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Summary

An investigation is conducted of several numerical schemes for use in the computation of two-

dimensional , spatially evolving, laminar, variable-density compressible shear layers. Schemes with various
temporal accuracies and arbitrary spatial accuracy for both inviscid and viscous terms are presented
and analyzed. All integration schemes use explicit or compact �nite-di�erence derivative operators.

Three classes of schemes are considered: an extension of MacCormack's original second-order temporally
accurate method, a third-order temporally accurate variant of the coupled space-time schemes proposed

by Rusanov and by Kutler, Lomax, and Warming (RKLW), and third- and fourth-order Runge-Kutta
(RK) schemes. The RKLW scheme o�ers the simplicity and robustness of the MacCormack schemes and
gives the stability domain and the nonlinear third-order temporal accuracy of the Runge-Kutta method.

In each scheme, stabil ity and formal accuracy is considered for the interior operators on the convection-
di�usion equation Ut + aUx = �vUxx, for which a and �v are constant. Both spatial and temporal

accuracies are veri�ed by the equation Ut = [b(x)Ux ]x as well as Ut + Fx = 0. Numerical boundary
treatments of various orders of accuracy are chosen and evaluated for asymptotic stability. Formally
accurate boundary conditions are derived for explicit sixth-order; pentadiagonal sixth-order; and explicit,

tridiagonal, and pentadiagonal eighth-order central-di�erence operators when used in conjunction with
Runge-Kutta integrators. Damping of high wave-number, nonphysical data is accomplished for all schemes
with explicit �lters, derived to tenth order on the boundaries and twentieth order in the interior. Several

schemes are used to compute variable-density compressible shear layers, where regions of large gradients
of ow-�eld variables arise near and away from the shear-layer centerline. Results indicate that in the

present simulations, the e�ects of di�erences in temporal and spatial accuracies between the schemes are
less important than the �ltering e�ects. Extended MacCormack schemes are robust but ine�cient because
of restrictive Courant-Friedrichs-Levy (CFL) limits. The third-order temporally accurate RKLW schemes

are less dissipative but have shorter run times. The Runge-Kutta integrators did not have su�cient
dissipation to be useful candidates for the computation of variable-density compressible shear layers at the

levels of resolution used in the current work.

Introduction

The numerical simulation of spatially evolving, compressible shear layers has become popular as a tool
to understand the mixing mechanisms involved in supersonic combustion. Simulationsmay involve not only
the e�ect of compressibil ity but also the presence of large gradients in density caused by disparate-mass gas

mixtures or large temperature gradients that arise from exothermic chemical reactions. In disparate-mass
gas mixtures, the Schmidt and Lewis numbers are nonunity|usually greater than 1 in one stream and

less than 1 in the other. Self-similar solutions to the laminar shear layer suggest that this nonunity gives
rise to di�erent pro�les for species and temperatures relative to the velocity pro�le. In hydrogen-nitrogen
mixing layers, vorticity occurs predominately in the low-density stream. (See ref. 1.) This phenomenon is

experimentally observed in turbulent, disparate-mass supersonic shear layers. (See ref. 2.)

Computation of compressible shear layers has been largely con�ned to gas streams that are uniform in
composition; also, the speci�c numerical method chosen has varied considerably. Soetrisno et al. (ref. 3)

use a second-order accurate, �nite-di�erence, total variation diminishing (TVD) scheme coupled with a
second-order accurate Runge-Kutta method to study two-dimensional, temporally evolving, inviscid shear
layers. Yamamoto and Daiguji (ref. 4) use either a �fth-order upwind TVD or a fourth-order monotonic

upwind-centered scheme for conservation laws (MUSCL) TVD scheme, coupled with a Crank-Nicolson
time integrator. Shu et al. (ref. 5) use various order, essentially nonoscillatory (ENO) �nite-di�erence

schemes, as well as compact central-di�erence stencils and a third-order low-storage Runge-Kutta method
on a three-dimensional shear layer. The ENO schemes are particularly useful for ows in which steep
gradients are present. Grinstein and Kailasanath (ref. 6) use a ux-corrected transport (FCT) algorithm

to investigate three-dimensional and chemical-reaction e�ects. Another method that has been useful in the
simulation of compressible ows is upwind biased di�erencing. Rai and Moin (ref. 7) use mildly dissipative

�fth-order upwind di�erences on inviscid terms and fourth-order di�erences on viscous terms together



with an implicit time integration to simulate transition and turbulence in supersonic boundary layers.

In a di�erent approach to adding dissipation, Mukunda et al. (ref. 8) use the (2-4) scheme proposed by

Gottlieb and Turkel (ref. 9), which is second-order accurate in time and fourth-order accurate in space, as

well as the compact (2-4) version of the MacCormack (ref. 10) method developed by Carpenter (ref. 11)

to study spatially evolving compressible shear layers. Lele (ref. 12) chooses a sixth-order compact central-

di�erence stencil for viscous and inviscid terms and a third-order low-storage Runge-Kutta method to

calculate temporally and spatially evolving, two-dimensional compressible shear layers. Dissipation is

added by the use of implicit �lters. (See ref. 13.) In a combination of compact �nite-di�erence and Fourier

spectral methods, Sandham and Reynolds (ref. 14) investigate the transition of a compressible shear layer;

Guillard, Mal�e, and Peyret (ref. 15) use a fully spectral scheme.

Computations may be divided into two broad categories|spatial and temporal simulations. Temporal

simulations allow the use of periodic numerical and physical boundary conditions in the streamwise

direction, which greatly simpli�es the computations. Unfortunately, they are an idealization of real shear

layers. Spatial simulations require speci�cation of both physical and numerical boundary conditions.

Recently, Carpenter, Gottlieb, and Abarbanel (ref. 16) have determined numerical boundary treatments

that preserve the accuracy of compact, tridiagonal sixth-order interior schemes on the model hyperbolic

equation Ut + aUx = 0. These treatments are also asymptotically stable with respect to time. Prior to

the work of Carpenter, researchers using the sixth-order tridiagonal stencil for the interior scheme closed

it at the boundaries so that the formal accuracy of the overall method was reduced.

Another relevant issue in the computation of compressible shear layers is numerical dissipation. In

simulations where not all the relevant length and/or time scales of the problem are being resolved,

dissipation must be added to ensure computational stabil ity. Some numerical dissipation is desirable

to remove spurious high-frequency information regardless of whether second-order derivatives are taken

once with a second-order derivative operator or twice with a �rst-order derivative operator. The source of

this high-frequency information may be intrinsic instabil ity in the scheme, the misspeci�cation of physical

boundary conditions, the \odd-even" decoupling between grid points, or insu�cient resolution (temporal

and spatial). To address this problem, some researchers have resorted to implicit (ref. 13) and explicit

�lters (refs. 17, 18, and 19). In the present work we use explicit �lters.

The goal of the present study is to generate families of schemes with arbitrarily high spatial accuracy

for both viscous and inviscid terms, coupled with explicit time integrations from second to fourth order.

Schemes are applied to highly resolved, spatially evolving, compressible shear-layer calculations devoid

of discontinuities. The accuracy, stability, and robustness of the schemes are considered with particular

attention to compressible, variable-density, nonreacting ows. Analyses of both compact and explicit

interior schemes have been provided, as well as a variety of choices for boundary closures and explicit �lters.

Stability is considered not only through Von Neumann analysis but also through matrix analysis of various

boundary and interior treatments. The schemes examined are the following: extended MacCormack-type

schemes, a new variant of the schemes presented by Rusanov (ref. 20) and by Kutler, Lomax, and Warming

(refs. 21, 22, and 23) (RKLW), and Runge-Kutta (RK) schemes.

Numerical Method

The governing equations are solved in conservative form with the SPARK2D (ref. 24) code and may be

written as

@U

@t
+

@F(U)

@x
+

@G(U)

@y
=H (1)

2



where

U =

2
6664

�

�u

�v

�e0
�Yi

3
7775 F =

2
6664

�u

�uu � �xx
�uv � �yx

(�e0 � �xx)u� �xyv + qx
�uYi + � ~uiYi

3
7775

G =

2
6664

�v

�uv � �xy
�vv� �yy

(�e0 � �yy)v � �yxu + qy
�vYi+ � ~viYi

3
7775 H =

2
6664

0

0
0

0
0

3
7775

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(2)

� is the density; u is the streamwise velocity; v is the transverse velocity; ��� is the Newtonian stress
tensor; e0 is the total internal energy; q� is the heat ux vector; Yi is the species mass fraction; and ~ui
and ~vi are streamwise and transverse components of the di�usion velocity, respectively. Roman indicies
(e.g., i) correspond to the species index, whereas Greek ones (e.g., �) correspond to spatial indicies.

Throughout this text, the inviscid derivative operators are those used to di�erentiate F and G, whereas
viscous derivatives are those used to generate derivative terms in the expressions for the stress tensor, heat
ux vector, and di�usion velocity.

In the �nite-di�erence schemes considered here, for constant grid spacing �x, the spatial derivative of
a function f (f0 = fx), is given in matrix form as

Pfx =
1

�x
Qf

fx =
1

�x
P�1Q

f =
1

�x
Af

9>>>>>>>=
>>>>>>>;

(3)

To avoid the increased operation count necessary to invert large bandwidth matrices, the bandwidth of the
matrix P is not considered operationally to be larger than pentadiagonal. Determination of the speci�c
centered-di�erence stencil is accomplished by writing

� � � + �f 0i�2 + �f 0i�1 + f 0i + �f 0i+1 + �f 0i+2 + � � � = a
fi+1 � fi�1

�x

+ b
fi+2 � fi�2

�x

+ c
fi+3 � fi�3

�x

+ � � � (4)

where the coe�cients �; �; � � � form the matrix P; a; b; � � � form the matrix Q ; and fi and f 0i are the values
of some function and its derivative at grid point i, respectively. By de�ning the Fourier transform and the

inverse Fourier transform of the discrete function value fm with (ref. 25)

fm =
1p
2�

Z �

��
eim� bf(�) d� (5)

bf(�) = 1p
2�

1X
m=�1

e�im� fm (6)
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where � is the Fourier dual variable; if 	(�) is the approximation of the derivative of f in Fourier space or

the Fourier image of f
0
, f

0
m is given in Fourier space as

f
0
m =

1p
2� (�x)

Z �

��
eim� 	(�) bf(�) d� (7)

The �nite-di�erence stencil given in equation (4) becomes

1p
2�

Z �

��

h�
� � � + � e�2i� + � e�i� + 1 + � ei� + � e2i� + � � �

�
	(�) bf (�) d�i

=
1p
2�

Z �

��

h�
� � � � c e�3i� � b e�2i� � a e�i� + a ei� + b e2i� + c e3i� + � � �

�bf(�) d�i (8)

Consequently,

	 =
i [2a sin(�) + 2b sin(2�) + 2c sin(3�) + � � �]

[1 + 2� cos(�) + 2� cos(2�) + � � � ] (9)

With the spectral representation of f(x) written as

f(x) =
1p
2�

Z 1

�1
ei!x bf(!) d! (10)

it can be seen that f
0
(x) in Fourier space has the form

f
0
(x) = i! bf(!) (11)

If the Fourier image of the �nite-di�erence derivative operator is expanded in a Taylor series in � , coe�cients

of the stencil can be chosen to approximate the spectral derivative to some desired accuracy (i.e., 	 � i�).

For an arbitrarily skewed stencil, the stencil and its Fourier image are given by

� � � + �Lf
0
i�2 + �Lf

0
i�1 + f 0i + �Rf

0
i+1 + �Rf

0
i+2 + � � � =

�fi

�x

+
aLfi�1 + aRfi+1

�x

+
bLfi�2 + bRfi+2

�x

+
cLfi�3 + cRfi+3

�x
+ � � � (12)

and

	 =

n
[� + (aR + aL) cos(�) + (bR + bL) cos(2�) + (cR + cL) cos(3�)+ ���]
+ i[(aR � aL) sin(�)+ (bR � bL) sin(2�)+ (cR � cL) sin(3�)+ ���]

o
n
[1 + (�R + �L) cos(�)+ (�R + �L) cos(2�)+ ��� ]
+ i[(�R � �L) sin(�) + (�R � �L) sin(2�)+ ��� ]

o (13)

where the subscripts L and R are used to denote left and right.
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Finally, for predictor-corrector dissipative schemes (ref. 16), we have

� � � + �f 0i�2 + �f 0i�1 + f 0i + �f 0i+1 + �f 0i+2 + � � � =
Gfi

�x

�
(B � A)fi�1 + (B � A)fi+1

�x

�
(D � C)fi�2 + (D � C)fi+2

�x

�
(F � E)fi�3 + (F � E)fi+3

�x
� � � � (14)

and

	 =

n
f� 2B[cos(�) � 1] � 2D[cos(2�)� 1]� 2F[cos(3�)� 1] � ���g

+ i[2A sin(�) + 2C sin(2�) + 2E sin(3�)+ ���]

o

[1 + 2� cos(�) + 2� cos(2�) + � � �]
(15)

The predictor-corrector stencils become centered stencils for B = D = F = G = 0. All second derivatives

are taken e�ectively by successively applying a �rst derivative operator twice. A consequence of this
application is that the wave number � = � becomes neutrally stable for central di�erence schemes and

may cause a loss of stability on nonlinear problems. This wave number is sometimes referred to as the \�"
mode.

When predictor-corrector �nite-di�erence schemes are used, viscous derivatives are calculated with

explicit stencils (i.e., P = I, where I is the identity matrix, and Q = A). An explicit stencil of
(N � 1)th-order accuracy is used for the evaluation of viscous terms in the schemes when the derivatives
of F andG are calculated toNth-order accuracy. Runge-Kutta schemes use the same derivative operator

for both viscous and inviscid derivatives. Further discussion of the derivation of the stencils is contained
in appendix A.

Extended MacCormack Schemes

In 1969, MacCormack (ref. 10) introduced a two-stage numerical scheme for compressible ows with

a predictor stage followed by a corrector stage. The scheme is second-order accurate in both space and
time and is widely applicable, in part, because of its simplicity and robustness. Details of the method
can be found in many places (refs. 26 to 29). Attempts made by Gottlieb and Turkel (ref. 9) to improve

the method increased the inviscid spatial accuracy to fourth order. This scheme has been popular among
researchers involved with highly resolved ow �elds. (See refs. 30, 31, 32, and 8.) Carpenter (ref. 11)

further modi�ed this scheme by using a compact fourth-order inviscid stencil with a third-order upwind
viscous stencil. The scheme was slightly more accurate than the Gottlieb-Turkel scheme. Bayliss (ref. 33)
extended the Gottlieb-Turkel scheme to sixth-order accuracy for the inviscid terms.

Extended MacCormack schemes take the original MacCormack scheme to arbitrary spatial accuracy in
both the inviscid and viscous terms. These schemes are obtained by using the skewed stencils (eq. (12))
to generate viscous terms in the vectors F and G, and the predictor-corrector stencils (eq. (14)) are used

to evaluate the derivatives of F and G. Symbolically, the schemes may be represented for the equation

Ut + Fx = 0 (16)

as
U �

i = Uni � ��+F n

U ��

i = U�

i � ���F �

Un+1i =
1

2
(U n

i + U ��
i )

9>>=
>>;

(17)
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where �+ and �� are the forward and backward di�erence operators and � = �t
�x is the Courant-

Friedrichs-Levy (CFL) number.

The stabil ity of the extended MacCormack schemes may be conveniently analyzed in Fourier space with
conventional Von Neumann analysis on the convection-di�usion equation Ut + aUx = �vUxx with a and
�v as constants. If 	 and �	? (where 	? is the complex conjugate of 	) are de�ned as the Fourier images

of �+ and ��, 	v and�	?v are de�ned as the Fourier images of �+
v and ��

v , the viscous derivatives;
bU

is de�ned as the Fourier transform of U n; �0 = a�t
�x

; �v = �v�t

(�x)2
is the viscous CFL number or di�usion

number; and G �
bUn+1bUn is the ampli�cation factor, then these schemes can be written as

bU�bU n
= 1� �0	� �v		

?
v

bU ��bU� = 1+ �0	? � �v	
?	v

G =
1

2

 
1 +

bU ��bU� bU
�bU n

!

