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Summary instability waves due to their local wavelike
characteristics [4]. Tam, Seiner and Yu [5]
Near field pressure data are presented for an introduced the use of linear spatial stability
unheated jet issuing from an underexpanded  theory to describe the relationship between
sonic nozzle for two exit lip thicknesses of 0.200 screech and the large scale turbulent structure of
and 0.625 nozzle diameters. Because both the the jet.

amplitude and the frequency of the screech Seiner [6] indicates that the frequency of the
mechanism have been shown to be sensitive to most highly amplified instability wave is the

the initial nozzle exit geometry, the data same as that measured for screech. Thus, a better
presented are at nozzle operating conditions understanding of the screech mechanism can be
where screech is dominant in the acoustic derived from Schlieren investlgatlons of the Iarge
emission. Fluctuating measurements were scale structures [7, 8, 9, 10] as well as with

obtained on the nozzle exit surface as well as in acoustic measurements [9, 11, 12, 13, 14, 15].
the acoustic near field. These measurements canl he screech mechanism has been extensively
be used to better characterize the initial acoustic Studied for a variety of nozzle geometries that
shear layer excitation due to the natural screech include rectangular [8, 16, 17, 18, 19, 20, 21, 22,
feedback process. Such a characterization would23, 24, 25, 15], asymmetric [26, 20], multiple jet
be useful in the development of active control  [27, 28, 29, 30], and axisymmetric [1, 7, 31, 32,
methodologies, incorporated in the nozzle exit 33, 14].

p|ane’ that can reduce the presence of screech. Numerous investigations continue to exist_ to
reduce the presence of screech. These studies are

not purely academic: full scale studies [34] have
shown significant acoustic energy associated with
this noise mechanism causing, in some cases,

. . . sonic fatigue of airborne structures [35]. To

The acoustic emission from supersonic ShOCk'faciIitate their study of broadband shock
containing jets may be dominated by an intense 44 iated noise, Harper-Bourne and Fisher [36]
tona! component referred to as screech. SUCh_ @ introduced tabs into the initial shear layer region
domination is dependent on the thermodynamic of the jet to reduce the screech “tones.” They

operating conditions of the _nozzle and the angle also performed investigations into the effects on
of measurement. The Sem'!‘a' work qf Powe_ll the screech amplitude of an acoustic reflector

[1] described screech as being associated W|th a placed in the nozzle exit plane. Denham [37]
feedback process as follows: (a) an embryonic  yomonstrates reductions in the screech ampiitude
dlst_urbance IS shedin the_ initial She?f Iayer_ : using acoustic excitation and Norum [38] shows
region of the jet; (b) the disturbance is amplified that screech can be modified by incorporating

as it convects downstream; () the amplified slots in choked tube jets. More recently, Huang
dlstu_rbance Interacts V.V'th the shock c_eII System g o). [39] are using electrostatic microactuators
causing plume oscillation; (d) the oscillation to conirol screech.

produces sound; and (€) the sound propagates The purpose of this report is to provide data

upstream toward the nozzle exit and excites the \nioh can be used to better understand the initial

initial shear layer thus closing the feedback 100p. 50 stic shear layer excitation due to the screech
Experimental work [2, 3] suggest that freé  ¢aoqnack process. With this understanding,

shear flows contain organized wavelike structuresy, e investigators will be in a better position to

in addition to the random turbulent fluctuations. modify the screech cycle via modifications to the

Because the spatial magnitude of these structuresitial nozzle conditions.

are of orders near that of the mean flow, they are

referred to as large-scale structures and also as

Introduction



Symbols

D inside diameter of the nozzle exit

M, fully expanded Mach number based on
nozzle pressure ratio

R distance from the sensor to the nozzle
centerline

SPL sound pressure level, dB, in a 25 Hz band

(re 2QuPa)
A, acoustic wavelength of screech

Experimental Details

The experiment was conducted in the
Anechoic Noise Facility (ANF) [40] at the
NASA Langley Research Center. The interior
dimensions of the ANF are 27.5 ft by 27 ft by 24
ft high within the acoustic wedge tips. The
anechoic treatment minimally absorbs 99% of the
incident sound for frequencies in excess of 100
Hz. The ANF is capable of supplying dry
unheated air for continuous operation and the
electronically controlled valves maintain the
nozzle pressure ratio to within 0.3% of the
desired set point. All pressure transducers used
by the flow control system received daily
calibration.

