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Summary

An investigation is conducted of several numerical schemes for use in the computation of two-
dimensional, spatially evolving, laminar, variable-density compressible shear layers. Schemes with various
temporal accuracies and arbitrary spatial accuracy for both inviscid and viscous terms are presented
and analyzed. All integration schemes use explicit or compact finite-difference derivative operators.
Three classes of schemes are considered: an extension of MacCormack’s original second-order temporally
accurate method, a third-order temporally accurate variant of the coupled space-time schemes proposed
by Rusanov and by Kutler, Lomax, and Warming (RKLW), and third- and fourth-order Runge-Kutta
(RK) schemes. The RKLW scheme offers the simplicity and robustness of the MacCormack schemes and
gives the stability domain and the nonlinear third-order temporal accuracy of the Runge-Kutta method.
In each scheme, stability and formal accuracy is considered for the interior operators on the convection-
diffusion equation Uz + al/y = aylUzy, for which a and «, are constant. Both spatial and temporal
accuracies are verified by the equation Ut = [b(2)Usz]e as well as Ut + Fie = 0. Numerical boundary
treatments of various orders of accuracy are chosen and evaluated for asymptotic stability. Formally
accurate boundary conditions are derived for explicit sixth-order; pentadiagonal sixth-order; and explicit,
tridiagonal, and pentadiagonal eighth-order central-difference operators when used in conjunction with
Runge-Kutta integrators. Damping of high wave-number, nonphysical data is accomplished for all schemes
with explicit filters, derived to tenth order on the boundaries and twentieth order in the interior. Several
schemes are used to compute variable-density compressible shear layers, where regions of large gradients
of flow-field variables arise near and away from the shear-layer centerline. Results indicate that in the
present simulations, the effects of differences in temporal and spatial accuracies between the schemes are
less important than the filtering effects. Extended MacCormack schemes are robust but inefficient because
of restrictive Courant-Friedrichs-Levy (CFL) limits. The third-order temporally accurate RKLW schemes
are less dissipative but have shorter run times. The Runge-Kutta integrators did not have sufficient
dissipation to be useful candidates for the computation of variable-density compressible shear layers at the
levels of resolution used in the current work.

Introduction

The numerical simulation of spatially evolving, compressible shear layers has become popular as a tool
to understand the mixing mechanisms involved in supersonic combustion. Simulations may involve not only
the effect of compressibility but also the presence of large gradients in density caused by disparate-mass gas
mixtures or large temperature gradients that arise from exothermic chemical reactions. In disparate-mass
gas mixtures, the Schmidt and Lewis numbers are nonunity—usually greater than 1 in one stream and
less than 1 in the other. Self-similar solutions to the laminar shear layer suggest that this nonunity gives
rise to different profiles for species and temperatures relative to the velocity profile. In hydrogen-nitrogen
mixing layers, vorticity occurs predominately in the low-density stream. (See ref. 1.) This phenomenon is
experimentally observed in turbulent, disparate-mass supersonic shear layers. (See ref. 2.)

Computation of compressible shear layers has been largely confined to gas streams that are uniform in
composition; also, the specific numerical method chosen has varied considerably. Soetrisno et al. (ref. 3)
use a second-order accurate, finite-difference, total variation diminishing (TVD) scheme coupled with a
second-order accurate Runge-Kutta method to study two-dimensional, temporally evolving, inviscid shear
layers. Yamamoto and Daiguji (ref. 4) use either a fifth-order upwind TVD or a fourth-order monotonic
upwind-centered scheme for conservation laws (MUSCL) TVD scheme, coupled with a Crank-Nicolson
time integrator. Shu et al. (ref. 5) use various order, essentially nonoscillatory (ENO) finite-difference
schemes, as well as compact central-difference stencils and a third-order low-storage Runge- Kutta method
on a three-dimensional shear layer. The ENO schemes are particularly useful for flows in which steep
gradients are present. Grinstein and Kailasanath (ref. 6) use a flux-corrected transport (FC'T) algorithm
to investigate three-dimensional and chemical-reaction effects. Another method that has been useful in the
simulation of compressible flows is upwind biased differencing. Raiand Moin (ref. 7) use mildly dissipative
fifth-order upwind differences on inviscid terms and fourth-order differences on viscous terms together



