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Abstract

Several new computational algorithms are presented to compute the deadbeat predictive

control law that brings the output response to rest after a finite number of time steps. The

first algorithm makes use of a multi-step-ahead output prediction to compute the control law

without explicitly calculating the controllability matrix. The system identification must be

performed first and then the predictive control law is designed. The second algorithm uses

the input and output data directly to compute the feedback law. It combines the system

identification and the predictive control law into one formulation. The third algorithm uses

an observable-canonical form realization to design the predictive controller. The relationship

between all three algorithms is established through the use of the state-space representation.

All algorithms are applicable to multi-input multi-output systems with disturbance inputs.

In addition to the feedback terms, feedforward terms may also be added for disturbance
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†Assistant Professor, Department of Aerospace and Mechanical Engineering.
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inputs if they are measurable. Although the feedforward terms do not influence the stability

of the closed-loop feedback law, they enhance the performance of the controlled system.

1 Introduction

The traditional approach for active control of mechanical and aerospace systems involves

four key steps including system modeling, system identification testing, controller design

and verification tests. The procedure is very time consuming and costly. In many cases,

such as the acoustic noise reduction for aircraft and vibration suppression for spacecraft,

the approach cannot be quick enough to catch up with the system changes. On-line system

identification and adaptive controller design become the only solution for the controlled

system. Advanced algorithms must be developed for autonomous dynamic response and

uncertainty characterization, and the controller design directly from input and output data.

There is a great amount of literature on the subject of adaptive control.1−10 Most of

them use a linear input-output model that describes the current output prediction as a linear

combination of past input and output measurements. The finite difference model, which is

commonly called the Auto-Regressive moving average model with eXogenous input (ARX),

is the one used most often by researchers for the adaptive control design. For example,

the Generalized Predictive Control (GPC)5 starts with the ARX model with the absence of

the direct transmission term and builds a multi-step ahead output predictor by solving the

Diophantine equation recursively. The predictive control law is then computed using the

Toeplitz matrix formed from the step response time history of the system in conjunction

with a cost function with weighted input and output. There are three design parameters

involved including the control weight, the prediction horizon and the control horizon. A

proper combination of these parameters is required in order to guarantee stability of the
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predictive control law. In contrast to the conventional approach, a novel approach has

been introduced by the authors12 integrating a state-space based modern control into its

corresponding ARX model. It exploits the use of the relationship between the state-space

model and the ARX model. The predictive controller thus derived has the same form as

those derived from classical input-output models with the direct transmission term. Yet it

may also be implemented as an observer-based full-state feedback controller. This provides

flexibilities for control engineers to perform their job in a way that they prefer. Similar

to GPC, the approach has one control design parameter and one identification parameter

related to the order of the system. The control design parameter, which is similar to the GPC

control horizon, gives the number of time steps for the system to become deadbeat (rest).

For convenience, the approach described in Ref. [12] is referred to as the Deadbeat Predictive

Control (DPC). The DPC guarantees closed-loop stability for a controllable system regardless

of minimum or non-minimum phase. No special treatment is required when the system has

a direct transmission term.

This paper develops several new deadbeat control algorithms to compute the deadbeat

predictive control law. The feedback law is supposed to bring the output response to rest

after a few specific time steps. The first algorithm makes use of a multi-step-ahead output

prediction to compute the DPC without explicitly computing the controllability matrix as

shown in Ref. [12]. Given the coefficient matrices of an ARX model, a recursive formulation

for computing the multi-step-ahead output prediction is presented. The recursive formula

is somewhat different from the one described in Ref. [5] for the Diophantine equation. The

second algorithm uses the input and output data directly to compute the DPC without

using the ARX coefficient matrices. It combines the system identification and the predictive
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control law into one formulation. The third algorithm uses an observable-canonical form

realization from an ARX model to derive the DPC. The approach is similar to that used in

Ref. [12]. However, it has a different form of companion matrix for the state matrix. The

relationship between all three algorithms is established through the use of the state-space

representation. All three algorithms are applicable to multi-input multi-output systems with

disturbance inputs. In addition to the feedback terms for DPC, feedforward terms may also

be added for disturbance inputs if they are measurable. Although the feedforward terms do

not influence the stability of the closed-loop feedback design, they enhance the performance

of the controlled system. All good features for the method described in Ref. [12] remain true

for the algorithms developed in this paper.

2 Multi-Step Output Prediction

The input output relationship of a linear system, even a nonlinear system, is commonly

described by a finite difference model. Given a system with r inputs and m outputs, the

finite difference equation for the r × 1 input u(k) and the m× 1 output y(k) at time k is

y(k) = α1y(k − 1) + α2y(k − 2) + · · ·+ αpy(k − p)

+ β0u(k) + β1u(k − 1) + β2u(k − 2) + · · ·+ βpu(k − p) (1)

It simply means that the current output can be predicted by the past input and output

time histories. The finite difference model is also often referred to as the ARX model where

AR refers to the AutoRegressive part and X refers to the eXogeneous part. The coefficient

matrices, αi (i = 1, 2, . . . , p) of m×m and βi (i = 0, 1, . . . , p) of m×r, are commonly referred

to as the observer Markov parameters (OMP) or ARX parameters. The matrix β0 is the

direct transmission term.
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By shifting a time step, one obtains

y(k + 1) = α1y(k) + α2y(k − 1) + · · ·+ αpy(k − p+ 1)

+ β0u(k + 1) + β1u(k) + β2u(k − 1) + · · ·+ βpu(k − p+ 1) (2)

Define the following quantities

α
(1)
1 = α1α1 + α2 β

(1)
1 = α1β1 + β2

α
(1)
2 = α1α2 + α3 β

(1)
2 = α1β2 + β3

...
...

...
...

...
...