The nozzle assembly consisted of a contoured

transition section connecting a 7.875 inch inside
diameter supply air pipe to a 1.500 inch inside
diameter pipe which then led to the nozzle. The
1.500 inch straight section was 26.000 inches in
length with an outside diameter of 2.250 inches.
The length of this assembly allowed minimal
interference of flanges with the natural jet
entrainment. The nozzle was convergent and
conical (5 convergence angle) with an exhaust
diameter of 1.000 inches. High precision collars
were fabricated which, when placed over the
nozzle exit, would increase the nozzle exit lip

thickness to 0.200 and 0.625 inches as indicated
in Figure 1 (shaded regions). Note that great care
was taken to minimize exterior nozzle assembly
protrusions.

The near field acoustic spectra were obtained
by a single 1/4 inch microphone and surface-
mounted transducers on the nozzle exit lip. The
microphone was located in the nozzle exit plane
and positioned 2 inches from the centerline.
Because the directivity of screech is at shallow
angles to the jet axis, the near field microphone is
located in a position at which the measurement of
screech should easily be obtained for all nozzle
pressure ratios investigated. The included angle
between the microphone and nozzle axes was
approximately & The diameter of the surface-
mounted pressure transducers were 0.095 inches
and their positions are indicated in Figure 2.

The length of the nozzle assembly created a
total pressure loss through the system. Thus,
before the experiment was conducted the total
pressure exiting the nozzle was measured and a
relationship found between the actual total
pressure and the pressure measured in the
stagnation chamber leading to the nozzle
assembly. The fully expanded Mach numbeg, M
was based on the true nozzle pressure ratio
(actual total pressure divided by the ambient
pressure) by using their isentropic relationship.

Acoustic Results

Narrowband spectra were gathered for each
sensor utilizing a Fast Fourier Transform
analyzer set to a filter bandwidth of 25 Hz and a
maximum frequency of 20 kHz. For the 0.625
inch lip thickness, 44 Mralues ranging from
1.04 to 1.90 were tested. Thirty onewlues
ranging from 1.04 to 1.64 were investigated for
the 0.200 inch lip thickness (screech does not
dominate acoustic spectra at high Mach numbers
for thinner lip configurations). The data are
presented by the desired fully expanded Mach
number. Figures 3 through 46 are for the 0.625
inch lip and figures 47 through 77 are for the



0.200 inch lip thickness. Each figure contains all 3. Cohen, J.; and Wygnanski, |.: The Evolution

sensor spectra acquired and indicated using the of Instabilities in the Axisymmetric Jet.

respective R/D position. Journal of Fluid Mechanigsvol. 176, 1987,
Presented in figures 78 through 82 are the pp. 191-219.

normalized acoustic wavelength and the 4. Tam, C. K. W.; and Morris, P. J.: The

corresponding sound pressure levels for some of Radiation of Sound by the Instability Waves

the dominant screech components. The of a Compressible Plane Turbulent Shear

wavelength was computed using the ambient Layer.Journal of Fluid Mechanigsvol. 98,

speed of sound. The data are for fundamental 1980, pp. 349-381.

frequencies and not harmonics. Figures 78 5. Tam, C. K. W.; Seiner, J. M.; and Yu, J.

through 80 are for the 0.625 inch lip and figures C.: Proposed Relationship Between

81 and 82 are for the 0.200 inch lip thickness. Broadband Shock Associated Noise and

Screech Tonedournal of Sound and
Vibration, vol. 110, 1986, pp. 309-321.

6. Seiner, J. M.: Advances in High Speed Jet

Aeroacoustics. AIAA-84-2275, 1984.

Davies, M. G.; and Oldfield, D. E. S.: Tones

From a Choked Axisymmetric Jet.

Acousticavol. 12, no. 4, 1962, pp. 257-277.