with an implicit time integration to simulate transition and turbulence in supersonic boundary layers.
In a different approach to adding dissipation, Mukunda et al. (ref. 8) use the (2-4) scheme proposed by
Gottlieb and Turkel (ref. 9), which is second-order accurate in time and fourth-order accurate in space, as
well as the compact (2-4) version of the MacCormack (ref. 10) method developed by Carpenter (ref. 11)
to study spatially evolving compressible shear layers. Lele (ref. 12) chooses a sixth-order compact central-
difference stencil for viscous and inviscid terms and a third-order low-storage Runge-Kutta method to
calculate temporally and spatially evolving, two-dimensional compressible shear layers. Dissipation is
added by the use of implicit filters. (See ref. 13.) In a combination of compact finite-difference and Fourier
spectral methods, Sandham and Reynolds (ref. 14) investigate the transition of a compressible shear layer;
Guillard, Malé, and Peyret (ref. 15) use a fully spectral scheme.

Computations may be divided into two broad categories—spatial and temporal simulations. Temporal
simulations allow the use of periodic numerical and physical boundary conditions in the streamwise
direction, which greatly simplifies the computations. Unfortunately, they are an 1dealization of real shear
layers. Spatial simulations require specification of both physical and numerical boundary conditions.
Recently, Carpenter, Gottlieb, and Abarbanel (ref. 16) have determined numerical boundary treatments
that preserve the accuracy of compact, tridiagonal sixth-order interior schemes on the model hyperbolic
equation Uy + al/z = 0. These treatments are also asymptotically stable with respect to time. Prior to
the work of Carpenter, researchers using the sixth-order tridiagonal stencil for the interior scheme closed
it at the boundaries so that the formal accuracy of the overall method was reduced.

Another relevant issue in the computation of compressible shear layers is numerical dissipation. In
simulations where not all the relevant length and/or time scales of the problem are being resolved,
dissipation must be added to ensure computational stability. Some numerical dissipation is desirable
to remove spurious high-frequency information regardless of whether second-order derivatives are taken
once with a second-order derivative operator or twice with a first-order derivative operator. The source of
this high-frequency information may be intrinsic instability in the scheme, the misspecification of physical
boundary conditions, the “odd-even” decoupling between grid points, or insufficient resolution (temporal
and spatial). To address this problem, some researchers have resorted to implicit (ref. 13) and explicit
filters (refs. 17, 18, and 19). In the present work we use explicit filters.

The goal of the present study is to generate families of schemes with arbitrarily high spatial accuracy
for both viscous and mviscd terms, coupled with explicit time integrations from second to fourth order.
Schemes are applied to highly resolved, spatially evolving, compressible shear-layer calculations devoid
of discontinuities. The accuracy, stability, and robustness of the schemes are considered with particular
attention to compressible, variable-density, nonreacting flows. Analyses of both compact and explicit
interior schemes have been provided, as well as a variety of choices for boundary closures and explicit filters.
Stability 1s considered not only through Von Neumann analysis but also through matrix analysis of various
boundary and interior treatments. The schemes examined are the following: extended MacCormack-type
schemes, a new variant of the schemes presented by Rusanov (ref. 20) and by Kutler, Lomax, and Warming

(refs. 21, 22, and 23) (RKLW), and Runge-Kutta (RK) schemes.

Numerical Method

The governing equations are solved in conservative form with the SPARK2D (ref. 24) code and may be
written as

JU , OF(U) | 9G(U)

i —H 1
ot + Oz Jy (1)



where

[P pu ]
pu pUY — Oz
U= | pv F= PUV — Tyz
PEQ (peo — Opz)u — Ory? + dg
L pYi puY; + pu;Y;
(2)
r pu 0
PUV — Oy 0
G= pUU — Oyy H= |0
(peg — oyy)v — oyzu + qy 0
L pvYi+ pviY; 0 J

p is the density; u is the streamwise velocity; v is the transverse velocity; og, is the Newtonian stress
tensor; e is the total internal energy; qq is the heat flux vector; Y; is the species mass fraction; and #;
and ©; are streamwise and transverse components of the diffusion velocity, respectively. Roman indicies
(e.g., t) correspond to the species index, whereas Greek ones (e.g., @) correspond to spatial indicies.
Throughout this text, the inviscid derivative operators are those used to differentiate F and G, whereas
viscous derivatives are those used to generate derivative terms in the expressions for the stress tensor, heat
flux vector, and diffusion velocity.