9>>>>>>>>>>=>>>>>>>>>>;
(18)

The ampli�cation factor G represents the magnitude of the ampli�cation of a given frequency when
the solution is advanced one time step. Use of the letter G here should not be confused with its use in
de�ning the dissipative stencils. To determine the maximum CFL number, G may be analyzed for the

interior scheme or the ampli�cation matrix Gmay be considered for the full scheme with boundary points.
For �� � � < �, the magnitude of G must never exceed 1, or the spectral radius of G must be less than

or equal to 1; this is required for stabil ity. For the convection-di�usion equation Ut + aUx = �vUxx, the
ampli�cation factor and matrix are written as

jGj =

����12 �1 + �1 + �0	?� �v	
?	v

� �
1 � �0	� �v		?v

������ (19)

G =
1

2

�
I +

�
I � �0A� + �vA

�
A
+
v

� �
I � �0A++ �vA

+
A
�
v

��
(20)

where A+ and A� are the forward and backward inviscid matrix derivative operators and A+
v and A�

v

are the forward and backward matrix operators for the viscous derivatives.

For consistency, the explicit coe�cients must sum to zero as follows:

(F �E)+ (D �C)+ (B �A)+G+ (B +A)+ (D +C)+ (F +E) = 0 (21)

or G = �2(B + D + F ). Values of B , D, and F may be selected on the basis of their e�ect on the

dispersion, dissipation, and CFL numbers of the scheme. We have chosen to maximize the inviscid CFL
number and retain the largest viscous CFL limit possible. The coe�cients A, C , E, �, and � are chosen

to satisfy the accuracy requirement of the stencil .

Table 1 lists the coe�cients of the extended MacCormack predictor-corrector stencils and the maximum

CFL number �max for the inviscid problem (�v = 0) in the absence of boundaries. The letters E, T, and
P indicate that the matrix P is either diagonal/explicit, tridiagonal, or pentadiagonal, respectively. The
notation (2-6E) should be interpreted as second-order temporal accuracy with sixth-order spatial accuracy

for both the inviscid and viscous terms; the letter E indicates that the inviscid derivative operator is
explicit. Some confusion may arise because many schemes found in the literature do not treat viscous

terms at all and others do not retain the stated inviscid accuracy on viscous terms.
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Figure 1 presents the stability boundary of these schemes as a function of the viscous and inviscid CFL
numbers, again in the absence of boundaries. Regions in the lower left portion of the �gure represent the

stable region, whereas regions in the upper right portion are unstable. While optimizing these schemes
it was noticed that contours of the stability boundary can be dramatically altered by di�erent choices of

B , D , and F . Optimizing was done by simply scanning parameter space for combinations with desirable
stability characteristics. Each scheme can be considered as optimized, although a 5-percent improvement
may be possible. Care should be exercised in optimizing the \ipping" parameters B , D, and F because

many of the combinations share the maximum inviscid CFL limit of the scheme yet very few of this subset
have a boundary G = 1 that does not intersect the origin. The (2-8T) scheme was found to have no values

of B, D, and F for which the boundary G = 1 did not intersect the origin. In many ow �elds of interest,
the local viscous and inviscid CFL numbers are likely to lie outside the stability domain in the (2-8T)
scheme. Explicit schemes possess signi�cantly larger stability domains than their compact counterparts

because of the increased truncation error of the explicit derivative operator. Thus, the CFL limits for
compact schemes are more severe than those for multidimensional schemes. (See refs. 10 and 9.)

Note that the (2-4E) scheme di�ers from that proposed by Gottlieb and Turkel (ref. 9) where B = �A

andD = �C . If used with the explicit third-order accurate viscous derivative, the Gottlieb-Turkel scheme
has a viscous CFL limit of zero as CFL! 0. MacCormack's original scheme, (2-2E), is included in table 1
and �gure 1 for completeness. The explicit skewed viscous stencils (�L = �L = �R = �R = 0) are given

in table 2.

RKLW Schemes

Rusanov (ref. 20) derived a �nite-di�erence scheme for nonlinear hyperbolic systems that was uniformly

third-order accurate in space and time. This scheme was considered for use in the computation of
discontinuous solutions. Three spatial di�erence operators were used in its construction|mean value,

di�erence, and identity. These operators were combined with a three-stage, third-order Runge-Kutta
method. Later, Burstein and Mirin (ref. 34) derived a similar method. Because function evaluations
needed to be made on a staggered mesh, Kutler, Lomax, and Warming (refs. 21, 22, and 23) adapted

Rusanov's scheme by replacing the �rst two stages with MacCormack's scheme. Hereinafter, this scheme
is referred to as RKLW. This adaptation made the programming logic simpler and facil itated the inclusion

of a source term and the extension to multidimensions. Various investigators have applied this scheme
to both high-speed ow (ref. 35) and to meteorological ows (refs. 36, 37, and 38). Further discussion of
the RKLW schemes can be found in the textbook by Anderson, Tannehill, and Pletcher (ref. 26) and in

two papers by Yanenko et al. (refs. 28 and 29). Attempts to proceed to uniformly fourth-order schemes
for hyperbolic equations (refs. 39, 40, and 41) have been successful, but have not been used extensively,

probably because of their enormous complexity.

The proposedRKLW method is a generalization of the third-order predictor-corrector format of Kutler,
Lomax, and Warming (refs. 21, 22, and 23) to arbitrary spatial accuracy in both viscous and inviscid terms
within the temporally third-order Runge-Kutta (RK) accuracy constraints. The implementation of this

scheme for the equation Ut + Fx = 0 is solved numerically as

U �i = Uni � �1��
+F n

U ��i = U�i � �1��
�F �

U
#
i = (1 � �2)U

n
i + �2U

��

i

Un+1i =
1

3

h
Uni + 2(U

#
i � ��c)F#

i

9>>>>>>>>=
>>>>>>>>;

(22)
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where �c is the central-di�erence operator and the forward and backward di�erencing operators are the
same as those used in the extended MacCormack schemes. The values of �1 and �2 are 1 and 1/4,

respectively. The two degrees of freedom inherent in the general three-stage, third-order Runge-Kutta
formulation (ref. 42) are used to accommodate symmetric (�31 = �32 in eq. (23)), predictor-corrector

spatial di�erencing.

The traditional Runge-Kutta scheme may be represented for the equation Ut = �Fx = �FUUx = �fUx

as
U � = Un � a21�f

n
A1U

n

U �� = Un � a31�f
n
A1U

n� a32�f
�
A2U

�

Un+1 = Un � b1�f
n
A1U

n � b2�f
�
A2U

� � b3�f
��
A3U

��

9>>>=>>>; (23)

where the subscript associated with the matrix operator A represents the �nite di�erence operator used
on the relevant stage|forward, backward, or centered.

Runge-Kutta schemes are often described in terms of the Butcher array. (See ref. 42.) The Butcher

array for the present scheme is given as

0 jj

c2 j a21
j

c3 j a31 a32jjj

j b1 b2 b3

=

0 j

1 jj

j

j

j
1
2 j 1

4
1
4j

jj

j 1
6

1
6

2
3

(24)

Hence, �1 = �21 and �2 = �31 = �32. Symbols (letters) used for terms contained in the Butcher

array should not be confused with those symbols (letters) involved in the de�nition of the �nite-di�erence
coe�cients. Values of ci correspond to the time at which the ith stage is evaluated, that is, zero being the

nth stage and one being the (n+ 1)th stage.

The stabil ity of the scheme is considered in Fourier space in the linearmodel equation Ut+aUx= �vUxx
as bU �bU n

= 1 � �1�
0	 � �1�v		

?
v

bU ��bU �
= 1 + �1�

0	? � �1�v	
?	v

bU#bU n
= 1 + �2

 bU ��bU n
� 1

!

bUn+1bU n
=

1

3

"
1 + 2(1 � �0	c + �v	

c	c)
bU#bU n

#

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;

(25)

where 	c is the Fourier image of the central-di�erence stencil . For the �nal stage of this method, the

dissipative di�erence operator is used as a central-di�erence operator by setting B = D = F = 0. The
optimum values of B , D, and F are di�erent from those of the extended MacCormack schemes. They
have been chosen to maximize the size of the stability envelope under the constraint that jGj � 1 or that

the spectral radius of G is less than or equal to 1, where

8



G =
1

3
+
2

3
(1 � �0	c + �v	

c	c)

�

�
1 + �2

��
1 + �1�

0	? � �1�v	
?	v

��
1� �1�

0	 � �1�v		
?
v

�
� 1

�	
(26)

G =
1

3
I +

2

3
(I � �0Ac + �vA

cAc)

�

�
I + �2

��
I � �1�

0A� + �1�vA
�A+

v

��
I � �1�

0A+ + �1�vA
+A�

v

�
� I

�	
(27)

Table 3 summarizes the RKLW schemes. Viscous stencils are the same as those used in the extended

MacCormack schemes. (See table 2.) Figure 2 presents the stabil ity boundary of these schemes in the
absence of boundaries. As for the extended MacCormack schemes, explicit schemes have less restrictive
CFL bounds than the compact schemes with the same spatial order of accuracy, and increasing the order

of accuracy of the spatial operator reduces the stability domain. The (3-2E) scheme is the analog of the
original MacCormack scheme with the Runge-Kutta integrator. By simply setting B = D = F = G = 0,

the RKLW scheme becomes the third-order Runge-Kutta scheme. Both RKLW and its corresponding
third-order Runge-Kutta method require three storage locations (3M) as opposed to the low-storage (2M)
method proposed by Williamson (ref. 43).

Runge-Kutta Schemes

A signi�cant portion of direct numerical simulations (DNS) and well-resolved model-free simulations

of compressible ows have used a Runge-Kutta method. Unlike the extended MacCormack and RKLW
schemes, space and time are not coupled in the numerical method. A commonly used Runge-Kutta method
is the three-stage, third-order, low-storage scheme (ref. 43). Combinedwith a sixth-order, compact central-

di�erence operator, this method has been used in the simulation of compressible shear layers (ref. 12),
supersonic boundary-layer transition (ref. 44), and compressible isotropic turbulence (ref. 45).

In a more traditional approach, common variants of the third- and fourth-order Runge-Kutta time-
integration schemes are combined with explicit and compact di�erencing. The Butcher array for these is
given by

0 jj

c2 j a21
j

c3 j a31 a32j
jj

j b1 b2 b3

=

0 j

j

jjj

1

3
j

1

3

j

j
j
j

2

3
j 0

2

3
j
j
j

j

j
1

4
0

3

4

(28)

for third-order temporal accuracy and by

0 jj

c2 j a21j

c3 j a31 a32j

c4 j a41 a42 a43
j

j

j

j b1 b2 b3 b4

=

0 j

j
j

1

2
j

1

2

j

jj

1

2
j 0

1

2

j

jj

1 j 0 0 1

j

jj

j
1

6

2

6

2

6

1

6

(29)
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for fourth-order temporal accuracy. The application of these schemes to the equation Ut+ Fx = 0 is

U �
i = Un

i � a21��
cFn

U ��
i = Un

i � a32��
cF�

Un+1
i

= Un
i + (b1�

cF n
i + b2�

cF�i + b3�
cF ��

i )

9>>>=>>>; (30)

and
U�i = U n

i � a21��
cFn

U��i = U n
i � a32��

cF�

U���i = U n
i � a43��

cF��

U n+1
i = U n

i + (b1�
cF n

i + b2�
cF�i + b3�

cF ��
i + b4�

cF���i )

9>>>>>>=>>>>>>;
(31)

Analysis of the stability of the Runge-Kutta schemes can be done again with the equation

Ut + aUx = �vUxx. The ampli�cation polynomial (ref. 42) for the linear problem is given by

G = 1 �
 

nsX
i=1

bi

!
Z+

 
nsX
i=1

bici

!
Z
2 �

0@ nsX
i;j=1

biaijcj

1AZ3 +

0@ nsX
i;j;k=1

biaijajkck

1AZ4 + � � � (32)

where Z may be either (�0	c � �v	
c	c) or (�0Ac � �vA

c
A

c), depending on whether one is interested in
ampli�cation factor or matrix, and ns is the number of stages in the Runge-Kutta scheme. The schemes

are summarized in table 4. Figures 3 and 4 show the stabil ity boundary of the third- and fourth-order
Runge-Kutta/centered-di�erence schemes, determined by the ampli�cation factor. Stability appears to
be signi�cantly augmented by going to fourth-order accuracy. Figure 3 shows a characteristic of third-

and �fth-order Runge-Kutta formulas: a tendency for the stability domain to become small as the viscous
CFL! 0. These stability domains are independent of which of the two free-parameter families of three-
stage, third-order and four-stage, fourth-order Runge-Kutta schemes are chosen. All Runge-Kutta schemes

considered use centered stencils to evaluate viscous derivatives. A brief discussion of low-storage Runge-
Kutta schemes is contained in appendix B. The stabil ity of Runge-Kutta schemes applied to the Navier-

Stokes equations has been considered by Sowa (ref. 46) for second-order centered spatial derivatives and
Runge-Kutta coe�cients in which all aij = 0, except when i = j + 1. Temporal accuracy of the Runge-
Kutta schemes was veri�ed in the representative (4-8P) case. The linear equation Ut + Ux = 0 was

solved for various CFL numbers with a sinusoidal initial and boundary condition and 75 grid points per
wavelength. As table 5 shows, fourth-order temporal accuracy was recovered. Table 6 contains the error

when Ut + Ux = 0 was solved at a CFL number of 0:01 on various grids to ensure that spatial error
dominated the total error. As can be seen, eighth-order spatial accuracy was recovered. In each of these
cases, machine precision becomes a factor at high resolution.

Formal Accuracy

To determine the formal spatial and temporal accuracy of the interior schemes used in this study, the
ampli�cation factor and the linear equation Ut + aUx = �vUxx are used to derive the modi�ed equation.
(See refs. 26, 27, 47, and 48.)

The exact solution to the convection-di�usion equation can be solved with the continuous Fourier

transform as
1p
2�

Z 1

�1

�bUt + ia! bU + �v!
2 bU� ei!xd! = 0 (33)

or bUt + ia!bU + �v!
2 bU = 0 (34)
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This equation may be integrated as

ln bU
���
tn+�

tn
= �

�
ia! + �v!

2
�
tjt
n+�
tn (35)

where tn is the nth time step, to give

bU
���
tn+�

= exp
h
�

�
ia! + �v!

2
�
�
i bU jtn (36)

At � = (�t), the value of the ampli�cation factor is then

Gexact = exp
h
�

�
ia! + �v!

2
�
(�t)

i
(37)

or, in terms of � ,

Gexact = exp
h
�

�
i�

0

� + �v�
2
�i

(38)

where �
0

= a�t
�x and �v =

�v�t

(�x)2
.

The error of the numerical scheme in Fourier space can now be written as (refs. 49 and 25)

ln (Gscheme)

�t
�

ln (Gexact)

�t
=

1X

k=0

Ak(i�)
k (39)

Replacing all occurrences of �k with its transform (�i�x)k @k

@xk
(Um) yields

ln (Gscheme)

�t
�

ln (Gexact)

�t
=

1X

k=0

Ak(�x)
k @k

@xk
(Um) (40)

A symbolic manipulator may now be used to expand ln G in a power series and to solve for Ak .

The modi�ed equation of several representative schemes is now presented. Because the resulting
expressions are of excessive length, only fourth-order tridiagonal schemes are considered. The modi�ed

equation for the (2-4T) scheme is given as

@U

@t
+ a

@U

@x
� �v

@2U

@x2
=
a3

6
(�t)2

@3U

@x3

+
a2

72

h
9a2(�t)3 � 36�v(�t)

2
� 16B2(�x)2(�t)

i @4U
@x4

+
a

180

h
90�2v(�t)

2
� 90a2�v(�t)3 + 9a4(�t)4 + 80�vB

2(�x)2(�t)
i @5U
@x5

+
a

180

h
� 40a2B2(�x)2(�t)2 + (�x)4

i @5U
@x5

+ O
h
(�x)5

i
(41)

and for the (3-4T) RKLW scheme as
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@U

@t
+ a

@U

@x
� �v

@2U

@x2
= �

a2

216

h
9a

2
(�t)

3
+ 16B

2
(�x)

2
(�t)

i @4U
@x4

+
a

540

h
90a2�v(�t)

3
� 18a4(�t)4 + 80�vB

2(�x)2(�t) + 3(�x)4
i @5U
@x5

+ O
h
(�x)5

i
(42)

The term (�x)2(�t) represents the dominant space-time error term for both the extended MacCormack
and RKLW schemes. For the (3-4T) and (4-4T) Runge-Kutta schemes,

@U

@ t
+ a

@U

@x
� �v

@2U

@x2
= �

a4

24
(�t)3

@4U

@x4

+
a

180

h
30a2�v(�t)3 � 6a4(�t)4 + (�x)4

i @5U
@x5

+ O
h
(�x)5

i
(43)

and
@U

@t
+ a

@U

@x
� �v

@2U

@x2
=

a

360

h
3a(�t)4 + 2(�x)4

i @ 5U
@x5

+ O
h
(�x)5

i
(44)

As expected, no space-time coupling terms exist. In each of these schemes, the �rst occurrence of purely

viscous error terms (a = 0) is associated with @6U

@x6
. To retain the formal accuracy of a scheme with

errors (�t)p and (�x)q , the modi�ed equation must only contain terms proportional to (�t)r , (�x)s, and

(�t)R(�x)S , where r � p, s � q , and S + R � min(p; q). The accuracy of the schemes is veri�ed in
the absence of boundaries for the convection-di�usion equation. A nonlinear viscous accuracy analysis of
the schemes in the absence of boundaries is presented in appendix C and shows that viscous terms are

calculated to the same accuracy as inviscid ones and that the schemes retain their advertised accuracy on
the nonlinear problem.