α
(1)
p−1 = α1αp−1 + αp β

(1)
p−1 = α1βp−1 + βp

α(1)
p = α1αp β(1)

p = α1βp

(3)

and

β
(1)
0 = α1β0 + β1 (4)

Substituting y(k) from Eq. (1) into Eq. (2) yields

y(k + 1) = α
(1)
1 y(k − 1) + α

(1)
2 y(k − 2) + · · ·+ α(1)

p y(k − p)

+ β0u(k + 1) + β
(1)
0 u(k)

+β
(1)
1 u(k − 1) + β

(1)
2 u(k − 2) + · · ·+ β(1)

p u(k − p) (5)

The output measurement at time step k + 1 can be expressed as the sum of past input and

output data with the absence of the output measurement at time step k. By induction, one

may express the output measurement at the time step k + j by

y(k + j) = α
(j)
1 y(k − 1) + α

(j)
2 y(k − 2) + · · ·+ α(j)

p y(k − p)

+ β0u(k + j) + β
(1)
0 u(k + j − 1) + · · ·+ β

(j)
0 u(k)

+β
(j)
1 u(k − 1) + β

(j)
2 u(k − 2) + · · ·+ β(j)

p u(k − p) (6)
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where
α

(j)
1 = α

(j−1)
1 α1 + α

(j−1)
2 β

(j)
1 = α

(j−1)
1 β1 + β

(j−1)
2

α
(j)
2 = α

(j−1)
1 α2 + α

(j−1)
3 β

(j)
2 = α

(j−1)
1 β2 + β

(j−1)
3

...
...

...
...

...
...

α
(j)
p−1 = α

(j−1)
1 αp−1 + α(j−1)

p β
(j)
p−1 = α

(j−1)
1 βp−1 + β(j−1)

p

α(j)
p = α

(j−1)
1 αp β(j)

p = α
(j−1)
1 βp

(7)

and

β
(j)
0 = α

(j−1)
1 β0 + β

(j−1)
1 (8)

Note that α
(0)
i = αi and β

(0)
i = βi for any possible integer 1, 2, . . . including 0 if applicable.

With some algebraic operation, Eq. (8) can also be expressed by

β
(0)
0 = β0

β
(k)
0 = βk +

k∑
i=1

αiβ
(k−i)
0 for k = 1, . . . , p

β
(k)
0 =

p∑
i=1

αiβ
(k−i)
0 for k = p+ 1, . . . ,∞

(9)

Similar to Eq. (9), α
(j)
1 = α

(j−1)
1 α1 + α

(j−1)
2 can also be written as

α
(0)
1 = α1

α
(k)
1 = αk+1 +

k∑
i=1

αiα
(k−i)
1 for k = 1, . . . , p− 1

α
(k)
1 =

p∑
i=1

αiα
(k−i)
1 for k = p, . . . ,∞

(10)

Observation of Eq. (9) and (10) reveals that β
(j)
0 and α

(j)
1 for j > p is a linear combination

of its past p parameters weighted by the parameters α1, α2, . . . , αp. This property is very

useful in developing predictive control designs. The quantities β
(i)
0 (i = 0, 1, . . .) are, in fact,

the pulse response sequence which will be shown later. On the other hand, the quantities

α
(i)
1 (i = 0, 1, . . .) are the observer gain Markov parameters which can be used to compute

an observer for state estimation.

Let the index j be j = 1, 2, . . . , q, q+1, . . . , s−1. Equation (7) produces the following

matrix equation,

ys(k) = T us(k) + Bup(k − p) +Ayp(k − p) (11)
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where

ys(k) =



y(k)
y(k + 1)

...
y(k + q)

y(k + q + 1)
...

y(k + s− 1)


, us(k) =



u(k)
u(k + 1)

...
u(k + q)

u(k + q + 1)
...

u(k + s− 1)


,

yp(k − p) =


y(k − p)

y(k − p+ 1)
...

y(k − 1)

 , up(k − p) =


u(k − p)

u(k − p+ 1)
...

u(k − 1)



(12)

and

T =



β0

β
(1)
0 β0
...

...
. . .

β
(q)
0 β

(q−1)
0 · · · β0

β
(q+1)
0 β

(q)
0 · · · β

(1)
0 β0

...
... · · · ...

...
. . .

β
(s−1)
0 β

(s−2)
0 · · · β

(s−q−1)
0 β

(s−q−2)
0 · · · β0



B =



βp βp−1 · · · β1

β(1)
p β

(1)
p−1 · · · β

(1)
1

...
...

. . .
...

β(q)
p β

(q)
p−1 · · · β

(q)
1

β(q+1)
p β

(q+1)
p−1 · · · β

(q+1)
1

...
...

. . .
...

β(s−1)
p β

(s−1)
p−1 · · · β

(s−1)
1



A =



αp αp−1 · · · α1

α(1)
p α

(1)
p−1 · · · α

(1)
1

...
...

. . .
...

α(q)
p α

(q)
p−1 · · · α

(q)
1

α(q+1)
p α

(q+1)
p−1 · · · α

(q+1)
1

...
...

. . .
...

α(s−1)
p α

(s−1)
p−1 · · · α

(s−1)
1



(13)

The quantity ys(k) represents the output vector with a total of s data points for each sensor

from the time step k to k+ s− 1, whereas yp(k− p) includes the p data from k− p to k− 1.
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Similarly, us(k) has s input data points starting from the time step k and up(k − p) has p

input data points from k−p. The matrix T is commonly called the Toeplitz matrix which is

formed from the parameters, β0, β
(1)
0 , . . . , and β

(s−1)
0 (the pulse response sequence). Indeed,

assume that before time step k, the system is at rest, i.e., up(k − p) = 0 and yp(k − p) = 0.

At time step k, one applies to the system an unit pulse one at a time for each input, i.e.,

u(k) = 1 for a single input and u(k + 1) = u(k + 2) = . . . = 0. Equation (11) shows that

y(k) = β0, y(k + 1) = β
(1)
0 , . . . , y(k + s− 1) = β

(s−1)
0 .

The vector ys(k) in Equation (11) consists of three terms. The first term is the input

vector us(k) including future inputs from time step k to k + s − 1. Relative to the same

time k, the second and third terms, up(k − p) and yp(k − p), are input and output vectors,

respectively, with past known quantities from k − p to k − 1. The future input vector us(k)

is to be determined for feedback control.

3 Deadbeat Predictive Control Designs

There are two predictive control designs to be shown in this section. The first design is based

on Eq. (11) with the assumption that the parameters α1, α2, . . . , αp and β0, β1, . . . , βp, are

given a priori. The second design uses the input and output data directly without explicitly

involving the parameters α1, α2, . . . , αp and β0, β1, . . . , βp.

3.1 Indirect Algorithm

Consider the question: what should the future input signal u(k), u(k+1), · · · , u(k+q−1) be

to make the future output sequence y(k + q), y(k + q + 1), · · · ,∞ equal to zero (deadbeat)?

