trajectory 2 where a zero crossing occurred.

Averaging the positive and negative errors lowered the mean error but increased the standard deviation.

The cases with the position controller and the passive controller both active maintained fairly constant error
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means and standard deviations across all weight conditions.  This robust performance with unknown

loading is one of the strengths of the controller.

3.5 Response to arm joint movement

The following plots show the response to trajectories 3 and 4 where some of the arm joints were moved

along with the wrist.  The position controller for the wrist joints was disabled at 3 seconds while the

trajectories of the arm joints were allowed to continue.  These arm trajectories impart another weighting

condition on the passive torque controllers and expose them to the nonlinear term shown in the joint

model which the controller treats as a disturbance.  Figs. 3.47-3.49 show the response to trajectory 3 while

Figs. 3.50-3.52 show the response to trajectory 4.
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Figure 3.47: Position of Joint 5 - Traj. 3 Figure 3.48: Position of Joint 6 - Traj. 3
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Figure 3.49: Position of Joint 7 - Traj. 3 Figure 3.50: Position of Joint 5 - Traj. 4
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Figure 3.51: Position of Joint 6 - Traj. 4 Figure 3.52: Position of Joint 7 - Traj. 4

These plots are similar to those produced by trajectory 1 and 2 where the arm joints were not moved.  The

different endpoint loading conditions made some minor changes to the steady state value.  Since the

controller does not utilize position information, a slightly different position response to a different loading

condition is expected.  The only interesting case is that of joint 6 in trajectory 4, seen in Fig. 3.51.  In this

case, the load is in the direction of the joint torque sensor bias.  Although the passive torque controllers are

symmetric, the effect of the joint torque bias is not.  As a result, the lower gains forced on the joint torque

controller to maintain stability while dealing with the corrupted lower level torque controller in

combination with a low joint loading which developed lower sensor feedback for the controller to react to

allowed some slippage.  While this change is possibly due to the nonlinear term, it is probably due to the

dynamic forces caused by decelerating.  As the loading increased, the passive torque controller begins to

dominate the lower level controller and holds the zero velocity state.

To show a case without position control, the data runs were conducted using trajectories 3 and 4 with no

position control on the wrist joints.  The passive torque controller was enabled for the entire run.  The

change in position of the wrist joint from the initial position is shown in Figs. 3.53-3.54.  Only the 10lb

weighting condition was considered.
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Figure 3.53: Position response to Traj. 3 Figure 3.54: Position response to Traj. 4

Slippage in all cases was less than 0.021rad.  Joint 6, with its lower passive controller gains and bias

problem exhibited the worst performance.  The increased slippage in trajectory 4 was due to the more

severe loading change.  In the response of joint 7 in trajectory 4, a constant, steady state value is not

reached.  Instead of a constant value, joint 7 settles into an oscillation with a magnitude of approximately

0.001rad.  This oscillation is due to using high controller gains to produce a passive torque controller with

good braking characteristics in combination with an uncertain system.  Lower gains would stop the

oscillation, but would allow more slippage.  This oscillation continues after the arm trajectory is complete

and the other wrist joints have reached a constant steady state.  As a result, it cannot be due to the

nonlinear term.

These cases show, for the tested joint accelerations and velocities,  the controller response is similar to the

response without arm joint movement.  As a result, the passive controller design is robust to the

disturbance caused by the nonlinear term.  Due to the geared joint configuration, unknown joint parameters,

changes in gravity loading along trajectories, and lower level torque controllers, any error due specifically

to the nonlinear term will be difficult to isolate with this experimental apparatus.

3.6 Controller stability

Even with high gains and an uncertain system, the passive joint torque controller has shown good stability

over different trajectories and loading conditions.  In certain configurations, the loading on the torque

controller is such that oscillations can occur.  This problem could be solved if good joint braking

characteristics were not required.  Experience has shown that lower gains, while causing slippage in joint

braking, can slightly enhance tracking performance.
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Another stability problem occurs in the interaction of the position controller and the passive joint torque

controller.  At certain loading conditions, these controllers can fight each other and cause joint vibration.

Since this vibration is passed through the structure of the robot to the other torque sensors, this vibration

can set up a resonance with the other passive torque controllers.  An example of this characteristic is shown

in Figs. 3.55-3.57.
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Figure 3.55: Sensed Torque - Joint 5 Figure 3.56: Sensed Torque - Joint 6
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Figure 3.57: Sensed Torque - Joint 7

These plots show the sensed torque response to trajectory 2 with the position controller disabled at three

seconds.  A large torque vibration occurred in joints 5 and 7 at the 5lb weight condition.  Joint 5 and 7 are

both roll joints whose axes were becoming more parallel as the trajectory continues.  The parallel condition

allowed a vibration started in one joint to resonate into the other joint’s sensor.  This resonance does not

occur if the passive controller is bypassed on one of the two joints.  The resonance continues if the passive

controller on joint 6 is bypassed removing it as a cause.  The interesting point of the data is that the

resonance occurred at the middle weight condition, not the high or low condition.  This can be explained
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by the relative control authority of the passive controller.  At low weights, the passive controller had little

authority and the control is mostly done by the position controller.  As the weight increases, the passive

controller gains more authority.  At a moderate weighting condition, the passive controller’s control

authority is similar to the position controller and they begin to interact with neither controller dominating.

At higher weighting conditions, the passive controller begins to dominate the position controller.  When

the position controller’s bias is zeroed at three seconds, the passive controller quickly damps out the

resonance.  Referring to the position response resulting from these torques in Figs 3.11-3.13, the resonance

did not adversely effect position tracking.  However, these quick torque changes put undue wear on the

drivetrain and can excite modes in robot payloads.  Further refining of position controller and passive

torque controller gains should alleviate the problem.

3.7 Summary

The passive torque controller was successfully implemented on three consecutive joints in a real robot

system.  Even with very rough joint parameters, the controller worked as predicted.  When the position

controller was disabled, the passive torque controllers slowed the joints to a stop and attempted to hold the

zero velocity state.  When the position controller was enabled, the passive torque controller enhanced

position tracking in the presence of unknown loading.  At the reasonable robot speeds tested, the controller

was robust to the nonlinear term in the joint model.  The controller showed good stability in different

trajectories and weight conditions.  The high passive controller gains did lead to a mild position

oscillation in some conditions and an interaction of the position and passive torque controllers that can

result in a torque resonance.  Better joint parameters, torque sensors, and lower gains should fix these

minor stability problems.

Although the virtual passive torque controller has been experimentally shown in this chapter to be able to

stabilize a robot joint without position feedback, that feedback is required for position control.  In the joint

position sensor fault tolerance application, this position feedback cannot come from the primary joint

position sensor as it did in this chapter  because that sensor has failed.  It was found in chapter 1 that

without direct sensor redundancy there is no satisfactory method of determining joint position for an

extended period in an unstructured environment.  Chapter 4 presents a joint specific method of using

Cartesian accelerometers to determine joint position without double integration.  The virtual passive torque

controller will reappear in chapter 5 when it is integrated with the joint specific position determination

method to show joint position sensor failure recovery on a real robot system.  In chapter 5, and later in

chapter 7, the number of joints controlled with the virtual passive torque controller will be increased and

the controller implemented on the major arm joints.
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4. Joint Specific Position Sensor Fault Tolerance in Robot Systems

Using Cartesian Accelerometers

4.1 Introduction

In previous chapters a virtual passive torque controller was presented which does not require position feedback

for stabilization.  A control system using virtual passive torque control must have joint position feedback

available for position control.  During failure of the primary joint position sensor this position feedback must

come from another source.  As discussed in the literature search, currently the only method available for long

duration position sensor fault tolerance in unstructured environments is direct sensor redundancy.  The use of

direct sensor redundancy could affect joint design while an analytically redundant method may not affect the

design.  This chapter proposes a method using analytical redundancy to obtain joint position from Cartesian

accelerometers without integration or inverse kinematics.  The proposed method is specific to the joint

driving the link to which the accelerometers are attached.  The method is based on kinematic analysis of the

robot system, known accelerometer placement, and a known acceleration field, such as gravity. This chapter

will present a computational algorithm for obtaining joint position from accelerometer measurements.

Simulations of a 7 degree of freedom (DOF) robot arm operating in general 6 DOF space will be shown. The

effect of sensor bias and noise will be addressed and illustrated.  Chapter 5 will detail experimental results.

4.2 Proposed System

The techniques derived in this chapter are applicable to an n joint, rigid link, manipulator able to move in

general 6 DOF space.  To obtain the general solution for joint position, velocity, and acceleration, each joint

will require two triaxial accelerometers, A1 and A2.  Figure 4.1 shows an example joint with the required

configuration.   Although Fig. 4.1 shows two coplanar joints, the equations are applicable to all single

rotation joint types.



4-2

A1

A2r

p

l

link i

link i+1

joint i+1

link i+2

Figure 4.1: Proposed joint configuration

The acceleration of the points where the accelerometers are placed is given by kinematic analysis.  For

consistency with classical robot notation, the kinematic analysis is presented in Newton-Euler iterative

dynamics form [58].  For simplicity, the accelerometer axes are assumed parallel to the axis system of the link

to which they are attached.  A constant, known rotation could be included in the A1 and A2 measurements

without changing the analysis.  The kinematic equations for the robot are:
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where,

ω i
i angular velocity of ith link in ith frame

ai
i acceleration of ith link in ith frame

ai
i
+1 acceleration of i+1th link in ith frame

Ri
i+1 rotation matrix from ith frame to (i+1)th frame

θi position of ith joint

A1 acceleration of accelerometer A1

A2 acceleration of accelerometer A2

p vector offset from joint i+1 to accelerometer A1

in frame i+1
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r vector offset from accelerometer A1 to

accelerometer A2 in frame i+1

l vector offset from joint i+1 to joint i+2 in frame i+1

ẑ identity z vector [0 0 1]T

Given the Devanit-Hartenberg parameter [58], αi, the 3x3 rotation matrix,  Ri
i+1, is shown below.

Ri
i

i i i i i

i i i i i

i i

+
+ + +

+ + += −
−

















1
1 1 1

1 1 1

0

cos sin cos sin sin

sin cos cos cos sin

sin cos

θ θ α θ α
θ θ α θ α

α α
(4.7)

4.3 Position solution

The solution method for obtaining joint position from Cartesian accelerometers without integration is based

on the kinematic relationships presented in section 4.2.  For simplicity, assume that the vector p is ζ, the

zero vector [0 0 0]T.  The solution for general p will be presented later.  With this assumption, the equation

for A1 becomes:

A ai
i1 1

1= +
+ (4.8)

or

A R ai
i

i
i1 1

1= +
+ (4.9)

Assuming that ai
i
+1 is known, Eq. (4.9) can be solved for θi+1  using atan2, the quadrant sensitive inverse

tangent function.  Only the x and y axes of A1 will be needed for the calculation.  The z axis does not contain

information about θi+1  when p=ζ but will be required for other equations.  Let ai
i
+1 and A1 be expressed by:

a

a

a

a

A

A

A

A
i
i

x

y

z

x

y

z

+ =
















=
















1 1

1

1

1

ˆ

ˆ

ˆ

,  (4.10)

Solving Eq.(4.9) for cosθi+1 and sinθi+1 provides:
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cos
ˆ

( ˆ sin cos ˆ sin sin )θ θ α θ αi
x

x y i i z i ia
A a a+ + += − −1 1 1

1
1 (4.11)

sin
( ˆ cos ˆ sin ) ˆ

ˆ ( ˆ cos ˆ sin )
θ

α α
α αi

y i z i x y x

x y i z i

a a A A a

a a a
+ =

+ −

+ +1 2 2

1 1
(4.12)

Dividing Eq.(4.12) by Eq.(4.11) results in:

tan
( $ cos $ sin ) $

( $ cos $ sin ) $
θ

α α
α αi

y i z i x y x

y i z i y x x

a a A A a

a a A A a+ =
+ −
+ +1

1 1

1 1
(4.13)

θ α α

α α
i y i z i x y x

y i z i y x x

a a A A a

a a A A a
+

−= + −

+ +
1

1 1 1

1 1

tan (( $ cos $ sin ) $ ,

( $ cos $ sin ) $ )     
(4.14)

For this method to be effective, there must be a known acceleration field, such as gravity, to excite the

accelerometers.  The accelerometers must also be of the instrument type that responds to constant acceleration.

This field provides a reference for the accelerometer readings.

The link that the accelerometers are attached to cannot be permanently parallel to the acceleration field or the

link will act as if the acceleration field does not exist.  For example, the acceleration measured by the

accelerometers on a link attached to a roll joint whose roll axis is permanently parallel to the acceleration field

will be identically zero if p=ζ.  However, this method will work for that roll joint if its roll axis is being

changed by joints earlier in the kinematic chain.  At points in the trajectory that the roll axis does line up

with the acceleration field, the previous joint position can be used for the small duration of the exact

alignment.

4.4 Solution for ai 2
i 1
+
+

If the trajectories of all the joints earlier in the kinematic chain are known, ai
i
+1can be calculated using the

equations of motion and the position of the (i+1)th joint computed.  However, if the trajectory of the (i+1)th

joint is unknown due to a sensor failure, then for the (i+2)th joint to be recoverable using the position solution

presented in section 4.3, ai
i
+
+
2
1must be calculated.

The position solution could be differentiated to obtain joint velocity and acceleration.  These values could be

used to calculate ai
i
+
+

2
1 using the equations  of motion.  This is impractical because of the noisy nature of

accelerometer related quantities.   This noise would be magnified by differentiation.
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In the ideal situation, A2 would be attached to the (i+1)th frame but placed coincident with the (i+2)th joint

(i.e. r=l-p).  In this case, A2 = ai
i
+
+

2
1  .  In the general case when this placement is not possible, if three triaxial

accelerometers were attached to a link, then six relative accelerations could be generated by subtracting one

accelerometer measurement from the other two.  This would lead to the following six equations:

A A r ri
i

i
i

i
i2 1 1

1
1
1

1
1− = × + × ×+

+
+
+

+
+&ω ω ω (4.15)

A A r ri
i

i
i

i
i3 1 1

1
1
1

1
1− = × ′ + × × ′+

+
+
+

+
+&ω ω ω (4.16)

Where r’ is the vector from A1 to A3.  Although nonlinear in angular velocity, Eqs. (4.15) and (4.16) could

be solved numerically for angular acceleration and angular velocity.  A fourth acceleration, ai
i
+
+

2
1 , can be

calculated by using the resulting angular acceleration and velocity with one of the measured Cartesian

accelerations as shown:

a l p l p Ai
i

i
i

i
i

i
i

+
+

+
+

+
+

+
+= × − + × × − +2

1
1
1

1
1

1
1 1& ( ) ( )ω ω ω (4.17)

Since the proposed configuration contains only two triaxial accelerometers, it can only produce three relative

accelerations.  As a result, the solution above is not applicable to this configuration.  However, if the angular

acceleration and velocity of the ith link is known along with θi+1, then the equations can be reformatted and a

solution is possible.

Equations (1) and (2) for the angular acceleration and velocity of the (i+1)th link are substituted into Eq. (4.15)

yielding:

A A R R z z r

R z R z r
i
i

i
i

i
i

i
i

i i

i
i

i
i

i i
i

i
i

i

2 1 1 1
1 1

1
1

1
1

− = + × + × +

+ × + ×

+ +
+ +

+
+

+
+

( & & $ && $)
& $) & $)

ω ω θ θ

ω θ ω θ          ( (
(4.18)

To keep the derivation linear, θ θ θi i i+ + +1 1 1
2, & , & and  are chosen as the unknowns.  Equation (4.18) can be

rewritten as,

A A BB CC EE FF GG DDi i i2 1 1 1 1
2− = + + + + ++ + +

˙̇ ( ) ˙ ˙θ θ θ (4.19)

where,

BB z r= ×ˆ (4.20)

CC R z ri
i

i
i= × ×+( ˆ)1ω (4.21)
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DD R R r R ri
i

i
i

i
i

i
i

i
i

i
i= × × + ×+ + +1 1 1ω ω ω( ) & (4.22)

EE z R ri
i

i
i= × ×+ˆ ( )1ω (4.23)

FF R z ri
i

i
i= × ×+1ω ( ˆ ) (4.24)

GG z z r= × ×ˆ ( ˆ ) (4.25)

The terms BB,CC,DD,EE,FF, and GG are not dependent on the velocity and acceleration of the (i+1)th joint.

Written in matrix form,

A A DD CC EE FF BB GG
i

i

i

2 1
1

1

1
2

− − = + +[ ]
















+

+

+

˙

˙̇

˙

θ
θ
θ

(4.26)

or,

Ã W= Θ (4.27)

Calculating the cross products in W, let:

Ω
Ω
Ω
Ω

= =
















=
















=

















+R r

r

r

r

A

A

A

A
i
i

i
i

x

y

z

x

y

z

x

y

z

1ω ˜

˜

˜

˜
(4.28)

Now, W becomes:

W

r r r

r r r

r r

z x y x

z y x y

x x y y

=
− − −
− −

+

















2

2

2 0 0

Ω
Ω

Ω Ω( )

(4.29)

Unless rx=ry=0, the rank of W will be at least 2.  Since the vector r is a design parameter, non-zero

components can be guaranteed.  Referring to Eq.(7), it can be easily shown that Ωz does not depend on θi+1.

