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Abstract

This paper presents a control method based on virtual
passive dynamic control that will stabilize a robot
manipulator using joint torque sensors and a simple joint
model.  The method does not require joint position or
velocity feedback for stabilization.  The proposed control
method is stable in the sense of Lyaponov.  The control
method was implemented onseveral joints of a laboratory
robot.  The controller showed good stability robustness to
system parameter error and to the exclusion of nonlinear
dynamic effects on the joints.  The controller enhanced
position tracking performance and, in the absence of
position control, dissipated joint energy.

I. Introduction

Control of robotic systems has been a difficult problem
due to the nonlinearity of the complex system equations.
Several techniques to control this nonlinear system have
been studied.  Some methods, such as Jacobian
linearization[1] and pseudolinearization[2], have attempted to
linearize the system and apply classical linear system control
techniques to the problem.  These methods are only valid
close to a linearization point or trajectory.  The feedback
linearization[3] technique attempts to linearize the equations
over a large workspace and has been popular in the robotic
control literature for some time.  Feedback linearization
requires good knowledge of the system parameters and states,
else some of the nonlinearity will not be canceled out.
Variable structure control is a purely nonlinear control
method which has been a popular research topic[4].
Although variable structure control is robust, the fast
switching required by the controller to maintain this
robustness is difficult to achieve without chatter.  These are
only a few of the many control methods that have been
applied to robot systems.

The main reason for the nonlinearity in the equations is
the need to calculate the dynamic effects on the structure.
Controlling the nonlinear plant based on the full dynamic
equations is not the only method for controlling robot
manipulator.  If the joints have a torque sensor along the
drive axis, the problem can be reduced to controlling the
individual joint dynamics.  Work in this area has been
published recently[5,6].  These methods use known, mostly
linear, electric motor driven joint models to control joint
acceleration and velocity.  These methods still require

measurement of joint position and velocity to compute the
control inputs.

Passivity based control methods have been applied to
control in robotics [7,8] and vibration control of space
structures[9].  The problem with the basic passivity control
approach is that it requires velocity feedback.  The virtual
passive dynamic control approach [10] has been successful
in stabilizing systems with displacement, velocity, or a
combination of acceleration with displacement and velocity
feedback.

This paper develops a method to stabilize a robot
manipulator with joint torque sensors without directly
measuring joint position, velocity, or acceleration.  The
torque sensor output will be used in conjunction with a
simple joint model and the virtual passive dynamic based
control technique to quickly dissipate the kinetic energy in
the robot system. The robustness of the system will be
discussed and the results of an experiment in which a robot
joint was controlled using the proposed method will be
shown.

II. Dynamic model

The following derivation is based on a model of a direct
drive, electric motor driven, revolute joint with an output
torque sensor presented in Kosuge[5].
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Figure 1: Diagram of proposed direct drive joint

This joint is assumed to be part of a serial linkage
consisting of other revolute joints and rigid links.  The
structure of the proposed joint is shown in Fig. 1.  Each
joint is assumed to have two parameters, rotor inertia and
viscous friction.

Paraphrasing the development in Kosuge [5], the model
of the joint is determined by applying a Newton-Euler
iterative dynamics[11] approach to a rigid, serially linked
structure with revolute joints.  This derivation includes the



motor inertia and viscous friction terms.  The full equation
for the joint torque given an arbitrary trajectory was
computed.  The terms required to compute the torque were
divided into three groups: terms which depend only on the ith

joint, terms depending on other joints which affect the ith

joint, and terms that involve link inertias, masses, and
lengths.  The joint torque model resulting from this
derivation is,
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where,
M i inertia matrix of the rotor of the ith joint
vi coefficient of the viscous friction torque acting

on the rotor around the joint axis zi-1

A j
i rotation matrix from frame i to frame j (same

origin)
Mri rotor inertia matrix in reference frame
τ i torque at joint input
τ si the sensed torque  along the z axis at the joint

output
θi joint position
ωi angular velocity of ith frame in base coordinates
zi z vector for ith frame in the base coordinates

Joint specific terms are evident in the model while link
specific terms are contained in the torque measurement along
the axis of rotation.  With the exception of the nonlinear
term fi, the elements of Eq. (1) depend only on values of the
ith joint.

In later sections, the goal will be to develop a controller
that will produce ui, the control input, that will stabilize a
joint described by  Eq. (1).  If τi=ui, then Eq. (1) can be
solved in terms of the sensed torque.