In the finite-difference schemes considered here, for constant grid spacing Az, the spatial denvative of
a function f (f' = fg), is given in matrix form as

Pf, = —Qf
1
fr=P7'Q (3)
1
/= EAf

To avoid the increased operation count necessary to invert large bandwidth matrices, the bandwidth of the
matrix P is not considered operationally to be larger than pentadiagonal. Determination of the specific
centered-difference stencil is accomplished by writing

fiv1 — fi1
F Ol ol L afly Bl o =a I L
fivo = fico
plikz  Jiml
+ Ax
fiys — fi=3
te Ar
+ - (4)
where the coefficients «, 8, - - form the matrix P; a, b, -- form the matrix Q; and f; and f! are the values

of some function and its derivative at grid point i, respectively. By defining the Fourier transform and the
inverse Fourier transform of the discrete function value f,, with (ref. 25)

imé

fn =—— = /_T f(&) d¢ (5)
i _ 1 —1m§

&) === m;@@ fm (6)
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where € is the Fourier dual variable; if ¥ (&) is the approximation of the derivative of f in Fourier space or

the Fourier image of f, f,, is given in Fourier space as

e 1 N eimﬁ b
fn= 7 /_ M w(E) Je) de (7)

The finite-difference stencil given in equation (4) becomes

/ ( —|—/662Z€+Of€l€+1+0[6l€ _1_562@5_|_ ) (f)]?(f)dﬁ}

|
=/,

ﬁl

ce B _p o 2E L T g L 26 3 Y () d 8
+ + + + ) S dE| (8)

Consequently,
i[2a sin(§) + 2b sin(2€) + 2c¢ sin(3&) + -- ] (9)
[1 + 20 cos(§) + 20 cos(28) + -]

With the spectral representation of f(x) written as

Fa)= o= [ ) (10)

it can be seen that f/(:b) in Fourier space has the form

v =

!

f (@) = iw f(w) (11)

If the Fourier image of the finite-difference derivative operatorisexpanded in a Taylor series in &, coefficients
of the stencil can be chosen to approximate the spectral derivative to some desired accuracy (ie., U = if).

For an arbitrarily skewed stencil, the stencil and its Fourier image are given by

T/
Az
arfi-1 + arfiy1
Az
4 brfi—o + brfit2
Ax
n crfi—g + crfiys
Az
+ .- (12)

o+ Brfig +oapnfisy + i+ arfig + Brfipe + - =

and

+ if(ap —ay) sin(é) + (bp — by) sin(2) + (cp — ¢,) sin(36) + -
{ 1+ (ap + ap) cos(§)+ (Br + BL) cos(2€) + ]}
+ il(ap — ap) sin(€) + (Br — Br) sin(28) + -]

{[T +(ap+ay) cos( )+ (bp+bp) cos(2) + (cg +cp) cos(36)+ ]}
v ) ]

where the subscripts L and R are used to denote left and right.
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Finally, for predictor-corrector dissipative schemes (ref. 16), we have

Gfi
¥y b afl b T el Al 4 = 2
L BFAfia + BEA)fin
Azx
L DPFCUip + DEC)figy
Az
L EFE g + W EE)figg
Az
+ - (14)
and
{+2BJcos(é) — 1] £ 2D[cos(2€) — 1]+ 2F[cos(3¢ ]+--}
T = + 4[24 sin(§) + 2C sin(26) 4+ 2F 5111(35 } (15)
[l + 2« cos(€) + 20 cos(2€) + ]

The predictor-corrector stencils become centered stencils for B = D= F = G = 0. All second derivatives
are taken effectively by successively applying a first derivative operator twice. A consequence of this
application 18 that the wave number £ = 7 becomes neutrally stable for central difference schemes and

may cause a loss of stability on nonlinear problems. This wave number is sometimes referred to as the
mode.

When predictor-corrector finite-difference schemes are used, viscous derivatives are calculated with
explicit stencils (1e, P = I, where I is the identity matrix, and Q = A). An explicit stencil of
(N — I)th-order accuracy is used for the evaluation of viscous terms in the schemes when the derivatives
of F and G are calculated to Nth-order accuracy. Runge-Kutta schemes use the same derivative operator
for both viscous and invisad derivatives. Further discussion of the dervation of the stencils is contained
m appendix A.