Numerical Boundary Conditions

In each of the numerical schemes presented, a special procedure must be derived to evaluate the
derivatives at the computational boundary points. Because accurate interior-scheme stencils are usually

large, typically at least the derivatives at the boundary grid points require a noncentered stencil. To
preserve the formal accuracy of a spatially N th-order accurate interior scheme on hyperbolic equations,

the boundary and near-boundary points must be closed with stencils that are no less than (N � 1)th order.
(See ref. 50.) The procedure to derive higher order implicit and explicit boundary stencils with a symbolic
manipulator is straightforward. (See appendix A.) Unfortunately, schemes using these higher order (fourth-

order and greater) stencils are most often unstable (refs. 16 and 51); hence, they are inappropriate to
implement computationally. Although lower order approximations to the derivative at the boundary
points degrade the formal accuracy of the entire numerical method, from a practical standpoint, this

degradation is only observed if the boundaries are a primary source of error. Therefore, if a stable, high-
order boundary condition is available for an interior scheme, it is used. If not, the more forgiving, lower

order formulations are used. For the viscous derivatives, viscous derivative boundary conditions in this
study are closed to the same order as the viscous interior operator; Nth-order inviscid central derivative
operators are closed no greater than (N � 1)th order. An unforeseen result of this study is that closing

the boundary points of the dissipative interior stencils cannot be done by simply using boundary closures
derived for the centered-di�erence Runge-Kutta schemes. Formally, all extended MacCormack and RKLW

schemes are (2-2) schemes because of an interaction of the boundary and interior stencils of the inviscid

12



derivative operator. The problem is not relegated to only these two families of schemes; it a�ects the
(2-4) scheme by Gottlieb and Turkel and is likely to a�ect other dissipative schemes. For simplicity, the

truncation error is derived for one time step in the form of a modi�ed equation for the seven boundary
points used in the discretization of the equation Ut+ Ux = 0 with the RKLW integrator and the explicit

inviscid stencil of Gottlieb and Turkel (3-4E(GT)) RKLW as follows:

Grid point 1:

Ut + Ux = �
� (7 + 17�)

108
�x�

p
�1� (18 + 55�)

162
(�x)2 + O

h
(�x)3

i

Grid point 2:

Ut+ Ux = �
� (�5+ 7�)

108
�x�

p
�1� (�27+ 23�)

324
(�x)2 + O

h
(�x)3

i

Grid point 3:

Ut+ Ux =
� (84 + 55�)

1296
�x +

p
�1� (24+ 23�)

324
(�x)2 + O

h
(�x)3

i

Grid point 4:

Ut + Ux =
� (�4 + 17�)

432
�x +

p
�1� (�12 + 55�)

1296
(�x)2 + O

h
(�x)3

i

Grid point 5:

Ut + Ux = �
5�2

432
�x�

p
�1�2

81
(�x)2 + O

h
(�x)3

i

Grid point 6:

Ut + Ux =
�2

1296
�x +

p
�1�2

1296
(�x)2 + O

h
(�x)3

i

Grid point 7:

Ut + Ux = O

h
(�x)3

i

The initial condition is exp[i(x)] with a boundary condition exp[i(�t)]. The exact solution is
exp [i(x� t)]. No physical boundary conditions are imposed at intermediate levels of the scheme, a

technique which has been shown elsewhere (ref. 52) to be higher order. Because of the lack of cancellation
at the boundary, error terms of �rst order are generated at the �rst six grid points. The RKLW scheme
is locally �rst-order accurate near the boundary and globally second-order accurate. Use of compact

derivative operators would spread this error over the entire domain because of the fullness of the matrix A
instead of con�ning it to only the boundaries.

Table 7 shows a grid re�nement study of the (3-4E) Runge-Kutta scheme given in table 4 versus the
(3-4E) RKLW scheme given in table 3. Note that in this one-dimensional problem the domain contains

only 2 full wavelengths. Degradation from the boundaries requires signi�cant resolution; full degradation
of the RKLW scheme does not occur until resolutions on the order of 8000 grid points per wavelength.

Machine precision becomes a factor as log10 L2 < �9.
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Time-stable wall boundary stencils for the explicit fourth-order, centered �rst derivative operator are
given by

f
0

1 =
1

6�x
(�11f1 + 18f2 � 9f3 + 2f4) (45)

f
0

2 =
1

6�x
(�2f1 � 3f2 + 6f3 � f4) (46)

f
0

1 + 2f
0

2 =
1

2�x
(�5f1 + 4f2 + f3) (47)

for the compact, tridiagonal fourth-order operators. Each of these equations is third-order accurate and

results in a formally fourth-order accurate inviscid derivative operator. A stable boundary stencil for the
third-order viscous operator is given by

f
0

1 =
1

6�x
(�11f1 + 18f2 � 9f3 + 2f4) (48)

To close the boundary point f
0

nx�(i�1)
, the negative complex conjugate of the Fourier image of the

stencil at f
0

i is util ized; this means for the stencil

f 0

i = � � � +
bLfi�2

�x
+

aLfi�1

�x
+

�fi
�x

+
aRfi+1

�x
+

bRfi+2

�x
+ � � � (49)

that

f 0

nx�(i�1) = � � � �

bRfnx�(i+1)

�x
�

aRfnx�(i)

�x
�

�fnx�(i�1)

�x
�

aLfnx�(i�2)

�x
�

bLfnx�(i�3)

�x
� � � � (50)

where nx is the number of grid points. Closure stencils for the viscous interior stencils must be closed
with some care because a di�erent number of points must be closed on the two sides of the computational
domain. For the explicit stencils used in this study for the (N � 1)th-order accurate viscous derivative

operators, (N � 1) boundary points need to be closed. The forward operator requires N=2 points to be
closed at the right computational boundary and (N � 2)=2 points at the left computational boundary.

This reverses when the backward viscous interior derivative operator is used. For example, the third-order

viscous interior derivative operator is closed with expressions for f
0

1, f
0

2, f
0

nx on the forward stage and f
0

1,

f
0

nx, f
0

nx�1 on the backward stage. The most interior point of these, f
0

2 or f
0

nx�1, depending on which stage
is being used, is closed with the negative complex conjugate of the interior stencil. Further discussion of

boundary closures focuses on the computational domain containing the leftmost boundary points.

Stable, �fth-order accurate boundary stencils for the centered-di�erence stencils are given by

f
0

1 =
1

60�x
(�197f1 + 690f2� 1380f3 + 1850f4� 1575f5 + 822f6 � 240f7 + 30f8) (51)

f
0

2 =
1

60�x
(�18f1 � 35f2 + 66f3 � 30f4 + 50f5 � 57f6 + 30f7 � 6f8) (52)

f
0

3 =
1

60�x
(+3f1 � 30f2 � 20f3 + 60f4 � 15f5 + 2f6) (53)

for the explicit sixth-order derivative operator, by

f
0

1 =
1

1680�x
(�4736f1 + 14525f2 � 26250f3 + 34475f4 � 30100f5 + 16611f6� 5250f7 + 725f8) (54)
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f
0

2 =
1

720�x
(�135f1 � 844f2 + 1635f3 � 1050f4 + 575f5 � 240f6 + 69f7 � 10f8) (55)

for the compact tridiagonal sixth-order derivative, and by

f
0

1 =
1

1500�x
(�4639f1 + 14790f2 � 25746f3 + 29370f4� 20205f5 + 7674f6� 1250f7 + 6f8) (56)

f
0

2 =
1

4500�x
(�1416f1� 1979f2 + 2460f3 + 2820f4 � 2240f5� 129f6 + 684f7� 200f8) (57)

for the compact pentadiagonal sixth-order derivative operator.

Results for the compact tridiagonal sixth-order derivative operator were �rst given by Carpenter

(ref. 16). These results are referred to as 52; (52-6-52);52 schemes and are formally sixth-order accurate in

space. By using (#fp) to designate the number of free parameters and O
0

i to denote the order of accuracy
of the �rst derivative approximation to a function f at grid point i, we designate schemes with as

�
O

0(#fp)
1

; O
0(#fp)
2

; � � � � Ointerior � � � � ; O
0(#fp)
nx�1

; O
0(#fp)
nx

�
(58)

An (N � 1)th-order explicit stencil representing an approximation to f
0

requires N grid points. By
extending the stencil to (N + 2) grid points, two degrees of freedom are added through two free parameters.
The expression 52 implies a �fth-order accurate stencil with two free parameters using an eight point stencil .

To determine the minimum number of grid points needed to be closed for a centered-di�erence interior
derivative operator, the bandwidths for matrices P and Q must be considered. If the matrix with the

larger bandwidth has a bandwidth of �, then (� � 1)=2 boundary grid points must be closed on each
side of the computational domain. Where eighth-order spatial accuracy and higher is desired, additional
boundary stencils are added to allow su�cient degrees of freedom for a stable boundary closure to be

obtained. For eighth-order accuracy, four boundary grid points were needed at each end, each with four
degrees of freedom. Closure of tenth-order schemes may be done with six boundary grid points, each with

six degrees of freedom.

The boundaries are closed to lower order for the compact interior stencils by

f
0

1 + 2f
0

2 =
1

2�x
(�5f1 + 4f2 + f3) (59)

1

4
f

0

1 + f
0

2 +
1

4
f
0

3 =
3

4�x
(f3 � f1) (60)

The explicit sixth-order interior scheme uses the same three wall points as the fourth-order explicit scheme.
Both schemes are formally fourth-order accurate and are referred to as the (3,4-6-4,3) and (3,3,4-6-4,3,3)
schemes.

Fifth-order accurate boundary stencils for the �fth-order viscous operator, which are used in several

extended MacCormack and RKLW schemes, are given by

f
0

1 =
1

60�x
(�137f1 + 300f2� 300f3 + 200f4� 75f5 + 12f6) (61)

f
0

2 =
1

60�x
(�12f1 � 65f2 + 120f3� 60f4 + 20f5� 3f6) (62)

Boundary conditions for higher order schemes are contained in appendix D. Note that stable high-order

boundary stencils for one scheme are likely to be violently unstable if used with a di�erent interior scheme.
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All proposed central-di�erence stencils have been veri�ed to have bounded left-half-plane eigenvalues for
the matrix A. This condition is necessary for stability of Runge-Kutta schemes but does not guarantee

stability for Navier-Stokes calculations. Table 8 gives the value of the real part < of the eigenvalue of
the matrix A, which has the largest real component for various grid sizes. In each case, the largest real

component of any derivative operator is contained in the left half of the complex plane. This notation
indicates that the derivative operators will be time-stable.

In addition, the stability of all predictor-corrector (RKLW and extended MacCormack) schemes has

also been investigated for bounded left-half-plane eigenvalues of the matrix M =
1

2

�
A
+
A
�
v +A�

A
+
v

�
.

Several of the schemes listed have eigenvalues in the right-half-plane and are unstable; for instance, all

(2-6P), (2-8T), (3-6P), and extended MacCormack and RKLW schemes using seventh-order boundary
stencils are unstable. The value of the largest real eigenvalue of M is given in table 9. Again, these

schemes are only formally (2-2) schemes in the presence of numerical boundaries.

Filters

In reasonably well-resolved computations, numerical errors are stil l present andare introduced primarily

at high wave numbers. This can readily be seen by plotting the Fourier image of the �nite-di�erence �rst
derivative versus the spectral derivative or, as is sometimes stated, modi�ed wave number versus wave
number. (See ref. 13.) Figure 5 shows the accuracy of various centered-di�erence �rst derivatives relative

to the exact spectral derivative. It is immediately apparent that compact derivative operators (P 6= I)
are more accurate than their explicit counterparts because the representation of 	 as a polynomial is

most accurately done as a Pad�e approximate. All derivative operators have no resolution at � = � and
have marginal resolution for wave numbers near � . Nonlinear interaction of these unresolved, nonphysical
waves of various wave numbers generates higher wave-number information. When the grid is unable to

resolve the highest wave-number information, the error is introduced into low wave numbers and eventually
contaminates the solution. In addition, successive application of the �rst derivative operator to obtain a

second-order derivative results in an ampli�cation factor of unity at � = � for centered-di�erence operators;
this application facil itates what is commonly referred to as \odd-even" decoupling. To suppress these
e�ects, a numerical �lter is used to create arti�cial viscosity. Several criteria exist for a useful �lter.

Eigenvalues that correspond to low wave numbers that are resolved should be virtually untouched; the
relatively unresolved high wave numbers should be removed. Either an explicit or implicit �lter can be

chosen. Although Lele (ref. 13) uses implicit �lters up to sixth order, in this study an explicit �lter is
used because it is computationally more e�cient and its design is more conceptually straightforward. As
a �ltering function, we seek a function that is equal to 0 at � = � and is equal to 1 at � = 0. A simple

function to satisfy this need is

1� sin2n
�

2
(63)

We also desire a �lter whose accuracy may be chosen arbitrarily; the �ltering function must have a slope

that approaches 0 to the chosen order as � approaches 0. Thus a (2n)th-order �lter should have, to leading
order, 	 = �2n because � tends to zero. The magnitude of the �lter must also be equal to or less than 1.
Several discussions of �ltering approaches can be found in the literature. (See refs. 19, 18, 17, and 53.)

This discussion follows that of Eriksson (ref. 54), who derived explicit �lters of second, fourth, and sixth
order.

For the �nite-di�erence implementation of these �lters, beginwith the following de�nition of the explicit
central-di�erence operator for the (2n)th-order derivative of a function f :

f
(2n)
i =

�fi

(�x)(2n)
+ a

fi+1 + fi�1

(�x)(2n)
+ b

fi+2 + fi�2

(�x)(2n)
+ c

fi+3 + fi�3

(�x)(2n)
+ d

fi+4 + fi�4

(�x)(2n)
+ � � � (64)
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and the Fourier image given by

	 = � + 2a cos(�) + 2b cos(2�) + 2c cos(3�) + 2d cos(4�)+ � � � (65)

If consideration is given only to the second-order accurate versions of these derivatives, the negatives of

the coe�cients are given in table 10.

In Fourier space, the second-order accurate stencil of
h
@2nf

@x2n

i
, 	 = �2n + O(�2n+2), is given by

	 = (�1)n+1
�
2 sin

�

2

�2n

(66)

Table 10 shows the terms proportional to the interior stencil coe�cients for �lters of orders 2 (n = 1)

through 20 (n = 10).

If we choose a matrix �lter function D that is symmetric, then it has real eigenvalues. Because this
�lter function is based on a stencil that, when implemented with the temporal schemes discussed, has

eigenvalues that are negative, then UiDijUj is always negative. This negative value guarantees that the

�lter is completely dissipative. The �lter function is implemented on a vector U as bU = (1 + �DD)U,

where bU is the �ltered vector; �D must be given by (�1)n+12�2n for a (2n)th-order �lter. Figure 6 shows

the �lter strength in Fourier space.

To close the matrix D at the boundaries and retain symmetry, skewed stencils of order n are used with
an interior scheme of order 2n . Appendix E contains the upper left portions of the matrix D for �lters of

orders two through twenty (n = 1� 10). A formally tenth-order accurate scheme may now be closed with
no concern as to how the boundary points of the �lter a�ect the spatial operator.

Results

Because of the large number of schemes presented in the text, the number of permutations of boundary
closures possible, and run times of several hours, only a few of the schemes could be run on large grids.