Here we have assumed that the control action starts at time step k. Before time k, the

system is open-loop.
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Let the control action be turned on at time step k and ended at k+ q. In other words,

the control action occurs only from u(k) to u(k + q − 1), i.e., u(k + q) and beyond the step

k + q are all zero. Under this condition, Eq. (11) produces the following equation,

yp(k + q) = T ′uq(k) + B′up(k − p) +A′yp(k − p) (14)

where

yp(k + q) =


y(k + q)

y(k + q + 1)
...

y(k + q + p− 1)

 , uq(k) =


u(k)

u(k + 1)
...

u(k + q − 1)

 (15)

and

T ′=T (qm+ 1 : pm+ qm, 1 : qr)=


β

(q)
0 β

(q−1)
0 · · · β

(1)
0

β
(q+1)
0 β

(q)
0 · · · β

(2)
0

...
...

. . .
...

β
(q+p−1)
0 β

(q+p−2)
0 · · · β

(p)
0



B′=B(qm+ 1 : pm+ qm, :)=


β(q)
p β

(q)
p−1 · · · β

(q)
1

β(q+1)
p β

(q+1)
p−1 · · · β

(q+1)
1

...
...

. . .
...

β(q+p−1)
p β

(q+p−1)
p−1 · · · β

(q+p−1)
1



A′=A(qm+ 1 : pm+ qm, :)=


α(q)
p α

(q)
p−1 · · · α

(q)
1

α(q+1)
p α

(q+1)
p−1 · · · α

(q+1)
1

...
...

. . .
...

α(q+p−1)
p α

(q+p−1)
p−1 · · · α

(q+p−1)
1



(16)

Equation (14) is a reduced version of Eq. (11) by cutting its first q equations and the equations

beyond q + p − 1. The matrix T ′ of dimension pm × qr is formed from the pulse response

(system Markov parameters). Note that m is the number of outputs, p is the order of the

ARX model, r is the number of inputs, and q is the number of control steps. If one flips the

columns in the left/right direction and preserves the rows of T ′, it becomes a Hankel matrix
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of the pulse response, i.e.,

H =


β

(1)
0 β

(2)
0 · · · β

(q−1)
0 β

(q)
0

β
(2)
0 β

(3)
0 · · · β

(q)
0 β

(q+1)
0

...
...

. . .
...

...

β
(p)
0 β

(p+1)
0 · · · β

(q+p−2)
0 β

(q+p−1)
0

 (17)

The Hankel matrix is known to have maximum rank of n which is the order of the system

if pm ≥ n. Choosing any number which is larger than pm does not increase the rank of T ′.

That is why the number of rows for T ′ is chosen to be pm even though any number greater

than pm may be used to form Eq. (14). The integer q must also be chosen such that qr ≥ n

to make sure that the Hankel matrix has rank n.

The output vector yp(k + q) in Eq. (14) includes the output sequence from the time

step k + q to k + q + p − 1. It depends on the input vector uq(k) for the input sequence

from the time step k to k+ q− 1 which is one step behind the step k+ q for the first output

in yp(k + q). It also relies on up(k − p) and yp(k − p) consisting of the input and output

sequences from the time step k − p to k − 1. The significance of Eq. (14) is that the input

and output relation has been rewritten so that the output at time k + q and beyond can be

computed from the input sequence from k − p to k + q − 1 and the output sequence from

k − p to k − 1. In other words, the output sequence from k to k + q − 1 is not required to

be known for the prediction of the output at the time k + q and beyond. This prediction

characteristic can be capitalized on for the feedback design shown below.

From Eq. (14), it is clear that the following equality

uq(k) = −[T ′]† [B′up(k − p) +A′yp(k − p)] (18)
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will bring yp(k + q) to rest, i.e.,

yp(k + q) =


y(k + q)

y(k + q + 1)
...

y(k + q + p− 1)

 = 0

The first r rows of Eq. (18) thus gives

u(k) = −first r rows of
{
[T ′]†

}
[B′up(k − p) +A′yp(k − p)]

= αc1y(k − 1) + αc2y(k − 2) + · · ·+ αcpy(k − p)

+βc1u(k − 1) + βc2u(k − 2) + · · ·+ βcpu(k − p) (19)

where the superscript c signifies the control parameters. The feedback control parameters

αc1, . . . , α
c
p and βc1, β

c
2, . . . , β

c
p are to be used to compute the current control signal u(k) using

the past p input and output measurements. The control action is supposed to bring the

output to zero for all time steps larger than k+q. Along with the desired zero input u(k+q)

and beyond, the system should be at rest, i.e., deadbeat, beyond time step k+ q. That is in

theory. In practice, when the system has input and output uncertainties, the control action

can only bring the output down to the the level of uncertainties.

3.1.1 Computational Steps

The indirect method for predictive control design is summarized as follows.

1) Use any system identification (batch or recursive) technique to determine the open-loop

observer Markov parameters (ARX) parameters α1, . . . , αp, and β0, β1, . . . , βp, before

the control action is turned on.

2) Compute the system Markov parameters (pulse response sequence) with the recursive

formula, Eq. (8), and form the Toeplitz matrix T ′ shown in Eq. (16). The integer q
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must be properly chosen such that the rank of T ′ is n or pm whichever is the least

where n is the order of the system and m is the number of outputs.

3) Form matrices A′ and B′ shown in Eq. (16) with their elements computed using the

recursive formula, Eq. (7).

4) Use Eq. (19) to compute the feedback control parameters αc1, . . . , α
c
p and βc1, β

c
2, . . . , β

c
p.

3.2 Direct Algorithm

One may be interested in computing the feedback control parameters shown in Eq. (19)

directly from input and output data. That is to bypass the first three steps of the indirect

method for a predictive control design. To achieve the goal, first start with Eqs. (12) and

(13), and form the following input and output matrices.

Ys(k) = [ ys(k) ys(k + 1) · · · ys(k +N − 1) ]

=


y(k) y(k + 1) · · · y(k +N − 1)

y(k + 1) y(k + 2) · · · y(k +N)
...

...
. . .

...
y(k + s− 1) y(k + s) · · · y(k + s+N − 2)


Us(k) = [us(k) us(k + 1) · · · us(k +N − 1) ]

=


u(k) u(k + 1) · · · u(k +N − 1)

u(k + 1) u(k + 2) · · · u(k +N)
...