Extended MacCormack Schemes

In 1969, MacCormack (ref. 10) introduced a two-stage numerical scheme for compressible flows with
a predictor stage followed by a corrector stage. The scheme is second-order accurate in both space and
time and 1s widely applicable, in part, because of its simplicity and robustness. Details of the method
can be found in many places (refs. 26 to 29). Attempts made by Gottlieb and Turkel (ref. 9) to improve
the method mcreased the inviscid spatial accuracy to fourth order. This scheme has been popular among
researchers involved with highly resolved flow fields. (See refs. 30, 31, 32, and 8.) Carpenter (ref. 11)
further modified this scheme by using a compact fourth-order inviscid stencil with a third-order upwind
viscous stencil. The scheme was slightly more accurate than the Gottlieb-Turkel scheme. Bayliss (ref. 33)
extended the Gottlieb-Turkel scheme to sixth-order accuracy for the inviscid terms.

Extended MacCormack schemes take the original MacCormack scheme to arbitrary spatial accuracy in
both the inviscid and viscous terms. These schemes are obtained by using the skewed stencils (eq. (12))
to generate viscous terms in the vectors F and G, and the predictor-corrector stencils (eq. (14)) are used
to evaluate the derivatives of F and G. Symbolically, the schemes may be represented for the equation

Ui+ Fp =0 (16)

as

UF = U= AXTF?

*k L prE — ik
U; U~ — AATF (17)

Un—l—l (Un + U**)
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where AT and A~ are the forward and backward difference operators and A = % 18 the Courant-

Friedrichs-Levy (CFL) number.

The stability of the extended MacCormack schemes may be conveniently analyzed in Fourier space with
conventional Von Neumann analysis on the convection-diffusion equation Uy + al/;, = a,Uyg, with a and
ay as constants. If ¥ and —U* (where U* is the complex conjugate of W) are defined as the Fourier images

of AT and A=, ¥, and — ¥} are defined as the Fourier images of A and Ay, the viscous derivatives; [/

is defined as the Fourier transform of U"; A = %; Ay = % 18 the viscous CFL number or diffusion
£ x

f}n+1

number; and G = 18 the amplification factor, then these schemes can be written as

o~

U* ]
=~ = L= N0 — X 00
n
/U\**
= =14 XNo* - X, 0%y, (18)
1 IRk Tk
! (1 s 61_9_)
2 U gn

The amplification factor G represents the magnitude of the amplification of a given frequency when
the solution is advanced one time step. Use of the letter G here should not be confused with its use in
defining the dissipative stencils. To determine the maximum CFL number, G may be analyzed for the
mnterior scheme or the amplification matrix G may be considered for the full scheme with boundary points.
For —7 < & < @, the magnitude of G must never exceed 1, or the spectral radius of G must be less than
or equal to 1; this is required for stability. For the convection-diffusion equation Uy + aUz = awlUgzz, the
amplification factor and matrix are written as

|G| = %[H— (T4 MT* =2, 0%, (1 - 20— A W) (19)

G = %[I+ (I-NAT+ XA A) I-NAT+ A ATA)] (20)

where AT and A~ are the forward and backward inviscid matrix derivative operators and A} and A
are the forward and backward matrix operators for the viscous derivatives.

For consistency, the explicit coefficients must sum to zero as follows:
(F-E)+(D-C)+(B-A)+G+(B+A)+(D+C)+(F+E)=0 (21)

or ¢ = —=2(B+ D+ F'). Values of B, D, and F' may be selected on the basis of their effect on the
dispersion, dissipation, and CFL numbers of the scheme. We have chosen to maximize the inviscid CFL
number and retain the largest viscous CFL limit possible. The coefficients A, C'; E, «, and S are chosen
to satisfy the accuracy requirement of the stencil.