The ow �eld of interest was the spatially evolving, two-dimensional, compressible nitrogen-hydrogen
shear layer. This ow �eld was chosen because regions of intense gradients occur both near and far

from the ow centerline; this makes grid allocation di�cult and places a heavy burden on the accuracy
and computational stabil ity of the numerical method. It is also an important prelude to the supersonic,
hydrogen-air, reacting shear layer found in scramjet combustors.

Inow conditions to all computations are Euler supersonic (ref. 55) and are described elsewhere in
reference 1. They represent a self-similar, supersonic, nitrogen-hydrogen shear layer with Mac = 0:45,
where Mac is the convective Mach number. The inow shear-layer thickness was �xed at 2 mm. A factor

of 100 between the shear-layer thickness and the transverse domain was used to ensure that no reections
from the inow plane returned to the shearing region before the domain ended. Forcing was applied at the

inow to the transverse velocity component in the form of a sinusoidal disturbance. Amplitudes of 4 and
2 percent of the mean velocity were applied to the fundamental and subharmonic frequencies, respectively.
No attempt was made to adjust other inow variables to preserve consistency with the governing equations

in the presence of this forcing. A result of this was a strong adjustment zone immediately downstream
of the inow plane where large amplitude disturbances propagated toward the transverse boundaries,

potentially contaminating the shearing region with spurious boundary reection. The forcing pro�le of
the transverse velocity was in the form of a near step function centered at the region of maximum velocity
gradient and falling o� precipitously at the shear-layer edge; this was found to minimize the amplitude of

the disturbances impinging on the transverse boundaries.

Principal runs were done on grids of 301 by 451 with transverse grid clustering to represent a physical

domain of 200 by 100 mm. Only about 10 percent of the grid points was contained in the high-shearing
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regions of the shear layer because of this choice. The four schemes investigated were the (2-4T), (2-6T),
(3-4T)RKLW, and (3-6T)RKLW. No Runge-Kutta schemes are listed because several attempts were made

to use the (4-4T) and (4-6T) schemes but they lacked su�cient dissipation to remain stable on the grid
densities that were run. Boundary closures for the fourth- and sixth-order schemes were implemented as

(3-4-3) and (3,4-6-4,3). These combinations were chosen because they were believed to represent the most
practical schemes for these shear-layer simulations. All computations used Euler nonreecting boundary
conditions (refs. 56 and 57) at the two transverse boundaries and supersonic Euler boundary conditions

at the outow.

Di�erences in accuracy between the �ltered (2-4T), (2-6T), (3-4T) RKLW, and (3-6T) RKLW schemes
were not striking. Flow-�eld variables like velocity, pressure, temperature, and, more importantly, the

di�erentiated quantities, vorticity and dilatation, were nearly independent of the scheme. All attempted
schemes used a tridiagonal derivative operator that was chosen to reduce the truncation error of the
derivative operator but caused a small increase in computational time due to the inversion of the matrix P.

Table 11 lists the truncation errors for various �rst-order derivatives, including several stencils not
considered in any schemes in this paper. The explicit stencils have large truncation errors relative to

the compact stencils; this is consistent with �gure 5. Truncation error is minimum for the 4T, 6T, 8P,
and 10P stencils. Further discussion of this situation is contained in appendix A. The penalty associated
with the large CFL limits of the explicit versions of the various schemes in �gures 1 through 4 is now

clear|explicit stencils have large truncation errors. Inspection of terms that require signi�cant resolution,
such as r � ! and the dilatation gradient, in well-resolved simulations could help determine the e�cacy
of sixth-, eighth-, and tenth-order accurate schemes. Schemes with spatial accuracy greater than 10 may

be readily derived by extending the current methodology; however, spectral schemes should probably be
considered as an alternative for such highly resolved computations.

Computational stabil ity was found to be more sensitive to numerical method than accuracy. Extended

MacCormack schemes are more stable than the RKLW schemes and far more stable than the Runge-Kutta
schemes. Several runs on smaller grid densities with the (4-4T) and (4-6T) schemes were completed for
nitrogen-nitrogen shear layers; this suggests that the robustness required for disparate-mass gas mixtures

is signi�cantly greater. Modifying the temporally third-order Runge-Kutta scheme with the addition of
the predictor-corrector sequence to form the RKLW family of schemes noticeably increases computational

stability. Higher order numerical boundary conditions are presented; however, they are not used because
dissipative schemes are, by de�nition, lower order at the boundary. In smaller nitrogen-nitrogen simulations
with the (4-4T)and (4-6T) schemes, the formally accurate boundary closures were found to be less forgiving

than the lower order closures and were more likely to lead to computational instabil ity on any given grid.
This conclusion is based on the closure response to the manner in which the shear layer was forced.

Inadequate resolution and minimal dissipation from both the interior and boundary stencils make the
Runge-Kutta schemes impractical for these simulations until grid densities become signi�cantly greater
than those chosen here.

The appropriate choice of schemes depends strongly on the accuracy, computational stabil ity, and CFL

limits of the method and the needs and resources of the user. For smaller grid densities where robustness
was more important than CPU time, the (2-4T) scheme was very useful. The (2-6T) scheme was slightly
slower. On larger grid sizes, such as 301 by 451, the (3-6T) RKLW scheme was preferred because it was

slightly more accurate and actually faster than the (2-4T). A comparison of run times indicates that the
RKLW schemes may be run to the same physical time as its corresponding extended MacCormack scheme

(i.e., (3-4T) RKLW versus (2-4T)), in signi�cantly less CPU time. Relative to the (2-4T) scheme, the
run times of the (2-6T), (3-4T) RKLW, and (3-6T) RKLW schemes are 1:24; 0:75, and 0:92, respectively.
The (3-8T) RKLW scheme is likely to require only 11 percent more CPU time than the (2-4T) scheme.

Although we did not attempt to run any of the explicit dissipative schemes, they have signi�cantly larger
stability envelopes, are easy to code, require no inversion of the matrix P, and are, consequently, l ikely to

be very fast. Pentadiagonal schemes were presented here up to tenth order; however, these schemes may
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not be considered competitive because of the di�culty in invertingP until the truncation-error penalty of
the explicit or tridiagonal stencils is deemed su�ciently large.

A surprising �nding in this work is the e�ect of �lters. Filtering was applied to the vector U after
all full predictor-corrector and central-di�erence stages in order to remove spurious information before

it could move to lower wave numbers. The un�ltered dilatation �eld for the dissipative (2-4T) scheme
was badly contaminated; �ltering resulted in a noticeable improvement. Figures 7(a) and 7(b) show a

section of the dilatation �eld from a 101 by 151 simulation using the (2-4T) scheme of a nitrogen-nitrogen
shear layer at Mac = 0:45, with and without �ltering. For comparison purposes, a very large 401 by 601
simulation was run with the (3-6T) RKLW scheme. (See �g. 7(c).) The �lters were found to improve the

calculations more than any di�erences in temporal or spatial order of accuracy between the schemes. All
runs were made with the tenth-order �lter to avoid lowering the order of the 52; 52-6-52 ;52 schemes. The

appropriate �lter order was chosen based on either the interior or boundary accuracy of the di�erencing
scheme. The strongest �lter that did not degrade the accuracy of either the interior or boundary points
was used (i.e. , the interior �lter order could be no less than the order of the interior scheme nor could the

�lter boundary order be less than the boundary order of the scheme). A twentieth-order �lter could then
be used with a formally tenth-order scheme.

The fact that the �lters had such a signi�cant e�ect indicates that the simulations may not have been
completely resolved. To determine whether a calculation is well resolved, a good test (in addition to
grid re�nement) is to compare �ltered and un�ltered simulations. Dilatation was a particularly sensitive

variable to resolution. The 301 by 451 calculations should be considered \model-free simulations" but not
\direct numerical simulations." Later simulations of the nitrogen-hydrogen shear layer at Mac = 0:45 on

the 401 by 601 grid were believed to be fully resolved because contours of third derivatives of the velocity
were not only smooth but also physically plausible. Model-free simulations that \run" are no guarantee
that all relevant scales of the problem are resolved.

In addition, misspeci�cation of the physical boundary conditions, which is a current topic of research,
becomes more apparent as the accuracy of the method is increased. For su�ciently re�ned grids, supersonic

Euler outow boundary conditions are clearly inadequate in the center of the shear layer. Dilatation
provides a simple tool to gauge whether the nonreecting physical boundary conditions used on the upper

and lower boundaries were, in fact, reecting. Vorticity contours give virtually no indication of this
boundary contamination.

Concluding Remarks

An investigation was conducted of several numerical schemes that o�ered high spatial and temporal

accuracy and were used in the computation of two-dimensional, spatially evolving, laminar, variable-
density compressible shear layers. Three schemes with various temporal accuracies and arbitrary spatial

accuracy of both the inviscid and viscous terms were presented and analyzed. All integration schemes
made use of explicit or compact �nite-di�erence derivative operators. Extended MacCormack schemes
retained the robustness of the original, uniformly second-order accurate method. Spatial accuracy was

enhanced, and the stabil ity limit was somewhat restricted. Extending the original MacCormack scheme
resulted in longer run times; however, simulations achieved far greater spatial resolution. The (2-4T)
scheme, used in conjunction with a tenth-order �lter, provided an accurate, computationally stable,

general purpose numerical scheme. For large, well-resolved simulations where computational stabil ity
(dissipation) was not as critical, the temporally third-order RKLW (Rusanov-Kutler-Lomax-Warming)

scheme was preferred. As with the extended MacCormack schemes, spatial accuracy of both the inviscid
and viscous terms could be chosen freely. Stability limits of the RKLW scheme were large because of
strong resemblance to the Runge-Kutta central-di�erence schemes. Computational stabil ity was achieved

by the same space-time dissipative terms in the extended MacCormack schemes. This approach made
the RKWL schemes more stable than the Runge-Kutta schemes with the same workload per stage. An

additional bene�t of the extended MacCormack and RKLW schemes was that computer codes written
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with the original MacCormack or Gottlieb-Turkel scheme may be readily upgraded to higher temporal
and spatial accuracy with minimal e�ort. Third- and fourth-order Runge-Kutta schemes, although very

accurate, possessed insu�cient dissipation for the calculations conducted in this work. Filters did not add
enough dissipation to stabilize computations with signi�cant compressibility and variable-density e�ects.

Tridiagonal di�erence operators were chosen for their low truncation error. Pentadiagonal operators are
not likely to be competitive below eighth-order accuracy.

In each of the schemes, stabil ity was considered for the interior operators in the convection-di�usion
equation Ut + aUx = �vUxx . Accuracy of the extended MacCormack and RKLW schemes was veri�ed

for the nonlinear problem Ut + Fx = 0 and the viscous problem Ut = [b(x)Ux ]x. Numerical boundary
treatments for Runge-Kutta schemes of various orders of accuracy were chosen and evaluated to be

asymptotically stable. Derived, formally accurate boundary conditions were given for explicit sixth-order,
pentadiagonal sixth-order, and explicit, tridiagonal, and pentadiagonal eighth-order central-di�erence
operators. Lower order closures were also presented and shown to be stable. All boundary closures

for the extended MacCormack and RKLW schemes were determined to destroy the formal accuracy of the
schemes; this problem is a serious limitation of these schemes and is likely to occur in many other common

dissipative schemes. Apparently, this problem has gone unnoticed for over two decades.

Damping of high wave-number, nonphysical data was accomplished for all schemes with the use of
explicit �lters. Filters have been derived up to tenth order on the boundaries and twentieth order in
the interior. These �lters use explicit �nite-di�erence stencils, are computationally e�cient, and act

predominately on high wave-number data. Results of several simulations indicate that on moderately
well-resolved simulations, the e�ects of temporal and spatial accuracy di�erences between the schemes

were less important than �ltering e�ects.

NASA Langley Research Center

Hampton, VA 23681-2199

July 31, 1997
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Appendix A

Derivation of General Stencils

To generate the centered �nite-di�erence approximation of @
kf

@xk
to Nth-order accuracy, the problem is

divided into cases with k even and odd. When k = 2n � 1 is odd, the stencil is

� � � + � [f
(2n�1)
i�4 + f
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i+4 ] +  [f
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(�x)(2n�1)
+ c

fi+3 � fi�3
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+ e

fi+5 � fi�5

(�x)(2n�1)
+ f

fi+6 � fi�6

(�x)(2n�1)
+ � � � (A1)

and its Fourier image is written as

	 =
i [2a sin(�) + 2b sin(2�) + 2c sin(3�) + 2d sin(4�) + 2e sin(5�) + � � �]

[1 + 2� cos(�) + 2� cos(2�) + 2 cos(3�) + 2� cos(4�) + � � � ]
(A2)

Expanding the sine and cosine functions as a Taylor series gives

	 = i

1X

m=1

 (2m�1)�
(2m�1) (A3)

where the functions of  (2m�1) are (a; b; � � � ; �; �; � � �). It is required that 	 = (i�)k + O(�N+k) to

approximate the spectral derivative to order N. A tenth-order pentadiagonal approximation to f
000

may be

obtained by solving six
�
N + k � 1

2

�
simultaneous equations ( 1 =  5 =  7 =  9 =  11 = 0 and  3 = �1)

in six unknowns (�; �; a; b; c, and d). Solutions do not always exist for these stencils. Similarly, when
k = 2n is even, then the stencil is
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(�x)(2n)
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and its corresponding Fourier image is given by

	 =
[� + 2a cos(�) + 2b cos(2�) + 2c cos(3�) + 2d cos(4�) + 2e cos(5�) + � � �]

[1 + 2� cos(�) + 2� cos(2�) + 2 cos(3�) + 2� cos(4�) + � � � ]
(A5)

or

	 =

1X

m=1

 (2m�2)�
(2m�2) (A6)

A tenth-order heptadiagonal approximation to fV I may be obtained by solving eight
�
N + k

2

�
simultaneous

equations ( 0 =  2 =  4 =  8 =  10 =  12 =  14 = 0 and  6 = �1) in eight unknowns (�; �; ; a; b; c; d;

and e). Again, it is required that 	 = (i�)k+ O(�N+k).
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For arbitrary skewed stencils representing the kth derivative, we may write
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and give its Fourier image by

	 =

n
[� + (aR + aL) cos(�) + (bR + bL) cos(2�) + (cR + cL) cos(3�)+ ���]
+ i[(aR � aL) sin(�)+ (bR � bL) sin(2�)+ (cR � cL) sin(3�)+ ���]

o
n
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or
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For the kth derivative, 	 must be either purely imaginary (k is odd) or purely real (k is even). We now
must solve (N + k) simultaneous equations in (N + k) unknowns:  k = (i)k (for k even),  k = (i)k�1 (for

k odd), and  l = 0; l = 0; 1; � � � ; (N + k� 1); l 6= k .

In the special case of the centered �rst derivative, let p denote the number of bands in the matrix P,
let q denote the number of bands in the matrix Q , and let n be N=2. The order of the derivative N is then

equal to p + q � 2. Simple recursion relations for the coe�cients of the matrix P can be found for p � q .
Stencils for which p > q are of marginal practical utility because they are computationally ine�cient and
have a larger truncation error than those with p = q . The following relations can be derived:

� =
(p � 1)

(p + 1)

[N � (p � 1)]

[N � (p � 3)]
(A10)

� =
(p � 3)(p� 1)

(p + 3)(p + 1)

[N � (p + 1)][N � (p � 1)]

[N � (p � 5)][N � (p � 3)]
(A11)

 =
(p � 5)(p� 3)(p� 1)

(p + 5)(p + 3)(p + 1)

[N � (p+ 3)][N � (p+ 1)][N � (p� 1)]

[N � (p� 7)][N � (p� 5)][N � (p� 3)]
(A12)

� =
(p � 7)(p� 5)(p� 3)(p� 1)

(p + 7)(p + 5)(p + 3)(p+ 1)

[N � (p + 5)][N � (p + 3)][N � (p + 1)][N � (p � 1)]

[N � (p � 9)][N � (p � 7)][N � (p � 5)][N � (p � 3)]
(A13)

and so on.