As a result, only W(3,1) is dependent on joint position.  However, due to the DD term, all solutions will be

dependent on θi+1.

To solve Eq.(4.27), three cases must be considered.  Let ε be some small number, approximately 10-3, used

to bypass small elements of W that would be zero with perfect measurements.  Assuming either rx or ry is

non-zero, the situations are:
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1. |Ωxrx+Ωyry| > ε  =>  rank(W)=3

2. |Ωxrx+Ωyry| < ε  and (|Ωzrx| >ε or |Ωzry| >ε )=> rank(W)=2, equations are underdetermined

3. |Ωxrx+Ωyry| < ε and  |Ωzrx| <ε and |Ωzry| <ε => rank(W)=2, unique solution with no

        dependence on &θi +1

To solve each case, the following techniques can be used:

4.4.1 Case 1

In this case, a solution exists for &θi +1  that does not depend on &&θi +1  or &θi +1
2 .  As a result,  the solution

technique will not consider &θi +1
2 as an independent variable to be solved.  Calculate:

˙
˜

( )
θ i

z

x x y y

A

r r+ =
+1 2 Ω Ω

(4.30)

Then, using the results of Eq.(4.30):

−







 =

+ +
+ +













+
+ +

+ +

r

r

A r r

A r r
y

x
i

x z x i x i

y z y i y i

˙̇
˜ ˙ ( ˙ )
˜ ˙ ( ˙ )

θ
θ θ
θ θ1

1 1
2

1 1
2

2

2

Ω
Ω

(4.31)

Note that the calculated value of &θi +1  from Eq.(4.30) was squared and used in Eq.(4.31) instead of solving

for &θi +1
2 .  If both rx and ry are non-zero, Eq.(4.31) is overdetermined and can be solved by a closed-form

pseudoinverse.

˙̇
˜ ˙ ( ˙ )
˜ ˙ ( ˙ )

θ
θ θ
θ θi

x y
y x

x z x i x i

y z y i y ir r
r r

A r r

A r r+
+ +

+ +
=

+
−[ ] + +

+ +













1 2 2
1 1

2

1 1
2

1 2

2

Ω
Ω

(4.32)

4.4.2 Case 2

In case 2, if θ θ θi i i+ + +1 1 1
2, & , & and are considered independent variables, the system is underdetermined, i.e. it has

an infinite number for solutions.  Unfortunately, the values which the solution is meant to calculate are

unique.  To deal with this inconsistency, the solution will exploit the relationship between &θi +1 and &θi +1
2 .

First, a valid solution for θ θ θi i i+ + +1 1 1
2, & , & and is calculated using a closed-from pseudoinverse.
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Θ =












−W W W
A

A
T x

y

( )
˜

˜
1 (4.33)

Where (WTW)-1 is an easily calculated 2x2 matrix inverse with guaranteed existence.  Using the value of &θi +1

from Eq.(4.33), let,

& &θ θi
C

i+ +=1 1 (4.34)

now,

˙

˙̇

˙

˙

˜

˜
θ
θ

θ
θ

i

i

z x x i
C

y

z y y i
C

x

x

y

r r r

r r r

A

A
+

+

+

+

−








 =

− + −
− −

























1

1

1

1

1
2

2

Ω
Ω

(4.35)

Repeat the calculation of Eqs.(4.34) and (4.35) as required.  Note that Eq.(4.33) is only calculated once per

solution and the &θi +1 calculated in Eq.(4.35) is used for the next iteration of Eq.(4.34).

4.4.3 Case 3

In case 3, the solution contains no information on &θi +1 .  As a result, the solution of &θi +1
2  must be calculated

and the solution of &θi +1 inferred through the square root relationship.  For this case:

˙̇

˙

˜

˜
θ
θ

i

i x y

y x

x y

x

yr r

r r

r r
A

A
+

+









 =

+

−
− −






















1

1
2 2 2

1
(4.36)

Note that this relationship is constant.  A possible method to  determine the proper sign for &θi +1  is use Eqs.

(4) and/or (5) to check for the best agreement between ± +
&θi 1 and the measured accelerations.  This is

problematic in that the measured values in this case do not contain sign information for &θi +1 . Explicitly, there

are two important situations where the accelerometer measurements contain no sign information.  They are:

1) ω ζi =

2) If ωi ≠ζ but &ω ζi = , for the general accelerometer placement c, let b z ci1 1= × ×+
& $ ( )θ Ω and

b z ci2 1= × ×+Ω ( & $ )θ .  If b1=b2=0 or b1+b2=0, then the accelerometer measurements do not contain

sign information.
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Because Ri
i+1 is a homogenous transform, |Ω|=|ωi|.  In this case, assuming rx and ry>>ε, the elements of Ω

must be small, implying that the measured accelerations have little or no sign information for &θi +1 .  Several

techniques were considered to determine the proper sign.  Section 4.6 will detail the best method found.

The discussion of the solution techniques for the three cases has dealt with the general case of rx and ry ≠0.  If

the system is designed such that rx or ry is zero, the solution techniques become less complex.  The following

techniques can be used if rx=0, similar solutions can be shown for ry=0.  For all cases of rx=0:

˙̇
˜

θ i
x

y

A

r+ =
−

1 (4.37)

Now, calculating &θi +1 for each case:

4.4.4 Case 1 for rx=0

The solution for case 1 is:

˙
˜

θ i
z

y y

A

r+ =1 2Ω
(4.38)

4.4.5 Case 2 for rx=0

In this case, there exists a quadratic equation in &θi +1 .  Solving with the standard quadratic solution:

˙
( ˜ )

θ i
z y y z y y

y

r r r A

r+ =
± −

1

Ω Ω
(4.39)

The proper root is selected by checking for consistency with measured accelerations in Eqs. (4.4) and /or

(4.5).  In contrast to case 3, there is sufficient information in the measured accelerations to determine the

proper root.  Note that in case 2 for rx=0 (and similarly for ry=0), the solution for &θi +1 is not iterative as it is

in general.

4.4.6 Case 3 for rx=0

As in the general case 3, the solution has no explicit dependence on &θi +1 .
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˙
˜

θ i
y

y

A

r+ =
−

1
2 (4.40)

As before, the magnitude of &θi +1 is calculated via a square root.  As in the general case, determination of the

sign is problematic.  Refer to Section 4.6 for details.  Once a solution for joint velocity and acceleration is

found, Eqs. (4.1),(4.2),and (4.6) can be used to calculate ai
i
+
+

2
1 .

4.5 Solution for general p

In section 4.3, the special case of p=ζ was presented.  With this assumption, the position calculation from

section 4.3 could be applied to provide the position for the ai
i
+
+

2
1  calculation in section 4.4.  With non-zero p,

Eq. (4.8) and its solution in Eq. (4.14) are no longer valid.  Now, the solution of θi+1 is dependent on the

angular acceleration and velocity of the (i+1)th link.  If θi+1 was known, the angular acceleration and velocity

of the (i+1)th link calculated in the ai
i
+
+

2
1 solution could be used.  Due to the interdependence of the solution

methods in the general case, they cannot be used separately as unique solutions.

Three methods were investigated to solve the general problem:

1) Repeated calculation of the position and ai
i
+
+

2
1  solutions.

2) Steepest Descent

3) Nonlinear Least Squares

4.5.1 Repeated Calculation

In the repeated calculation technique, an approximate  correction term for A1 is first calculated using the

previous sample’s position, velocity, and acceleration of the (i+1)th joint as an approximation of the current

value along with the current  angular acceleration and velocity of the ith link.

( ) ( & ) $ω ω θi
i

approx i
i

i
i

i approxR z+
+ +

+= +1
1 1

1 (4.41)

( & ) & ( & ) $ ( && ) $ω ω ω θ θi
i

approx i
i

i
i

i
i

i
i

i approx i approxR R z z+
+ + +

+ += + × +1
1 1 1

1 1 (4.42)

The approximate correction term becomes,
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Acorr p pi
i

approx i
i

approx i
i

approx= × + × ×+
+

+
+

+
+( & ) ( ) ( )ω ω ω1

1
1
1

1
1 (4.43)

A corr A Acorr1 1= − (4.44)

The A1corr term is used in the position solution from section 4.3 instead of A1 to obtain (θi+1)approx.  The

(θi+1)approx is then used in Ri
i+1 to obtain a better solution for the joint acceleration and velocity using the ai

i
+
+

2
1

solution.  The process is repeated by calculating a new Acorr using the new approximation of the joint

velocity and acceleration instead of the value at the previous time.

4.5.2 Steepest Descent

This method uses the multivariable formulation of the steepest descent method [62] to solve for

θ θ θ ω, &, &&, and .  The equations for ω are included to improve the joint velocity solution.  The main equation

for the steepest descent method is:

x k x k F x k F x k( ) ( ) ( ( )) ( ( ( )))+ = + ′ −+1 (4.45)

Where F(x(k)) is the vector valued function to be solved, F′(x(k))+ is the pseudoinverse of the gradient of

F(x(k)), x(k) is the current estimate of the value of x, and x(k+1) is the next estimate of x.  In this case, F and

F’ are:

F
BB CC EE FF GG DD A A

R zi
i

i
i

i
i=

+ + + + + + −
+ −









+

+
+

˙̇ ( ) ˙ ˙

˙ˆ

θ θ θ
ω θ ω

2

1
1
1

1 2 (4.46)

′ =
+ + + + + +

−








+F

dC dE dF dD CC EE FF GG BB Z

R z Ii
i

i
i

˙( ) ˙

ˆ

θ θ
ω ζ

2
1 (4.47)

Where,

R
R

i
i i

i

i

i i i i i

i i i i i
+

+

+

+ + +

+ + += =
−
− − −

















1
1

1

1 1 1

1 1 1

0 0 0

∂
∂θ

θ θ α θ α
θ θ α θ α

sin cos cos cos sin

cos sin cos sin sin (4.48)

dC R z ri
i

i
i= × ×+( ˆ)1ω (4.49)

dD R R z R R z R ri
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i= × × + × × + ×+ + + + +1 1 1 1 1ω ω ω ω ω( ˆ) ( ˆ) ˙ (4.50)

dE z R ri
i

i
i= × ×+ˆ ( )1ω (4.51)

dF R z ri
i

i
i= × ×+1ω ( ˆ ) (4.52)
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Additionally, Z is the 3x3 zero matrix and I is the 3x3 identity matrix.  The vectors dC,dD,dE, and dF are

the partial derivatives with respect to θi+1 of CC,DD,EE, and FF respectively.  This method is iterated until

some desired tolerance on the value of F is achieved or a maximum number of iterations is reached.

Unfortunately, due to errors in the angular acceleration and velocity of the ith link and measurement errors in

A1 and A2, the descent may not converge to the desired value even though the tolerance on F is achieved or

the tolerance on F may not be achievable.  As a result, some logic must be implemented to determine if the

result of the descent is better or worse than the seed value. The seed value used for this solution method is

one iteration of the repeated calculation method.

4.5.3 Nonlinear Least Squares

The nonlinear least squares (NLS) method is detailed in [63] and its mathematical formulation will not be

presented here.  Given the vector G(x) which is a function of x, the goal is to minimize the value of G(x)TG(x).

It also requires the gradient of G(x), G′(x).  Although the F(x) and F′(x)  from the previous section can be

used, it was found in simulation that a slightly different formulation gave better results using the NLS

technique.  Instead of using A2-A1 to create a relative acceleration, ai
i
+1 was transformed by Ri

i+1 using the

current estimate of θi+1 and subtracted from the measured accelerations to produce six relative accelerations.

Although this usage of ai
i
+1 appears to alleviate the need for the second accelerometer in all solution methods,

using a single accelerometer  was found in simulation to produce unsatisfactory results due to the sensitivity

of the solution to errors in the estimate of θi+1.  The quantities G(x) and G′(x) are,

G

BB CC EE FF GG DD R a A

BB CC EE FF GG DD R a A

R z

p p p p p p i
i

i
i

r p r p r p r p r p r p i
i

i
i

i
i

i
i

i
i

=
+ + + + + + −

+ + + + + + −
+ −

















+
+

+ + + + + +
+

+
+

+
+

&& ( ) & &

&& ( ) & &

&$

θ θ θ
θ θ θ

ω θ ω

2 1
1

2 1
1

1
1
1

1

2 (4.53)

′ =
+ + + +

+ + + +








+ + +
+ + +

−









+
+

+ + + +
+

+
+

+ + + + +

G

dC dE dF dD R a

dC dE dF dD R a

R

CC EE FF GG BB Z

CC EE FF GG BB Z

z I

p p p p i
i

i
i

r p r p r p r p i
i

i
i

i
i

i
i

p p p p p

r p r p r p r p r p

&( ) &

&( ) &

&

&

&

$

θ
θ

ω

θ
θ

ζ

1
1

1
1

1

2

2

              

                      
(4.54)

4.5.4 Evaluation of solution methods
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In simulation, all three solution techniques produced similar responses.  As the sampling rate decreases, the

steepest descent and NLS techniques produce better results than the repeated calculation technique.  However,

the repeated calculation technique is much less computationally complex.  In real systems, the low

computational complexity of the repeated calculation solution will allow sampling rates to be high enough so

that its solution will be satisfactory.

4.6 Differential relationship

Until now, the differential relationship between θ θ θi i i+ + +1 1 1, ˙ , ˙̇ and has been ignored.  Utilizing this

relationship would lead to a way to handle the cases where there is no sign information for &θi +1 .  One method

to exploit the differential relationship is to place an observer at the output of the position solution discussed in

section 4.5.  The position solution is modeled as a linear system expressed by

ẋ Ax Bu
y Cx

= +
= (4.55)

with state-space matrices:

         
x u y

A
K

K
B

K

K
C

i

i

i

i
i

v

k

v

k

=












=








 =

=
−
−









 =









 = [ ]

+

+

+

+
+

˜

˜̇
, ˙̇ , ˙θ

θ

θ
θ

θ1

1

1

1
1

1

0

0

1
0 1

The states are joint position θ̃i+1 and velocity ˜̇θ i+1, the inputs are calculated joint position θ i+1 and

acceleration ˙̇θ i+1 from the solution in section 4.5, and the output is the filtered joint velocity, ˜̇θ i+1.  The Kk

scalar in Eq.(4.55) is used to compensate for possible calculated acceleration bias due to accelerometer sensor

error.   Without the Kk term, the system is an unstable double integrator and a bias in the calculated

acceleration can lead to unbounded joint velocity.  The Kk  term can cause oscillations in steady state.  The

Kv term adds damping and can cancel out the oscillations.  Equation (4.55) is used to smooth the calculated

joint velocity, using the concept of an observer such as the Kalman filter.  In the observer design, the

calculated joint velocity is used as the observer input to correct the velocity state.  For a real system, the

observer gains could be selected using Kalman filter design techniques for error rejection.

Although the velocity observer was proposed as a method for dealing with the lack of sign information for the

solution of θ̇ i+1, it has another use.  In the presence of accelerometer bias and noise, the method for

determining the sign of the solution for θ̇ i+1 suggested in section 4.5 is no longer the best choice even when
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information on the sign of the θ̇ i+1 solution is available.  That method suggested comparing the calculated

acceleration using both θ̇ i+1 solutions with a measured accelerometer  output.  A more robust method  is to

pick the solution for θ̇ i+1 that is closest to the previous output of the velocity observer.  If neither solution is

closer than some reasonable bound on the change in θ̇ i+1 over one sample period, use the previous velocity

observer output as the current value of θ̇ i+1.  If the calculated velocity from section 4.5 is not satisfactory due

to sensor bias and noise, the plant in Eq. (4.55) may be used alone without the calculated joint velocity and

observer formulation.

4.7 Response to accelerometer bias and noise

Using the position solution method from section 4.5, an error in Acorr, accelerometer bias, or accelerometer

noise can be considered to be an additive offset.  Given the form of the tan-1 function, that additive offset will

lead to a bounded offset in θi+1.  That joint offset, φi+1, will depend on the size of the bias, ξ, and the value of

joint position.  Although the φi+1 is not constant, it is bounded.  The resulting joint offset will be largest

around θi+1=0 and will decay as θi+1 approaches ±π.

tan( ) tan( )θ φ θ ξi i i+ + ++ = +1 1 1 (4.56)

φ ξ
θ ξ θi

i i
+

+ +
=

+ +








1

1 1 1
tan

tan
-1

2 tan
(4.57)

An accelerometer bias will also lead to a bounded offset in the joint acceleration calculation.  Considering the

special case of rx=0, the joint acceleration offset, ˙̇φi+1, is:

˙̇
˜

φi
xerror

y

A

r+ =
−

1 (4.58)

Where Ãxerror is the difference between the measured and actual relative Cartesian acceleration along the x-axis.

In the general case, ˙̇φi+1 also depends on θ̇ i+1.  Again, examining the technique for the simplified case of

rx=0, the solution for the joint velocity offset, φ̇i+1, for cases 1-3 is given in Eq. (4.59) through (4.61),

respectively.