Table 1 lists the coefficients of the extended MacCormack predictor-corrector stencils and the maximum
CFL number Amax for the inviscid problem (@ = 0) in the absence of boundaries. The letters E, T, and
P indicate that the matrix P is either diagonal/explicit, tridiagonal, or pentadiagonal, respectively. The
notation (2-6E) should be interpreted as second-order temporal accuracy with sixth-order spatial accuracy
for both the inviscid and viscous terms; the letter E indicates that the inviscid derivative operator is
explicit. Some confusion may arise because many schemes found in the literature do not treat viscous
terms at all and others do not retain the stated inviscid accuracy on viscous terms.
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Figure 1 presents the stability boundary of these schemes as a function of the viscous and inviscid CFL
numbers, again in the absence of boundaries. Regions in the lower left portion of the figure represent the
stable region, whereas regions in the upper right portion are unstable. While optimizing these schemes
it was noticed that contours of the stability boundary can be dramatically altered by different choices of
B, D, and F. Optimizing was done by simply scanning parameter space for combinations with desirable
stability characteristics. Each scheme can be considered as optimized, although a 5-percent improvement
may be possible. Care should be exercised in optimizing the “flipping” parameters B, D), and F because
many of the combinations share the maximum inviscid CFL limit of the scheme vet very few of this subset
have a boundary G = 1 that does not intersect the origin. The (2-8T) scheme was found to have no values
of B, D, and F' for which the boundary G = 1 did not intersect the origin. In many flow fields of interest,
the local viscous and inviscid CFL numbers are likely to lie outside the stability domain in the (2-8T)
scheme. Explicit schemes possess significantly larger stability domains than their compact counterparts
because of the increased truncation error of the explicit derivative operator. Thus, the CFL hmits for
compact schemes are more severe than those for multidimensional schemes. (See refs. 10 and 9.)

Note that the (2-4E) scheme differs from that proposed by Gottlieb and Turkel (ref. 9) where B = — A
and D = —C'. If used with the explicit third-order accurate viscous derivative, the Gottlieb-Turkel scheme
has a viscous CFL limit of zero as CFL — 0. MacCormack’s original scheme, (2-2E), is included in table 1
and figure 1 for completeness. The explicit skewed viscous stencils (8; = o = ap = fp = 0) are given
in table 2.

RKLW Schemes

Rusanov (ref. 20) derived a finite-difference scheme for nonlinear hyperbolic systems that was uniformly
third-order accurate in space and time. This scheme was considered for use in the computation of
discontinuous solutions. Three spatial difference operators were used in its construction—mean value,
difference, and identity. These operators were combined with a three-stage, third-order Runge-Kutta
method. Later, Burstein and Mirin (ref. 34) derived a similar method. Because function evaluations
needed to be made on a staggered mesh, Kutler, Lomax, and Warming (refs. 21, 22, and 23) adapted
Rusanov’s scheme by replacing the first two stages with MacCormack’s scheme. Hereinafter, this scheme
is referred to as RKILW. This adaptation made the programming logic simpler and facilitated the inclusion
of a source term and the extension to multidimensions. Various investigators have applied this scheme
to both high-speed flow (ref. 35) and to meteorological flows (refs. 36, 37, and 38). Further discussion of
the RKILW schemes can be found in the textbook by Anderson, Tannehill, and Pletcher (ref. 26) and in
two papers by Yanenko et al. (refs. 28 and 29). Attempts to proceed to uniformly fourth-order schemes
for hyperbolic equations (refs. 39, 40, and 41) have been successful, but have not been used extensively,
probably because of their enormous complexity.

The proposed RKIW method is a generalization of the third-order predictor-corrector format of Kutler,
Lomax, and Warming (refs. 21,22, and 23) to arbitrary spatial accuracy in both viscous and inviscid terms
within the temporally third-order Runge-Kutta (RK) accuracy constraints. The implementation of this
scheme for the equation Uy + F,, = 0 is solved numerically as

U =U"— BAATE™

U = Uf — BAAF*

UF = (1= B)UP + BoUF* #2)

1
i 3

Ul 4+ 2(UF — A i#



where A€ is the central-difference operator and the forward and backward differencing operators are the
same as those used in the extended MacCormack schemes. The values of 5; and 39 are 1 and 1/4,
respectively. The two degrees of freedom inherent in the general three-stage, third-order Runge-Kutta
formulation (ref. 42) are used to accommodate symmetric (ag; = agz in eq. (23)), predictor-corrector
spatial differencing.