For example, the thirty-second-order (N = 32) nonadiagonal (p = 9) �rst derivative has the coe�cients
� = 48=65, � = 132=455,  = 176=3185, and � = 99=25480.
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Similar patterns can also be found in the matrix Q if p � q . For example,

a =
4

(p + 1)2
[pN � (p � 1)2](N + 2)

[N � (p � 3)]2
(A14)

If we de�ne
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9>>>>>>>>>>=
>>>>>>>>>>;
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then for p = 1 and 3,

b = ��1
[N � (p+ 1)][N � (p� 1)]

[N � (p� 5)][N � (p� 3)]
(A16)

for p = 1; 3, and 5,

c = ��2
[N � (p + 3)][N � (p + 1)][N � (p � 1)]

[N � (p � 7)][N � (p � 5)][N � (p � 3)]
(A17)

for p = 1; 3; 5, and 7,

d = ��3
[N � (p + 5)][N � (p + 3)][N � (p + 1)][N � (p � 1)]

[N � (p � 9)][N � (p � 7)][N � (p � 5)][N � (p � 3)]
(A18)

and so on.

If we consider only explicit (p = 1; � = � = � � � = 0) central-di�erence stencils, then

a = +
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n + 1
(A19)

b = �
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c = +
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for the �rst derivative operators (�rst noted by Fornberg (ref. 58)), and

� = � 2(a + b+ c + d + � � �) (A23)

a = +
2

(n + 0)(n + 1)
(A24)
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b = �
2(n � 1)

(n + 0)(n + 1)(n + 2)
(A25)

c = +
2(n � 1)(n � 2)

(n + 0)(n + 1)(n + 2)(n + 3)
(A26)

d = �
2(n � 1)(n � 2)(n � 3)

(n + 0)(n + 1)(n + 2)(n + 3)(n + 4)
(A27)

for the second derivative operators.

Truncation error of centered �rst derivative operators can also be put in general formulas. The �rst
derivative stencil truncation error for p � q may be written as

�
n! (n � r)! (r)!

Qr
i=1 (2i � 1)

(N + 1)!
Qr

i=1 [2(n � i)+ 1]
�(N+1) (A28)

If we compare two di�erent �rst derivative approximations that are each Nth-order accurate with the

subscripts a and b distinguishing the two and let ra > rb , then the ratio of the truncation errors for p � q

is given by
(n � ra)! (ra)!

Qra
i=rb+1

(2i � 1)

(n � rb)! (rb)!
Qra

i=rb+1 [2(n � i) + 1]
(A29)

As ra becomes progressively larger than rb , the ratio becomes very small; this implies, for example, that

for a twentieth-order derivative, a nonadiagonal derivative has far less truncation error than a tridiagonal
derivative. Truncation error is minimized by letting p = q (N = 4; 8; 12; � � �) or p = q � 2 (N = 2; 6; 10; � � �)

for p � q . This approach has been empirically veri�ed in cases where p � 9 for all possible values of q .
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Appendix B

Low-Storage Runge-Kutta Methods

Consider the equation Ut + Fx = 0, where F = F(U ) and Fx = FUUx = fUx . The traditional

three-stage Runge-Kutta method may be represented in the equation Ut = �Fx as

U � = Un
� a21�f

n
AUn

U �� = Un
� a31�f

n
AUn

� a32�f
�
AU �

U n+1 = Un
� b1�f

n
AUn

� b2�f
�
AU �

� b3�f
��
AU ��

9>>>=
>>>;

(B1)

where A is the matrix derivative operator and � = �x
�t . Alternatively, in Butcher array form (ref. 42), this

appears as

0 jj

c2 j a21j

c3 j a31 a32
j

j

j

j b1 b2 b3

(B2)

In some cases, storage requirements of computations should be minimized. We briey elaborate on the

Runge-Kutta scheme given by Williamson (ref. 43). He derives formulas that allow storage of only two

values (2M) of the vector U, where U has a vector length M. In the low-storage format, this becomes

qn = �fnAUn
� A1q

��

U� = U n
� B1q

n

q� = �f �AU� � A2q
n

U�� = U �
� B2q

�

q�� = �f ��AU�� � A3q
�

Un+1 = U ��
� B3q

��

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(B3)

or
U � = Un

� B1�f
n
AUn

U �� = U� � B2(�f
�
AU� � A2�f

n
AUn)

U n+1 = U�� � B3[�f
��
AU ��

� A3(�f
�
AU� � A2�f

n
AUn)]

9>>>=
>>>;

(B4)

Setting A1 to zero creates a self-starting procedure. This procedure results in a one-parameter family of

schemes. The relationship between low-storage and traditional methods may also be shown with the aid

of

0 jj

c2 j a21j

c3 j a31 a32
j

j
j

j b1 b2 b3

$

0 jj

j

B1 j B1
j

j

B1 + B2(A2 + 1) j [A2B2 + B1] B2
j

j
j

j [A2(A3B3 + B2) + B1] (A3B3 + B2) B3

(B5)
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where (A1; A2; B1; B2 ; B3) correspond to the variables (a1; a2 ; b1 ; b2 ; b3) in Williamson's work. (See ref. 43.)
Because the stability bounds of the two-parameter family of the third-order, three-stage Runge-Kutta

method are independent of the parameter choice, the analysis presented in the text is valid for the low-
storage formulas as well .

For c2 6= 0; 2=3, or c3 and c3 6= 0, we de�ne

z1 =

q�
36c42 + 36c32 � 135c22 + 84c2 � 12

�

z2 = 2c22 + c2 � 2

z3 = 12c42 � 18c32 + 18c22 � 11c2 + 2

z4 = 36c42 � 36c32 + 13c22 � 8c2 + 4

z5 = 69c32 � 62c22 + 28c2 � 8

z6 = 34c42 � 46c32 + 34c22 � 13c2 + 2

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(B6)

The one-parameter family is given by

B1 = c2

B2 =
12c2(c2 � 1)(3z2� z1) � (3z2 � z1)

2

144c2(3c2� 2)(c2 � 1)2

B3 =
�24(3c2 � 2)(c2 � 1)2

(3z2 � z1)
2
� 12c2(c2 � 1) (3z2 � z1)

A2 =
�(6c22 � 4c2 + 1)z1 + 3z3

(2c2 + 1)z1 � 3(c2 + 2)(2c2 � 1)2

A3 =
�z4z1 + 108(2c2� 1)c52 � 3(2c2 � 1)z5

24z1c2(c2 � 1)4 + 72c2z6 + 72c62(2c2 � 13)

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

(B7)

which can be veri�ed, provided that none of the respective denominators vanish. Will iamson's optimized
scheme appears in Butcher form as

0 j

j

j

j1

3
j

1

3

j

j

j3

4
j �

3

16

15

16

j

j

j

j

j
1

6

3

10

8

15

!

A1 j B1
j

j

A2 j B2
j

j
j

A3 j B3

=

0 j
1

3

j

j

j

�
5

9
j

15

16

j

j

j

�
153

128
j

8

15

(B8)

Allen Wray of the Ames Research Center (personal communication) has considered cases where c2 = 2=3.
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If an extra stage is added, a three free-parameter family of low-storage schemes may be devised. Several
schemes are given that are third-order accurate for the nonlinear problem and fourth-order accurate for

the linear problem (FU = Constant), where the stability bounds of the convection-di�usion equation are
the largest for four-stage schemes. If we set c2 = c3, then

0 j
j
j
j1

3
j

1

3

j
j

j1

3
j �

5

12

3

4

j
j
j

1 j
1

4

1

12

2

3

j
j
j
j 0

1

3

5

12

1

4

=

0 j
1

3

j
j
j

�1 j
3

4

j
j
j

�1 j
2

3

j
j

j
�1 j

1

4

(B9)

If we set c3 = c4, then
0 j

j
j
j1

4
j

1

4

j
j
j11

12
j �

11

36

11

9

j
j
j11

12
j

419

396
�

16

9

18

11j

jj
j �

1

11

3

4

17

66

1

12

=

0 j
1

4

j
j
j

�
5

11
j

11

9

j
j
j

�
11

6
j

18

11

j
j

j
�

182

11
j

1

12

(B10)

and
0 j

j
j

j19

36
j

19

36

j
j
j3

4
j �

51

76

27

19

j
j
j3

4
j

19

36
0

2

9

j
j

j
13

57

27

76

1

6

1

4

=

0 j
19

36

j
j

j
�

205

243
j

27

19

j
j
j

�
243

38
j

2

9

j
j
j

�
2

9
j

1

4

(B11)
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Appendix C

Nonlinear Analysis

Consider the equation Ut + Fx = [b(x)Ux]x in a periodic domain, where b(x) is taken to be exact.
Let B = bI and Fx = FUUx = fUx. The accuracy of the extended MacCormack (2-[2n]) and RKLW

(3-[2n ]) families of schemes is now veri�ed (the �rst number representing the temporal accuracy and the
[2n ] representing the spatial accuracy of the overall schemes, viscous and inviscid) with viscous stencils

whose order of accuracy is [2n-1]. This veri�cation is done in two parts. First, the equation Ut = [b(x)Ux]x
is examined to determine the accuracy of the viscous terms; second, for the equation Ut + Fx = 0 the
nonlinear accuracy is veri�ed. The analysis provided is somewhat di�erent than that given in the section

\Formal Accuracy." Previous researchers have investigated some of these issues for spatially fourth-order
accurate MacCormack schemes (ref. 9). Use of the variable n as a superscript on the vector U represents

the nth time step; otherwise, it denotes spatial accuracy of the derivative operator. In matrix notation,
the RKLW scheme may be represented for the equation Ut = [b(x) Ux]x in matrix form as

U � = [I + �1�
0

vA
�

BA
+
v ]U

n

U �� = [I + �1�
0

vA
+
BA

�

v ]U
�

U# = [U n + �2(U
��

� U n)]

U n+1 =
1

3
[Un + 2(I + �

0

vA
2n
BA

2n)U#]

9>>>>>>>>=
>>>>>>>>;

(C1)

where �
0

v =
�t

(�x)2
. If we let

A
+ = A

2n +X

A
� = A

2n
�X

A
+
v = A

2n +Xv

A
�

v = A
2n

�Xv

9>>>>=
>>>>;

(C2)

then we may de�ne

A
2n
BA

2n = Z1

A
2n
BXv = Z2

XBA
2n

= Z3

XBXv = Z4

9>>>>=
>>>>;

(C3)

To facilitate our analysis, note in tables 2, 4, and 7 thatXv , the forward, �rst derivative matrix operator
of (2n � 1)th-order accuracy, may be rewritten as

�
(1)�+

(2n�1)

�
i
=
�
(1)�c

(2n)

�
i
+

�
[(n � 1)!]Qn
l=1(4l � 2)

��
(2n)�c

(2)

�
i

(C4)

where
�
(1)�+

(2n�1)

�
i
,
�
(1)�c

(2n)

�
i
, and

�
(2n)�c

(2)

�
i
represent the explicit, forward, �rst derivative operator

to (2n�1)th-order accuracy at grid point i; the explicit, centered, �rst derivative operator to (2n)th-order

accuracy at grid point i; and the explicit, centered, (2n)th derivative operator to second-order accuracy
at grid point i , respectively.

The matrix X may be considered by rewriting the �nite-di�erence stencil of which it is composed

Ffi�3 + Dfi�2 + Bfi�1 + Gfi + Bfi+1 + Dfi+2 + Ffi+3 (C5)

28



as

F

��
(2)�c

(2)

�
i+2

+
�
(2)�c

(2)

�
i�2

�
+ (D + 2F)

��
(2)�c

(2)

�
i+1

+
�
(2)�c

(2)

�
i�1

�

+ (B + 2D + 3F )
�
(2)�c

(2)

�
i

(C6)

Although we do not utilize these results, for the special case of B = �(4D + 9F), the �nite di�erence
stencil in X is shown to be given by

F

��
(4)�c

(2)

�
i+1

+
�
(4)�c

(2)

�
i�1

�
+ (D + 4F)

�
(4)�c

(2)

�
i

(C7)

where G is still given by G = �2(B +D + F ) or, in this particular case, G = 2(3D + 8F). By further
enforcing D = �6F , equation (C7) becomes

F
�
(6)�c

(2)

�
i

(C8)

and the stencil inX then represents the second-order accurate approximation to the sixth derivative.

The matrices A2n;X, andXv may be represented as

A
2n = (�x)

�
@

@x
+ O

h
(�x)2n

i�

X / (�x)2
�

@2

@x2
+ O

h
(�x)2

i�

Xv / (�x)2n
�

@2n

@x2n
+ O

h
(�x)2

i�

9>>>>>>>>>=
>>>>>>>>>;

(C9)

The terms A2n , X, and Xv that occur in both extended MacCormack and RKLW schemes are now given
by

A
2n
/ (�x)

X / (�x)2

Xv / (�x)2n

9>=
>; (C10)

Equations (C10) imply that

Z1 / (�x)2

Z2 / (�x)2n+1

Z3 / (�x)3

Z4 / (�x)2n+2

9>>>>=
>>>>;

(C11)

Also note that A2n;X, and Xv are antisymmetric, symmetric, and symmetric, respectively. Each
symmetric matrix has identical diagonal elements; this implies that Z1 and Z4 are symmetric, Z2 and
Z3 are antisymmetric, and therefore

A
+
BA

�

vA
�
BA

+
v = (Z1 �Z4)

2
� (Z2 �Z3)

2 + 2 [Z1(Z3 �Z2)�Z4(Z3 +Z2)]

A
+
BA

�

v +A�BA+
v = 2(Z1�Z4)

)
(C12)
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The full RKLW scheme is written as

U n+1 =

�
I +

4

3
�2�1�

0

v(I + �
0

vZ1)(Z1 � Z4) +
2

3
�
0

vZ1 +
2

3
�2�

2
1�

02
v (I + �

0

vZ1)

�

�
(Z1 � Z4)

2 � (Z2 � Z3)
2 + 2 [Z1(Z3 � Z2)� Z4(Z3 +Z2)]

��
Un (C13)

and the extended MacCormack schemes are given as

U n+1 =

 
I +

�
02
v

2

n
(Z1 � Z4)

2 � (Z2 � Z3)
2 + 2 [Z1(Z3 � Z2)� Z4(Z3 +Z2)]

o

+ �
0

v(Z1 � Z4)

!
Un (C14)

With �1 = 1 and �2 =
1
4
, the RKLW schemes become

Un+1 =

�
I +

�
�
0

vZ1

�
+

1

2

�
�
0

vZ1

�2
+

1

6

�
�
0

vZ1

�3
�
1

3
�
0

v(1 + �
0

vZ1)Z4 �
1

6
�
02
v (1 + �

0

vZ1)

�
n
(Z3 � Z2)

2 � 2Z1Z4 +Z
2
4 + 2 [Z1(Z3 � Z2)� Z4(Z3 +Z2)]

o�
Un (C15)

and similarly, for the extended MacCormack schemes,

Un+1 =

�
I +

�
�
0

vZ1

�
+

1

2

�
�
0

vZ1

�2
� �

0

vZ4

�
1

2
�
0

v

n
(Z3 � Z2)

2 � 2Z1Z4 +Z
2
4 + 2 [Z1(Z3 � Z2)� Z4(Z3 +Z2)]

o�
U n (C16)

Making use of the following relations

Un
t = [b(x)U n

x ]x

= (�x)�2(A2n
BA

2n)U n

= (�x)�2(Z1)U
n (C17)

Un
tt = fb(x)[b(x)Un

x ]xgx

= (�x)�4(A2n
BA

2n
A
2n
BA

2n)Un

= (�x)�4(Z1Z1)U
n (C18)

U n
ttt=

�
b(x)fb(x)[b(x)Un

x ]xgx

�
x

= (�x)�6(A2n
BA

2n
A
2n
BA

2n
A
2n
BA

2n)Un

= (�x)�6(Z1Z1Z1)U
n (C19)
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gives

Un+1 = Un + (�t)U n
t +

1

2
(�t)2Un

tt +
1

6
(�t )3Un

ttt �
1

3
�
0

v(1+ �
0

vZ1)Z4 �

1

6
�
02
v (1 + �

0

vZ1)

�

n
(Z3 � Z2)

2
� 2Z1Z4 +Z

2
4 + 2 [Z1(Z3 � Z2) � Z4(Z3 +Z2)]

o
Un (C20)

for the RKLW schemes and

U n+1 = U n + (�t)Un
t +

1

2
(�t)2Un

tt � �
0

vZ4

�

1

2
�
02
v

n
(Z3 � Z2)

2
� 2Z1Z4 +Z

2
4 + 2 [Z1(Z3 � Z2) � Z4(Z3 +Z2)]

o
Un (C21)

for the extended MacCormack schemes.