˙
˜

φi
zerror

y y

A

r+ =1 2Ω
 (4.59)
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φ̇i z
yerror

y
z

A

r+ = − ±
−

+1
2Ω Ω (4.60)

φ̇i
yerror

y

A

r+ = ±
−

1 (4.61)

The error bounds in Eqs. (4.59-4.61) assume perfect information about Ωz.  Cumulative errors from failed

joints previous in the kinematic chain will effect this assumption.  Although cumulative errors  in Ωz will

affect the magnitude of the error, the error will be bounded.  It should be noted that the kinematic parameter ry

is involved with the effect of the error in all cases.  Enlarging the parameter will lead to better error robustness.

Examining the A matrix in Eq. (4.55), choosing positive definite, diagonal Kk and Kv matrices is a sufficient

condition for the observer  to be asymptotically stable.  With this choice of gains along with the error bound

on the observer input from Eqs. (4.59-4.61), θ̇ i+1 is bounded leading to a bounded  ˙̇φi+1 in the general case

where both rx and ry are non-zero.

Further examination of Eq. (4.55) gives a steady  state bound on the joint velocity offset, θ̇ i
ss
+1, and joint

position offset, θ i
ss
+1, due to the observer’s plant dynamics.  Let steady state be defined as:

  
v
0 = +Ax Bu (4.62)

Solving Eq.(4.59) for x leads to:

˙ ˙̇θ φi
ss v

i

k
i i

K

K
+

+

+ +=1

1

1 1 (4.63)

θ θ φi
ss

i
k
i i

K
+ + + += +1 1 1 1

1 ˙̇ (4.64)

where Kv
i+1and Kk

i+1 are the i+1th elements of the diagonal of the diagonal observer gain matrices.  In Eq.

(4.63), it appears that the joint velocity offset can be made close to zero by choosing Kv
i+1 very small and/or

Kk
i+1 very large.  Choosing either gain in this manner can lead to oscillations depending on the size of ˙̇φi+1.

As a result, the steady state assumption and Eq. (4.63) are invalid.  Some adjustments can be made to

Kv
i+1and Kk

i+1 without affecting the steady state assumption giving the system designer some flexibility.
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As stated earlier, the main advantage of the proposed method is that direct integration is not used to obtain

position or velocity from acceleration.  Integration can lead to large, unbounded errors due to bias and noise.

4.8 Simulation

Simulations were conducted  to show the performance of the proposed solution technique.  A Robotics

Research 807i manipulator was simulated using Matlab and Simulink numerical simulation software.  The

807i is a 0.8m long robot with seven revolute joints.  The full 7 DOF configuration was implemented and

tested in general 6 DOF space.  Although position sensor recovery was simulated successfully on several other

joints, joints 3 and 4 are presented in the simulation results.  Joints 1 and 2 were actuated to provide an

angular acceleration and velocity excitation for the 3rd and 4th frames, thus forcing solution cases 1 and 2 to

be used along with case 3.  Joints later in the kinematic chain have no effect on the solution (possible induced

vibrations will be considered noise).  Accelerometers were placed at reasonable locations along the robot

links, i.e. the case of non-zero p and r+p≠l was simulated.  Depending on the joint, either rx or ry were

designed to be zero to use the simplified solution method.  The commanded joint trajectory was a smooth

trajectory lasting 1 second starting from [1 0 0 0 0 0 0] radians and ending at [0.5 -0.4 0.2 -0.25 -0.2 0.1 0.6]

radians.  Total simulation time was 7 seconds to show steady state performance.   Kalman filter design

techniques were used to determine the observer gains.  The calculated position was not used to drive the robot

simulation.

To show the performance of the method in the presence of constant accelerometer bias, a random bias was

calculated at the start of the simulation and added to the accelerometer output.  For the following simulations,

the bias had a mean of 0.007m/s2 and standard deviation of 0.024m/s2.  In comparison to raw accelerometer

outputs in a 9.81m/s2 gravity field, these bias values are small.  However, as shown in Fig. 4.2, the bias is a

substantial portion of the relative acceleration between accelerometers on the same link of a small robot

moving along a reasonable trajectory.   In steady state, the relative acceleration should be zero along all axes

without bias.
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Figure 4.2: Relative acceleration of link 3 with accelerometer bias

The calculated joint position, velocity, and acceleration with accelerometer bias are shown in Figs. 4.3-4.5.

Figures 4.4 and 4.5 show the velocity and acceleration of joint 4 which are affected by errors from the

calculations for joint 3.
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Figure 4.3: Calculated and actual positions with accelerometer bias
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Figure 4.4: Calculated, observed, and actual velocity of joint 4 with accelerometer bias

Calculated
Actual    

0 1 2 3 4 5 6 7
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (seconds)

A
cc

el
er

at
io

n 
(r

ad
ia

ns
/s

ec
^2

)

Joint Acceleration

Figure 4.5: Calculated and actual acceleration of joint 4 with accelerometer bias

In the next simulation, sensor noise was added to the accelerometers along with the bias error.  The added

noise had a peak to peak amplitude of ~0.16m/s2.  This additive noise further contaminated the relative

accelerations.   The velocity and acceleration calculations  in this simulation were dominated by noise.  Even

with the noisy velocity and acceleration, the position error shown in Fig. 4.6 is acceptable.
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Figure 4.6: Position error with bias and noise

To show the advantage of this technique over integration based methods, the same accelerometer  data which

produced Fig. 4.6 was used in an integration based technique.  The integration based technique used double

integration to obtain Cartesian position of the end of the link attached to joint 4 from Cartesian accelerometer

readings.  The resulting Cartesian position is then compared to the Cartesian position calculated from forward

kinematics[58] using the joint positions computed with the new methods presented earlier.  As shown in

Figs. 4.7 and 4.8, the solution method presented results in a bounded Cartesian position error, while the

integration based solution resulted in an unbounded Cartesian error.  Note that the measurements are in meters

and the different scales on the plots.  The results shown for the integration solution assumed that the gravity

bias could be removed from the accelerometer data.  During the failure of a position sensor, accurate removal

would not be possible.
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Figure 4.7: Error in Cartesian Position of Frame 4: Proposed Method
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Figure 4.8: Error in Cartesian Position of Frame 4: Integration Method

Errors in the initial position will result in a bias on the integrated position solution.  Other than changing the

initial Acorr in the proposed solution method,  it will have no effect.

4.9 Summary

This chapter has presented a technique to obtain joint position for a robot manipulator using Cartesian

accelerometer information.  A mathematical derivation for the technique based on kinematic analysis is shown

and confirmed in simulation. The technique is valid for n DOF systems, handles general trajectories, allows

reasonable accelerometer placement, and is not computationally complex.  It has been shown in simulation to

have bounded error performance due to bounded system measurement errors.  With the advent of small,

inexpensive, accurate accelerometers, the number of accelerometers required by this method is achievable. The

technique allows placement of accelerometers in locations reasonable for retrofitting into existing robot

designs.

This chapter has developed a theoretical foundation for using accelerometers to determine the position of a

specific robot joint.  However, the accuracy of this position using real sensor data and the usefulness of the

calculated position in controlling a real joint are not discussed.  In chapter 5, three joints of a real manipulator

will be instrumented with accelerometers and practical implementation issues for this position determination

method will be discussed.  Experiments in chapter 5 will show the performance of this position determination

method in both FDI and as part of a feedback control system in failure recovery.
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5. Experimental Results: Joint Specific Position Sensor Fault

Tolerance

The purpose of this chapter is to describe the experiments used to determine the performance of the joint

specific position fault tolerance theory developed in chapter 4 on a real robot.

5.1 Experimental setup

The experimental apparatus used was based on the system used for the virtual passive torque sensor

experiments in chapter 3.  The Robotics Research 807i manipulator and its control system were modified

as follows:

1. Communication between the primary robot control processor, a 33Mhz 68040 based

computer, and a 25MHz 68040 based computer, to be referred to as the accelerometer

processor, was enabled across the VME backplane.

2. Drivers for 32 lines of 16-bit analog to digital I/O (A/D) were coded and debugged.

3. Accelerometer mounts were designed, fabricated, and installed.

4. Electrical wiring and connectors for the accelerometers were installed.

5. Eighteen single axis accelerometers making up six triaxial accelerometers were installed on

the mounts and electrically connected

6. MATLAB simulation code was ported to C++ to run on the accelerometer processor.

The accelerometer mounts can be seen in Fig. 5.1 and their placement on the manipulator in Figs. 5.2 and

5.3.  The accelerometer mounts were designed to attach to existing screw holes in the manipulator.  The

mounts are attached to the shoulder pitch, elbow roll, and elbow pitch joints, joints 2, 3, and 4

respectively.  Depending on the joint to which they are attached, they create an offset along either the local

frame’s x or y axis.  This single offset, in addition to resulting in simple accelerometer mounts, allows for

the use of the least complex solution method developed.  It should be noted that while the accelerometer

mounting structures shown are large and could easily be damaged in a real environment, they are only lab

prototypes designed to require the smallest modification to the existing robot structure and use the

accelerometers available.  Smaller accelerometers are available which could be incorporated into the robot

links.
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Figure 5.1: Accelerometer mounts

Figure 5.2: Robot side view
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Figure 5.3: Robot front view with elbow roll rotated -π/2 from home position

The main problem encountered in the experimental setup was electromagnetic noise.  The Robotics

Research controller was the main source of this noise.  When operational, the controller contaminated the

local ground and radiated electromagnetic interference, especially when the PWM motor drives were

enabled.  As a result, the analog signals from the accelerometers were corrupted by up to 100mV noise

spikes in the initial electrical configuration.  The original configuration used single ended accelerometer

signals (all signals used a common ground), some shielded and some unshielded cables, a single 40Hz

analog anti-aliasing filter per signal, and one single ended A/D channel per signal.  The configuration was

refined to use differential accelerometer signals, as much shielded cable as possible, two 40Hz analog filters

(one for each side of the differential signal), and a differential A/D channel (using two A/D channels per

signal).  This new  electrical configuration eliminated most of the interference due to radiated noise.  The

contaminated ground could not be fixed.  The Robotics Research controller’s ground was connected to the

VME card cages ground through the BIT3 bus-to-bus interface.  With the refined electrical configuration, if

the bus-to-bus interface cable was disconnected, the noise was less that 0.5mV peak-to-peak with the robot

motors enabled.  This noise level approached the noise specification for the 16-bit A/D board.  When the

cable was connected, the noise approached 8mV peak-to-peak.  Without significantly changing the way

robot communication was done, this problem could not be solved.  A 10Hz digital filter was added to the

system which cut the noise down to 3mV peak-to-peak.  If the accelerometers chosen had been the

traditional non-amplified type with approximately 40mV/G response, this noise would have been

unacceptable.  However, the accelerometers used have built-in amplification.  Over their ±2G range, the

accelerometer’s response was 1V/G.  This made the resulting noise ±0.0015G.
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The final electrical configuration with its differential signals limited the scope of the experiment.  Although

three joints were instrumented with two triaxial accelerometers each for joint position determination, only a

total of five triaxial accelerometers could be measured with the 32 A/D lines available.  As a result, the

experiments were limited to two simultaneous failures instead of the planned three.

Another problem encountered was variable accelerometer bias.  Although the effect of noise and constant

bias was simulated, the effect of noise and variable bias was not.  This error type was experienced when two

accelerometers, each with slightly different response characteristics, were used to calculate the relative

acceleration required for joint velocity and acceleration calculations.  Each accelerometer has a different zero

offset and acceleration coefficient to convert volts to m/s2.  Although an automatic calibration program was

developed which used linear regression to determine these parameters, it did involve some error.   This

error in relative acceleration, along with the noise being in phase or out of phase between accelerometers,

caused a problem with relative acceleration calculations.  To help alleviate the problem in steady state, a

digital bias filter was included.  This filter, a 0.1Hz low pass filter, attempted to determine the value of the

difference between the signals caused by error without responding to the real difference caused by dynamic

effects.

The noise and bias problems encountered in the system forced a change to the planned control system.

The determination of joint velocity has always been problematic with this solution method.  Although fair

velocity magnitudes were available, the size of the relative acceleration error made sign determination

unreliable.  With the noise and bias encountered, the sign problem was too much for the velocity observer

to correct.  As a result, the velocity feedback part of the observer was eliminated and the differential model

only used along with the calculated joint position and acceleration to determine joint velocity.  In addition

to better velocity response in this situation, removing the velocity feedback had the advantages of  reducing

the overall calculations required to determine velocity and reducing the number of accelerometers that

would be required for some joint configurations.  The reduction in accelerometers is dependent on the

sensor configuration.  This property was not taken advantage of during this experiment because the decision

to use the model only velocity formulation was made after the accelerometers were installed.  The

disadvantage of removing the velocity observer component is that accurate velocity calculations are more

dependent on tuning of model stiffness and damping terms to allow good tracking with minimal

oscillation.

The required computational loading along with the sampling rate set by the 40Hz anti-aliasing filters

determined the update rate of the accelerometer processor.  The final configuration allowed accelerometer

sampling and related filtering to execute at 100Hz and the position, velocity, and acceleration calculation to

execute at 75Hz assuming two simultaneous joint calculations.  Interrupt driven accelerometer sampling

and better coding could increase the update rate.
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5.2 Experimental Goals

The goal of this experiment is to show acceptable position tracking performance using the proposed

solution method.  This performance will be shown for both single and multiple joint failures.  Two modes

of operation will be considered.  In the FDI (Failure Detection and Identification) mode, the joints will be

considered unfailed and servoed using the Robotics Research position controller provided by the

manufacturer.  In this mode, the accelerometers will be read and the algorithm will attempt to calculate the

joint position, velocity, and acceleration without feedback from the “failed” joint.  This configuration will

show the ability of the solution method to track actual measurements.  In practice, the FDI mode could be

used to determine if a joint position sensor has failed.  In fault recovery mode, the calculated position and

velocity data will be used along with the virtual passive torque control method developed in chapter 2 to

servo the joint.  In practice, the fault recovery mode would be enabled when a joint position sensor was

determined to have failed.

Before the experimental results are discussed, it should be understood that the proposed method is a fault

tolerant control method which uses traditional sensors for a non-traditional purpose.  The method is not

advocated as a primary control method.  In practice, the position tracking performance of an accelerometer

cannot match that of an optical encoder, resolver, or even a potentiometer.  As a result, the servo

performance will not be as good as one using traditional joint sensors and a basic control algorithm, much

less a control method using accurate dynamic models.  The goal is to show stable servo performance with

adequate position response to make continued operation during failure an option with this method.

5.3 FDI Mode

In FDI mode, the joints are all servoed using measured position information but some joints are considered

“failed” by the algorithm running on the accelerometer processor.  Although the algorithm does not use the

position or velocity feedback from the “failed” joints, it is available to the rest of the system and is

presented here for comparison.  This FDI mode is useful to detect joint position sensor failures.  One joint

at a time could be considered “failed” and its position calculated and compared to the actual measurement.

Given a reasonable error bound, this method could be effective.  Considering multiple joints “failed”

simultaneously would have less relevance to FDI, but the response does help indicate the position tracking

performance that can be expected when the fault recovery mode is enabled.

5.3.1 Single joint “failures”
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The first joint considered is the shoulder pitch joint.  It is expected to show the best performance of the

instrumented joints because it has the least interesting dynamic effects on accelerometers attached to the

joint.  With this experiment’s fixed base, only the velocity and acceleration for the shoulder roll joint

contribute to the dynamic effects along with the shoulder pitch’s own movements.

For all following plots, the Home position is defined as [0 -π/2 -π -π/2] radians for the first four joints.

The three wrist joints will be fixed at [0 0 0] for all trajectories.  Although most trajectories start from at or

near the Home position, this is a convenience for comparison only.  With exceptions that will be discussed

and shown in the experimental results, this method has been tested over multiple trajectories with

acceptable response.  To better calibrate the accelerometers with the linear calibration method used, the

calibration took place at points near the Home position.  As the robot moves farther from the region around

Home, calibration errors will increase.  This problem could be resolved with a more sophisticated

calibration algorithm.

The first data set involved moving from Home to [0 1.27 -π -π/2] in 1.5 seconds.  This trajectory and all

trajectories presented with a duration of the 1.5 seconds are too fast for a robot in an unstructured

environment where fault tolerance is usually required.  Fast trajectories were tested to examine the

method’s sensitivity to dynamic effects.  Figures 5.4-5.6 show the position, velocity, and acceleration

response.
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Figure 5.4: Position response of shoulder

pitch joint to trajectory ending at [0 1.27 -π

-π/2]

Figure 5.5: Velocity response of shoulder

pitch joint to trajectory ending at [0 1.27 -π

-π/2]
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Figure 5.6: Acceleration response of shoulder pitch joint to trajectory ending at [0 1.27 -π -π/2]

In Fig. 5.4, the effects of the accelerometer response and filters are seen in the delay between the measured

position and the calculated position.  Part of this error is also due to the error in the magnitude of the

calculated velocity which is used to form the correction term for the position calculation.  The velocity

error in Fig. 5.5 is due to the stiffness and damping terms in the differential model used to calculate

velocity from the calculated position and acceleration.  Decreasing the damping term will cause a damped

oscillation in steady state but will allow for better tracking during movement.  The joint acceleration tracks

the “measured” acceleration well in Fig. 5.6 seemingly without the delay shown in the position tracking.