...
. . .

...
u(k + s− 1) u(k + s) · · · u(k + s+N − 2)



(20)
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and
Yp(k − p) = [ yp(k − p) yp(k − p+ 1) · · · ys(k − p+N − 1) ]

=


y(k − p) y(k − p+ 1) · · · y(k − p+N − 1)

y(k − p+ 1) y(k − p+ 2) · · · y(k − p+N)
...

...
. . .

...
y(k − 1) y(k) · · · y(k +N − 2)


Up(k − p) = [up(k − p) up(k − p+ 1) · · · up(k − p+N − 1) ]

=


u(k − p) u(k − p+ 1) · · · u(k − p+N − 1)

u(k − p+ 1) u(k − p+ 2) · · · u(k − p+N)
...

...
. . .

...
u(k − 1) u(k) · · · u(k +N − 2)



(21)

where N is an integer. The data matrices Us(k) and Ys(k) include the input and output

data information up to the data point k + s+N − 2, whereas Up(k − p) and Yp(k − p) have

data up to k +N − 2.

Application of Eq. (11) yields

Ys(k) = T Us(k) + BUp(k − p) +AYp(k − p) (22)

or

Ys(k) =
[
T B A

]


Us(k)

Up(k − p)

Yp(k − p)

 (23)

Let the integers s and N be chosen large enough in the sense that the matrix Us(k) of

dimension sr×N with sr ≤ N has rank sr, the matrix Up(k− p) of dimension pr×N with

pr ≤ N has rank pr, and the matrix Yp(k − p) of dimension pm × N with pm ≤ N has

rank pr. Again, r means the number of inputs and m represents the number of outputs.

Equation (22) produces the following least-squares solution

[
T B A

]
= Ys(k)


Us(k)

Up(k − p)

Yp(k − p)


†

(24)
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where † means the pseudo-inverse. From the triple [ T , B, A ], it is easy to extract the

triple [ T ′, B′, A′ ] defined in Eq. (16) for computing the control parameters αc1, . . . , α
c
p

and βc1, β
c
2, . . . , β

c
p using Eq. (19).

Equation (22) has some redundant equations which may be eliminated to directly

compute the triple [ T ′, B′, A′ ] without computing [ T , B, A ]. Indeed, let us set

s = q + p

and delete the first qm rows of Eq. (24). Equation (24) reduces to

[
T ′′ B′ A′

]
= Yp(k + q)


Uq+p(k)

Up(k − p)

Yp(k − p)


†

(25)

where T ′′, B′, and A′ are obtained by deleting the first qm rows of T and B, and A respec-

tively. The matrices B′ and A′ are identical to those defined in Eq. (16). The matrix T ′′ has

more columns than T ′ defined in Eq. (16), i.e.,

T ′ = T ′′(:, 1 : qr) (26)

Now, the data matrices become

Yp(k + q) = [ yp(k + q) yp(k + q + 1) · · · yp(k + q +N − 1) ]

=


y(k + q) y(k + q + 1) · · · y(k + q +N − 1)

y(k + q + 1) y(k + q + 2) · · · y(k + q +N)
...

...
. . .

...
y(k + q + p− 1) y(k + q + p) · · · y(k + q + p+N − 2)


Uq+p(k) = [uq+p(k) uq+p(k + 1) · · · uq+p(k +N − 1) ]

=


u(k) u(k + 1) · · · u(k +N − 1)

u(k + 1) u(k + 2) · · · u(k +N)
...

...
. . .

...
u(k + q + p− 1) u(k + s) · · · u(k + q + p+N − 2)



(27)

At this moment, all input and output data are measured from the open-loop system, before

any control action begins.
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From the triple [T ′′,B′,A′], the control law from Eq. (19) can be applied to computed

the control gain parameters,

u(k) = −first r rows of
{
[T ′′(:, 1 : qr)]†

}
[B′up(k − p) +A′yp(k − p)]

= αc1y(k − 1) + αc2y(k − 2) + · · ·+ αcpy(k − p)

+βc1u(k − 1) + βc2u(k − 2) + · · ·+ βcpu(k − p) (28)

3.2.1 Computational Steps

The computation steps involved in the direct method for predictive control design are:

1) Form the data matrices Yp(k + q) and Uq+p(k) defined in Eq. (27), and Yp(k − p) and

Up(k − p) defined in Eq. (21). The integer p must be chosen such that pm ≥ n where

m is the number of outputs and n is the anticipated system order. The integer q ≥ p

is chosen such that the Hankel matrix defined in Eq. (17) has rank n.

2) Compute the least-squares solution, Eq. (25), to determine T ′′, B′, and A′.

3) Use Eq. (28) to compute the feedback control parameters αc1, . . . , α
c
p and βc1, β

c
2, . . . , β

c
p.

The direct method seems simpler in computation. Nevertheless, it by no means implies

that the direct method will save time in computation compaired to the indirect method which

includes the computation of the observer Markov (ARX) parameters. The reason is that the

direct method involves a larger matrix manipulation in computing T ′′, B′, and A′ from

Eq. (25). In addition, there is no theoretical proof that the direct method is more robust

than the indirect method with the presence of system uncertainties.
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4 Observable-Canonical Form Representation

Some researchers may be interested in knowing the corresponding state-space representation

for the techniques described earlier. There are cases where a state-space model is very useful

in conducting controller designs particularly for those engineers who have strong background

in modern control theory. It also provides them with flexibilities for real-time implementa-

tion.

Given Eq. (1) or equivalently Eq. (6), there is a direct way of determining the system

matrices for a state-space representation. Let us choose the state variables as

x1(k) = y(k)− β0u(k)

x2(k) = y(k + 1)− β0u(k + 1)− β(1)
0 u(k)

x3(k) = y(k + 2)− β0u(k + 2)− β(1)
0 u(k + 1)− β(2)

0 u(k)

...
...

...

xp(k) = y(k + p− 1)

−β0u(k + p− 1)− β(1)
0 u(k + p− 2)−, · · · ,−β(p−1)

0 u(k)

(29)

where each vector xi(k), i = 1, 2, . . . , p, has length m, which is the number of outputs.

The set of equations in Eq. (29) yields

x1(k + 1) = x2(k) + β
(1)
0 u(k)

x2(k + 1) = x3(k) + β
(2)
0 u(k)

x3(k + 1) = x4(k) + β
(3)
0 u(k)

...
...