8. Poldervaart, L. J.; Vink, A. T.; and Wijands,
A. P. J.: The Photographic Evidence of the
Feedback Loop of a Two-Dimensional
Screeching Supersonic Jet of Alihe 6th
International Congress on Acousti¢s3-9,
1968, pp. 101-104.

9. Westley, R.; and Woolley, J. H.: The Near
Field Sound Pressures of a Choked Jet
During a Screech CyclAGARD Conference
Proceedingsno. 42, 1969, pp. 23-1 to 23-13.

10. Matsuda, T.; Umeda, Y.; Ishii, R.; and
Yasuda, A.: Numerical and Experimental
Studies on Choked Underexpanded Jets.
AIAA-87-1378, 1987.

11. Westley, R.; and Woolley, J. H.: The Near
Field Sound Pressures of a Choked Jet When
Oscillating in the Spinning Mode. AIAA-75-

Concluding Remarks

Near field pressure data acquired at the NASA7'
Langley Research Center are presented for a
convergent conical nozzle operating
underexpanded. Two exit lip thicknesses of
0.200 and 0.625 nozzle diameters were tested.
The fully expanded Mach number range tested
for each lip thickness was limited to the operating
conditions that screech is the dominant noise
source mechanism. Narrowband spectra are
given for a single near field microphone located
in the nozzle exit plane as well as fluctuating
pressure measurements acquired on the nozzle
exit. These measurements may prove useful in
understanding the initial acoustic jet excitation
due to the screech mechanism. Such information
would be valuable in the development of active
screech control methodologies.
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Figure 1. Position of collars (shaded regions) on the nozzle exterior
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Figure 2. Location of surface-mounted transducers on the nozzle exit lip
(dimensions in inches).
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Figure 14. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.27.
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Figure 15. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.29.
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Figure 16. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.31.
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Figure 17. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.33.
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Figure 18. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.35.
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Figure 19. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.37.
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Figure 20. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.39.
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Figure 21. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.41.
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Figure 22. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.42.
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Figure 23. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.44.
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Figure 24. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.46.

28



L{lllll'll‘lTlll IASEE RARLEAEREERARR)

100
90 IlllllllIlllLllllLlLil'llllllllllllllll
0. 5.0 100 125 150 175 200
Frequency, kHz
(a) R/ID=0.642
160

lllll]ll" VIIFIIIYYI'TTTIIIIVI

TTTT

ol

I 1.} 1 | | 11 1.1 l L1 1] l il 1L l L1 L] l 1L 11 j 11 1.1
2. 7.5 100 125 150 175 200
Frequency, kHz

(b) R/D=0.889

@
D130

5
& 120

10

Illlllll’lll‘Y']ll"[l’lfIllll

TTIT

90 l L L1l L L.l L. L l 11 11 l Ll 1L l L1 3l l ) . l 1141 l 111
5.0 7.5 100 125 150 175 200
Frequency, kHz

(c) R/D=2.000

Figure 25. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.48.
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Figure 26. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.50.
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Figure 27. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.52.
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Figure 28. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.54.

32



160 -
C
10~
=
F
10
F
o..F
o 130
o |
%120t |
HOE‘ MW\W
100 [
90'- llllllllllllllililllllllli!ll!LLllll!LL
) 25 75 100 125 150 175 200
Frequency, kHz
(a) R/D=0.642
160

IRARASEEBASEAALNRAREEREREE RRE R

TTTT

90llllLllJlLlJllllllll"lll’llllllllllllll
5.0 75 100 125 150 175 200
Frequency, kHz

160 -
150 -
F
o[-
My
o 130
.. F
m120:-
1ol
100 -

gohjlllllIIllllllll]lllllllllliilllIllil\ll

0. 25 5.0 75 100 125 150 175 200

Frequency, kHz
(c) R/ID=2.000

Figure 29. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.56.
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Figure 30. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.58.
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Figure 31. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.60.
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Figure 32. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.62.
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Figure 33. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.64.
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Figure 34. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.66.