This is because the joint acceleration is not directly measured in this system.  The measured velocity is

numerically differentiated and filtered by a lowpass filter with the same cutoff frequency as the accelerometer

lowpass filters resulting in a similar delay.

The next data set shows the response from Home to [0.5 1.27 -π -π/2] in 1.5 seconds.  This trajectory

actuated the shoulder roll joint, the only other joint that can affect the shoulder pitch calculations.  The

result can be seen in Figs. 5.7-5.9.
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Figure 5.7: Position response of shoulder

pitch joint to trajectory ending at [0.5 1.27

-π -π/2]

Figure 5.8: Velocity response of shoulder

pitch joint to trajectory ending at [0.5 1.27

-π -π/2]
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Figure 5.9: Acceleration response of shoulder pitch joint to trajectory ending at [0.5 1.27 -π -π/2]

As the robot moved farther from the Home position, the calibration error increased resulting in a larger

steady state position error in Fig. 5.7 than in Fig. 5.4.  The bias between the accelerometers also changed

with position.  The reduction of the steady state bias by the bias filter can be seen in the acceleration in

Fig. 5.9.

Next a “failure” of the elbow roll joint is considered.  The following plots will show one of the most

significant problems with this solution method, its sensitivity to noise is dependent on the accelerometers’

position in the gravity field.  Figures 5.10-5.12 show the response to moving from Home to [0 -π/2 -3.5

-π/2] in 1.5 seconds.  Although all calculated values track well, the noise on the position calculation in

Fig. 5.10 is high.  Figures 5.13 and 5.14 show the position response for trajectories from [0.1 -π/2 -π
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-π/2] to [0.1 -π/2 -3.5 -π/2] and [0.5 -π/2 -π -π/2] to [0.5 -π/2 -3.5 -π/2] respectively.  As the shoulder

roll joint moves putting more gravity acceleration on the elbow roll’s x and y accelerometer axes, the axes

used in the position calculation, the signal to noise ratio increases and the calculated position becomes less

noisy.
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Figure 5.10: Position response of elbow roll

joint to trajectory ending at [0 -π/2 -3.5

-π/2]

Figure 5.11: Velocity response of elbow roll

joint to trajectory ending at [0 -π/2 -3.5

-π/2]
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Figure 5.12: Acceleration response of elbow roll joint to trajectory ending at [0 -π/2 -3.5 -π/2]
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Figure 5.13: Position response of elbow roll

joint to trajectory ending at [0.1 -π/2 -3.5

-π/2]

Figure 5.14: Position response of elbow roll

joint to trajectory ending at [0.5 -π/2 -3.5

-π/2]

The next trajectory shows the effect of moving the shoulder roll and shoulder pitch joints on the elbow roll

calculations.  This trajectory runs from  [0.3 -π/2 -π -π/2] to [0.5 -1.27 -3.5 -π/2] in 1.5 seconds.  The

results are shown in Figs. 5.15-5.17.  The position response shows some errors of up to 0.12 radian during

the trajectory and the acceleration response shows errors of up to 1.7 rad/s2.  These large errors with the

shoulder joints moving shows an interaction between position and acceleration errors which is not seen

when the shoulder joints are stationary.  As shown earlier, the joint position calculation in this region is

susceptible to noise.  The calculated position term forms a rotation matrix which transforms the angular

acceleration and velocity from the shoulder joints to the local frame.  These terms are used in the joint

acceleration calculation.  Errors in these terms cause errors in the joint acceleration calculation which is

then used to determine the next joint position.  If the shoulder joints are not moving, they have no angular

velocity and acceleration.  As a result, the position error does not affect the acceleration calculation, as can

be seen in the acceleration tracking in Fig. 5.12.  Small synchronization errors between measured position,

velocity, and Cartesian acceleration can also contribute to the error.
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Figure 5.15: Position response of elbow roll

joint to trajectory ending at [0.5 -1.27 -3.5

-π/2]

Figure 5.16: Velocity response of elbow roll

joint to trajectory ending at [0.5 -1.27 -3.5

-π/2]
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Figure 5.17: Acceleration response of elbow roll joint to trajectory ending at [0.5 -1.27 -3.5 -π/2]

The last single joint “failure” considered is the elbow pitch joint.  The first trajectory is an elbow pitch

joint only move from Home to [0 -π/2 -π -1.27] in 1.5 seconds.  The results are shown in Figs. 5.18-5.20.

The performance is similar to the shoulder pitch performance when the shoulder roll was fixed.  In the

Home configuration, the accelerometer axes on the elbow pitch joints are rotated π/2 radians from the

shoulder pitch accelerometers.  The performance shown by the elbow pitch joint when horizontal in this

configuration reflects the shoulder pitch performance when horizontal and vice-versa (π/2 radians is vertical

for the shoulder pitch joint in the Home configuration).
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Figure 5.18: Position response of elbow pitch

joint to trajectory ending at [0 -π/2 -π -1.27]

Figure 5.19: Velocity response of elbow pitch

joint to trajectory ending at [0 -π/2 -π -1.27]
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Figure 5.20: Acceleration response of elbow roll joint to trajectory ending at [0 -π/2 -π -1.27]

The next trajectory actuated all four joints.  It ran from Home to [0.5 -1.27 -3.5 -1.27] in 1.5 seconds.  The

results are in Figs. 5.21-5.23.  Note that although there is more tracking error than in Figs. 5.18-5.20, the

error is not as severe as the elbow roll’s error in Figs. 5.15-5.17.  This is because of the elbow pitch

accelerometers’ orientation to the gravity field.  If the shoulder roll position was around ±π/2 instead of

around zero, the noise sensitivity of the elbow roll and pitch joints would be reversed.
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Figure 5.21: Position response of elbow

pitch joint to trajectory ending at [0.5 -1.27

-3.5 -1.27]

Figure 5.22: Velocity response of elbow

pitch joint to trajectory ending at [0.5 -1.27

-3.5 -1.27]
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Figure 5.23: Acceleration response of elbow roll joint to trajectory ending at [0.5 -1.27 -3.5 -1.27]

5.3.2 Multiple joint “failures”

Multiple joint “failures” are interesting in that they show the effect of accumulating errors in joint position,

velocity, and acceleration calculations.  Since this method assumes a serial link manipulator and uses

information from joints earlier in the kinematic chain, any error in a previous joint will contribute to the

error in the current joint.

The first of two multiple joint “failure” cases considered is the simultaneous failure of the shoulder pitch

and elbow roll joints.  Figures 5.24-5.26 show the response of the elbow roll joint to the trajectory from
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[0.3 -π/2 -π -π/2] to [0.5 -1.27 -3.5 -π/2] in 1.5 seconds.  The response to this trajectory using measured

data from the shoulder roll joint can be seen in Figs. 5.15-5.17.  The multiple joint failure case appears

slightly better than the single joint failure case.  This implies that noise or bias was less severe during this

run or a better accelerometer calibration was used.  The plots for the response of the shoulder pitch joint are

not presented as they are similar to the plots in Figs. 5.7-5.9.  Using the proposed solution method,

failures of joints later in the kinematic chain do not effect the calculations of joints before them.
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Figure 5.24: Position response of elbow roll

joint to trajectory ending at [0.5 -1.27 -3.5 -

π/2]

Figure 5.25: Velocity response of elbow roll

joint to trajectory ending at [0.5 -1.27 -3.5

-π/2]
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Figure 5.26: Acceleration response of elbow roll joint to trajectory ending at [0.5 -1.27 -3.5 -π/2]

If the tracking performance must be improved the trajectory can be slowed.  Figure 5.27 shows the position

response to the same trajectory executed in 4.0 seconds.  The lower speed reduces the coupling of position

and acceleration errors.  To show that other trajectories are possible in this multiple failure mode, the
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position response resulting from executing the trajectory from [0.3 -π/2 -π -π/2] to [0.5 -1.77 -2.7 -π/2] in

1.0 seconds is shown in Fig. 5.28.  The increased transient error is due to the higher speed of the trajectory

and the steady state error due to accelerometer calibration.

Actual    
Calculated

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3.55

−3.5

−3.45

−3.4

−3.35

−3.3

−3.25

−3.2

−3.15

−3.1

Time (seconds)

P
os

iti
on

 (
ra

di
an

s)

Position Response of Elbow Roll Joint

      

Actual    
Calculated

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3.2

−3.15

−3.1

−3.05

−3

−2.95

−2.9

−2.85

−2.8

−2.75

−2.7

Time (seconds)

P
os

iti
on

 (
ra

di
an

s)

Position Response of Elbow Roll Joint

Figure 5.27: Position response of elbow roll

joint to trajectory ending at [0.5 -1.27 -3.5

-π/2] in 4.0 seconds

Figure 5.28: Position response of elbow roll

joint to trajectory ending at [0.5 -1.77 -2.7

-π/2] in 1.0 second

The second multiple joint failure considered involves the shoulder pitch and elbow pitch joints.   Figures

5.29-5.31 show the response of the elbow pitch joint to the trajectory from Home to [0.5 -1.27 -3.5 -1.27]

in 1.5 seconds.  The same trajectory is shown in Figs. 5.21-5.23 with the shoulder pitch joint assumed

not failed.  Similar tracking performance is shown to the non-failed condition.
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Figure 5.29: Position response of elbow

pitch joint to trajectory ending at [0.5 -1.27

-3.5 -1.27]

Figure 5.30: Velocity response of elbow

pitch joint to trajectory ending at [0.5 -1.27

-3.5 -1.27]
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Figure 5.31: Acceleration response of elbow roll joint to trajectory ending at [0.5 -1.27 -3.5 -1.27]

To show the effects of speeding up and slowing down this trajectory, refer to Figs. 5.33 and 5.35 which

show the position response to trajectory from Home to [0.5 -1.27 -3.5 -1.27] executed in 0.75 and 4.0

seconds, respectively.  Since the response of the shoulder pitch joint to these trajectories has not been

presented, its position response is included in Figs. 5.32 and 5.34.  The tracking improved in the slower

case but degraded in faster case.  It should be noted that the improvement and degradation were not as

severe as in the case of the elbow roll.
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Figure 5.32: Position response of shoulder

pitch joint to trajectory ending at [0.5 -1.27

-3.5 -1.27] in 0.75 seconds

Figure 5.33: Position response of elbow

pitch joint to trajectory ending at [0.5 -1.27

-3.5 -1.27] in 0.75 seconds
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Figure 5.34: Position response of shoulder

pitch joint to trajectory ending at [0.5 -1.27

-3.5 -1.27] in 4.0 seconds.

Figure 5.35: Position response of elbow pitch

joint to trajectory ending at [0.5 -1.27 -3.5

-1.27] in 4.0 seconds

To show response to different trajectories, trajectories from Home to [1 -1 -4 -1] and from Home to [-0.5 -

1.77 -2.6 -1.17] in 1.5 seconds were executed.  The position responses of the shoulder pitch and elbow

pitch joints are found in Figs. 5.36-5.39.  The steady state tracking error of the shoulder pitch joint in Fig.

5.36 is due to calibration error.
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Figure 5.36: Position response of shoulder

pitch joint to trajectory ending at [1 -1 -4 -1]

Figure 5.37: Position response of elbow

pitch joint to trajectory ending at [1 -1 -4 -1]
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Figure 5.38: Position response of shoulder

pitch joint to trajectory ending at [-0.5 -1.77

-2.6 -1.17]

Figure 5.39: Position response of elbow

pitch joint to trajectory ending at [-0.5 -1.77

-2.6 -1.17]

Although not shown, the multiple failure of the elbow roll and elbow pitch joints is calculable with this

method.  The poor performance on the elbow roll in some configurations would degrade the elbow pitch

joint’s performance.  For practical situations, trajectories in this multiple failure mode would need to be

slowed, the trajectories limited to areas where both the elbow pitch and elbow roll joints were not as

susceptible to noise, or only one joint moved at a time.  This problem is not unique to the elbow roll

joint.  All joints will have configurations where their responses are more susceptible to noise.  These

configurations can be predicted by examining the accelerometers’ orientation with respect to gravity.   If

both the x and y axes have small signal to noise ratios due to their orientation, tracking will be less

accurate.

5.4 Failure recovery

The previous sections have concentrated on performance in the FDI mode where the data calculated from the

accelerometer outputs was not used to servo the joints.  In this section, the calculated data will be used as

feedback for the joint servo loops.  The goal of this section is to show that the calculated data can be used

to stably control one or two failed joints.  A secondary goal is to match the servo performance provided by

the Robotics Research position controller provided with the system.  The Robotics Research controller

uses a simple PD controller with gravity offset in addition to its low level torque controller for position

control.  It is not an optimal controller but is acceptable for general use.  Since the proposed position

feedback method is not optimal, the resulting control cannot be expected to track perfectly.  The goal is to

make it acceptable for emergency use.
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Due to the noise and delay evident on some of the calculated data, a position controller with very high

gains would lead to unacceptable performance due to vibration or instability.  In addition, since a gravity

offset algorithm is dependent on position, any position error would lead to a torque offset error.  This

situation is an good case to use the virtual passive torque controller detailed in chapters 2 and 3.  The

virtual passive controller will provide both gravity and dynamic compensation so the position gains can be

lowered.  The virtual passive controller can also be tuned to provide adjustable joint damping to trade

tracking error for vibration suppression.  The use of the virtual passive torque controller assumes that

although the joint position and velocity sensors have failed, the joint torque sensor is operational.

This application will show the stability of virtual passive control on the major arm joints of a robot.  In

chapter 3, a detailed analysis of the properties of the control  technique was done concentrating on the wrist

joints.  In this section, the shoulder pitch and elbow pitch joints will be controlled by a virtual passive

based controller.  The position controller will be a simple PD based controller which uses the calculated

position and velocity with the trajectory command to offset the measured torque used by the virtual passive

controller.  This offset  appears to the virtual passive controller as movement.  The virtual passive

controller moves the joint in the desired direction to dissipate the energy.  Results for the failure of elbow

roll joint are not presented because a real joint torque sensor failure was discovered after the experiment

began.

5.4.1 Single joint failure recovery

The first single failure considered is the shoulder pitch joint.  The trajectory from Home to

[0.5 1.27 -π -π/2] in 1.5 seconds was executed and the position response shown in Fig. 5.40.  The

response to this trajectory in FDI mode can be found in Figs. 5.7-5.9.  The measured joint position is

given for comparison but was not used by the controller.  This joint failure showed a very good FDI

response and the calculated position continued to track the measured position well during failure recovery.

The small overshoot hump in the trajectory is adjustable.  The delay, actually servo error, between

commanded and actual trajectory can be decreased by increasing the position gains at the expense increasing

the overshoot.  This tradeoff is characteristic of PD based controllers.  The size of this overshoot is also

determined by the calculated position tracking error.  If the error is such that the controller believes that it

must continue along at a high velocity instead of slowing to a stop, the controller will overshoot the proper

stopping point.  When the calculated position comes close enough to the desired position, the controller

will slow the joint and attempt to correct the overshoot but, at this point, the overshoot has already

occurred.  The offset between commanded and actual at the beginning of the trajectory is a result of using a

real controller to move to the starting point before the trajectory was run.  For reference, the same trajectory

executed by the Robotics Research controller is shown in Fig. 5.41.  The characteristic of the Robotics

Research controller is this it trades a “delay” due to servo error for a more critically damped performance.
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The gains for the failure recovery case were tuned to give similar “delay” due to servo error at this

trajectory duration.  Slightly different starting points are the result of using different controllers to move to

the starting point form different positions.
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Figure 5.40: Position response of

shoulder pitch joint to trajectory ending

at to [0.5 1.27 -π -π/2]

Figure 5.41: Position response of

shoulder pitch joint to trajectory ending

at to [0.5 1.27 -π -π/2] using Robotics

Research controller

The second single joint failure considered is the elbow pitch joint.  This joint is a possibly the best

candidate for fault tolerance using this method for this robot or any other single elbow, articulated design.

In a single elbow articulated robot, even a kinematically redundant one with joint offsets like the Robotics

Research robot used, the elbow pitch is the only joint which significantly affects the distance between the

shoulder center and the wrist center.  If this joint fails, the robots utility is greatly reduced.  Adding

redundant position sensors to shoulder joints is fairly easy due to the joints usually large size and lack of a

weight penalty in dynamic performance assuming a fixed base.  However, the elbow pitch joint is usually

one of the most optimized designs in robot construction.  The elbow pitch joint must carry significant

loads but must be small enough to keep the shoulder joint sizes realistic.  The light weight of the

accelerometers used in this method along with not requiring a change in current joint designs makes this

method desirable.

The first trajectory considered is a elbow pitch only move from Home to [0 -π/2 -π -1.27] in 1.5 seconds.

The overshoot shown in Fig. 5.42 is due to the interaction of low position gains and the virtual passive

controller.  This is a worst case move in the gravity field for the virtual passive controller to compensate.