τ θ θsi i i i i i im v f u= − − − +˙̇ ˙ (7)

where
τ τsi xi if= −  (8)

and
τ θ θxi i i i i im v u= − − +˙̇ ˙ (9)

In section IV, exact knowledge of the term τxi
  is assumed to

derive a stabilizing control input for the system.  In section
V, the robustness of the system to inexact knowledge of τxi

is discussed.

III.  Virtual passive dynamic control

The controller design technique used in section IV is
similar to the passive dynamic control technique presented in
Juang[10].  This technique is based on the concept that a
mechanical system can be represented by a second-order
system with inertia, damping and stiffness related
parameters.  An active feedback controller can be designed
with its dynamics equivalent to a mechanical system.  The
resulting controller is,

H x H x H x g y uM c D c K c s˙̇ ˙ ( )+ + + = (10)

where ys  is the measured system output, g is a user defined
function, xc is the controller state vector of dimension nc,
and HM, HD, and HK are the controller mass, damping, and
stiffness matrices respectively.  These matrices are design
parameters and can be chosen to meet performance and
stability requirements.  The function g is an arbitrary
function of the measured system output, ys.  These outputs
can be system states or combinations of system states.

The Lyaponov proof of the stability of the chosen
control law will depend on the rate of change of the system
kinetic energy.  Let T be the total kinetic energy of a
mechanical system (linear or nonlinear) with p control
actuators at p physical locations described by p generalized
coordinates xai and p control inputs ui, i=1,2,...,p .  These
generalized coordinates and their derivatives are physical
quantities of the system.  If a mechanical system is
holonomic and scleronomic (no explicit time dependence),
the time derivative of the total kinetic energy is related to
the applied forces by,

dT

dt
u xT

a= ˙   (11)

where xa = (xa1,xa2,...,xap)
T.

Choose the Lyaponov candidate function to be of the
type:

L T q x x x xa a c c= + ( , ˙ , , ˙ ) (12)

where q is an arbitrary function of the actuator and controller
states, xc, and their rates.  Taking the time derivative and
substituting Eq. (11) yields

dL

dt
u x q x x x x x xT

a a a a c c c= +˙ ˙( , ˙ , ˙̇ , , ˙ , ˙̇ ) (13)

If the control inputs, ui, are designed to cause the rate of
change of the Lyaponov function to be negative, the
stability of the system is guaranteed by Lyaponov stability
theory.  This stability implies a continual decrease in the
kinetic energy of the system.

Remembering that u is a function of system outputs,
states, and controller states, it can be designed to cancel out
and combine with terms in the derivative of the Lyaponov



candidate function to result in an equation of the following
form,
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where R is a linear function and D is a matrix involving the
system damping.  The desired function which implies a
constantly decreasing Lyaponov function is,
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that can be obtained by making the equality:

R x x x x x x D xa a a c c c c c( , ˙ , ˙̇ , , ˙ , ˙̇ ) ˙= (16)

The controller state can be calculated using Eq. (16) and
substituted into Eq. (10) to determine the ui required to
maintain the Lyaponov stability condition.

IV. Torque feedback

This section will describe a controller using torque
sensor feedback to stabilize a robot system.  Let the quantity
τxi be known exactly.  Inexact knowledge of τxi and its
relationship to τsi will be dealt with in section V.  Let:

M diag m mrz p= ( ,..., )1 (17)

V diag v vp= ( ,..., )1 (18)

τ τ τx x xpdiag= ( ,..., )1 (19)

Using the virtual passive controller design technique  from
the previous section, a controller that satisfies the Lyaponov
stability criteria, (the Lyaponov stability proof may be
found in Appendix A) is given by,
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where Dc, Rτ, and Kc are design matrices.  The restriction on
these design matrices is that Dc and Rτ must be a symmetric
and positive-definite .  The current control input, u′, is used
to calculate the next control input.  Note that as described in
the virtual passive controller discussion, the terms
x xc c and ˙ are not the joint position and velocity.  They are

controller states used to satisfy the stability condition.  As a
result, this controller design can dissipate joint kinetic
energy without joint position or velocity feedback.