...

xp(k + 1) = y(k + p)

−β0u(k + p)− β(1)
0 u(k + p− 1)−, · · · ,−β(p−1)

0 u(k + 1)

= α1xp(k) + α2xp−1(k) + · · ·+ αpx1(k) + β
(p)
0 u(k)

(30)

where the last equation is obtained by using Eqs. (1) and (9). The above equations can be
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arranged in matrix form as

x(k + 1) = Ax(k) +Bu(k) (31)

y(k) = Cx(k) +Du(k) (32)

where

x(k) =



x1(k)
x2(k)

...
xp−1(k)
xp(k)

 , A =


0 I 0 · · · 0 0
0 0 I · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 I
αp αp−1 αp−2 · · · α2 α1

 ,

B =



β
(1)
0

β
(2)
0
...

β
(p−1)
0

β
(p)
0

 , C = [ I 0 · · · 0 0 ] ,

D = β0

(33)

Recall that p is the number of available observer Markov parameters, m the number of

outputs and r the number of inputs. The state vector x becomes an mp × 1 vector, the

state matrix A an mp×mp matrix, the input matrix B an mp× r matrix, and the output

matrix C an m ×mp matrix. A state-space model in the form of Eq. (33) is said to be in

the canonical-form.

The observability matrix of the canonical-form realization is

Q =


C
CA
CA2

...
CAp−1

 =


I 0 0 · · · 0
0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

 (34)

The matrix Q is an identity matrix which is obviously nonsingular. It implies that the ob-

servability matrix Q has a rank of mp and thus all states in the state vector x are observable.

Are they controllable as well? First, form the controllability matrix

H = [B AB A2B · · · As−1B ]
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=



β
(1)
0 β

(2)
0 β

(3)
0 · · · β

(s)
0

β
(2)
0 β

(3)
0 β

(4)
0 · · · β

(s+1)
0

β
(3)
0 β

(4)
0 β

(5)
0 · · · β

(s+2)
0

...
...

...
. . .

...

β
(p)
0 β

(p+1)
0 β

(p+2)
0 · · · β

(s+p−1)
0


(35)

where Eq. (9) has been used to form this matrix. The controllability matrix H is a pm× rs

Hankel matrix formed from system Markov parameters (pulse response sequence). The

maximum rank of H is n which is the order of the system. Assume that the integer s is

chosen large enough, i.e., rs ≥ pm. If pm = n, the rank of H is identical to that of Q.

As a result, the state-space representation, Eq. (33), is a minimum realization from given

observer Markov parameters α1, α2, . . . , αp, β0, β1, . . . , βp. A state-space representation is a

minimum realization if and only if it is controllable and observable, i.e., the state matrix is

the minimum order.

The maximum order of the model, Eq. (33), is mp which is the dimension of the

realized state matrix A. If the number p is chosen such that mp is larger than the order of

the system, then the triplet [A, B, C] is not a minimum realization. This is because the

canonical-form, Eq. (33), is observable (the rank ofQ is pm), but not controllable (the rank of

H is less than pm). In this case, some of the states in the state vector x are not controllable.

In general, the order of a system under test is not known a priori. The number mp tends to

be chosen significantly larger than the “effective” order of the system to accommodate the

measurement noise and system uncertainties. “Effective” here means the part of the model

that can be excited by the inputs and measured by the outputs. A state-space model in the

form of Eq. (33) is thus named to be in the observable canonical-form.

One may be interested in knowing the observer which makes the state matrix become
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deadbeat in certain number of time steps. First, recall the matrices α
(0)
1 , α

(1)
1 , α

(2)
1 , . . . , α

(p−1)
1

defined in Eq. (10). The following observer gain matrix

G =



α
(0)
1

α
(1)
1

...

α
(p−2)
1

α
(p−1)
1


(36)

will result in

(A+GC)p =



α
(0)
1 I 0 · · · 0 0

α
(1)
1 0 I · · · 0 0

...
...

...
. . .

...
...

α
(p−2)
1 0 0 · · · 0 I

α
(p−1)
1 + αp αp−1 αp−2 · · · α2 α1



p

= 0 (37)

In other words, the observer gain G will bring the observer state matrix A+GC to zero in p

steps. The matrix G may be used to estimate the state vector x for full state feedback control

designs. For a system with significant uncertainties, the deadbeat observer will converge to

the steady state Kalman filter under certain conditions regarding the data length and the

choice of p.

Careful examination of the definition for the state vector, Eq. (29), and the predictive

output equation, Eq. (11), reveals that

x(k) = Boup(k − p) +Aoyp(k − p) (38)
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where Bo is a pm× pr matrix and Ao is a pm× pm matrix,

Bo=B(1 : pm, :)=


βp βp−1 · · · β1

β(1)
p β

(1)
p−1 · · · β

(1)
1

...
...

. . .
...

β(p−1)
p β

(p−1)
p−1 · · · β

(p−1)
1



Ao=A(1 : pm, :)=


αp αp−1 · · · α1

α(1)
p α

(1)
p−1 · · · α

(1)
1

...
...

. . .
...

α(p−1)
p α

(p−1)
p−1 · · · α

(p−1)
1



(39)

Note that the state vector has size pm× 1. Equation (38) signifies the relationship between

the state vector and the input and output data. It implies that the state at time step k can

be estimated from the past p input and output data. This provides the basis for predictive

control designs for a system represented by a state-space model.

4.1 Deadbeat Predictive Control Gain

Given a state-space representation, there are many ways to design a feedback law to control

the system. Common methods include optimal control design, pole placement technique,

virtual passive technique, etc. Here, a deadbeat feedback design similar to that discussed

earlier will be introduced.

With some algebraic manipulations, Eq. (31) produces

x(k + 1) = Ax(k) +Bu(k)

x(k + 2) = A2x(k) + [AB B ]

 u(k)

u(k + 1)


...

...
...

x(k + q) = Aqx(k) + T ′uq(k) (40)
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where

uq(k) =



u(k)

u(k + 1)

...

u(k + q − 1)

 (41)

and

T ′ = [Aq−1B Aq−2B · · · B ]

=


β

(q)
0 β

(q−1)
0 · · · β

(1)
0

β
(q+1)
0 β

(q)
0 · · · β

(2)
0

...
...

. . .
...