It should be noted that the Robotics Research controller response shown in Figs. 5.43 and 5.45 also

overshot.  Higher gains on either the virtual passive controller or the PD position controller could reduce

the overshot due to gravity but with the noisy position data both would cause vibration.  A combination of
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low position controller gains and higher virtual passive controller gains would correct the overshoot but

would increase the servo error “delay” during the trajectory.  The second trajectory actuated all four joints

from Home to [0.5 -1.27 -3.5 -1.27] in 1.5 seconds.  The response in Fig. 5.44 shows that even with

noisier calculated position data the position still tracked smoothly.  If better steady state performance is

required, a PID controller can be used with the usual tradeoff in transient performance.
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Figure 5.42: Position response of elbow

pitch joint to trajectory ending at to [0 -π/2

-π -1.27]

Figure 5.43: Position response of elbow

pitch joint to trajectory ending at to [0 -π/2

-π -1.27] using Robotics Research controller
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Figure 5.44: Position response of elbow pitch

joint to trajectory ending at to [0.5 -1.27 -3.5

-1.27]

Figure 5.45: Position response of elbow pitch

joint to trajectory ending at to [0.5 -1.27 -3.5

-1.27] using Robotics Research controller

The last trajectory for the failure of only the elbow pitch joint presented is from Home to [1 -1 -4 -1] in 1.5

seconds.  This is a very extreme move for a robot to make in normal operation.  It covers a significant

region of the workspace at average speeds of up to 0.5 rad/s.  The resulting plot shown in Fig. 5.46 shows
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a significant overshoot.  As speeds continue to increase, this overshoot will continue to increase with this

gain set.  Gains can be lowered to lessen overshoot with the penalty of degrading performance at lower

speeds.  To further explain the relationship between calculated position error and overshoot, it can be seen

that the point where the calculated position crosses the commanded position at approximately 1.4 seconds

is approximately the point of maximum overshoot on the actual joint trajectory.  The steady state

performance on this trajectory is better because the elbow joint is not as heavily gravity loaded and,

ironically, because the overshoot is large.  The energy caused by the position controller in attempting to

correct the overshoot is sufficient to overcome the stiffness of the passive controller and better approach the

desired position.  It should be noted that the calculated position continues to track the measured position

during the overshoot.

Actual    

Calculated

Commanded 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

Time (seconds)

P
os

iti
on

 (
ra

di
an

s)

Position Response of Elbow Pitch Joint

Figure 5.46: Position response of elbow pitch joint to trajectory ending at to [1 -1 -4 -1]

5.4.2 Multiple joint failure recovery

As in the FDI case of multiple joint “failure”, calculation errors in earlier joints will effect the calculations

required by joints later in the kinematic chain.  During multiple joint fault recovery, the control system

will have to compensate for servo errors and possible control interaction between joints.  The multiple

failure case considered is the simultaneous failure of the shoulder pitch and elbow pitch joints.  To show

the results of any controller interaction, position responses of both joints will be provided for all trajectories

in this section.

The first trajectory considered is from Home to [0.5 -1.27 -3.5 -1.27] in 1.5 seconds.  The response shown

in Figs. 5.47-5.48 show similar response to the single failure cases.
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Figure 5.47: Position response of shoulder

pitch joint to trajectory ending at [0.5 -1.27

-3.5 -1.27] in 1.5 seconds.

Figure 5.48: Position response of elbow

pitch joint to trajectory ending at [0.5 -1.27

-3.5 -1.27] in 1.5 seconds

To show the effects of increasing and decreasing trajectory execution times, the same trajectory is executed

in 0.75 seconds and 4.0 seconds.  The results of these trajectories are shown in Figs 5.49-5.50 and Figs

5.51-5.52, respectively.  In the faster trajectory, performance is similar to the 1.5 second long trajectory

with some increased overshoot.  The slower trajectory shows the stiffness of the virtual passive controller.

The shoulder pitch joint which tracked the faster trajectory well undershot the desired trajectory while the

elbow pitch which overshot in the faster trajectory tracked the desired trajectory in steady state.  With the

slower trajectory, the position controller did not have as much authority as it had in the faster trajectories

because the difference between commanded and calculated positions did not grow as rapidly.  As a result,

the stiffness of the virtual passive controller did not allow either joint to move as much.  The stiffness also

increased the “delay” due to servo error.
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Figure 5.49: Position response of shoulder

pitch joint to trajectory ending at [0.5 -1.27

-3.5 -1.27] in 0.75 seconds.

Figure 5.50: Position response of elbow pitch

joint to trajectory ending at [0.5 -1.27 -3.5

-1.27] in 0.75 seconds
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Figure 5.51: Position response of shoulder

pitch joint to trajectory ending at [0.5 -1.27

-3.5 -1.27] in 4.0 seconds.

Figure 5.52: Position response of elbow pitch

joint to trajectory ending at [0.5 -1.27 -3.5

-1.27] in 4.0 seconds

The next trajectory is the extreme case of moving from Home to [1 -1 -4 -1] in 1.5 seconds shown earlier.

In this case Figs. 5.53-5.54 show that both joints have some overshoot with the shoulder pitch’s

overshoot being the largest.  The shoulder pitch’s overshoot served to cushion the response to the elbow

pitch resulting in a smaller overshoot than in the single joint failure case.  The steady state error between

the calculated and measured shoulder pitch joint position is again due to calibration error.
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Figure 5.53: Position response of shoulder

pitch joint to trajectory ending at [1 -1 -4 -1]

Figure 5.54: Position response of elbow pitch

joint to trajectory ending at [1 -1 -4 -1]

The final trajectory considered is from Home to [-0.5 -1.77 -2.6 -1.17] in 1.5 seconds.  This trajectory puts

the arm in a configuration opposite to previous trajectories but the response shown in Figs. 5.55-5.56 is

similar.
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Figure 5.55: Position response of shoulder

pitch joint to trajectory ending at [-0.5 -1.77

-2.6 -1.17]

Figure 5.56: Position response of elbow pitch

joint to trajectory ending at [-0.5 -1.77 -2.6

-1.17]

To show the performance of the passive controller with actual measured joint feedback, Figs. 5.57-5.58

show the response of the passive controller to the trajectory shown in Figs. 5.53-5.54 with the same gains

used during joint failure.  If the position gains are increased, the performance shown in Figs. 5.59-5.60 can

be realized.  This controllers dynamic performance is better than the Robotics Research controller’s

response shown in Figs. 5.61-5.62 when the higher gains are used.  These results show that the proposed
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control method gives the designer a choice of how to deal with the transition from operational joints to

failed joints.  The designer can elect to have tracking error similar to a standard PD controller with gravity

compensation during normal performance and transition to stable performance during failure without

changing controller gains.  However, if the designer wants to obtain the benefit of better tracking with

higher gains during normal operation it can be obtained by increasing the gains during normal operation

and decreasing them during failure without changing controller structure.  The stiffness of the virtual

passive controller will resist most of the movement that would normally be caused by the gain reduction.
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Figure 5.57: Position response of shoulder

pitch joint using passive controller with low

gains

Figure 5.58: Position response of elbow pitch

joint using passive controller with low gains

Actual   
Commanded

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

Time (seconds)

P
os

iti
on

 (
ra

di
an

s)

Position Response of Shoulder Pitch Joint

      

Actual   
Commanded

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

Time (seconds)

P
os

iti
on

 (
ra

di
an

s)

Position Response of Elbow Pitch Joint

Figure 5.59: Position response of shoulder

pitch joint using passive controller with high

gains

Figure 5.60: Position response of elbow pitch

joint using passive controller with high gains
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Figure 5.61: Position response of shoulder

pitch joint using Robotics Research controller

Figure 5.62: Position response of elbow pitch

joint using Robotics Research controller

5.5 Summary

The proposed method for calculating joint positions from accelerometer data performed acceptably in the

FDI mode in which the joints were servoed using measured joint data. Problems with increased noise

susceptibility in certain configurations were shown.  In failure recovery mode, the proposed position

calculation method combined with the virtual passive torque controller described earlier showed stable

servo performance which in some cases approached that of the Robotics Research baseline controller.  Errors

due to position controller overshoot and passive controller stiffness were discussed.  All results were

obtained in the presence of significant noise, bias, and with a simple accelerometer calibration.  The

resulting servo performance does not approach the optimal performance that can be obtained with joint

position sensor, accurate models, and/or higher gains.  However, the resulting performance, if carefully

used, is adequate for continued operation during failure.

This chapter has shown experimentally the usefulness of the joint specific position determination technique

and discussed some of its problems.  One problem is that each joint that needs to be made fault tolerant

must be instrumented.  Instrumenting all robot joints when probably only one or two will fail during a

critical task would not be cost effective.  However, since which joint position sensors will fail cannot be

predicted, all joints necessary for critical task completion must be instrumented.  Chapter 6 presents a

system wide position determination method which offers a reduction in the number of accelerometers

required to determine the position of an interchangeable set of joints at the cost of higher computational

complexity.
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6. System Wide Joint Position Sensor Fault Tolerance in Robot

Systems Using Cartesian Accelerometers

6.1 Introduction

The application of accelerometers in fault tolerance was expanded to joint position sensor fault tolerance in

chapter 4 of this thesis.  That joint specific method used two triaxial accelerometers to determine the

position of a robot joint without integration or inverse kinematics.  While useful to protect a particular

joint sensor, the number of accelerometers required to protect multiple joints in the robot arm can be

impractical.  This chapter proposes a system wide approach to position sensor fault tolerance.  A

combination of end-effector mounted and link mounted accelerometers can be used to determine the position

of multiple joints in a robot system.  The accelerometers can be located in a manner to provide fault

tolerance to any joint in the robot system.

6.2 Kinematic Equations

The proposed solution method is designed for an n revolute joint, rigid link robot system with m triaxial

accelerometers mounted at various locations on the robot.  A robot of this kinematic configuration is

governed by the following kinematic equations:
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where

ω i
i angular velocity of ith link in ith frame

ai
i acceleration of ith link in ith frame

Ri
i+1 rotation matrix from ith frame to (i+1)th  frame

θi position of ith joint

           Ami
i
+
+
1
1 acceleration of accelerometer Ami+1 in the (i+1)th frame
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pmi+1 vector offset from joint i+1 to accelerometer Ami
i
+
+
1
1

li vector offset from joint i to joint i+1 in the frame i

           ẑ identity z vector [0 0 1]T

Given the Devanit-Hartenberg parameter [58], αi, the 3x3 rotation matrix,  Ri
i+1, is shown below.
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6.3 Solution Method

Each accelerometer contains information on the position, velocity, and acceleration of joints preceding the

accelerometer in the kinematic chain.  End-effector mounted accelerometers contain information about all

joints.  However, this information is mixed together in a nonlinear fashion.  Except for accelerometers

attached to the first joint, there is no single acceleration that is, in general, dependent on solely the

position, velocity, or acceleration of the ith joint.  In addition, components of the acceleration due to certain

joints can dominate due to kinematic configuration or trajectory.  For certain configurations, the end-effector

pose does not uniquely determine the joint trajectory of the robot. As a result, only utilizing end-effector

mounted accelerometers is not sufficient for determining joint trajectories.  Distributing accelerometers

along the arm in addition to end-effector mounted accelerometers can help alleviate these problems by

obtaining information at points closer to joints of interest.

The proposed solution method utilizes the distributed Cartesian accelerometers in conjunction with any

working joint position sensors to recover from a position sensor failure.  This is done by calculating a knot

point, a point in the trajectory with position, velocity, and acceleration, that will make the measured

accelerations match the accelerations determined by Eq. (6.4).  In Eq. (6.4), the data from the operational

joint sensors is used to the extent possible, leaving only terms involving the failed joints,

 Q A j bj j j( , & , && ) ,θ θ θ = ∈    (6.6)

where,

b is the set of failed joints

A is the vector of accelerometer  measurements [ Am1
1 … Amm

m ]T

Q is a set of equations of type (6.4) corresponding to A



6-3

If r is the number of failed joints, then the resulting system has 3m nonlinear equations (one equation per

axis, three axes per accelerometer) in 3r (position, velocity, and acceleration of failed joints) unknowns.  If

this system is solvable, then the knot points for all r joints can be determined and the joints controlled.

A minimum criteria for solution is that there be at least as many equations as unknowns, i.e. m r≥ .  If

this condition is not satisfied, then the minimum error solution will be one in the least squares sense.  Due

to the complexity of the equations, this condition is optimistic.  As r approaches m, the system becomes

more ill-conditioned.  A better measure of predicted system performance will be discussed later.

The method discussed also relies on the existence of a known acceleration field, usually gravity.  This field

provides a known, constant excitation to the system accelerometers.  The solution method can be applied

to systems without such a field, but positions will be relative, not absolute, and drift due to small errors is

likely.  The accelerometers must be of the instrument type that can detect constant accelerations.

The solution method requires a computational technique for solving a system of nonlinear equations. To be

practical, the solution must be calculable in real-time.  Real time in this sense implies updates at a rate fast

enough for stable joint control.  This requirement limits the available solution techniques.  The solution

technique must also be robust to sensor noise and bias.  The convergence of the technique to a good

solution must be predictable.  Traditional nonlinear solution techniques can be applied to this problem.

Some, such as steepest descent[62], were found to be sensitive to sensor error.  Others, such as nonlinear

least squares[63], gave excellent results but were too time consuming for real-time implementation.  A new

method, continuation minimax, is developed as a compromise between solution accuracy and suitability for

real-time implementation.

6.4 Continuation Minimax

This method is a combination of the continuation method[64,65] and the minimax method[66,67].  The

classical continuation method is based on using sequential linear programming to optimize a nonlinear

function based on nonlinear criteria.  In this formulation, F is the function to be optimized, P is the vector

of optimization parameters, Pa is the current approximation of the optimal solution, Jc is the gradient of the

constraint function, c, and JF is the gradient of the optimization  function.  Placed into a linear

programming problem:

Minimize  ∆ ∆F J PF
T= (6.7)
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subject to

J P c Pc a∆ ∆≤ − ( ) α (6.8)

The quantity α ranges from 0 to 1 in increments of ∆α.  The step size controls the accuracy of the

approximation of the optimum P, i.e. P*.  The next approximation of P*, which is Pa+∆P, leads to a better

approximation of the optimal F, i.e. F*.

The minimax solution technique detailed in [66] also uses linear programming.  The object of the

minimax solution is to find the maximum of the minimum error, γ , between the calculated constraint

equations and the desired value of the constraints:

Minimize  γ (6.9)

subject to

J P I c Pc m a∆ − ≤γ 3 ( ) (6.10)

− ≤ ≤Λ ∆ Λa i aP (6.11)

Where I3m is the 3mx3m identity matrix.  The parameter Λa controls the amount of change allowed in ∆P.

The bound is heuristically changed depending on a comparison of the decrease in the function c and the

linearized version.  If the ratio of the two is small:

c P P c P J Pa a c( ) ( ) .+ − ≤∆ ∆0 25 (6.12)

then Λa+1=Λa/4.  If the ratio is large:

c P P c P J Pa a c( ) ( ) .+ − ≥∆ ∆0 75 (6.13)

then Λa+1=2Λa, otherwise Λa+1=Λa.  The minimax solution is iterated until a desired value of γ is achieved

or only a minimal change in γ is produced.

The proposed computational procedure, continuation minimax, is a combination of both techniques.  The

rationale behind the combination is to capitalize on the predictable solution time, determined by ∆α, of the

continuation method and the ability of the minimax algorithm to find the minimal error between the true

c(P*) and the approximated c(Pa).
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In linear programming form, the continuation minimax formulation is:

Minimize 
m

F= i
i

γ
=
∑

1

(6.14)

subject to:

J P diag c Pc m a∆ − ≤( . . ) ( )γ γ α1 (6.15)

− − ≥ −J P diag c Pc m a∆ ( . . ) ( )γ γ α1 (6.16)

− ≤ ≤Λ ∆ Λa i aP     (6.17)

γ i ≥ 0 (6.18)

The bound Λa is adjusted as in the minimax formulation.

Reasons for some of the differences between existing methods and the new continuation minimax

formulation are:

• The function F was linear, so it was used instead of a linearized version

• The quantity α ranges from 0 to 1 in increments ∆α as before, but is used explicitly in the iteration

to allow for the combination of methods

• The summation of several γi was chosen over only γ for better performance during sensor error.  With

low sensor error, a formulation using only γ is also possible and would further decrease

computational requirements.

• An upper and lower bound, Eqs. (6.15) and (6.16), are required because ideally γi=0 ∀i.   An upper

or lower bound alone would not reduce to this condition at the ideal case.

 

For specific application to the position sensor fault tolerance problem, c=Q(Pa)-A, Pa is [ & && ]θ θ θa a a      (the

joint position, velocity, and acceleration), and  Jc is the gradient of c with respect P.

The continuation minimax method has an accuracy and an execution time that is controlled by the choice

of  ∆α.  Other solution techniques, under certain conditions, may obtain a more optimal solution quicker.

The primary advantage of the continuation minimax solution technique is its ability to give a solution to

the problem in a predictable execution time.  This predictability is a requirement for real-time

implementation.
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6.5 Gradient Calculation

Most nonlinear solution methods require a function gradient for rapid convergence.   In this application, the

continuation minimax solution method requires Jc, the gradient of c. The gradient of  c is equal to the

gradient of Q.  The closed-form solution for Jc for an n link manipulator becomes more complex quickly as

n grows.  The gradient could be computed numerically using finite differences[68].  Finite differences are

not as accurate as a closed-form solution.  The approach taken here is to calculate the gradient recursively.