The traditional Runge-Kutta scheme may be represented for the equation Uy = —Fp = —FylUe = —fUs
as

U* = Un — Cl21Aan1Un
U =U" —agn Af" AU — ago) fFALU™ (23)

UL = 0" g A fPA U™ — bod fX AU — by A f* Ag U+

where the subscript associated with the matrix operator A represents the finite difference operator used
on the relevant stage—forward, backward, or centered.

Runge-Kutta schemes are often described in terms of the Butcher array. (See ref. 42.) The Butcher
array for the present scheme is given as

0
0 1
2 a1
c3 agl  agp =1 11 (24)
P T 17
| b1 by b 1 I 2
5 G 3

Hence, 51 = a9; and 9 = ag; = agy. Symbols (letters) used for terms contained in the Butcher
array should not be confused with those symbols (letters) involved in the definition of the finite-difference
coefficients. Values of ¢; correspond to the time at which the ¢th stage is evaluated, that is, zero being the
nth stage and one being the (n + 1)th stage.

The stability of the scheme is considered in Fourier space in the linear model equation Ut+alz = avUzz
as

U* )
==1- BN T — BiA, T
U A
/U\**
== 14+ BN 0% = 51X, T* 0,
ik g (#)
FEERA b
i+l S
vl +2(1 = N9 4 Ava:CxI:C)Q—
n 3 n )

where W€ is the Fourier image of the central-difference stencil. For the final stage of this method, the
dissipative difference operator is used as a central-difference operator by setting B = D = F' = (0. The
optimum values of B, D, and F' are different from those of the extended MacCormack schemes. They
have been chosen to maximize the size of the stability envelope under the constraint that |G| < 1 or that
the spectral radius of G is less than or equal to 1, where



G = % + %(1 — MU A T

X {14 By [(14+ BN T — B A *T,) (1 — AN T — 312, 00)) — 1]} (26)
G = %I + %(I — NA® 4+ A, AA°)

X {148 [T-BNAT +80A AT (I NAT + 30 ATAD) — 1]} (27)

Table 3 summarizes the RKLW schemes. Viscous stencils are the same as those used in the extended
MacCormack schemes. (See table 2.) Figure 2 presents the stability boundary of these schemes in the
absence of boundaries. As for the extended MacCormack schemes, explicit schemes have less restrictive
CFL bounds than the compact schemes with the same spatial order of accuracy, and increasing the order
of accuracy of the spatial operator reduces the stability domain. The (3-2E) scheme is the analog of the
original MacCormack scheme with the Runge-Kutta integrator. By simply setting B =D = F =G =0,
the RKLW scheme becomes the third-order Runge-Kutta scheme. Both RKLW and its corresponding
third-order Runge-Kutta method require three storage locations (3M) as opposed to the low-storage (2M)
method proposed by Williamson (ref. 43).

Runge-Kutta Schemes

A significant portion of direct numerical simulations (DNS) and well-resolved model-free simulations
of compressible flows have used a Runge-Kutta method. Unlike the extended MacCormack and RKLW
schemes, space and time are not coupled in the numerical method. A commonly used Runge-Kutta method
is the three-stage, third-order, low-storage scheme (ref. 43). Combined with a sixth-order, compact central-
difference operator, this method has been used in the simulation of compressible shear layers (ref. 12),
supersonic boundary-layer transition (ref. 44), and compressible isotropic turbulence (ref. 45).

In a more traditional approach, common variants of the third- and fourth-order Runge-Kutta time-
integration schemes are combined with explicit and compact differencing. The Butcher array for these is
given by

0
0 1 1
3 3
€2 a21
cg | a3l ap =2 | o 2 (28)
3 3
by by b3
1 3
1Y
for third-order temporal accuracy and by
0
0 L -
¢2 azl i 2 ,
€3 aszly @32 .z 2z
€4 a41 @42 Q443 -2 0 2 (29)
n b ) 1 0 0 1
S Loz
6 6 6 6



for fourth-order temporal accuracy. The application of these schemes to the equation Uy + F, = 0 is
U = Ul —ag AAF"
U;*:U? —ago NAF* (30)

UM = U 4 (b AF] + by AFF + by A“F™)

and , .
U;k = UZ-” — a9 AA“F" )

U = U — aga AAF*

‘ (31)

U = U] + (ATF] 4 by A°F] + byAF]™ + by AF}™) )