β
(q+p−1)
0 β

(q+p−2)
0 · · · β

(p)
0

 (42)

The matrix T ′ is an n× qr controllability matrix with n being the order of the system and

r the number of inputs. The integer q must be chosen such that qr ≥ n to assure that the

matrix T ′ has rank of n. Note that T ′ shown in both Eqs. (16) and (42) are identical.

Equation (40) shows that the state x(k+q) at time k+q becomes zero when the input

series u(k), u(k + 1), . . . , u(k + q − 1) is given by

uq(k) = −[T ′]†Aqx(k) =⇒ x(k + q) = 0 (43)

which clearly implies that the input u(k) at time k is

u(k) = −Gcx(k)

= −{first r rows of [T ′]†}Aqx(k) (44)

Equation (44) gives a state-feedback controller that drives the state x(k) at time step k to

zero after q time steps. One straightforward method of computing the gain matrix Gc is first

to identify the set of system matrices A, B, C, and D from input and output data, and then

compute the gain matrix from Eq. (44).
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Substituting Eq. (38) for x(k) into Eq. (44) yields

u(k) = −{first r rows of [T ′]†}Aq{Boup(k − p) +Aoyp(k − p)}

= αc1y(k − 1) + αc2y(k − 2) + · · ·+ αcpy(k − p)

+βc1u(k − 1) + βc2u(k − 2) + · · ·+ βcpu(k − p) (45)

The control laws obtained from Eq. (19) and Eq. (45) should be identical. This implies

B′ = AqBo and A′ = AqAo

or

B(qm+ 1 : qm+ pm, :) = AqB(1 : pm, :)

A(qm+ 1 : qm+ pm, :) = AqA(1 : pm, :)
(46)

This result provides an interesting connection between the state matrix A and the submatri-

ces of A and B defined in Eq. (13). It should be not surprised because they are all computed

from the observer Markov parameters α1, α2, . . . , αp, β0, β1, . . . , βp.

4.1.1 Computational Steps

The observable-canonical form representation for the predictive control design is summarized

in the following

1) Use any system identification (batch or recursive) technique to determine the open-loop

observer Markov parameters (ARX) parameters α1, . . . , αp, and β0, β1, . . . , βp, before

the control action is turned on.

2) Form the state-space model shown in Eqs. (31) and (32) with its system matrices

A,B,C, and D defined in Eq. (33), and the corresponding observer gain matrix defined

in Eq. (36).
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3) Compute matrices Ao and Bo shown in Eq. (39) with their elements computed using

the recursive formula, Eq. (7).

4) Calculate the control gain matrix Gc defined in Eq. (44) using the controllability matrix

shown in Eq. (42) with a given integer q. The integer q must be large enough so that

pr ≥ n where r is the number of inputs and n is the order of the system.

5) Use Eq. (45) to compute the feedback control parameters αc1, . . . , α
c
p and βc1, β

c
2, . . . , β

c
p.

Some researchers may prefer to use the state-space representation described by the system

matrices A,B,C,D, the observer gain matrix G, and the control gain matrix Gc for real-time

implementation. The control gain Gc can be computed using any other existing methods

such as the pole placement techniques, optimal control methods, etc.

5 Feedback and Feedforward for Disturbance Input

In addition to the control input, there may be other disturbance inputs applied to the system.

Some type of disturbances comes from the known sources that can be measured. This section

addresses the predictive feedback designs including feedforward from the disturbance inputs

that are measurable.

With the disturbance input involved, the finite difference model shown in Eq. (1)

becomes

y(k) = α1y(k − 1) + α2y(k − 2) + · · ·+ αpy(k − p)

+ βc0uc(k) + βc1uc(k − 1) + βc2uc(k − 2) + · · ·+ βcpuc(k − p)

+ βd0ud(k) + βd1ud(k − 1) + βd2ud(k − 2) + · · ·+ βdpud(k − p) (47)
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where the subscripts c and d are used to signify the corresponding quantities associated

with the control input and the disturbance input, respectively. Accordingly, Eq. (11) can be

rewritten as

ys(k) = Tcucs(k) + Tduds(k) + Bcucp(k − p) + Bdudp(k − p) +Ayp(k − p) (48)

where

ucs(k) =


uc(k)

uc(k + 1)
...

uc(k + s− 1)

 , uds(k) =


ud(k)

ud(k + 1)
...

ud(k + s− 1)

 ,

ucp(k − p) =


uc(k − p)

uc(k − p+ 1)
...

uc(k − 1)

 , udp(k − p) =


ud(k − p)

ud(k − p+ 1)
...

ud(k − 1)



(49)

and

Tc =


βc0
β

(1)
c0 βc0
...

...
. . .

β
(s−1)
c0 β

(s−2)
c0 · · · βc0

 , Td =


βd0

β
(1)
d0 βd0
...

...
. . .

β
(s−1)
d0 β

(s−2)
d0 · · · βd0



Bc =


βcp βc(p−1) · · · βc1
β(1)
cp β

(1)
c(p−1) · · · β

(1)
c1

...
...

. . .
...

β(s−1)
cp β

(s−1)
c(p−1) · · · β

(s−1)
c1

 , Bd =


βdp βd(p−1) · · · βd1

β
(1)
dp β

(1)
d(p−1) · · · β

(1)
d1

...
...

. . .
...

β
(s−1)
dp β

(s−1)
d(p−1) · · · β

(s−1)
d1



(50)

In Eq. (48), the subscripts c and d mean the quantities resulting from the control input and

the disturbance input, respectively. Equations (49) and (50) show that the mathematical

forms for the control input and the disturbance input are identical. However, the control

input is changeable but the disturbance input is not.

Using the same concept as discussed earlier, let us assume that the control action starts

at the time step k and hopefully ends at k+ q. This assumption is possible in theory for the

noise-free case without disturbances. It is impossible for the case with random uncorrelated
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disturbances. However, it is used here to obtain a stable feedback design. Equation (48)

thus becomes

yp(k + q) = T ′c ucq(k) + T ′dudq(k) + B′cucp(k − p) + B′dudp(k − p) +A′yp(k − p) (51)

where
T ′c = T (qm+ 1 : qm+ pm, 1 : qrc)

T ′d = T (qm+ 1 : qm+ pm, 1 : qrd)

B′c = Bc(qm+ 1 : qm+ pm, :)

B′d = Bd(qm+ 1 : qm+ pm, :)

A′ = A(qm+ 1 : qm+ pm, :)

(52)

Note that T ′c is a pm × qrc matrix where rc is the number of control inputs and T ′d is a

pm × qrd matrix where rd is the number of disturbance inputs. It is unrealistic to predict

any future disturbance signal beyond time step k + q, assume that the disturbance signal is

predictable. This statement can be clearly justified by using the state-space representation

approach similar to that shown in Eqs. (40) to (44).