The system equations are designed to be calculated recursively, so the proper application of partial

derivatives and the chain rule will lead to the desired outcome.

The desired gradient has the form:
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For simplicity, the measurement Ami is always in the ith frame.  Now,
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The partial derivative will be zero for all quantities of joint k where k>i+1.  This a consequence of the later

joints not affecting the previous links.

Equations (6.20),(6.21),and (6.22) are not recursive themselves, but the equations for the partials they

depend on are recursive.  The equations require that Eqs. (6.1) through (6.3) be calculated for all n links to

determine the angular velocities, angular accelerations, and Cartesian accelerations.  The partial derivatives

can then be calculated in the following manner:
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is the derivative of Ri
i+1 with respect to θi+1.

Using Eqns. (6.20) through (6.32), the elements of the gradient can be calculated.  The previous equations

have been verified against numerically calculated gradients of Q.
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6.6 Simulation

Simulations were conducted  to verify the solution method presented in this chapter.  A Robotics Research

807i manipulator was simulated using Matlab and Simulink numerical simulation software.  The 807i is a

0.8m long robot with seven revolute joints.  The full 7 DOF configuration, as shown in Fig. 6.1, was

implemented and tested in general 6 DOF space.  Two triaxial accelerometers were attached to the end-effector

and one triaxial accelerometer was attached to joints 2, 4, and 6.

x

yz

y

z
x

A1A2A3

A4

A5

J1

J2

J3

J4

J5

J6

J7

Accelerometer Locations

Joint Locations

Figure 6.1: Robot diagram

Trajectories were generated using a standard 3-5-3 trajectory generation algorithm[58].  The desired

trajectory starting and ending positions were [1.1 0.2 -0.3 0.4 -1.5 0.6 0.7] radians and [0.5 -0.3 0.0 0.2 -

0.2 0.0 1.4] radians respectively.  The trajectory was to be completed in 1.0 second followed by 0.7 second

of  zero velocity and acceleration command.  This rather fast move would show the resilience of the method

to dynamic effects.  The calculated positions were not used as feedback to the position controller.  A very

low tracking accuracy controller was used in the system to show that precise, smooth trajectory following

is not required by the solution method.  This low precision controller accounted for the need for a 0.7

second settling period after the command was completed.

6.6.1 Performance Tests

To verify the method, a nonlinear least squares algorithm was used with ideal sensor data.  Joints 2, 3, 5,

and 6 were assumed to have failed joint sensors.  The maximum position error produced was 8x10-7

radians.  Assuming ideal data, this maximum error could be further reduced by changing the tolerance of

the algorithm.  To maintain the tolerances that this algorithm produced, a large number of function and
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gradient calls were required in addition to the overhead of the solution method.  The subroutine calls

required are plotted in Fig. 6.2.  Although the number of subroutine calls is lower if the desired solution

tolerance is lowered, the number of calls is unpredictable.  During error spikes, the tolerance may not be

achievable, causing difficulty for the solution algorithm unless properly handled.
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Figure 6.2: Number for function and gradient evaluations for Nonlinear Least Squares simulation. (Number

of function evaluations is solid line)

Now, The response of the continuation minimax is analyzed with realistic sensor conditions.

Accelerometers are susceptible to several error types: bias, noise, and placement error.  The bias and noise

can be caused by temperature, off axis accelerations, amplifier noise, vibration, or many other causes.  Since

the accelerometers must be placed at different points on the arm, small errors between their specified and

actual positions are possible.

The primary usage of this technique is to continue operation after sensor failure without external calibration.

Between the time a sensor failure occurs and when it is detected,  an error will accumulate.  All nonlinear

optimization methods can converge to an “optimal” solution that is not the desired solution.  While it is

maintained that given a position reasonably close to the actual position the optimal solution will be the

desired solution, higher numbers of failures will lead to a smaller convergence range.  In [64] and [65], the

basic continuation method has been shown not to require a very good seed value to converge to the desired

optimum.

Figures 6.3 through 6.5 show the error caused individually by sensor bias, noise, and placement error.

Three joints, 2,5, and 6, were assumed failed.  The following plots include an error of [-0.1 -0.08 0.1]

radian in the initial joint position of the failed joints.  The accelerometer bias varied from axis to axis with

magnitudes of -0.2973m/s2 to 0.2949m/s2.  The accelerometer error due to noise ranged in magnitude from
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-0.4039m/s2 to 0.4285 m/s2.  Accelerometer placement error ranged from 50mm to -50mm.  All

simulations used ∆α=0.333333.  This choice of  ∆α implies 3 function and gradient calls per solution.
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Figure 6.3: Response to accelerometer bias (Joint 2 error is solid line, Joint 5 is dash-dot, Joint 6 is

dotted)
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Figure 6.4: Response to accelerometer noise (Joint 2 error is solid line, Joint 5 is dash-dot, Joint 6 is

dotted)
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Figure 6.5: Response to accelerometer placement error (Joint 2 error is solid line, Joint 5 is dash-dot, Joint

6 is dotted)

To show the effect of a combination of sensor errors, Fig. 6.6 shows the response to sensor bias, noise, and

placement errors.  For variety, the same trajectory was used but joints 1,4, and 7 were assumed failed.  An

initial position error of [0.1 0.12 -0.05] radian was used for the failed joints.  The same accelerometer bias

and placement errors were used as in earlier simulations along with similar noise amplitude.  It should be

noted that the accelerometer configuration need not be altered to provide fault tolerance for the different set of

failed joints.
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Figure 6.6: Response to accelerometer bias, noise, and placement error (Joint 1 error is solid line, Joint 4

is dash-dot, Joint 7 is dotted)

As with all sensor based methods, better data will produce better results.
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6.6.2 Solution existence

Given a specific set of  operational joint sensors, accelerometers, and a joint trajectory, the joint positions

may or may not be recoverable.  As discussed earlier, simple comparison of the number of equations and

unknowns is not sufficient.  Along certain trajectories, equations may not be unique due to accelerometer

alignment or other numerical problems.  Even when a certain situation is solvable in the ideal case, it may

be too sensitive to sensor error to yield a reasonable solution.  It may also be too sensitive to small

parameter changes for the chosen solution method to converge quickly, if ever.

The proposed method to determine whether a sensor configuration and joint trajectory are solvable is

inspection of the condition number of the gradient used by the solution.  This usage is based on the

application of condition numbers in linear algebra[69].

Ideally, a proposed trajectory and configuration is evaluated off-line.  If acceptable condition numbers are

produced along the trajectory, the trajectory will be given to the robot to execute.  The main problem is

determining what constitutes an acceptable condition number.  Figure 6.7 shows what occurs to the

gradient’s condition number as failures occur.  All plots assumed noise free accelerometers in ideal

locations but did include the sensor bias used in previous simulations.
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Figure 6.7: Condition number of gradient matrix with 1,2,3, and 4 failures. (1 failure is solid, 2 failures is

dash-dot, 3 failures is dotted, 4 failures is dashed)

The error of joint 2 associated with each condition number is show in Fig. 6.8.
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Figure 6.8: Error in joint 2 during 1,2,3, and 4 failures. (1 failure is solid, 2 failures is dash-dot, 3 failures

is dotted, 4 failures is dashed)

Examining Figs. 6.7 and 6.8, the position error of joint 2 is relatively small for 1,2, and 3 failures.  These

failures have gradient condition numbers of <1500.  With 4 failures, the error is still acceptable, but is

becoming significantly worse.  While the condition number between 0.2 and 0.7 seconds is low, it

maintains an average close to 3000.  Although not shown in the figures, five failures leads to an

unacceptable position error which peaks at -1.4 radians.  The condition number during 5 failures has values

above 106 and an average above 105.  It is suggested that an average condition number of below 2000 be

used as a cutoff for trajectory solvability. This number can be relaxed if more robust solution techniques (at

the cost of computational complexity) and better accelerometers are utilized.  Further familiarization with a

specific group of trajectories can also allow the designer to be confident with higher condition numbers in

the area of known solvable trajectories.

As seen in the previous plots, for systems with reasonable condition numbers, the proposed solution

method shows bounded error response to bounded sensor errors.  The same cannot be stated for integration

based techniques.  A classical technique for end effector tracking uses double integration of accelerometer

readings to obtain Cartesian position.  Sensor error will accumulate quickly in this technique.  As a result,

the method can only be applied for short periods.  The proposed technique can be applied indefinitely.

There are techniques that can be used to enhance the solvability of the equations.  These include:

 

• Engage joint brakes to eliminate joint velocity and acceleration components.  This can be used to

improve the initial position estimate before executing a controlled move.

• Lower desired velocities and accelerations of the system.  Low energies imply lower contribution of

non-acceleration field components on the system
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• Take into account the condition number of the gradient as a penalty function for designing the

trajectory thereby producing a more robust trajectory for the solution method.

• Check for noise and bias in the sensor data during periods where all sensors are operational.  Filter

coefficients identified during this period could be used to improve the accelerometer data during sensor

failure.

6.7 Summary

This chapter has discussed a method using Cartesian accelerometers to recover joint position sensor

information lost during failure.  A solution technique, continuation minimax, was proposed to solve the

required nonlinear equations in real-time.  A recursive technique to calculate the function gradient required

for solving the nonlinear equations was detailed.  Simulations were presented showing the response of the

technique to non-ideal sensor data.  It was shown that a set of accelerometers can protect against different

sets of sensor failures throughout the robot system.  By not utilizing integration in the solution method,

this method neutralizes the concern of accumulating error in using accelerometers to produce position

related information.

This chapter has developed a theoretical foundation for using accelerometers to determine the position of an

interchangeable set of robot joints using a system wide approach.  However, the accuracy of these positions

using real sensor data and the usefulness of the calculated positions in controlling real joints are not discussed.

In chapter 7, three joints of a real manipulator and its end-effector will be instrumented with accelerometers

and practical implementation issues for this position determination method will be discussed.  Experiments in

chapter 7 will show the performance of this position determination method in both FDI and as part of a

feedback control system in failure recovery.
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7. Experimental Results - System Wide Joint Position Sensor Fault

Tolerance

The purpose of this chapter is to describe the experiments used to determine the performance of the system

wide joint position sensor fault tolerance theory developed in chapter 6 on a real robot.

7.1 Experimental Setup

The experimental apparatus was based on the system used for the joint specific position sensor fault

tolerance experiments detailed in chapter 5.  The Robotics Research 807i manipulator and its control

system were modified from that configuration as follows:

1. A 33Mhz 68040 based computer, to be referred to as the optimization processor, was added to

the system and communication enabled between it and the two existing processors.

2. Accelerometer mounts for the robot end-effector were designed, fabricated, and installed.

3. Accelerometers were moved to new locations for this experiment and appropriate cable

modifications made.

4. MATLAB simulation code was ported to C++ to run on the optimization processor.

The end effector accelerometer mount can be seen in Fig. 7.1.  Two triaxial accelerometers were mounted to

the end-effector.  The joint accelerometer mounts attached to the shoulder pitch, elbow roll, and elbow

pitch joints from the joint specific experiment were used in this experiment.  Each joint mount had one

triaxial accelerometer attached instead of the two triaxial accelerometers used in the joint specific

experiment.  These joint placements are not ideal.  They did allow for utilization of existing mounts.

Placing an accelerometer on the wrist pitch joint instead of the elbow roll joint would have been a better

choice but there were no mounting points for that joint. The resulting system was instrumented with a

total of five triaxial accelerometers.  These mounts are impractical for real world use.  They are meant only

for experimental use.  Given the small size of current accelerometers, the accelerometers could be better

incorporated into the robot structure.
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Figure 7.1: Robot with accelerometer mounts

The accelerometer noise and calibration problems encountered in the previous experiment were unchanged.

As a result, the algorithm used in this experiment had to deal with significant sensor noise, calibration

error, and delay caused by accelerometers and filters.  Since this method does not rely on relative

accelerations to calculate joint velocity and acceleration as the previous method did, the variable bias

between accelerometers was not as much of a problem.

The increased computational complexity of this method over the joint by joint method required the

inclusion of a third processor and modification of the algorithm.  In the theoretical discussion, the

continuation minimax method was presented as a compromise between a robust, highly accurate nonlinear

optimization method such as nonlinear least squares and a less computationally complex method such as

steepest descent.  A recursive gradient calculation method was also presented for use by the optimization

method.  Unfortunately, the continuation method combined with the required function and gradient

calculations was only calculable with the third processor used at 3Hz assuming three simultaneous joint

failures.  This update rate is unacceptable for real time control.  To increase the update rate, the following

changes were made:

1. Instead of calculating the gradient multiple times during one cycle, a single gradient

calculation was done over four cycles.  Due to the modular nature of the gradient calculation

method, this was accomplished by doing the calculations in the following order:

 First cycle: Partial derivatives of angular velocity

 Second cycle: Partial derivatives of angular acceleration

 Third cycle: Partial derivatives of linear acceleration of the joint frame

 Fourth cycle: Partial derivatives of calculated accelerometer output and form gradient
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 (The partial derivatives of the calculated accelerometer outputs are not recursive and

use the previous partial derivatives which are recursive and more computationally

complex.)

 Calculating the gradient at a lower speed assumed that the robot will not be moving fast

enough to make the gradient change significantly over the four cycles.

2. The continuation minimax method was not used.  The linear programming code available

was not fast enough for a real-time implementation.  Like most robust linear programming

algorithms, it was optimized to accurately solve large programs, not to quickly solve small

programs.  Better code and faster processors could make this method practical.  Instead of

continuation minimax, the steepest descent method was used.

3. In the steepest descent method, a singular value decomposition (SVD) algorithm was used to

form the least squares solution for the descent step.  Although a new function evaluation was

performed and the difference between the measured and calculated acceleration used with the

last SVD calculation to form the next descent step, the SVD was not calculated each iteration.

The SVD was calculated on the cycle after a new gradient was formed.  The next gradient

calculation began the cycle after the new SVD was calculated.  As a result, a new SVD of the

gradient was available every fifth cycle.

4. To decrease computational workload, the joint velocity was not calculated using the

optimization algorithm.  The differential model developed in chapter 4 which utilized joint

position and acceleration calculations to determine joint velocity was used.  Since the

optimization algorithm will not produce a joint velocity calculation, the model only

formulation instead of the observer formulation was used.

 

These changes resulted in a system that could provide a position update at 60Hz with three simultaneous

joint failures.  This rate of calculation resulted in a new SVD of the gradient at 12Hz.

7.2 Experimental Goals

The goal of this experiment is to show acceptable position tracking performance using the proposed

solution method.  Various combinations of failed joints will be considered to show the ability of the

algorithm to recover from up to three simultaneous failures with the installed sensor package.  Two modes

of operation will be discussed.  In the FDI (Failure Detection and Identification) mode, the joints will be

considered unfailed and servoed using the Robotics Research position controller provided by the

manufacturer.  In this mode, the accelerometers will be read and the algorithm will attempt to calculate the

joint position, velocity, and acceleration without feedback from the “failed” joint.  This configuration will

show the ability of the solution method to track actual measurements.  In practice, the FDI mode could be

used to determine if a joint position sensor has failed.  In fault recovery mode, the calculated position and
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velocity data will be used along with the virtual passive torque control method developed in earlier

chapters to servo the joint.  In practice, the fault recovery mode would be enabled when a joint position

sensor was determined to have failed.

Before the experimental results are discussed, it should be understood that the proposed method is a fault

tolerant control method which uses traditional sensors for a non-traditional purpose.  The method is not

advocated as a primary control method.  In practice, the position tracking performance of an accelerometer

cannot match that of an optical encoder, resolver, or even a potentiometer.  As a result, the servo

performance will not be as good as one using traditional joint sensors and a basic control algorithm, much

less a control method using accurate dynamic models.  The goal is to show stable servo performance with

adequate position response to make continued operation during failure an option with this method.

7.3 FDI Mode

In FDI mode, the joints are all servoed using measured position information but some joints are considered

“failed” by the algorithm running on the optimization processor.  Although the algorithm does not use the

position or velocity feedback from the “failed” joints, it is available to the rest of the system and is

presented here for comparison.  This FDI mode is useful in detecting joint position sensor failures.  One

joint at a time could be considered “failed” and its position calculated and compared to the actual

measurement.  Given a reasonable error bound, this method could be effective.  Considering multiple joints

“failed” simultaneously would have less relevance to FDI, but the response does help indicate the position

tracking performance that can be expected when the fault recovery mode is enabled.