Analysis of the stability of the Runge-Kutta schemes can be done again with the equation
Ui + aly = ayUypy. The amplification polynomial (ref. 42) for the linear problem is given by

ns ns ns ns
G=1- (Z bi) 7+ (Z bici) 72 _ Z biajjc; 73 + Z biaijajkck 74 + .- (32)
=1

i=1 ij=1 i g k=1

where Z may be either (A¥°¢— X\, WU¥) or (A A° — A, A°A°), depending on whether one is interested in
amplification factor or matrix, and ns 18 the number of stages in the Runge-Kutta scheme. The schemes
are summarized in table 4. Figures 3 and 4 show the stability boundary of the third- and fourth-order
Runge-Kutta /centered-difference schemes, determined by the amplification factor. Stability appears to
be significantly angmented by going to fourth-order accuracy. [Figure 3 shows a characteristic of third-
and fifth-order Runge-Kutta formulas: a tendency for the stability domain to become small as the viscous
CFL — 0. These stability domains are independent of which of the two free-parameter families of three-
stage, third-order and four-stage, fourth-order Runge-Kutta schemes are chosen. All Runge-Kutta schemes
considered use centered stencils to evaluate viscous derivatives. A brief discussion of low-storage Runge-
Kutta schemes is contained in appendix B. The stability of Runge-Kutta schemes applied to the Navier-
Stokes equations has been considered by Sowa (ref. 46) for second-order centered spatial derivatives and
Runge-Kutta coeflicients in which all a;; = 0, except when 7 = j+ 1. Temporal accuracy of the Runge-
Kutta schemes was verified in the representative (4-8P) case. The linear equation U; + U, = 0 was
solved for various CFL numbers with a sinusoidal initial and boundary condition and 75 grid points per
wavelength. As table b shows, fourth-order temporal accuracy was recovered. Table 6 contains the error
when Uy + Uy = 0 was solved at a CFL number of 0.01 on various grids to ensure that spatial error
dominated the total error. As can be seen, eighth-order spatial accuracy was recovered. In each of these
cases, machine precision becomes a factor at high resolution.

Formal Accuracy

To determine the formal spatial and temporal accuracy of the interior schemes used in this study, the
amplification factor and the linear equation Uy + al/y = ay Uz, are used to derive the modified equation.
(See refs. 26, 27, 47, and 48.)

The exact solution to the convection-diffusion equation can be solved with the continuous Fourier
transform as

1 SN ~ ~N\ -
\/?/ (U{/ + tawlU + a,Uw2U) e™¥dw = 0 (33)
T J—00

or

U + iawl + ap?U = 0 (34)
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This equation may be integrated as
In U| = — (ia(.u + osz2) t|f;+r
tTL

where t" is the nth time step, to give

o~

= exp {— (iaw + avw2) T] U |n
"1

At 7 = (At), the value of the amplification factor is then
Gexact = €Xp {_ (iaw + Oéyw2> (At)}
or, in terms of &,
N .
Gexact = eXp {_ (1A€ + )‘vfz)]

where ) = “1% and Ay = (aA,ﬁt .

The error of the numerical scheme in Fourier space can now be written as (refs. 49 and 25)

In (Gscheme) In (Gexact) > sk
— — A

k
Replacing all occurrences of ¢¥ with its transform (—zAw)k%(Um) yields

In (Gscheme) In (Gexact) . il ke (9k
AL T T A _;;)Ak(m) & (Um)

A symbolic manipulator may now be used to expand In G in a power series and to solve for A.

The modified equation of several representative schemes is now presented. Because the resulting
expressions are of excessive length, only fourth-order tridiagonal schemes are considered. The modified

equation for the (2-4T) scheme is given as

ou ou O2U ad 5 U
- - — Ly = — At
ot + e Va2 6 (A1) 23
a9 2 20 A2 a'v
+ =5 96507 — 360y(AN7 — 1687 (Ax) (at) oy

+ 1%0 [9002(A0? = 90a%a, (A + 901 (A" + 800, B (A0)2(A1)]

+ 1%0 [~ 10a?B* (A (A0? + (An)!] 2572
+ 0 [(Aa?)ﬂ

and for the (3-4T) RKLW scheme as

11
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ou  oU FoRaug a2 1 9 3 5 9 oAU
+ = [90a2an (AL — 1808 (A1) + 80w BX(Ar)2(At) + B(Ar)] il
540 ! ! od
+0 [(Ax)ﬂ (42)