For simplicity, assume that the goal of the control action is to minimize the output due

to the disturbance. From Eq. (51), the control input starting from time k, which satisfies

the following equation

ucq(k) = −[T ′c ]†{T ′dudq(k) + B′cucp(k − p) + B′dudp(k − p) +A′yp(k − p)} (53)

will ideally bring the output to zero after q time steps. This control law requires knowledge

of the future disturbance beyond the current time k, i.e., udq(k) defined in Eq. (49) with

s = q+p. If the disturbance is uncorrelated, it is impossible to make any precdiction. Thus,

the control action should be

ucq(k) = −[T ′c ]†{B′cucp(k − p) + B′dudp(k − p) +A′yp(k − p)} (54)
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which will not bring the output response to zero after the q-step control action but minimize

it. That is the best one can do for a unknown disturbance sequence.

The first r rows of Eq. (54) provides the control law for the input at any the time k

uc(k) = −{first r rows of [T ′c ]†}{B′cucp(k − p) + B′dudp(k − p) +A′yp(k − p)}

= αc1y(k − 1) + αc2y(k − 2) + · · ·+ αcpy(k − p)

+βcc1uc(k − 1) + βcc2uc(k − 2) + · · ·+ βccpuc(k − p)

+βcd1ud(k − 1) + βcd2ud(k − 2) + · · ·+ βcdpud(k − p) (55)

In addition to the control feedback, the control law shown in Eq. (55) includes the feedforward

due to the past disturbance time history. Equation (55) may be called the finite-difference

model for the feedback and feedforward predictive controller. Although the control law

developed in this section is for the purpose of damping out the output response, it can be

easily enhanced to follow a desired output response.

6 Computational Steps

The indirect method for the predictive control design with feedback and feedforward is

summarized as follows.

1) Use any system identification (batch or recursive) technique to determine the open-

loop observer Markov parameters (ARX parameters), α1, . . . , αp, βc0, βc1, . . . , βcp, and

βd0, βd1, . . . , βdp, before the control action is turned on.

2) Compute the system Markov parameters (pulse response sequence) for the map from

the control input to the system output with the recursive formula, Eq. (8), and form
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the Toeplitz matrix T ′c shown in Eq. (52). The integer q must be properly chosen such

that the rank of T ′c is n or pm whichever is the least where n is the order of the system

and m is the number of outputs.

3) Form matrices A′, B′c and B′d shown in Eq. (52) with their elements computed using

the recursive formula, Eq. (7). One may first compute the combined B′ from Eq. (7)

which include the control input and the disturbance input, and then separate them

into two pieces, i.e., B′c and B′d.

4) Use Eq. (55) to compute the feedback control parameters αc1, . . . , α
c
p and βcc1, β

c
c2, . . . , β

c
cp,

and the feedforward parameters βcd1, β
c
d2, . . . , β

c
dp.

Although this section only describes the indirect method for computing feedback and feed-

forward parameters for the system with both control and disturbance inputs. The same

approach is applicable for the other methods presented in this paper.

6.1 Closed-Loop Representation

In order to characterize the closed-loop response, the closed-loop frequency response func-

tion or state-space representation is commonly needed. The first step is to integrate the

two finite difference models for the open-loop system and its predictive controller together.

Equation (47) together with Eq. (55) forms the closed-loop finite difference model, I −βc0
0 I

 y(k)

uc(k)

=
 α1 βc1

αc1 βcc1

 y(k − 1)

uc(k − 1)

+ · · ·+
 αp βcp

αcp βccp

 y(k − p)
uc(k − p)



+

 βd0

0

ud(k) +

 βd1

βcd1

ud(k − 1) + · · ·+
 βdp

βcdp

ud(k − p)
(56)
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or equivalently,

v(k) = ᾱ1v(k − 1) + ᾱ2v(k − 2) + · · ·+ ᾱpv(k − p)

+ β̄0ud(k) + β̄1ud(k − 1) + β̄2ud(k − 2) + · · ·+ β̄pud(k − p) (57)

where

v(k) =

 y(k)

uc(k)

 , ᾱi =

 I βc0

0 I

 αi βci

αci βcci

 ,
β̄0 =

 I βc0

0 I

 βd0

0

 , β̄i =

 I βc0

0 I

 βdi

βcdi


(58)

for k = 1, 2, . . . ,∞, and i = 1, 2, . . . , p. The vector v(k) has the length of m+ rc where m is

the number of outputs and rc is the number of control inputs. Each matrix ᾱi has the size of

(m+ rc)× (m+ rc) and β̄i is (m+ rd)× rd where rd is the number of disturbance inputs. A

state-space representation or its corresponding frequency response function can be directly

derived from Eq. (57) for closed-loop analysis by examining its closed-loop poles and zeros.

7 Numerical Example

A simple spring-mass-damper system is used to illustrate various controllers. Several different

cases will be discussed ranging from single-input/single-output to multi-input/multi-output.

First, the noise-free case is shown and then the case with additive measurement noise is

discussed.

Consider a three-degree-of-freedom spring-mass-damper system

Mẅ + Ξẇ +Kw = u
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where

M =


m1 0 0

0 m2 0

0 0 m3

 , Ξ =


ζ1 + ζ2 −ζ2 0

−ζ2 ζ2 + ζ3 −ζ3

0 −ζ3 ζ3

 ,

K =


k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3

 , w =


w1

w2

w3

 , u =


u1

u2

u3


where mi, ki, ζi, i = 1, 2, 3 are the mass, spring stiffness, and damping coefficients, respec-

tively. For this system, the order of the equivalent state-state representation is 6 (n = 6). The

control force applied to each mass is denoted by ui, i = 1, 2, 3. The variables wi, i = 1, 2, 3 are

the positions of the three masses measured from their equilibrium positions. In the simula-

tion, m1 = m2 = m3 = 1Kg, k1 = k2 = k3 = 1, 000N/m, ζ1 = ζ2 = ζ3 = 0.1N − sec/m. The

system is sampled at 50Hz (∆t = 0.02sec.). Let the measurements yi be the accelerations

of the three masses, yi = ẅi, i = 1, 2, 3.