7.3.1 Single joint “failures”

In the first set of plots one joint will be “failed” and the other joints will be operating normally but not

moving.  This will show the tracking performance of the algorithm on a real system without dealing with

the dynamic effects of  joints other than the failed joint.  This condition is the best case for the system to

operate.   Failure of each of the seven robot joints will be considered.  Although joint velocity and

acceleration are calculated, due to the large number of plots required to show individual joint performance,

only joint position plots will be presented.  Figures 7.2 and 7.3 show the response of the shoulder roll and

shoulder pitch joints.  All trajectories begin in the Home position, [0 -π/2 -π -π/2 0 0 0] radians.  The

delay between actual and calculated is due to accelerometer response, filter delays, and communication

delays.
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Figure 7.2: Position response of shoulder

roll joint to trajectory ending at 0.5

Figure 7.3: Position response of shoulder

pitch joint to trajectory ending at -1.27

The elbow roll joint is considered next.  As in the previous method, this joint is problematic in the home

position because it is parallel to gravity.  In this configuration, the signal to noise ratio is very low.  As a

result, the position response shown in Fig. 7.4 does not track well.  If the shoulder roll joint is moved to

0.5 radians, the position response improves as shown in Fig. 7.5.  It should be noted that all joints will

have configurations where the signal to noise ratio is low.  This property should be considered in trajectory

planning.
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Figure 7.4: Position response of elbow roll

joint to trajectory ending at -3.5

Figure 7.5: Position response of elbow roll

joint to trajectory ending at -3.5 with

shoulder roll at 0.5

The problematic nature of this joint lends itself to a comparison of the response of the continuation

minimax method and the steepest descent method.  In a real failure situation, the exact position of the joint
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will not be known precisely when any fault recovery algorithm is activated.  One of the properties of the

continuation method, on which continuation minimax is based, is that it has good convergence properties

with an large error in initial conditions.  Figures 7.6 and 7.7 show the response of continuation minimax

and steepest descent with a large initial error of 1 radian.  The robot was not moving during this test.  The

“failure” occurs at one second.  Before one second, the 1 radian error between calculated and measured is a

result of inducing the position error with the fault recovery algorithm inactive.  For a fair comparison, both

algorithms were run at the same update rate, 3Hz,  and allowed the same number of gradient and function

evaluations, 3 per cycle.  The continuation minimax shows a slightly better position response than the

steepest descent method.
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Figure 7.6: Position response of elbow roll

joint with continuation minimax and startup

error

Figure 7.7: Position response of elbow roll

joint with steepest descent and startup error

Figure 7.8 shows the response of the steepest descent method run at 60Hz with a SVD calculation at 12Hz.

Its response is similar to the slower steepest descent calculation.  It should be noted that even with the

large initial error, the steepest descent method converged.
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Figure 7.8: Position response of elbow roll joint with steepest descent and startup error calculated at 60Hz

Although the continuation minimax method has some theoretical advantages in robustness to initial error,

convergence, and accuracy, these advantages are outweighed in this system by its low maximum update

rate.

Returning to the discussion of single joint failures, Figs 7.9-7.12 show the position response of the elbow

pitch, wrist roll, wrist pitch, and toolplate roll joints, respectively.  All four joints tracked well.
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Figure 7.9: Position response of elbow pitch

joint to trajectory ending at -1.27

Figure 7.10: Position response of wrist roll

joint to trajectory ending at -0.3
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Figure 7.11: Position response of wrist pitch

joint to trajectory ending at -0.5

Figure 7.12: Position response of toolplate

roll joint to trajectory ending at -0.5

Unlike the joint specific method in chapters 4 and 5, the joint calculations in this method depend on the

configuration of joint before and after the “failed” joint in the kinematic chain.  The next set of plots shows

the response to single joint failures along the trajectory from Home to [0.5 -1.27 -3.5 -1.27 0.3 -0.5   -0.5]

radians executed in 1.5 seconds.  All robot joints are moving in this trajectory.  The position responses

can be seen in Figs. 7.13-7.19.  Position tracking did deteriorate some from the previous case.  Some of

this error is due to small synchronization errors between calculated and measured joint values.  These errors

could be reduced with a higher sample rate or by taking more care in filter selection and phase analysis.

Fig 7.15 shows how the tracking of the elbow roll joint improves as its signal to noise ratio increases.
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Figure 7.13: Position response of shoulder

roll joint to trajectory ending at [0 -1.27 -3.5

-1.27 0.3 -0.5 -0.5] in 1.5 sec

Figure 7.14: Position response of shoulder

pitch joint to trajectory ending at [0 -1.27

-3.5 -1.27 0.3 -0.5 -0.5] in 1.5 sec
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Figure 7.15: Position response of elbow

roll joint to trajectory ending [0 -1.27 -3.5

-1.27 0.3 -0.5 -0.5] in 1.5 sec

Figure 7.16: Position response of elbow

pitch joint to trajectory ending at [0 -1.27

-3.5 -1.27 0.3 -0.5 -0.5] in 1.5 sec.
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Figure 7.17: Position response of wrist roll

joint to trajectory ending at [0 -1.27 -3.5

-1.27 0.3 -0.5 -0.5] in 1.5 sec.

Figure 7.18: Position response of wrist pitch

joint to trajectory ending at [0 -1.27 -3.5

-1.27 0.3 -0.5 -0.5] in 1.5 sec.
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Figure 7.19: Position response of toolplate roll joint to trajectory ending at [0 -1.27 -3.5 -1.27 0.3 -0.5

-0.5] in 1.5 sec

Other trajectories were run with similar results.  The main points that should be considered in designing

trajectories are:

1. All joints can have configurations where the sensors that contain information about them are

parallel to gravity and their signal to noise ratio is low causing errors in the position

calculation.  Given a particular accelerometer configuration, some joints may be more

susceptible to this condition than others.

2. Although gradient condition numbers for the single failure case with this accelerometer

configuration are normally low, it should be noted that there could be configurations where

the condition number is high and the gradient is not well behaved.

3. Since the gradient is updated at a slow rate there will be a practical limit on the speed which

the arm can move and the position solution track the actual position.

It should be noted that the position for all joints were determined with the same algorithm and

accelerometer configuration.  This flexibility is the main advantage of this method.  Although the

calculated position may not be as accurate as the joint specific method and the existence of the solution is

not guaranteed, fewer accelerometers are required to provide fault tolerance to all joints in the robot.

7.3.2 Multiple joint “failures”

Multiple joint failure is an interesting case because it attempts to extract information about multiple joints

from the accelerometer readings.  The ability of the algorithm to separate the effects of the position and

acceleration of each joint depends on the which joints have failed, the number of failed joints, the

optimization algorithm used, and the robot trajectory.
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The first case considered is the two failure case.  The purpose of presenting this case is for comparison with

the two joint failure case in the joint specific experiments in chapter 5.  The shoulder pitch and elbow pitch

joints are “failed” and the robot moved along a trajectory from Home to [0.5 -1.27 -3.5 -1.27 0 0 0] radians

executed in 1.5 seconds.  Figures 7.20 and 7.21 show the position response of the failed joints.
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Figure 7.20: Position response of shoulder

pitch joint to trajectory ending at [0 1.27

-3.5 -1.27 0 0 0] in 1.5 sec.

Figure 7.21: Position response of elbow

pitch joint to trajectory ending at [0 1.27

-3.5 -1.27 0 0 0] in 1.5 sec

Since this solution method is dependent on the trajectory of all joints, the trajectory from Home to [0.5

-1.27 -3.5 -1.27 0.3 -0.5 -0.5] radians executed in 1.5 seconds to examine the effect of moving the wrist

joints on trajectory tracking.  Figures 7.22 and 7.23 show the position response of the failed joints.  The

position tracking response is similar to the case where the wrist joints were not moving.
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Figure 7.22: Position response of shoulder

pitch joint to trajectory ending at [0 1.27

-3.5 -1.27 0.3 -0.5 -0.5] in 1.5 sec

Figure 7.23: Position response of shoulder

pitch joint to trajectory ending at [0 1.27

-3.5 -1.27 0.3 -0.5 -0.5] in 1.5 sec
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A more interesting case involves three joint failures.  Although the accelerometer configuration in this

experiment is theoretically capable of recovering from more failures, the three joint failure case is

numerically well behaved in most configurations.  It would be difficult to justify the continued operation of

a robot with four or more failures of any type except in extreme circumstances.

To consider all possible three joint failures and show position tracking on different trajectories would be

impractical.  As a compromise, six sets of three failures along one trajectory were considered to examine the

response to different failure patterns.  Afterwards, the response to several trajectories will be considered but

with only two sets of failed joints.  The joint failure sets are:

For the single trajectory:

Failure set 1: Shoulder roll, elbow pitch, and toolplate roll

Failure set 2: Shoulder pitch, wrist roll, and wrist pitch

Failure set 3: Shoulder pitch, elbow pitch, and wrist roll

Failure set 4: Shoulder roll, elbow roll, and wrist pitch

Failure set 5: Shoulder pitch, elbow pitch, and toolplate roll

Failure set 6: Elbow pitch, wrist pitch, and toolplate toll

For multiple trajectories:

Failure set A: Shoulder roll, elbow pitch, and toolplate roll

Failure set B: Shoulder pitch, elbow pitch, and wrist pitch

For consistency with earlier results, the trajectory chosen for the single trajectory analysis is Home to [0.5

-1.27 -3.5 -1.27 0.3 -0.5 -0.5] radians executed in 1.5 seconds.  Figures 7.24-7.26 show the response using

failure set 5.
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Figure 7.24: Position response of shoulder

pitch joint in failure set 5

Figure 7.25: Position response of elbow pitch

joint in failure set 5
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Figure 7.26: Position response of toolplate roll joint in failure set 5

Failure sets 1-4 and 6 showed similar position response with the following exceptions.  Since the trajectory

began with the elbow roll joint parallel to the gravity gradient, position tracking of  the elbow roll joint in

failure set 4 was not acceptable until the joint became less parallel and the signal to noise ratio decreased.

Unfortunately, in the current accelerometer configuration, all accelerometers have a low signal to noise ratio

for  the elbow roll calculation in the Home configuration.  This situation could be corrected by not

mounting all triaxial accelerometers orthogonal to the joint frames.  The wrist roll joint did not exhibit

good steady state performance in either failure set 2 or 3.  An example of this performance is shown in Fig.

7.27.  Although not shown, the velocity and acceleration tracked well but contained an offset.  During this

same trajectory, with only the wrist roll joint failed, the trajectory tracking shown in Fig. 7.17 was

acceptable.  The additional failures in combination with accelerometer errors led the solution technique to

find an optimum that, while close to the desired, did not give the expected results.  Adding an

accelerometer attached to the wrist pitch joint would improve performance.  It should be noted that errors in

these joints did not lead to errors of corresponding magnitude in other failed joints.
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Figure 7.27: Position response of wrist roll joint in failure set 2

Different trajectories using failure sets A and B will now be considered.  The first trajectory is a move from

Home to [1 -1 -4 -1 -0.5 -0.7 -0.7] executed in 1.5 sec.  Figures 7.28-7.30 show the results using failure

set A while Fig. 7.31-7.33 show the response to failure set B.  Calibration error is responsible for the

steady state error.  The final configuration is outside the area used by the automatic calibration routine.

The smaller calibration area was chosen to give better results close to the Home position.  In Fig. 7.30,

there is a large tracking error at about 1.5 seconds into the trajectory.  This error will be important in the

failure recovery case.
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Figure 7.28: Position response of shoulder

roll joint in failure set A

Figure 7.29: Position response of elbow

pitch joint in failure set A
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Figure 7.30: Position response of toolplate

roll joint in failure set A

Figure 7.31: Position response of shoulder

pitch joint in failure set B
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Figure 7.32: Position response of elbow

pitch joint in failure set B

Figure 7.33: Position response of wrist pitch

joint in failure set B

Slowing the trajectory to 4.0 sec improves performance.  Figures 7.34-7.39 show the response of both

failures sets to the slower trajectory.
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Figure 7.34: Position response of shoulder

roll joint in failure set A

Figure 7.35: Position response of elbow

pitch joint in failure set A
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Figure 7.36: Position response of toolplate

roll joint in failure set A

Figure 7.37: Position response of shoulder

pitch joint in failure set B
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Figure 7.38: Position response of elbow

pitch joint in failure set B

Figure 7.39: Position response of wrist

pitch joint in failure set B

The final trajectory considered is from Home to [-0.5 -1.77 -2.6 -1.17 0.5 -0.3 0.5] executed in 0.75 sec.

This trajectory moves the robot in a quadrant opposite to the trajectories discussed earlier.  It also shows

the effect of high speed on a shorter motion than that considered in the previous trajectory.  As in the

previous trajectory, the rate of change of the data is at the edge of the optimization algorithms ability at

60Hz.  Figures 7.40-7.42 show the results using failure set A while Fig. 7.43-7.45 show the response to

failure set B.  Failure set A yields better results than failure set B.  Although not presented, slowing the

trajectory improves tracking.  This case points out that the performance of one set of failures along a

trajectory does not necessarily predict the performance of another set containing the same number of failures

along the same trajectory.
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Figure 7.40: Position response of shoulder

roll joint in failure set A

Figure 7.41: Position response of elbow

pitch joint in failure set A
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Figure 7.42: Position response of toolplate

roll joint in failure set A

Figure 7.43: Position response of shoulder

pitch joint in failure set B
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Figure 7.44: Position response of elbow

pitch joint in failure set B

Figure 7.45: Position response of wrist pitch

joint in failure set B

The trajectories in this section were arbitrarily chosen.  No attempt to analyze the trajectories and choose

trajectories with better performance by minimizing the condition number of the gradient was made.  In the

real system, performance problems due to the manipulators position in the gravity gradient and calibration

error were more significant than the gradient’s condition number when dealing with the number of failures

discussed.
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7.4 Failure recovery

The previous sections have concentrated on performance in the FDI mode where the data calculated from the

accelerometer outputs was not used as feedback to position the joints.  In this section, the calculated data

will be used as feedback for the joint servo loops.  The goal of this section is to show that the calculated

data can be used to stably control up to three failed joints.  Since the proposed position feedback method is

not optimal, the resulting control cannot be expected to track perfectly.  The goal is to make it acceptable

for use during failure.

Due to the noise and delay evident on some of the calculated data, a position controller with very high

gains would lead to unacceptable performance due to vibration or instability.  In addition, since a gravity

offset algorithm is dependent on position, any position error would lead to a torque offset error.  This

situation is an good case to use the virtual passive torque controller detailed in other chapters.  The virtual

passive controller will provide both gravity and dynamic compensation so the position gains can be

lowered.  The virtual passive controller can also be tuned to provide adjustable joint damping to trade

tracking error for vibration suppression.  The use of the virtual passive torque controller assumes that

although the joint position and velocity sensors have failed, the joint torque sensor is operational. The

position controller will be a simple PD based controller which uses the calculated position and velocity

with the trajectory command to offset the measured torque used by the virtual passive controller.  This

offset appears to the virtual passive controller as movement.  The virtual passive controller moves the joint

in the desired direction to dissipate the energy.

This application will show the stability of virtual passive control on most of the robot.  In chapter 3, a

detailed analysis of the properties of the control  technique was done concentrating on the wrist joints.  In

the joint specific accelerometer experiments in chapter 5, the shoulder pitch and elbow pitch joints were

controlled by a virtual passive based controller.  In this section, all joints of the robot were controlled

using the virtual passive control method except the elbow roll joint.  The torque sensor for the elbow roll

joint in the robot used for this experiment was inoperative.  During the following tests, the remaining six

joints were always controlled by the passive torque controller with PD position gains suitable for operating

with position and velocity feedback from the proposed solution method.  When a joint was not failed it

used the joint position and velocity feedback from the joint sensors.

7.4.1 Single joint failure recovery

The trajectory considered for single joint failure recovery is from Home to [0.5 -1.27 -3.5 -1.27 0.3 -0.5

-0.5] radians in 1.5 sec.  The FDI mode results for this trajectory can be found in Figs. 7.13-7.19.  In this

trajectory, one joint at a time was failed and the other six joints servoed normally using joint feedback.
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Figures 7.46-7.51 show the response to individual joint failures.  Due to the real failure of a joint torque

sensor, results for the elbow roll joint were not obtained.  Although not shown, the response to moving

only the failed joint, the FDI response for which is shown in Figs. 7.2-7.3 and 7.9-7.12, is slightly better

due to better position tracking performance.  Similarly to the previous experiments in failure recovery for

the joint specific case the position servo performance is hampered by system delay and low position gains

due to noisy position feedback.  It should be noted that even though the final position did not meet the

exact setpoint, the optimization routine accurately determined the joint position.  The wrist roll joint has

the worst calculated position of the joints and, as a result, the worst position tracking.
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Figure 7.46: Position response of shoulder

roll joint to trajectory ending at [0 1.27 -3.5

-1.27 0.3 -0.5 -0.5] in 1.5 sec

Figure 7.47: Position response of shoulder

pitch joint to trajectory ending at [0 1.27

-3.5 -1.27 0.3 -0.5 -0.5] in 1.5 sec
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Figure 7.48: Position response of elbow

pitch joint  to trajectory ending at [0 1.27

-3.5 -1.27 0.3 -0.5 -0.5] in 1.5 sec

Figure 7.49: Position response of wrist roll

joint to trajectory ending at [0 1.27 -3.5

-1.27 0.3 -0.5 -0.5] in 1.5 sec
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Figure 7.50: Position response of wrist pitch

joint to trajectory ending at [0 1.27 -3.5

-1.27 0.3 -0.5 -0.5] in 1.5 sec

Figure 7.51: Position response of toolplate

roll joint to trajectory ending at [0 1.27 -3.5

-1.27 0.3 -0.5 -0.5] in 1.5 sec

Examining Fig. 7.50, it can be seen that the joint had a small oscillation in steady state.  This occurred

because in the final configuration the joint was under less gravity loading than in the original configuration.