V. Stability robustness

The previous control law concentrated on a non-directly
measured value, τxi, instead of the directly measured term,
τsi.  It was also assumed that no modeling errors were
present and that the nonlinear term, fi, was calculable.  If the
joint in question does not have a position sensor and/or the
controller did not have information from other joints, the
nonlinear term is incalculable.   If additive modeling errors
are present, the joint model becomes:

u m m v v fi i i i i i i si i= + + + + +( )˙̇ ( ) ˙θ θ τ (22)

Reformatting and solving for τsi,

τ τsi xi ie= −  (23)

e m v fi i i i i i= + +˙̇ ˙θ θ (24)

From Eq. (24), it can be seen that if the kinetic energy in
the joint declines, then the affects of the additive error terms
are reduced.  The magnitude of these errors should never be
very high because the mi term, which represents the rotor
inertia along the z axis, should be known precisely from the
motor manufacturer and vi, the viscous friction term, while
not easily modeled precisely can be closely approximated by
a simple linear model.  Since higher frictional forces
enhance the dissipation of energy, stability will not be
affected if the modeled friction is less than the actual
friction. Due to the low relative magnitude of these errors,
they can be considered disturbances and do not affect the
overall stability of the system.

The nonlinear term fi can also be shown to decline with
kinetic energy since it is related to link angular velocity and
acceleration.  Assuming a serial robot with a fixed base, the
first joint’s angular velocity and acceleration depend on the
magnitude of the first motor’s velocity and position.  The
second joint’s angular velocity and acceleration depend on
the magnitude of the first and second motor’s velocity and
acceleration.  With the fixed base assumption, the fi term for
the first joint is zero.   The first joint’s passive controller
will then dissipate its energy  decreasing the nonlinear  effect
on the second joint.  The second joint’s nonlinear term is
now only dependent  on its state and, for reasonable robot
moves, can be treated as a disturbance.  This chain can be
continued for n joints.

VI. Position control

The virtual passive torque controller can be used with a
position controller as shown in Fig. 2.  In this example,
position tracking was implemented by a PD controller
whose torque output was subtracted from the sensed torque
to offset the controller input.  This offset input appeared to
the controller as movement.  The passive controller’s efforts
to dissipate the energy caused by this “movement” causes
the joint to move in the desired direction.
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Figure 2: Control block diagram

Stability is no longer guaranteed when using  the position
controller in this manner.  Although the torque controller
can be tuned to be stable in areas of minor position
controller instability at the cost of reduced position tracking
elsewhere, true position controller instability will case the
system to become unstable.  Interaction between the
position and torque controller is discussed in the next
section.

VII. Experiment

To evaluate the performance of the proposed controller, it
was implemented on the three wrist joints of a laboratory
robot.  The robot used was a Robotics Research Corporation
(RRC) 807i manipulator.  The 807i has 7 degrees of
freedom, is 0.8m long, and has an approximate payload of
10kg.  The manipulator is shown in Fig. 3.

Figure 3: Robotics Research 807i

The goal of the experiment is to show:
1. The controller enhances tracking performance in the

presence of unknown end-effector loading
2. The controller dissipates joint energy without a position

command
3. The controller is stable in multiple configurations

The virtual passive controller shown in Fig. 2 was
implemented on a 68040 based computer, called the control
processor,  which communicated with the robot controller
across a bus-to-bus interface.  The control processor sent
torque commands to the robot at 200Hz.

The RRC robot was commanded in torque mode.  In
this mode, the robot controller uses a basic torque controller
to overcome joint effects.  Its goal is to make the harmonic
gear driven joints perform like direct drive joints.  The

resulting system does reduce geartrain effects but does not
eliminate the effects.  The virtual passive controller must
handle any remaining geartrain friction, hysteresis, or
backlash.  Although the model presented in section II was
direct drive, the controller can be used on gear driven joints
if the effects geartrain friction and the gear ratio are
considered and nonlinear geartrain effects, such as backlash,
are minimized.

The motor parameters required by the controller were not
available from the robot manufacturer.  Identifying the
parameters of motors installed in the robot proved difficult
due to the parameters small size and the inability to bypass
the low level torque controller.  As a result, qualitative data
was used to estimate the parameters and the gains chosen to
produce the required performance.  The resulting performance
with substantial modeling errors shows the stability
robustness of the controller.