38



LALRERARNAARSSRASAE RARRN RRRRE RARE]

90 llll‘I|l|lillllll)lLLLlLillLLLllllllill
7.5 100 125 150 175 200
Frequency, kHz

(a) R/D=0.642

TTT T I VT T T [ TR [T T[T T r[T7vT

Ll Ll l 111 l LA ) l 11 14 l il 11 I L1141l l 11 1] l IS
2.5 5.0 7.5 100 125 150 175 200
Frequency, kHz

©
o

(b) R/D=0.889

150
140
o)
3130
oy
%120

110

IRAASERARRRRAREERAREEERRRRER AN

TTTT

ol

Ll 1] ‘ N l .11 1 1 A1l l | l Ll il I Ll [ Li Ll
7.5 100 125 150 175 200
Frequency, kHz

(c) R/D=2.000

90

Figure 35. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.68.
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Figure 36. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.70.
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Figure 37. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.72.
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Figure 38. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.74.
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Figure 39. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.76.
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Figure 40. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.78.
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Figure 41. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.80.
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Figure 42. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.82.
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Figure 43. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.84.
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Figure 44. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.86.
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Figure 45. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.88.
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Figure 46. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.90.
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Figure 47. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.04.
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Figure 48. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.07.
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Figure 49. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.09.
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Figure 50. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.11.
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Figure 51. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.13.
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Figure 52. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.15.
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Figure 53. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.17.
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Figure 54. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.19.
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Figure 55. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.21.
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Figure 56. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.23.
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Figure 57. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.25.
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Figure 58. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.27.
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Figure 59. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.29.
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Figure 60. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.31.
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Figure 61. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.33.
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Figure 62. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.35.
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Figure 63. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.37.
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Figure 64. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.39.
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Figure 65. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.41.

69



AR RS AR RS RERANIRE L RERRE AR RS RE

|IllLllLlJlllllllllllLlllllllllllllllIl

|

9055, 5.0 7.5 100 128 150 175 200

Frequency, kHz
(a) R/D=0.642
160
150 F-
4o
o F
o 130
. F
U)12°-_
1o
100}
go—Jllllll]lllllllllIllllllll]lllll]lll]lll
0 100 125 150 175 200

Frequency, kHz
(b) R/D=2.000

Figure 66. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.42.
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Figure 67. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.44.
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Figure 68. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.46.
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Figure 69. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.48.
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Figure 70. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.50.
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Figure 71. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.52.
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Figure 72. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.54.
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Figure 73. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.56.
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Figure 74. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.58.

78



160

140
@
D130
T
%120

110

AR RN RANASRERARARARS RANAR RS

90 11 11 l Lt l I W 3 l il 1 L 1.1 I Li 11 l Ll 1l I L L.l
) 2.5 5.0 75 100 125 150 175 200
Frequency, kHz

(a) R/D=0.642

SRR AR R AR RAR R RERA]

Q90 N TN YN EUETE PN SRS NN W

0. 25 5.0 75 100 125 150 175 200
Frequency, kHz

(b) R/D=2.000

Figure 75. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.60.
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Figure 76. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.62.
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Figure 77. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj= 1.64
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Figure 78. Dominant screech components for 0.625 inch lip thickness nozzle
at R/D=0.642.
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Figure 79. Dominant screech components for 0.625 inch lip thickness nozzle
at R/D=0.889.

83



-
T ‘//'
3£. oo °
o ;: .'QC’ uu“"nuu
S kb .0’ neeP®
< [ .‘
2_
[ I'A\‘\AA
1B
O-L i i 1 l L A L l L 1 1 l i 1 1 I 1 L 1
1.0 1.2 1.4 1.8 18 20
Mj
(a) Normalized acoustic wavelength
170
~ 160
59
a o
3 o
Q -
1oL o™0® 08% a0
e T ' % e o
~ ~ .~ e @
% 140 — a ®
= a ® [
F 0 )
® 150l e o,
[ " e o@® e ¢ ¢
[ a
-L i i | I l 1 1 'l l 1 1 1 L 1 L
120 1.0 1.2 E— 14 1.6 IIB 20
Mj

(b) Sound pressure level

Figure 80. Dominant screech components for 0.625 inch lip thickness nozzle
at R/D=2.000.
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Figure 81. Dominant screech components for 0.200 inch lip thickness nozzle
at R/D=0.642.
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Figure 82. Dominant screech components for 0.200 inch lip thickness nozzle
at R/D=2.000.
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