The lowest order error terms present in the extended MacCormack scheme are those proportional

to �
02
v (Z3 � Z2)

2
, �

02
v Z1 (Z3 � Z2), and �

0

vZ4. These three terms have respective errors of (�t)2(�x)2,

(�t)2(�x), and (�t)(�x)2n (n = 1). RKLW error terms are very similar with the term (1 + �
0

vZ1) being
equal to (1+�t ).

Both Z2 and Z3 are cross-coupling terms present in the extended MacCormack and RKLW schemes,

and linear occurrences may be removed by a procedure discussed later in this appendix. Error terms that
contain only Z1 and/or Z4 cannot be removed by this procedure. Therefore, the (3-2E) scheme does not

retain formal accuracy. In cases of n > 1, the leading order error terms are (�t )2(�x)2 and (�t )(�x)2n .
All extended MacCormack and RKLW schemes except (3-2E) are formally accurate to their stated order
in the absence of boundaries on the viscous problem.

We now consider the second part of the problem, namely

Ut + Fx = 0

where F = F (U ) and Fx = FUUx = fUx. With no loss of generality, the term [b(x)Ux ]x is absorbed into
Fx. The RKLW schemes may be represented for the equation Ut = �Fx as

U� = (I � �1�f
n
A

+)Un

U�� = (I � �1�f
�

A
�)U�

U# = [U n + �2(U
��

� U n)]

U n+1 =
1

3
[U n + 2(I � �f��A2n)U#]

9>>>>>>>>=
>>>>>>>>;

(C22)

where, again, � = �x
�t

. With

A
2nfA2n = Z5

A
2nfX = Z6

XfA2n = Z7

XfX = Z8

Z = Z5 + Z6 � Z7 � Z8

9>>>>>>>>=
>>>>>>>>;

(C23)
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the full RKLW scheme is written as

Un+1 =

�
I �

2

3
�f ��

A
2n�2

n
��1�[(f

n + f�)A2n + (fn � f�)X] + �21�
2f�Z

o

�

2

3
�f��A2n +

2

3
�2

n
��1�[(f

n + f�)A2n + (fn � f�)X] + �21�
2f�Z

o�
U n (C24)

If we expand f � and f �� in a Taylor series with the coe�cients from the Butcher array for the RKLW

scheme (ci = (0; 1; 12)), then

f� = fn + (c2�t)fnt +
(c2�t )2

2
f n
tt + � � �

= fn + (�t )fnt +
(�t)2

2
fntt + � � � (C25)

f�� = fn + (c3�t)fnt +
(c3�t )2

2
f n
tt + � � �

= fn +
(�t)

2
fnt +

(�t )2

8
f n
tt + � � � (C26)

The expansions for f � are identical for the extended MacCormack and the RKLW schemes. Note that the

error of the quantities Z5; Z6 ;Z7, and Z8 are proportional to (�x)2, (�x)3, (�x)3, and (�x)4, respectively.

Inserting the values of �1 and �2 and expanding give

U n+1 =

�
I +

1

6
�2f��A2n(fn + f�)A2n +

1

6
�2f ��

A
2n(fn� f �)X �

1

6
�3f ��

A
2n(fn� f �)Z

�

2

3
�f��A2n

�

1

6
�(fn+ f�)A2n

�

1

6
�(fn � f�)X +

1

6
�2f�Z

�
U n (C27)

In addition,

U n
t = � fnU n

x

= (�x)�1(�fnA2n)Un (C28)

U n
tt = � fnt U

n
x + fn(fnUn

x )x

= (�x)�2(�fnt A
2n + fnA2nfn

A
2n)Un (C29)

Un
ttt = � fnttU

n
x + 2fnt (f

nU n
x )x + fn(fnt U

n
x )x � fn[fn(fnUn

x )x]x

= (�x)�3(�fnttA
2n + 2fnt A

2nfnA2n + fnA2nfnt A
2n

� A
2nfnA2nfnA2n)Un (C30)

If we use equations (C28), (C29), and (C30) and neglect the terms with error proportional to (�t )4 and

higher and cross-couple terms proportional to (�t )l(�x)k , where l+k > 4 andhigher, then after signi�cant

manipulation, RKLW schemes are
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U n+1 = U n + (�t)Un
t +

1

2
(�t)2Un

tt +
1

6
(�t)3Un

ttt

+

�
�(�t)

6
fnt X +

�2

6
fn(A2nfX�XfA2n)

�
U n

+

�
�(�t)2

12
f n
ttX �

�2(�t)

6
A2nfnX +

�2(�t )

6
fnt (A

2nfX�XfA2n)

�
Un

+

�
�2

6
XfnX

�
Un (C31)

The terms in brackets have an error that is proportional to (�t)2(�x), (�t)3(�x), and (�t)2(�x)2,
respectively; the �rst group must be removed in order to retain the formal accuracy of the scheme on the

nonlinear problem. Ideally, all other error terms listed should also be removed. For the linear problem,
fnt = fntt = 0 and A2nfX = XfA2n; the scheme is formally (3-[2n])th-order accurate, with the highest

error contributed by the term �2

6 (XfnX)Un. For the nonlinear problem, the step from time level (n+ 1)
to (n+2) is slightly di�erent from the step from time level (n) to (n+1). Let F, B, andC denote forward,

backward, and centered di�erencing, respectively. Until this point, consideration has only been given to
the RKLW scheme where the sequence of forward-backward-centered operations are repeated inde�nitely :

F-B-C, � � �. If this sequence were modi�ed to be F-B-C, B-F-C, � � � , then each term for which the error

is proportional to (�t )2(�x) and (�t)3(�x) vanishes. The term �2

6 (XfnX)Un stil l remains with an error

proportional to (�t)2(�x)2. If the forward and backward operators are not permutated, the cross-coupling

terms would remain and the scheme would be formally (2-[2n])th-order accurate.

The full , extended MacCormack scheme is written as

U n+1 =

�
I �

�

2
[(f� + fn)A2n + (fn � f�)X] +

�f�

2
Z

�
U n (C32)

or

U n+1 = U n + (�t)Un
t +

1

2
(�t)2Un

tt +

�
�(�t)

2
f n
t X +

�2

6
f n(A2nfX� XfA2n)

�
Un

+

�
�2

6
XfnX

�
U n (C33)

Again, the two terms in the �rst set of brackets of equation (C33) are proportional to (�t)2(�x) and may
be removed by implementing the scheme as an F-B, B-F, � � � sequence. The error terms in the �rst set
of brackets disappear for the linear problem and for the nonlinear problem with permutated operators,

which leaves the last error term in the second set of brackets with an error proportional to (�t)2(�x)2.
In multidimensions, this permutation would be implemented as

FxFy �BxBy;BxBy � FxFy; FxBy �BxFy; BxFy � FxBy; � � �

for the extended MacCormack schemes and

FxFy �BxBy �CxCy;BxBy � FxFy �CxCy; FxBy �BxFy �CxCy; BxFy � FxBy �CxCy; � � �
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for the RKLW scheme. In the present computations, we found it su�cient to only implement the RKLW
scheme as

FxFy �BxBy �CxCy; BxBy � FxFy � CxCy; � � �

and the extended MacCormack scheme as

FxFy �BxBy; BxBy � FxFy; � � �

A discussion of multidimensional stability for �nite-di�erence schemes canbe found in the work of Beckers.
(See ref. 59.)

This analysis does not need to be performed for the Runge-Kutta central-di�erence schemes because the

spatial and temporal accuracies are not coupled in the numerical scheme; therefore, each scheme retains
its respective formal accuracy for the nonlinear problem.

Further work might include replacing X with a stencil having an error that is proportional to (�x)4.
Using forward and backward di�erences with di�erent weightings on all three stages of the RKLW scheme

might minimize error terms.
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Appendix D

Higher Order Boundary Treatments

When eighth-order spatially accurate, central-di�erence stencils are coupledwith either third- or fourth-

order temporally accurate Runge-Kutta schemes, seventh-order accurate stable boundary stencils for the
explicit eighth-order accurate spatial derivative operator result and are given by

f
0

1 =
1

105000�x
(� 375150f1 + 1565172f2 � 4039140f3 + 7180075f4

� 8503950f5 + 6676740f6 � 3378844f7 + 1024890f8

� 157500f9 + 8400f10 � 840f11 + 147f12) (D1)

f
0

2 =
1

105000�x
(56400f1 � 725676f2 + 2331945f3 � 4322850f4

+ 5296900f5 � 4232970f6 + 2147502f7 � 641320f8

+ 94500f9 � 5250f10 + 945f11 � 126f12) (D2)

f
0

3 =
1

21000�x
(8186f1 � 66262f2 + 181370f3 � 336385f4

+ 407120f5 � 289352f6 + 114674f7 � 18070f8

� 1890f9 + 630f10 � 84f11 + 63f12) (D3)

f
0

4 =
1

210000�x
(16480f1 � 121338f2 + 348810f3 � 944475f4

+ 1234800f5 � 792120f6 + 323876f7 � 77310f8

+ 16800f9 � 7350f10 + 1890f11 � 63f12) (D4)

For the tridiagonal eighth-order accurate derivative operator, the boundary stencils are given by

f
0

1 =
1

21000�x
(� 127530f1 + 738864f2 � 2323230f3 + 4529525f4

� 5668950f5 + 4618740f6 � 2394728f7 + 730230f8

� 105000f9 + 2100f10 � 210f11 + 189f12) (D5)

f
0

2 =
1

21000�x
(18504f1 � 201936f2+ 660765f3 � 1241625f4

+ 1510460f5 � 1183518f6+ 578382f7 � 159890f8

+ 18900f9 � 210f10 + 189f11 � 21f12) (D6)
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f
0

3 =
1

210000�x
(99920f1 � 818104f2 + 2402330f3 � 4643275f4

+ 5814200f5 � 4407620f6 + 1947008f7 � 391330f8

� 21000f9 + 18900f10 � 1050f11 + 21f12) (D7)

f
0

4 =
1

210000�x
(5140f1 � 36246f2 + 74970f3 � 456225f4

+ 718200f5 � 474600f6 + 225092f7 � 65970f8

+ 10500f9 � 1050f10 + 210f11 � 21f12) (D8)

and for the compact pentadiagonal eighth-order accurate derivative operator, by

f
0

1 =
1

84000�x
(�556152f1 + 3316908f2 � 10530450f3 + 20529425f4

� 25599000f5 + 20734644f6 � 10674356f7 + 3236550f8

� 470400f9 + 12600f10 � 42f11 + 273f12) (D9)

f
0

2 =
1

105000�x
(99660f1 � 1065099f2 + 3490410f3 � 6562500f4

+ 7964320f5 � 6213060f6 + 3014508f7 � 822760f8

+ 94500f9 � 945f10 + 1050f11 � 84f12) (D10)

f
0

3 =
1

210000�x
(99920f1 � 818104f2 + 2402330f3 � 4643275f4

+ 5814200f5 � 4407620f6 + 1947008f7 � 391330f8

� 21000f9 + 18900f10 � 1050f11 + 21f12) (D11)

f
0

4 =
1

210000�x
(�1580f1 + 17136f2 � 110670f3 � 86625f4

+ 256200f5 � 101220f6 + 32228f7 � 6330f8

+ 2100f9 � 2100f10 + 1050f11 � 189f12) (D12)

Each of these expressions is denoted by 74; 74 ; 74 ; 74-8-74 ;74 ; 74 ; 74 schemes and is formally eighth-order
accurate in space. We were not able to �nd stable, accuracy-preserving numerical boundary conditions for

the eighth-order spatially accurate dissipative schemes.

Seventh-order accurate boundary stencils for the seventh-order viscous operatorused in the eighth-order
extended MacCormack and RKLW schemes are

f
0

1 =
1

420�x
(�1089f1 + 2940f2� 4410f3 + 4900f4

� 3675f5 + 1764f6 � 490f7 + 60f8) (D13)
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f
0

2 =
1

420�x
(� 60f1 � 609f2 + 1260f3 � 1050f4

+ 700f5 � 315f6 + 84f7 � 10f8) (D14)

f
0

3 =
1

420�x
(+ 10f1 � 140f2 � 329f3 + 700f4

� 350f5 + 140f6 � 35f7 + 4f8) (D15)

The values of f
0

4 on the backward step and f
0

nx�3 on the forward step are closed by using the seventh-
order viscous interior stencil and the negative of its complex conjugate (in Fourier space), respectively.
For the tenth-order spatially accurate Runge-Kutta schemes given in table 4, ninth-order accurate stable

boundary stencils for the central and dissipative stencils were derived but were subject to severe CFL
restrictions; hence, these are not presented.

These boundaries may be closed to lower order also. Explicit stencils may be closed as (3; 3; 4; x; y-10-

y; x; 4; 3; 3), where x is either the fourth- or sixth-order accurate explicit stencil and y is either the fourth-,
sixth-, or eighth-order accurate explicit stencil. Tridiagonal stencils may be implemented as (3; 4; x; y-10-
y; x; 4; 3), where x is the fourth- or sixth-order accurate tridiagonal stencil and y is either the fourth-,

sixth-, or eighth-order accurate tridiagonal stencils. The pentadiagonal stencil is closed with (3; 4; x-10-
x; 4; 3), where x is either a sixth-order accurate tridiagonal or an eighth-order accurate pentadiagonal

stencil . Each of these lower order closures results in a formally spatially fourth-order scheme. Other
closures not mentioned may also be constructed.

The viscous boundaries for the (3-10P) RKLW scheme are closed with the following ninth-order stencils:

f
0

1 =
1

2520�x
(�7129f1 + 22680f2 � 45360f3 + 70560f4 � 79380f5

+ 63504f6 � 35280f7 + 12960f8 � 2835f9 + 280f10) (D16)

f
0

2 =
1

2520�x
(� 280f1 � 4329f2 + 10080f3 � 11760f4 + 11760f5

� 8820f6 + 4704f7 � 1680f8 + 360f9 � 35f10) (D17)

f
0

3 =
1

2520�x
(+ 35f1 � 630f2 � 2754f3 + 5880f4 � 4410f5

+ 2940f6 � 1470f7 + 504f8 � 105f9 + 10f10) (D18)

f
0

4 =
1

2520�x
(�10f1 + 135f2 � 1080f3 � 1554f4 + 3780f5

� 1890f6 + 840f7 � 270f8 + 54f9 � 5f10) (D19)

The values of f
0

5 on the backward step and f
0

nx�4 on the forward step are closed by using the ninth-order
viscous interior stencil and the negative of its complex conjugate (in Fourier space), respectively.