Tracking performance

To examine how tracking performance varies with end-
effector loading, weights were attached to the end-effector.
The weights were chosen to represent realistic loadings  for a
robot of this type and not saturate the actuators.  The three
weighting conditions were 0,5, and 10lbs.  The weights
were attached to the end-effector with a beam which offset
the weight by approximately 23cm from the center of the
end-effector to load the wrist joints properly.

Two controller configurations were used.  The first,
utilizing virtual passive control, was the same as found in
Fig. 2.  The second, not utilizing virtual passive controller,
sent the output of the PD controller directly to the robot
bypassing the virtual passive controller.  The PD controller
was tuned to give reasonable performance without the virtual
passive controller .  The same PD gains were used for both
controller configurations.
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Figure 4: Error in joint position with and without virtual
passive controller at different weights (the o plots are with

and the x plots are without the passive controller)

Figure 4 shows the mean and standard deviation of the error
of joint 5, the wrist roll joint, along a representative



trajectory.  All seven joints were actuated on this trajectory
(the lower four joints using the RRC position controller) to
add a dynamic effect to the measurements.  Using the virtual
passive controller, the torque sensors compensated for the
added loading maintaining a small error mean and fairly
constant standard deviation.  Without the passive controller,
the PD controller error mean and standard deviation increases
as the weight increases.

Energy dissipation

Without the position control generated torque offset, the
theory states that the controller should attempt to dissipate
joint energy.  With proper controller tuning, this dissipation
should lead to the joint stopping and resisting movement
with the virtual passive controller enabled.  To test this
hypothesis, the robot was commanded along a trajectory
actuating all robot joints.  Three seconds into the trajectory,
the position control torque offset was removed.  Figure 5
shows the response of joint 7, the toolplate roll joint, along
a representative trajectory.  As shown, the controller quickly
stops the joint.  The small difference in steady state position
is due to the differing weights.  Given enough force, the
robot joint can be pulled off the final position.  When the
force is lowered, it will remain at a new position close to
the position where it was when the force was removed.
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Figure 5: Position response of joint 7 with position control
offset removed at 3 sec.

The resulting controller/joint combination acts as a highly
damped joint.  Without the virtual passive controller, the
joint runs quickly to the joint stop.  It should be noted that
having this highly damped property does not ruin position
tracking as is could if the joint mechanism itself was highly
damped.

The ability of the controller to dissipate energy  has
applications in fault tolerant control.  This controller can act
as an active joint brake in the absence of a physical brake.
It does not rely on joint position or velocity feedback for
stability so it is robust to the failure of these sensors.

Controller stability

The virtual passive controller was tuned to be stable in
different joint configurations and loadings.  When the virtual
passive gains were increased to beyond those used in the
experiment which could produce the quick energy dissipation
shown in Fig. 5, two stability problems arose.

The first stability problem involved controller
oscillation.  If one joint’s torque controller gains are too
high for the current joint load it can begin to oscillate.  As
the load is increased, the oscillation damps out.  This
oscillation can induce an oscillation into other joints
otherwise stable virtual passive torque controllers.  The
oscillations can be eliminated by lowering the passive torque
controller gains.

The seconds stability problem involves the interaction of
the position and virtual passive torque controllers.  Figure 6
shows the sensed torque response of joint 5 to a trajectory
with the position controller disabled at three seconds.  A
large torque vibration occurred in joints 5 and 7 at the 5lb
weight condition.  Joint 5 and 7 are both roll joints whose
axes were becoming more parallel as the trajectory
continues.  The parallel condition allowed a vibration started
in one joint to resonate into the other joint’s sensor.  This
resonance does not occur if the passive controller is bypassed
on one of the two joints.  The resonance continues if the
passive controller on joint 6 is bypassed removing it as a
cause.  The interesting point of the data is that the resonance
occurred at the middle weight condition, not the high or low
condition.  This can be explained by the relative control
authority of the passive controller.  At low weights, the
passive controller had little authority and the control is
mostly done by the position controller.  As the weight
increases, the passive controller gains more authority.  At a
moderate weighting condition, the passive controller’s
control authority is similar to the position controller and
they begin to interact with neither controller dominating.
At higher weighting conditions, the passive controller
begins to dominate the position controller.  When the
position controller’s bias is zeroed at three seconds, the
passive controller quickly damps out the resonance.   The
position response resulting from these torques was not
adversely affected.  However, these quick torque changes put
undue wear on the drivetrain and can excite modes in robot
payloads.  Further refining of position controller and passive
torque controller gains will alleviate the problem.
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Figure 6: Torque instability caused by controller interaction