This lower gravity loading results in less control authority in the passive controller.  At this point, the

position controller begins to dominate and the noise in the calculated position induces an oscillation.  The

tracking performance using the lower gains can be found in Fig. 7.52.  Alternatively, the torque control

gains could be increased thus increasing damping but reducing position response.

Actual    

Calculated

Commanded 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time (seconds)

P
os

iti
on

 (
ra

di
an

s)

Position Response of Wrist Pitch Joint

Figure 7.52: Position response of wrist pitch joint with lower position gains
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7.4.2 Multiple joint failure recovery

For comparison with the joint specific experiments in chapter 5, the two joint failure involving the

shoulder pitch and elbow pitch joints is now considered.  Figures 7.53-7.54 show the closed loop response

to the commanded trajectory from Home to [0.5 -1.27 -3.5 -1.27 0 0 0] radians in 1.5 sec, the same

trajectory used in the joint specific failure recovery analysis.  The FDI response to this trajectory is shown

in Figs. 7.20-7.21.  Since this solution method depends on the trajectories of all joints, the trajectory from

Home to [0.5 -1.27 -3.5 -1.27 0.5 -0.5 -0.5] radians in 1.5 sec is also considered.  The response to this

trajectory can be found in Figs. 7.55-7.56.  These trajectories show slightly worse performance than the

joint specific case.  This lesser performance is due to using accelerometers that are farther away from the

failed joints and lower position gains to compensate for noisier position calculations.
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Figure 7.53: Position response of shoulder

pitch joint to trajectory ending at [0 -1.27

-3.5 -1.27 0 0 0] in 1.5 sec

Figure 7.54: Position response of elbow

pitch joint to trajectory ending at [0 -1.27

-3.5 -1.27 0 0 0] in 1.5 sec
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Figure 7.55: Position response of shoulder

pitch joint to trajectory ending at [0 -1.27

-3.5 -1.27 0.3 -0.5 -0.5] in 1.5 sec

Figure 7.56: Position response of elbow

pitch joint to trajectory ending at [0 -1.27

-3.5 -1.27 0.3 -0.5 -0.5] in 1.5 sec

The next failure class involves the simultaneous failure of three joints.  Because of the large number of

combinations of failed joints and possible trajectories, the following plots will attempt to summarize the

effects seen while using closed loop control.  The response to using failure set 6 from the multiple joint

FDI section on a trajectory from Home to [0.5 -1.27 -3.5 -1.27 0.3 -0.5 -0.5] radians in 1.5 sec can be seen

in Figs. 7.57-7.59.  Most failures result in good tracking performance on this trajectory and other

trajectories whose rate of change was slower than this trajectory’s.  However, in the cases discussed in the

FDI section where the optimization solution did not track well, the position tracked the erroneous position

calculation.
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Figure 7.57: Position response of elbow

pitch joint in failure set 6

Figure 7.58: Position response of wrist pitch

joint in failure set 6
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Figure 7.59: Position response of toolplate roll joint in failure set 6

The most severe problem encountered in failure recovery occurred during the trajectory from Home to [1 -1

-4 -1 -0.5 -0.7 -0.7] in 1.5 sec with failure set A.  During this trajectory, the toolplate roll joint failed to

track the actual trajectory resulting in a runaway.  The position calculation error seen in the FDI response

in Fig. 7.30 caused the position controller to send out too large a torque command.  Although the virtual

passive torque controller could possibly be tuned to remain stable during the torque command offset caused

by this position error, the resulting joint would be too stiff and highly damped for practical position

tracking response.  This situation shows that although the virtual passive torque control is inherently

stable, that stability property is not guaranteed when the sensed torque is offset to allow for position

tracking.  If the trajectory is slowed to complete in 4 sec, it completes satisfactorily.  Figures 7.60-7.62

show the response in the slower trajectory.  If the toolplate roll joint is not considered failed, the trajectory

completes satisfactorily in 1.5 sec.  Figures 7.63-7.64 show the response of the two failed joints.
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Figure 7.60: Position response of shoulder

roll joint in failure set A

Figure 7.61: Position response of elbow pitch

joint in failure set A
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Figure 7.62: Position response of shoulder

roll joint in failure set A

Figure 7.63: Position response of shoulder

roll joint with toolplate roll unfailed
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Figure 7.64: Position response of elbow pitch joint with toolplate roll unfailed

The trajectory from Home to [1 -1 -4 -1 -0.5 -0.7 -0.7] in 1.5 sec with failure set B will be considered next.

The robot was able to complete this high speed trajectory satisfactorily with failure set B.  A trajectory of

this speed with this failure set causes overshoot in the control.  The overshoot is corrected by the controller

and steady state performance is satisfactory.  The position response to this trajectory can be seen in Fig.

7.65-7.67.  Overshoot can be lowered by either reducing the gains or slowing the trajectory.  The results of

slowing the trajectory to complete in 4.0 sec. are shown in Fig. 7.68-7.70.  If the trajectories to be

performed by the robot are not very fast, the position gains should be increased to improve slower trajectory

tracking where overshoot in faster trajectories is not a concern.
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Figure 7.65: Position response of shoulder

pitch joint in failure set B to 1.5 sec

trajectory

Figure 7.66: Position response of elbow pitch

joint in failure set B to 1.5 sec trajectory
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Figure 7.67: Position response of wrist pitch

joint in failure set B to 1.5 sec trajectory

Figure 7.68: Position response of shoulder

pitch joint in failure set B to 4.0 sec trajectory
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Figure 7.69: Position response of elbow pitch

joint in failure set B to 4.0 sec trajectory

Figure 7.70: Position response of wrist pitch

joint in failure set B to 4.0 sec trajectory

Other trajectories were successfully completed with three failures and showed similar error characteristics.

To summarize, if used carefully, this combination of an optimization solution and virtual passive torque

control can produce satisfactory tracking performance.  The problems encountered were:

1. Instability at high speeds with more than two failed joints with certain failure sets and

trajectories.

2. Position overshoot in fast trajectories if position gains are increased to improve slower

trajectory tracking. Large errors in slow trajectories occur when position gains are lowered to

reduce overshoot in fast trajectories.

3. Oscillation if position gains are high enough to dominate torque control when there is little

torque feedback.  If torque control gains are increased to increase damping to reduce

oscillations position tracking performance is reduced.

7.5 Summary

This chapter has presented experimental results of using the system-wide accelerometer position fault

tolerance technique.  The technique examined differs from the theoretical development by using steepest

descent and singular value decomposition instead of continuation minimax as an optimization technique to

reduce computational complexity.  In addition, the differential velocity model developed in chapter 4 was

used to replace the velocity calculation in the optimization to reduce complexity.  Results were presented

using this technique in FDI and fault recovery modes.  This system wide technique performed satisfactorily

in most situations with up to three simultaneous joint failures.  The results show that the same sensor

configuration can determine joint positions of different sets of failed joints.  The tracking results were of
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similar performance to those found in the joint specific accelerometer case.  The primary advantage of the

system-wide solution method is that it requires fewer accelerometers than the joint specific case to add fault

tolerance to all system joint position sensors.  The disadvantages include higher computational complexity

and less robust convergence properties than the joint specific method
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8. Conclusions and Suggestions for Further Work

The goal of this dissertation was to develop a method for position sensor fault tolerance which would not

require extensive modification of existing robot designs.  Currently, the only acceptable method for long

term position sensor fault tolerance in unknown environments is a backup position sensor built into the

robot joint.  The new method should be designed to work reliably in unstructured environments for an

extended duration.   Such a method would have applications in space, nuclear, and underwater applications.

The sensors chosen to be used in the development of this method were joint torque sensors and Cartesian

accelerometers.  Torque sensors were chosen because they are commonly available in advanced robots of the

type used in the target applications.  Cartesian accelerometers were chosen for their availability, small size,

low power consumption, and flexibility in placement.

A new torque controller that utilized joint torque feedback, virtual passive control techniques, and a simple

joint model was developed.  This controller has four interesting properties: it is Lyaponov stable, it does

not rely on position feedback for stability, it automatically compensates for unknown end-effector loads and

link dynamics, and can act as an active joint brake.  As a part of a robot with working sensors, it improves

tracking performance by compensating for unmodelled loads and dynamics.  It reduces computational

complexity because it replaces complex, model based torque computations with sensors and a simple linear

controller.  The stability of the controller is robust to parameter errors in the joint model.  The application

of the controller to an articulated robot system with gear driven joints instead of a direct drive, SCARA

type arm is new for a torque controller used for dynamic compensation.  The experiments discovered some

interactions between the position controller and the torque controller that can affect stability.  This

instability can be corrected by tuning the system gains.

As part of a robot with joint position sensor failures, the controller allows the position control gains to be

reduced by compensating for  dynamic and static joint loading.  The controller gains can be tuned to adjust

joint stiffness and damping.  This combination of lower gains and adjustable dynamics allow joint position

control to be accomplished stably with imperfect joint position feedback.  During failure, the automatic

transition from a controller that assists joint position performance to an active joint brake by removing the

position control inputs gives the controller an elegant safety mode for transition from unfailed operation to

failed operation.  If the control designer desires, the position control gains can be tuned to allow for a

seamless transition from failed operation to unfailed operation at the cost of reduced position tracking

performance during normal operation.

Although the in depth analysis of controller performance was done only on three consecutive wrist joints,

in later experiments six of the seven joints of a Robotics Research 807i manipulator were controlled by the

virtual passive joint controller.  The exception being a joint with a non-working torque sensor.  In
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addition, the joint model used in the studies was rough.  Further work should include analysis of

performance on all joints of a robot with accurate joint models.  The true effect of ignoring the nonlinear

joint dynamic terms and modeling errors on a real system could be investigated on such a system.  No

trajectories examined in the experiments involved contact with the environment.  Although, as a part of

tuning the controller, the end-effector was repeatedly given impulsive forces and was tuned to be stable

during these interactions, no real, prolonged contact of the end-effector or the robot links with the

environment was studied.  Future work should include contact and contact transitions along with the

interaction of the controller with various classical end-effector force control techniques.

Position sensor fault tolerance implies a method for position feedback external to the failed position sensor.

While the virtual passive torque controller along with a joint torque sensor forms a stable joint without

position feedback, for the joint to servo to a position, position feedback must be available to the controller.

Two methods to obtain position feedback from Cartesian accelerometers were developed.  The main

difference between these methods and earlier attempts is that sensed Cartesian acceleration is not integrated

to obtain position.  In addition, neither method requires a dynamic model of the robot.  Both methods use

multiple triaxial Cartesian accelerometers, arm kinematics, and a known gravity or acceleration field to

obtain position.

The first method is a joint specific method which relies on two triaxial Cartesian accelerometers attached to

the link driven by the joint whose position sensor is to be made fault tolerant.  This method allows

arbitrary placement of accelerometers on the link.  However, mathematical simplifications are given for

placements which are easily realizable on most manipulators.  An iterative solution technique is presented

to solve for joint position, velocity, and acceleration.  A joint velocity observer is also presented to

improve the accuracy of the calculation.  Three joints of the Robotics Research manipulator were

instrumented with accelerometers.  Up to two joints were failed simultaneously and their performance in

FDI and fault recovery mode using the virtual passive torque controller was analyzed.  The position

tracking of the method and solution technique on this real system was adequate for FDI and fault recovery

in most situations.  The main problem encountered was the low signal to noise ratio of the accelerometers

in certain configuration due to the orientation of the joints and sensors to the gravity field.

Since it was only convenient to instrument three joints on this robot, none of which were wrist joints, and

only two joints could be failed simultaneously due to A/D limitations, an obvious area for future work is

the instrument more joints and fail more joints simultaneously.  Even with this limitation, the experiments

successfully proved that the position sensors of two of the most important joints in an articulated robot

design, the shoulder and elbow pitch joints, can be made fault tolerant with this method.  A better

insulated wiring and A/D system could be developed that would reduce accelerometer noise and provide

better position response.  If a cleaner accelerometer signal was available, the system delay caused by filters

could be reduced and further experiments performed with a faster position update rate to analyze the
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improved system response.  No experiments conducted involved environmental contact by the robot.

Although the filters used have a low enough cutoff frequency to mask out most if the impulse acceleration

caused by contact, the effect of a grating contact with imparts a long term, low frequency, high amplitude

vibration is unknown.  As a result, further experiments should include contact as well as non-contact

trajectories.  Trajectory generation to avoid arm configurations where accelerometers are parallel to the

gravity gradient and have a low signal to noise ratio should also be explored.  The simulations and

experiments assumed that no information other than torque was available from the failed joint.  However,

some joint designs include both position and velocity sensors.  Experiments should be performed

assuming a failed position sensor but using the feedback from a working velocity sensor to improve

performance.  Although not explored, the solution method should work, probably with lower performance,

if there are one or more working joints and no failed joints between the joint with the failed sensor and the

dual triaxial accelerometers.  Experiments should be conducted to confirm this hypothesis.

The second accelerometer based method is a system wide joint position fault tolerance method.  This

method involves the use of accelerometers mounted on the end effector and other places along the arm with

an optimization algorithm to obtain the position of the joints with failed position sensors.  The advantage

of the method over the joint specific accelerometer based method is that it requires fewer accelerometers to

provide fault tolerance to all joint position sensors.  A new optimization method, continuation minimax,

was presented as a compromise between robustness and computational complexity.  A recursive

formulation for the gradient required by optimization methods was also shown.  On the computer system

used in the experiments, the continuation minimax based method was impractical due to its low update

rate.  In addition, multiple calculations of the gradient during one iteration overloaded the processor at a

low sample rate.  As a result, the gradient calculation was broken up over multiple sample periods and the

steepest descent method used for optimization.  With these changes, joint FDI and fault recovery were

demonstrated on up to three failed joints at a time.  With the exception of certain fast trajectories and joint

configurations which some joints and the accelerometers which contained information about those joints

were parallel to the gravity vector, the method produced satisfactory performance for use during a failure.

Further work on the system wide accelerometer method should include a faster computer so the costs and

benefits of using the continuation minimax method could be better understood.  Different sensor

configurations which involve breaking up the triaxial configuration, not mounting all accelerometers

orthogonal to the joint coordinate systems, and different placement of the accelerometers should be

considered and their effect experimentally shown.  Specifically, an accelerometer should be mounted on the

wrist pitch joint in this experimental apparatus.  During the experiments, it was found that the condition

number analysis proposed to determine the solvability of the system given a trajectory and set of failed

joints, while successfully showing which combinations would not work, was not conclusive evidence that

a trajectory would complete satisfactorily.  A new measure combining the condition number, accelerometer

error bounds, and the position of accelerometers relative to the gravity vector should be developed.  Such a
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measure could be used in trajectory generation to produce better performance by avoiding problematic

regions.  The accelerometer configuration used in the experiment was designed to protect the system from

multiple, simultaneous joint failures.  However, the need to continue operation after only a single joint

failure is a more practical goal.  Other accelerometer configurations with fewer accelerometers should be

tested for fault tolerance to a single joint position sensor failure.

Another possibility for further work in both accelerometer based methods is the more complete analysis of

lower speed trajectories.  To show the resilience of the methods to dynamic effects and explore the

performance with real computational constraints, most trajectories considered are too fast for practical use on

a robot with a position sensor failure.  Better analysis of the performance possible by tuning controller

gains for lower speed trajectories should be explored.  Most near term applications of robotics in space,

nuclear, and underwater environments involve teleoperation.  During teleoperation, the robot is moving

slowly and the operator is part of the system feedback loop.  The combination of tuning the gains for lower

speed operation and allowing the operator to compensate for imperfect position tracking performance may

make this fault tolerant control method more practical.  In teleoperation, continued, stable operation of the

arm during failure is more important that accuracy at high speed.

This dissertation has experimentally shown that either accelerometer based method in conjunction with the

virtual passive joint controller can stably servo the joint without position feedback.  Again, the methods

proposed are  backup methods to be used during failure of the sensors required by the primary control

method.  The accelerometer based methods’ performance cannot be fairly compared with controllers

utilizing accurate position feedback and perfect dynamic models.  However, if accurate position feedback and

reasonable joint parameters are available, the virtual passive joint controller design can be compared with

classical methods such as computed torque.

This dissertation has successfully developed and experimentally verified methods that allow continued

operation of a robot joint after the failure of its joint position sensor using joint torque sensors and

Cartesian accelerometers.  The methods are practical in cost, integrability into an existing robot system,

and computational complexity.  If used on moderate speed trajectories, the resulting system is capable of

continued operation after the failure of multiple joint sensors.

In conclusion, this dissertation contains the following research contributions:

1. The design, development, and experimental testing of a virtual passive joint torque controller which

improves position tracking performance during normal joint operation without a complex dynamic

model and can stabilize a robot joint without position feedback.

2. The design, development, and experimental testing of a joint specific method of determining joint

position using Cartesian accelerometers without integration for FDI and the integration of the joint
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specific position determination method and the virtual passive torque control method for failure

recovery.

3. The design, development, and experimental testing of a system wide method of determining joint

position using Cartesian accelerometers without integration for FDI and the integration of the system

wide position determination method and the virtual passive torque control method for failure recovery.
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