37



Appendix E

Explicit Finite-Di�erence Filters

To �lter the vector U, the dissipation matrix D must be speci�ed, including boundary points.
Coe�cients for the interior portion have already been given in table 7 and should be familiar as elements of

Pascal's triangle. The boundary portions (upper left portion ofD) of the dissipation matrix are given for
�lters of orders two through twenty in the interior and orders one through ten at the boundary. The lower
right portion of D on a grid of Nx points is given by Di;j = DNx+1�i;Nx+1�j

. To clarify the information

presented, the full dissipation matrix is written out for the second-order �lter and its �rst-order boundary
points as

2
666664

+1 �1 0 0 0 0
�1 +2 �1 0 0 0

0 �1 +2 �1 0 0
0 0 �1 +2 �1 0
0 0 0 �1 +2 �1

0 0 0 0 �1 +1

3
777775

(E1)

Boundary points for the second-order dissipation matrix D are

�
+1 �1
�1 +2

�
(E2)

The lower row and the right column are the interior operator. Similarly, the full dissipation matrix can
be constructed for the fourth-order �lter with

2
4 �1 +2 �1

+2 �5 +4
�1 +4 �6

3
5 (E3)

for sixth order with 2
64
+1 �3 +3 �1
�3 +10 �12 +6

+3 �12 +19 �15
�1 +6 �15 +20

3
75 (E4)

for eighth order with 2
6664

�1 +4 �6 +4 �1
+4 �17 +28 �22 +8

�6 +28 �53 +52 �28
+4 �22 +52 �69 +56
�1 +8 �28 +56 �70

3
7775 (E5)

for tenth order with 2
666664

+1 �5 +10 �10 +5 �1
�5 +26 �55 +60 �35 +10

+10 �55 +126 �155 +110 �45
�10 +60 �155 +226 �205 +120

+5 �35 +110 �205 +251 �210
�1 +10 �45 +120 �210 +252

3
777775

(E6)
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for twelfth order with

2
66666664

�1 +6 �15 +20 �15 +6 �1

+6 �37 +96 �135 +110 �51 +12
�15 +96 �262 +396 �360 +200 �66

+20 �135 +396 �662 +696 �480 +220
�15 +110 �360 +696 �887 +786 �495
+6 �51 +200 �480 +786 �923 +792

�1 +12 �66 +220 �495 +792 �924

3
77777775

(E7)

for fourteenth order with

2
6666666664

+1 �7 +21 �35 +35 �21 +7 �1
�7 +50 �154 +266 �280 +182 �70 +14
+21 �154 +491 �889 +1001 �721 +329 �91

�35 +266 �889 +1716 �2114 +1736 �966 +364
+35 �280 +1001 �2114 +2941 �2849 +1981 �1001
�21 +182 �721 +1736 �2849 +3382 �2996 +2002

+7 �70 +329 �966 +1981 �2996 +3431 �3003
�1 +14 �91 +364 �1001 +2002 �3003 +3432

3
7777777775

(E8)

for sixteenth order with

2
666666666664

�1 +8 �28 +56 �70 +56 �28 +8 �1

+8 �65 +232 �476 +616 �518 +280 �92 +16
�28 +232 �849 +1800 �2436 +2184 �1302 +504 �120
+56 �476 +1800 �3985 +5720 �5572 +3752 �1750 +560

�70 +616 �2436 +5720 �8885 +9640 �7532 +4312 �1820
+56 �518 +2184 �5572 +9640 �12021 +11208 �7980 +4368
�28 +280 �1302 +3752 �7532 +11208 �12085 +11432 �8008

+8 �92 +504 �1750 +4312 �7980 +11432 �12869 +11440
�1 +16 �120 +560 �1820 +4368 �8008 +11440 �12870

3
777777777775

(E9)

for eighteenth order with

2
66666666666664

+1 �9 +36 �84 +126 �126 +84 �36 +9 �1

�9 +82 �333 +792 �1218 +1260 �882 +408 �117 +18
+36 �333 +1378 �3357 +5328 �5754 +4284 �2178 +732 �153

�84 +792 �3357 +8434 �13941 +15912 �12810 +7308 �2934 +816
+126 �1218 +5328 �13941 +24310 �29817 +26496 �17346 +8442 �3060
�126 +1260 �5754 +15912 �29817 +40186 �40401 +31032 �18480 +8568

+84 �882 +4284 �12810 +26496 �40401 +47242 �43425 +31788 �18564
�36 +408 �2178 +7308 �17346 +31032 �43425 +48538 �43749 +31824

+9 �117 +732 �2934 +8442 �18480 +31788 �43749 +48619 �43758
�1 +18 �153 +816 �3060 +8568 �18564 +31824 �43758 +48620

3
77777777777775

(E10)
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and for twentieth order with

2
66666666666664

�1 +10 �45 +120 �210 +252 �210 +120 �45 +10 �1
+10 �101 +460 �1245 +2220 �2730 +2352 �1410 +570 �145 +20
�45 +460 �2126 +5860 �10695 +13560 �12180 +7752 �3435 +1020 �190
+120 �1245 +5860 �16526 +31060 �40935 +38760 �26580 +13152 �4635 +1140

�210 +2220 �10695 +31060 �60626 +83980 �85035 +63960 �36030 +15252 �4845
+252 �2730 +13560 �40935 +83980 �124130 +136900 �115275 +75300 �38550 +15504
�210 +2352 �12180 +38760 �85035 +136900 �168230 +162100 �124725 +77400 �38760
+120 �1410 +7752 �26580 +63960 �115275 +162100 �182630 +167500 �125925 +77520
�45 +570 �3435 +13152 �36030 +75300 �124725 +167500 �184655 +167950 �125970

+10 �145 +1020 �4635 +15252 �38550 +77400 �125925 +167950 �184755 +167960
�1 +20 �190 +1140 �4845 +15504 �38760 +77520 �125970 +167960 �184756

3
77777777777775

(E11)

Each of these groups of boundary stencils representing
@
n
U

@xn
to second-order accuracy has a very predictable

pattern in Fourier space with coe�cients that appear in Pascal's triangle.

40



References

1. Kennedy, Christopher A.; and Gatski, Thomas B.: Self-Similar Supersonic Variable-Density Shear Layers in Binary Systems.
Phys. Fluids, vol. 6, no. 2, Feb. 1994, pp. 662{673.

2. Ninnemann, T. A.; andNg, W. F.: A Concentration Probe for the Study of Mixing in Supersonic Shear Flows. Exp. Fluids,
vol. 13, no. 2{3, 1992, pp. 98{104.

3. Soetrisno, Moeljo; Eberhardt, Scott;Riley, James J.; and McMurtry, Patrick: A Study of Inviscid, Supersonic Mixing Layers
Using a Second-Order TVD Scheme. A Collection of Technical Papers, Part 2|AIAA/ASME/SIAM/APS 1st NationalFluid
Dynamics Congress, July 1988, pp. 1087{1094. (Available as AIAA-88-3676-CP.)

4. Yamamoto, S.; and Daiguji, H.: Higher-Order-Accurate Upwind Schemes for Solving the Compressible Euler and Navier-
Stokes Equations. Comput. & Fluids, vol. 22, nos. 2/3, Mar.{May 1993, pp. 259{270.

5. Shu, Chi-Wang; Zang, Thomas A.; Erlebacher, Gordon; Whitaker, David; and Osher, Stanley: High-Order ENO Schemes

Applied to Two- and Three-Dimensional Compressible Flow. Appl. Numer. Math., vol. 9, 1992, pp. 45{71.

6. Grinstein, F. F.; and Kailasanath, K.: Compressibility, Exothermicity, and Three Dimensionality in Spatially Evolving
Reactive Shear Flows. 13th International Colloquium on Dynamics of Explosions and Reactive Systems, A. L. Kuhl, et al.,
eds., AIAA, 1993, pp. 413{436.

7. Rai, Man Mohan; and Moin, Parviz: Direct Numerical Simulation of Transition and Turbulence in a Spatially Evolving
Boundary Layer. A Collection of Technical Papers|AIAA 10th Computational Fluid Dynamics Conference, June 1991,
pp. 890{914. (Available as AIAA-91-1607-CP.)

8. Mukunda, H. D.; Sekar, B.; Carpenter, M. H.; Drummond, J. Philip; and Kumar, Ajay: Direct Simulation of High-Speed
Mixing Layers . NASA TP-3186, 1992.

9. Gottlieb, David; and Turkel, Eli: Dissipative Two-Four Methods for Time-Dependent Problems. Math. Comput., vol. 30,

no. 136, Oct. 1976, pp. 703{723.

10. MacCormack, Robert W.: The E�ect of Viscosity in Hypervelocity Impact Cratering. AIAA-69-354, Apr.{May 1969.

11. Carpenter, M. H.: A High-Order Compact Numerical Algorithm for Supersonic Flow. Twelfth International Conference on
Numerical Methods in Fluid Dynamics, K. W. Morton, ed., Volume 371 of Lecture Notes in Physics, Springer-Verlag, 1990,
pp. 254{258.

12. Lele, Sanjiva K.: Direct Numerical Simulationof Compressible Free Shear Flows. AIAA-89-0374, Jan. 1989.

13. Lele, Sanjiva K.: Compact Finite Di�erence Schemes With Spectral-Like Resolution. J. Comput. Phys., vol. 103, 1992,
pp. 16{42.

14. Sandham, N. D.; and Reynolds, W. C.: Three-Dimensional Simulations of Large Eddies in the Compressible Mixing Layer.
J. Fluid Mech., vol. 224, 1991, pp. 133{158.

15. Guillard, H.; Mal�e, J. M.; and Peyret, R.: Adaptive Spectral Methods With Application to Mixing Layer Computations. J.
Comput. Phys., vol. 102, no. 1, Sept. 1992, pp. 114{127.

16. Carpenter, Mark H.; Gottlieb, David; and Abarbanel, Saul: Stable and Accurate Boundary Treatments for Compact, High-
Order Finite-Di�erence Schemes. Appl. Numer. Math., vol. 12, 1993, pp. 55{87.

17. Purser, R. James: Notes|The Filteringof MeteorologicalFields. J. Climate& Appl. Meteorol., vol. 26, 1987, pp. 1764{1769.

18. Pulliam, Thomas H.: Arti�cial Dissipation Models for the Euler Equations. AIAA J., vol. 24, no. 12, Dec. 1986,
pp. 1931{1940.

19. Eriksson, Lars E.; and Rizzi, Arthur: Computer-AidedAnalysis of the Convergence to Steady State of Discrete Approxima-
tions to the Euler Equations. J. Comput. Phys., vol. 57, 1985, pp. 90{128.

20. Rusanov, V. V.: On Di�erence Schemes of Third Order Accuracy for Nonlinear Hyperbolic Systems. J. Comput. Phys.,

vol. 5, no. 3, 1970, pp. 507{516.

21. Kutler, Paul; Lomax, Harvard; and Warming, R. F.: Computation of Space Shuttle Flow Fields Using Noncentered Finite-
Di�erence Schemes. AIAA-72-193, Jan. 1972.

22. Kutler, Paul; Warming, R. F.; and Lomax, Harvard: Computation of Space Shuttle Flow�elds Using Noncentered Finite-
Di�erence Schemes. AIAA J., vol. 11, no. 2, Feb. 1973, pp. 196{204.

23. Warming, R. F.; Kutler, Paul; and Lomax, Harvard: Second- and Third-OrderNoncenteredDi�erence Schemes for Nonlinear

Hyperbolic Equations. AIAA J., vol. 11, no. 2, 1973, pp. 189{196.

41



24. Drummond, J. Philip: A Two-Dimensional Numerical Simulation of a Supersonic, Chemically Reacting Mixing Layer. NASA

TM-4055, 1988.

25. Strikwerda, John C.: Finite Di�erence Schemes and Partial Di�erential Equations. Wadsworth & Brooks/Cole Advanced

Books & Software, 1989.

26. Anderson, Dale A.; Tannehill, John C.; and Pletcher, Richard H.: Computational Fluid Mechanics and Heat Transfer.

Hemisphere Publ. Corp., 1984.

27. Hirsch, Charles: Numerical Computation of Internal and Eternal Flows. Volume I|Fundamentals of Numerical Discretiza-

tion. John Wiley & Sons Ltd., 1988.

28. Yanenko,N. N.; Fedotova,Z. I.; Tusheva, L. A.; and Shokin, Yu. I.: Classi�cationof Di�erence Schemes of Gas Dynamics by

the Method of Di�erential Approximation|I One-Dimensional Case. Comput. & Fluids, vol. 11, no. 3, 1983, pp. 187{206.

29. Yanenko,N. N.; Fedotova, Z. I.;Kompaniets,L. A.; and Shokin, Yu. I.: Classi�cationof Di�erence Schemes of Gas Dynamics

by the Methodof Di�erential Approximation|IITwo-Dimensional Case. Comput. & Fluids, vol. 12, no. 2, 1984, pp. 93{121.

30. Hatay, Ferhat; and Biringen, Sedat: Direct Numerical Simulation of High-Speed Compressible Rotating Couette Flow.

Transitional and Turbulent Compressible Flows 1993, L. D. Kral and T. A. Zang, eds., FED-Vol. 151, ASME, June 1993,

pp. 93{99.

31. Ei�ler, W.; and Bestek, H.: Spatial Numerical Simulations of Nonlinear Transition Phenomena in Supersonic Boundary

Layers. Transitional and Turbulent Compressible Flows 1993, L. D. Kral and T. A. Zang, eds., FED-Vol. 151, ASME, June

1993, pp. 69{76.

32. Normand, Xavier; and Lesieur, Marcel: Direct and Large-Eddy Simulations of Transition in the Compressible Boundary

Layer. Theor. Comput. Fluid Dyn., vol. 3, 1992, pp. 231{252.

33. Bayliss, Alvin; Parikh, Paresh; Maestrello, Lucio; and Turkel, Eli: A Fourth-Order Scheme for the Unsteady Compressible

Navier-Stokes Equations. NASA CR-177994, ICASE Rep. No. 85-44, 1985.

34. Burstein, Samuel Z.; and Mirin, Arthur A.: Third Order Di�erence Methods for Hyperbolic Equations. J. Comput. Phys.,

vol. 5, 1970, pp. 547{571.

35. Anderson, D. A.: A Comparison of Numerical Solutions to the Inviscid Equations of FluidMotion. J. Comput. Phys., vol. 15,

May 1974, pp. 1{20.

36. Anderson, Dale; and Fattahi, Behrooz: A Comparison of Numerical Solutions of the Advective Equation. J. Atmos. Sci.,

vol. 31, Sept. 1974, pp. 1500{1506.

37. Huang, Ching-Yuang; and Raman, Sethu: A Comparative Study of Numerical Advection Schemes Featuring a One-Step

Modi�ed WKL Algorithm. Mon. Weather Rev. , vol. 119, Dec. 1991, pp. 2900{2918.

38. Sun, Wen-Yih: Comments on \A Comparative Study of Numerical Advection Schemes Featuring a One-StepModi�ed WKL

Algorithm." Mon. Weather Rev., vol. 121, no. 1, Jan. 1993, pp. 310{311.

39. Abarbanel, S.; Gottlieb, D.; and Turkel, E.: Di�erence Schemes With Fourth Order Accuracy for Hyperbolic Equations.

SIAM J. Appl. Math., vol. 29, no. 2, Sept. 1975, pp. 329{351.

40. Turkel, E.; Abarbanel, S.; and Gottlieb, D.: MultidimensionalDi�erence Schemes With Fourth-Order Accuracy. J. Comput.

Phys., vol. 21, 1976, pp. 85{113.

41. Reddy, A. Sivasankara: Higher Order Accuracy Finite-Di�erence Schemes for Hyperbolic ConservationLaws. Int. J. Numer.

Methods Eng., vol. 18, July 1982, pp. 1019{1029.

42. Lambert, J. D.: Numerical Methods for Ordinary Di�erential Systems: The Initial Value Problem. John Wiley & Sons Ltd.,

1991.

43. Williamson, J. H.: Low-Storage Runge-Kutta Schemes. J. Comput. Phys., vol. 35, no. 1, Mar. 15, 1980, pp. 48{56.

44. Pruett, C. D.; and Zang, T. A.: Direct NumericalSimulationof LaminarBreakdown inHigh-Speed, Axisymmetric Boundary

Layers. Theor. Comput. Fluid Dyn., vol. 3, 1992, pp. 345{367.

45. Erlebacher, Gordon; Hussaini,M.Y.; Kreiss,H. O.; and Sarkar,S.: The Analysis and Simulationof Compressible Turbulence.

Theor. Comput. & Fluid Dyn., vol. 2, no. 2, 1990, pp. 73{95.

46. Sowa, Johan: Stability of a Runge-Kutta Method for the Navier-Stokes Equation. BIT, vol. 30, 1990, pp. 542{560.

47. Warming, R. F.; and Hyett, B. J.: The Modi�ed Equation Approach to the Stability and Accuracy Analysis of Finite-

Di�erence Methods. J. Comput. Phys., vol. 14, 1974, pp. 159{179.

42



48. Chang, Sin-Chung: On the Validity of the Modi�ed Equation Approach to the Stability Analysis of Finite-Di�erence

Methods. Technical Papers|8th AIAA Computational Fluid Dynamics Conference, June 1987, pp. 210{229. (Available

as AIAA-87-1120.)

49. Van Leer, Bram: Numerical Fluid Dynamics II. ICASE Internal Rep. Doc. No. 36, Aug. 26, 1987.

50. Gustafsson, Bertil: The Convergence Rate for Di�erence Approximations to Mixed Initial Boundary Value Problems. Math.

Comput., vol. 29, no. 130, Apr. 1975, pp. 396{406.

51. Carpenter, Mark H.; Gottlieb,David; andAbarbanel, Saul: Time-Stable Boundary Conditions for Finite-Di�erence Schemes

Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes. NASA CR-191436, ICASE Rep.

No. 93-9, 1993.

52. Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul; and Don, Wai-Sun: The Theoretical Accuracy of Runge-Kutta Time

Discretizations for the Initial Boundary Value Problem: A Careful Study of the Boundary Error. NASA CR-191561, ICASE

Rep. No. 93-83, 1993.

53. Shapiro, Ralph: Linear Filtering. Math. Comput., vol. 29, no. 132, Oct. 1975, pp. 1094{1097.

54. Eriksson, L.-E.: Boundary Conditions for Arti�cial Dissipation Operators. FFA TN 1984-53, Aeronaut. Res. Inst. Sweden,

Oct. 1984.