VIII. Conclusion

This paper presented a robot joint controller design using
virtual passive control with a joint torque sensor.  A
Lyaponov stable control law was presented and
experimentally tested.  Given reasonable joint torque sensor
data, the system provides good stabilization performance
with parameter errors and treating nonlinear dynamic effects
as a disturbance.  By using the torque sensor data,
manipulator link dynamics and loads do not need to be
modeled.  The controller does not require joint position or
velocity feedback to dissipate joint kinetic energy.
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Appendix A: Lyaponov stability proof

The goal of this appendix is to provide a Lyaponov stability
proof for using virtual passive dynamic control with torque
sensor feedback to stabilize a system.  For simplicity of the
proof, let the quantity τxi be known exactly.  Choose the
Lyaponov function similar to Eq. (12) with xa=θ.  A
candidate Lyaponov function for the stability proof is:

L T x x K M x x

x K x

a c
T

rz a c

c
T

c c

= + + +

+

1

2
1

2

( ˙ ˙ ) ( ˙ ˙ )τ
(A1)

M diag m mrz p= ( ,..., )1 (A2)

Where Kτ and Kc are design matrices and Mrz represents the
rotor inertia along the z axis of joints in the system.
Differentiating (A1),
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T
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T
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Now, select the control input u to be a function of τxi, the
controller state vector, the rotor inertia, and the controller
design matrix Kτ such that

u K K M x K Vxx rz c c= − +τ τ ττ ˙̇ ˙ (A4)

V diag v vp= ( ,..., )1 (A5)

τ τ τx x xpdiag= ( ,..., )1 (A6)

where τxi is defined in Eq. (9). Substituting the equation for
τx into Eq. (A4) yields

u K M x x K V x x K urz a c a c= − + − − +τ τ τ( ˙̇ ˙̇ ) ( ˙ ˙ ) (A7)

Let,

R I K Kτ τ τ= − −( ) 1 (A8)



Substituting (A8) into (A7),

u R M x x R V x xrz a c a c= − + − −τ τ( ˙̇ ˙̇ ) ( ˙ ˙ ) (A9)

If RτV and RτMrz are chosen symmetric, replacing u in the
time derivative of the Lyaponov function Eq. (A3) produces:
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Canceling terms and reformatting,
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Now, define the following equality

R Vx R M x x K x D xa rz a c c c c cτ τ˙ ( ˙̇ ˙̇ ) ˙+ + + = − (A13)

where Dc is a symmetric and positive-definite matrix.  This
equality produces a set of equations that calculate the
controller state vector as a function of the sensed torque.
Substituting Eq. (A13) into Eq. (A12), the time derivative
of the Lyaponov function becomes:

dL

dt
x R Vx x D xa

T
a c

T
c c= − −˙ ˙ ˙ ˙τ (A14)

This function results in a constantly decaying Lyaponov
function if RτV and Dc are chosen to be positive definite and
xc is calculated using a reformatted version of Eq. (A13),

R M x D x K x R M x Vxrz c c c c c rz a aτ τ˙̇ ˙ ( ˙̇ ˙ )+ + = − + (A15)

Since only τx is known, substitute Eq. (9) and Eq. (A6) into
Eq. (A15) and add Rτu to both sides to replace dependence on
measured joint acceleration and velocity with τx,

R M x D x K x R u Rrz c c c c c xτ τ τ τ˙̇ ˙+ + + = (A16)

Using Eq. (A16) and Eq. (A4), the control input required to
stabilize the system can be calculated as:

u R R M R M D x K x
M R Vx

x rz rz c c c c

rz x c

= − − −
+ +

−

−
τ τ τ

τ

τ
τ

[( ) ( ˙ )
)] ˙

1

1 (A17)

If Rτ and Mrz are invertible, as they should be since Rτ can
be chosen positive definite and Mrz is the full rank diagonal
joint rotor inertia matrix, Eq. (A17) reduces to:

u R V D x K xc c c c= + +( ) ˙τ (A18)

Although the torque sensor related term cancels out of u, the
control input is not independent of τx because τx is used to
form xc and its derivative.  With τx as the input, u′ as the
current torque command, and u as the output, the control
signal required to stabilize the system can be calculated
using Eq. (20) and (21).