Let us consider a single-control-input, single-disturbance-input and single-output case

where the control input to the system is the force on the first mass (i.e., uc = u1), the

disturbance input is at the second mass (i.e., ud = u2), and the output is the acceleration of

the third mass (i.e., y = ẅ3) (non-collocated actuator-sensor). Therefore, the smallest order

of the ARX model p is 6 corresponding to a deadbeat observer, and the smallest value for

q is also 6 corresponding to a deadbeat controller which will bring the entire system to rest

in exactly 6 time steps if no disturbance input is present. Note that this is a non-minimum

phase system. The choice of the minimum p = q = 6 is to make the Hankel matrix formed

from the system pulse response (system Markov parameters) to have rank of 6 which is the

order of the system. This deadbeat controller is not practical because it needs excessive

control. Instead, consider the case where the controller is computed with q = 50. The
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controller computed using the indirect algorithm for this system has the form

uc(k) = −0080uc(k − 1)− 0.020uc(k − 2)− 0.023uc(k − 3)

+0.059uc(k − 4) + 0.094uc(k − 5) + 0.010uc(k − 6)

+1.048y(k − 1)− 3.819y(k − 2) + 6.404y(k − 3)

−6.785y(k − 4) + 4.173y(k − 5)− 1.603y(k − 6)

−0.058ud(k − 1)− 0.278ud(k − 2) + 0.254ud(k − 3)

−0.016ud(k − 4)− 0.192y(k − 5) + 0.288ud(k − 6)

In Fig. 1, the open-loop and closed-loop frequency response functions from the disturbance

input to the output are shown. The solid curve is the open-loop response and the dashed

curve is the closed-loop response. The peaks in Fig. 1 of the open-loop response are consid-

erably reduced (> 10 dB).

Figure 1: Open-loop and closed-loop frequency response functions (FRF)
from the disturbance input to the output

Next, we consider the case where there is an additional measurement available for

feedback control (unequal number of inputs and outputs). In addition to the acceleration of

the third mass, acceleration measurement of the second mass is also available. The direct
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transmission term in this case is non-zero. The minimum order of the ARX model is p = 3.

For comparison purpose, the control parameter is kept at q = 50. The controller in this case

is
uc(k) = −0.080uc(k − 1)− 0.294uc(k − 2) + 0.412uc(k − 3)

+
[
−0.456 4.805

]  y1(k − 1)

y2(k − 1)



+
[

0.746 0.233
]  y1(k − 2)

y2(k − 2)



+
[
−0.4557 −5.461

]  y1(k − 3)

y2(k − 3)


−4.818ud(k − 1) + 8.752ud(k − 2)− 3.8985ud(k − 3)

Note that with the additional measurements, fewer time steps (and fewer controller gains) are

required. This is a reflection of the fact that complete state estimation can now be achieved

faster with the additional sensors. All three algorithms produce identical controllers for

the noise-free cases. The frequency response functions are not shown here because they are

similar to the one shown in Fig. 1.

Let the output be added with some measurement noise so that the signal to noise

ratio is 4.5. The noise is random normally distributed. For the indirect algorithm, set the

values of p and q to p = 10 and q = 30. Although the minimum order of the the ARX model

is p = 3, the larger value is given to accommodate the measurement noise. The open-loop

and closed-loop frequency response functions from the disturbance input to the first and

second outputs are shown in Figs. 2 and 3. Again, all the peaks of the open-loop response

function are considerably reduced. Figure 3 shows the effect of the direct transmission term

at frequencies near the Nyquist frequency.

For the direct algorithm, set the values of p and q as p = 7 and q = 30. The open-loop

and closed-loop frequency response functions from the disturbance input to the first and
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Figure 2: Open-loop and closed-loop frequency response functions (FRF)
from the disturbance input to the first output for the indirect algorithm

Figure 3: Open-loop and closed-loop frequency response functions (FRF)
from the disturbance input to the second output for the indirect algorithm
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second outputs are shown in Figs. 4 and 5. Some differences can be seen from Figs. 2 and 3

for the indirect algorithm, and Figs. 4 and 5 for the direct algorithm. Nevertheless, they are

very similar although their input and output gain matrices (not shown) are quite different.

The direct algorithm takes somewhat a less value of p to achieve the same control effect.

This does not mean that the direct algorithm is computationally more efficient than the

indirect algorithm.

8 Concluding Remarks

Three novel algorithms were developed for deadbeat predictive control designs. These al-

gorithms are simple and easy to compute and so they are good candidates to be used for

real-time implementation in a micro-processor. The first algorithm (indirect method) uses

the multi-step-ahead output prediction to compute the control law. All computations are

performed recursively. The most time consuming task is the computation of the matrix

pseudo-inverse of a Hankel matrix formed by the system pulse response time history. The

Hankel matrix plays the major role of establishing the rule of selecting the identification

parameter and the control design parameter (i.e., control horizon). It also provides the

basis to establish the uniqueness of the deadbeat predictive control law. Using the multi-

step-ahead output prediction, the second algorithm (direct method) was developed combing

system identification and control law into one formulation. It computes the Hankel matrix

and other quantities directly from input and output data. This by no means implies that the

second algorithm is more robust or computationally efficient than the first one. Nevertheless,

it provides a clear insight into the fundamental structure of the deadbeat predictive control

law. The third algorithm provides the state-space representation of the deadbeat predictive

control law. It computes the deadbeat gain for observer-based full-state feedback that may
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Figure 4: Open-loop and closed-loop frequency response functions (FRF)
from the disturbance input to the first output for the direct algorithm

Figure 5: Open-loop and closed-loop frequency response functions (FRF)
from the disturbance input to the second output for the direct algorithm
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then be converted into the input and output gain used in the classical predictive control

designs. The connection between the classical state-space control law and the predictive

control law is clearly identified. Since the control gains are designed from the input-output

models, they may be adaptively tuned from on-line input and output measurements. As a

result, these controllers should be able to handle the systems with slowly time-varying dy-

namics, provided that input and output data are sufficiently rich to allow reasonable system

identification. The system dynamics may be large and complex such as open-loop unstable,

underdamped poles, etc.
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