55. Poinsot, T. J.; and Lele, S. K.: Boundary Conditions for Direct Simulations of Compressible Viscous Flows. J. Comput.

Phys., vol. 101, no. 1, July 1992, pp. 104{129.

56. Don, Wai-Sun; and Gottlieb, David: Spectral Simulation of Unsteady Compressible Flow Past a Circular Cylinder. NASA

CR-182030, ICASE Rep. No. 90-29, 1990.

57. Abarbanel, Saul S.;Don,Wai Sun; Gottlieb, David; Rudy, DavidH.; andTownsend, James C.: Secondary Frequencies in the

Wake of a Circular Cylinder With Vortex Shedding. J. Fluid Mech., vol. 225, 1991, pp. 557{574.

58. Fornberg, Bengt: On a Fourier Method for the Integration of Hyperbolic Equations. SIAM J. Numer. Anal., vol. 12, no. 4,

Sept. 1975, pp. 509{528.

59. Beckers, J. M.: Analytical Linear Numerical Stability Conditions for an Anisotropic Three-Dimensional Advection-Di�usion

Equation. SIAM J. Numer. Anal., vol. 29, no. 3, June 1992, pp. 701{713.

43



De�nitions of Symbols Used in Tables

A;B; : : : coe�cients in predictor-corrector stencils

�; �; : : : ; �; a; b; : : : coe�cients in matrices P andQ

�A; �B; �M CFL numbers for matrices A, B, andM

�max maximum CFL number

� wave number

Subscripts:

L left

R right
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Table 1. Extended MacCormack Predictor-Corrector Stencils

Scheme � � A B C D E F G �max

(2-2E) 0 0
1

2

1

2
0 0 0 0 �1 1 :00

(2-4E) 0 0
2

3
0 �

1

12

1

3
0 0 �

2

3
0 :72

(2-4T) 0
1

4

3

4

p
3

4
0 0 0 0 �

p
3

2
0 :57

(2-6E) 0 0
3

4

1

5
�

3

20

2

7

1

60

2

7
�

54

35
0 :63

(2-6T) 0
1

3

7

9

1

3

1

36

1

45
0 0 �

32

45
0 :50

(2-6P) �
1

114

17

57

15

19

5

13
0 0 0 0 �

10

13
0 :48

(2-8T) 0
3

8

25

32

1

4

1

20
�
7

9
�

1

480
�

1

2
�

37

18
0 :46

(2-8P)
1

36

4

9

20

27

1

10

25

216

1

4
0 0 �

7

10
0 :45

Table 2. Skewed Viscous Stencils

Scheme dL cL bL aL � aR bR cR dR eR

First order forward 0 0 0 0 �1 1 0 0 0 0

Third order forward 0 0 0 �
1

3
�

1

2
1 �

1

6
0 0 0

Fifth order forward 0 0
1

20
�

2

4
�

1

3
1 �

2

8

1

30
0 0

Seventh order forward 0 �
1

105

1

10
�

3

5
�

1

4
1 �

3

10

1

15
�

1

140
0

Ninth order forward
1

504
�

1

42

1

7
�

4

6
�

1

5
1 �

4

12

2

21
�

1

56

1

630
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Table 3. RKLW Predictor-Corrector Stencils

Scheme � � A B C D E F G �max

(3-2E) 0 0
1

2

1

2
0 0 0 0 �1 1:59

(3-4E) 0 0
2

3
0 �

1

12
�

2

9
0 0

4

9
1:34

(3-4T) 0
1

4

3

4

1

5
0 0 0 0 �

2

5
1:06

(3-6E) 0 0
3

4

3

5
�

3

20
�

1

5

1

60
�

1

5
�

2

5
1:15

(3-6T) 0
1

3

7

9

4

21

1

36
�

6

11
0 0

164

231
:92

(3-6P) �

1

114

17

57

15

19

1

5
0 0 0 0 �

2

5
:94

(3-8T) 0
3

8

25

32

11

20

1

20
�

3

5
�

1

480
�

11

20

6

5
:83

(3-8P)
1

36

4

9

20

27

2

25

25

216
�

5

13
0 0

198

325
:84

(3-10P)
1

20

1

2

17

24

3

5

101

600
�

4

5

1

600
�

11

20
�

3

2
:76
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Table 4. Fourth- and Third-Order Runge-Kutta Stencils

Accuracy �max

Fourth Third Fourth Third
order order � � a b c d e order order

(4-4E) (3-4E) 0 0
2

3
�

1

12
0 0 0 2.06 1.26

(4-4T) (3-4T) 0
1

4

3

4
0 0 0 0 1.63 1.00

(4-6E) (3-6E) 0 0
3

4
�

3

20

1

60
0 0 1.78 1.09

(4-6T) (3-6T) 0
1

3

7

9

1

36
0 0 0 1.42 0.87

(4-6P) (3-6P) �

1

114

17

57

15

19
0 0 0 0 1.44 0.88

(4-8E) (3-8E) 0 0
4

5
�

1

5

4

105
�

1

280
0 1.63 1.00

(4-8T) (3-8T) 0
3

8

25

32

1

20
�

1

480
0 0 1.32 0.81

(4-8P) (3-8P)
1

36

4

9

20

27

25

216
0 0 0 1.28 0.78

(4-10E) (3-10E) 0 0
5

6
�

5

21

5

84
�

5

504

1

1260
1.53 0.94

(4-10T) (3-10T) 0
2

5

39

50

1

15
�

1

210

1

4200
0 1.26 0.77

(4-10P) (3-10P)
1

20

1

2

17

24

101

600

1

600
0 0 1.21 0.74
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Table 5. Temporal Accuracy of (4-8P) Scheme on Ut+ Ux = 0

(74 ; 74 ; 74 ; 74-8-74 ;74 ; 74 ; 74) Convergence
CFL log10L2 rate

0.8 �5.282

0.6 �5.896 4.91

0.4 �6.638 4.21

0.2 �7.854 4.04

0.1 �9.053 3.98

0.05 �9.399 1.15

Table 6. Spatial Accuracy of (4-8P) Scheme on Ut + Ux = 0

(74 ; 74 ; 74 ; 74-8-74 ;74 ; 74 ; 74) Convergence
Grid log10L2 rate

41 �4.933

51 �5.741 8.34

101 �8.388 8.79

151 �9.797 8.00

201 �10.606 6.48

Table 7. Temporal Accuracy of Third-Order Runge-Kutta and

RKLW Schemes on Ut + Ux = 0

RK RKLW

(3, 3-4-3, 3) Convergence (3, 3-4-3, 3) Convergence
Grid log10 L2 rate log10 L2 rate

41 �2.512 �1.877

51 �2.794 2.91 �2.121 2.60

101 �3.681 2.94 �2.913 2.62

201 �4.575 2.97 �3.672 2.53

251 �4.864 2.98 �3.910 2.43

501 �5.763 2.99 �4.612 2.33

1001 �6.665 2.99 �5.275 2.20

2001 �7.567 3.00 �5.911 2.11

4001 �8.469 3.00 �6.531 2.06

8001 �9.369 2.90 �7.143 2.03

16001 �10.099 2.42 �7.749 2.01
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Table 8. Stabil ity of Various Boundary Closures

Interior stencil

max <(�A) max <(�A) max <(�A)
Order Type Scheme (n = 51) (n = 201) (n = 501)

Fourth Explicit (3,3-4-3,3) �2:92 � 10�5 �4:32� 10�7 �2:75 � 10�8

Fourth Tridiagonal (3-4-3) �2:66 � 10�5 �3:88� 10�7 �2:45� 10�8

Sixth Explicit (3,3,4-6-4,3,3) �4:41� 10�5 �6:33� 10�7 �3 :99� 10�8

Sixth Explicit (52 ; 52 ; 5-6-5,52; 52) �1:01� 10�3 �1:17� 10�5 �7:07� 10�7

Sixth Tridiagonal (3,4-6-4,3) �6:03� 10�5 �8:82� 10�7 �5:57� 10�8

Sixth Tridiagonal (52; 52-6-52 ;52) �1:24� 10�3 �1:56� 10�6 �9 :60� 10�8

Sixth Pentadiagonal (3,4-6-4,3) �5:57� 10�5 �8:14� 10�7 �5:14� 10�8

Sixth Pentadiagonal (52; 52-6-52 ;52) �3:30� 10�4 �5:08� 10�5 �6:48� 10�6

Eighth Explicit (3,3,4,4-8-4,4,3,3) �1:22� 10�5 �1:55� 10�7 �9:56� 10�9

Eighth Explicit (3,3,4,6-8-6,4,3,3) �2:18� 10�5 �2:92� 10�7 �1:81� 10�8

Eighth Explicit (74; 74; 74; 74-8-74 ;74 ; 74 ; 74) �8:50� 10�4 �9:11� 10�6 �5:43� 10�7

Eighth Tridiagonal (3,4,4-8-4,4,3) �5:48� 10�5 �7:72� 10�7 �4:84� 10�8

Eighth Tridiagonal (3,4,6-8-6,4,3) �7:58� 10�5 �1:01� 10�6 �6:95� 10�8

Eighth Tridiagonal (74; 74; 74; 74-8-74 ;74 ; 74 ; 74) �1:74� 10�3 �1:89� 10�5 �1:13� 10�6

Eighth Pentadiagonal (3,4-8-4,3) �8:15� 10�5 �1:20� 10�6 �7 :55� 10�8

Eighth Pentadiagonal (74; 74; 74; 74-8-74 ;74 ; 74 ; 74) �4:56� 10�3 �1:67� 10�4 �8:48� 10�6

Tenth Explicit (3,3,4,4,4-10-4,4,4,3,3) �2:04� 10�6 �2:28� 10�8 �1:30� 10�9

Tenth Explicit (3,3,4,6,8-10-8,6,4,3,3) �9:58� 10�6 �1:19� 10�7 �7:32� 10�8

Tenth Tridiagonal (3,4,4,4-10-4,4,4,3) �1:89� 10�5 �2:38� 10�7 �1:46� 10�8

Tenth Tridiagonal (3,4,6,8-10-8,6,4,3) �5:78� 10�5 �8:09� 10�7 �5:06� 10�8

Tenth Pentadiagonal (3,4,4-10-4,4,3) �4:51� 10�5 �6:13� 10�7 �3:82� 10�8

Tenth Pentadiagonal (3,4,8-10-8,4,3) �8:10� 10�5 �1:17� 10�6 �7:37� 10�8
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Table 9. Stabil ity of Boundary Closures for Dissipative Schemes forM = 1
2

�
A

+
A
�
v +A�A+

v

�

[0:001 � 1:00(�3)]

Error Error Error

Boundary max <(�M) max <(�M) max <(�M)

Stencil closure (n = 51) (n = 201) (n = 501)

(a) scheme (a) (a) (a)

(2-2E) [(3-2E)] (1-2-1) �3:94(�3) [�3:94(�3)] �2:47(�4)[�2:47(�4)] �3:95(�5)[�3:95(�5)]

(2-4E) [(3-4E)] (3,3-4-3,3) �3:94(�3) [�3:94(�3)] �2:47(�4)[�2:47(�4)] �3:95(�5)[�3:95(�5)]

(2-4T)[(3-4T)] (3-4-3) �3:94(�3) [�3:94(�3)] �2:47(�4)[�2:47(�4)] �3:95(�5)[�3:95(�5)]

(2-6E) [(3-6E)] (3,3,4-6-4,3,3) �3:94(�3) [�3:94(�3)] �2:47(�4)[�2:47(�4)] �3:95(�5)[�3:95(�5)]

(2-6E) [(3-6E)] (52;52 ;5-6-5,52;52) �3:94(�3) [�3:94(�3)] �2:47(�4)[�2:47(�4)] �3:95(�5)[�3:95(�5)]

(2-6T)[(3-6T)] (3,4-6-4,3) �3:77(�3) [�3:76(�3)] �2:44(�4)[�2:44(�4)] �3:93(�5)[�3:93(�5)]

(2-6T)[(3-6T)] (52 ;52-6-52;52) �2:93(�3) [�2:93(�3)] �2:27(�4)[�2:27(�4)] �3:81(�5)[�3:81(�5)]

(2-6P) [(3-6P)] (3,4-6-4,3) +1:67(+2) [+2:49(+2)] +1:72(+2)[+2:56(+2)] +2:12(+2)[+3:29(+2)]

(2-6P) [(3-6P)] (52 ;52-6-52;52) +6:65(+2) [+7:40(+2)] +6:65(+2)[+7:40(+2)] +6:65(+2)[+7:40(+2)]

(2-8T)[(3-8T)] (3,4,4-8-4,4,3) +2:61(+0) [�9:42(�3)] +2:73(+0)[�4:66(�3)] +2:74(+0)[�4:38(�3)]

(2-8T)[(3-8T)] (3,4,6-8-6,4,3) +2:61(+0) [�9:42(�3)] +2:73(+0)[�4:66(�3)] +2:74(+0)[�4:38(�3)]

(2-8T)[(3-8T)] (74; 74; 74 ;74-8-74 ;74 ;74;74) +1:09(+1) [+1:06(+1)] +1:09(+1)[+1:06(+1)] +1:09(+1)[+1:06(+1)]

(2-8P) [(3-8P)] (3,4-8-4,3) �3:70(�3) [�3:73(�3)] �2:43(�4)[�2:43(�4)] �3:92(�5)[�3:92(�5)]

(2-8P) [(3-8P)] (74; 74; 74 ;74-8-74 ;74 ;74;74) +1:68(+2) [+1:68(+2)] +1:68(+2)[+1:68(+2)] +1:68(+2)[+1:68(+2)]

[(3-10P)] (3; 4;4-10-4;4;3) [�3:95(�3)] [�2:47(�4)] [�3:95(�5)]

[(3-10P)] (3,4,6-10-6,4,3) [�3:95(�3)] [�2:47(�4)] [�3:95(�5)]

[(3-10P)] (3,4,8-10-8,4,3) [�3:95(�3)] [�2:47(�4)] [�3:95(�5)]

aBrackets indicate values from scheme 2; other values are from scheme 1.
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Table 10. Interior Filter Stencil, Second-Order Accurate Stencil s for

h
�

@2nf

@x2n

i

h
@2nf

@x2n

i
� a b c d e f g h i j

h
@2f

@x2

i
+2 �1 0 0 0 0 0 0 0 0 0

h
@4f

@x4

i
�6 +4 �1 0 0 0 0 0 0 0 0

h
@6f

@x6

i
+20 �15 +6 �1 0 0 0 0 0 0 0

h
@8f

@x8

i
�70 +56 �28 +8 �1 0 0 0 0 0 0

h
@10f

@x10

i
+252 �210 +120 �45 +10 �1 0 0 0 0 0

h
@12f

@x12

i
�924 +792 �495 +220 �66 +12 �1 0 0 0 0

h
@14f

@x14

i
+3432 �3003 +2002 �1001 +364 �91 +14 �1 0 0 0

h
@16f

@x16

i
�12870 +11440 �8008 +4368 �1820 +560 �120 +16 �1 0 0

h
@18f

@x18

i
+48620 �43758 +31824 �18564 +8568 �3060 +816 �153 +18 �1 0

h
@20f

@x20

i
�184756 +167960 �125970 +77520 �38760 +15504 �4845 +1140 �190 +20 �1

Table 11. Truncation Error of First Derivative Operators

Accuracy Explicit Tridiagonal Pentadiagonal Heptadiagonal Nonadiagonal

Fourth order �

1

30
�5 �

1

180
�5

Sixth order �

1

140
�7 �

1

2100
�7 �

1

1512
�7

Eighth order �

1

630
�9 �

1

17640
�9 �

1

44100
�9 �

23

226800
�9

Tenth order �

1

2772
�11 �

1

124740
�11 �

1

582120
�11 �

1

495000
�11 �

263

14968800
�11
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Figure 1. Stabil ity limits of extended MacCormack schemes on one-dimensional convection-di�usion
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Figure 2. Stability limits of RKLW schemes on one-dimensional convection di�usion equation as function
of inviscid CFL (�) and viscous CFL (�v) numbers.
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Figure 7. Dilatation �eld r � ~u in nitrogen-nitrogen compressible shear layer at Mac = 0.45.
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(c) Filtered (3-6T) RKLW scheme on 401 by 501 grid.

Figure 7. Concluded.
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