The term (Ax)Q(At) represents the dominant space-time error term for both the extended MacCormack
and RKLW schemes. For the (3-4T) and (4-4T) Runge-Kutta schemes,

ou  ou U at 30t

- VT - —(Al) —
ot or s o A g
+ L {30@ ay(AD3 — 6at(An)?t + (Aél?)ﬂ il
180 dzd
+0 {(Amﬂ (43)
and 9 5
5108 510 U a 4 4] 0°U 5
o gy~ T = gy A" + 280 S 4o (@n) (#)

As expected, no space-time coupling terms exist. In each of these schemes, the first occurrence of purely
viscous error terms (a = 0) is associated with gr—}{r To retain the formal accuracy of a scheme with
errors (At)P and (Ax)?, the modified equation must only contain terms proportional to (At)", (Az)%, and
(At)R(Ax)S, where » > p, s > ¢, and S + R > min(p,q). The accuracy of the schemes is verified in
the absence of boundaries for the convection-diffusion equation. A nonlinear viscous accuracy analysis of
the schemes in the absence of boundaries is presented in appendix C and shows that viscous terms are
calculated to the same accuracy as inviscid ones and that the schemes retain their advertised accuracy on
the nonlinear problem.

Numerical Boundary Conditions

In each of the numerical schemes presented, a special procedure must be derived to evaluate the
derivatives at the computational boundary points. Because accurate interior-scheme stencils are usually
large, typically at least the derivatives at the boundary grid points require a noncentered stencil. To
preserve the formal accuracy of a spatially N th-order accurate interior scheme on hyperbolic equations,
the boundary and near-boundary points must be closed with stencils that are no less than (N — 1)th order.
(See ref. 50.) The procedure to derive higher order implicit and explicit boundary stencils with a symbolic
manipulator is straightforward. (See appendix A.) Unfortunately, schemes using these higher order (fourth-
order and greater) stencils are most often unstable (refs. 16 and 51); hence, they are inappropriate to
implement computationally. Although lower order approximations to the derivative at the boundary
points degrade the formal accuracy of the entire numerical method, from a practical standpoint, this
degradation is only observed if the boundaries are a primary source of error. Therefore, if a stable, high-
order boundary condition is availlable for an interior scheme, it is used. If not, the more forgiving, lower
order formulations are used. For the viscous derivatives, viscous derivative boundary conditions in this
study are closed to the same order as the viscous interior operator; Nth-order inviscid central derivative
operators are closed no greater than (N — 1)th order. An unforeseen result of this study is that closing
the boundary points of the dissipative interior stencils cannot be done by simply using boundary closures
derived for the centered-difference Runge-Kutta schemes. Formally, all extended MacCormack and RKLW
schemes are (2-2) schemes because of an interaction of the boundary and interior stencils of the inviscid
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derivative operator. The problem is not relegated to only these two families of schemes; it affects the
(2-4) scheme by Gottlieb and Turkel and is likely to affect other dissipative schemes. For simplicity, the
truncation error is derived for one time step i the form of a modified equation for the seven boundary
points used in the discretization of the equation Uy + U, = 0 with the RKLW integrator and the explicit
inviscid stencil of Gottlieb and Turkel (3-4E(GT)) RKLW as follows:

Grid point 1:

A(7T4+17A V=1X(18 + 55X
Grid point 2:
A(=5+T7A V1A (=274 23X 9
Ui+ Uy = ﬁl_E%_QAx— (m4+ %Am4+ohAmﬂ
Grid pomt 3:
A (84 +55A V=1A(244 23X
Uit U, = _LTEE_JA$+ 221 %A@2+()“A@ﬂ
Grid pomt 4:
A(=4+17)) VETA(=12455)), ;
U+U, = —— A A O (A
1+ ZEV R 1296 (A0)? +0 [(an]
Grid point 5:
5A2 V—IA? 9 5
Ui +Us = = Aa = Y22 (A) +O“A@]

Grid pomnt 6:

A2 N V=TA?

Ut +Us = 15552 + 555

(Ax)? + 0 [(An)?]

Grid point 7:
m+%=okmﬂ

The initial condition is exp[i(z)] with a boundary condition exp[i(—t)]. The exact solution is
exp [i(x — t)]. No physical boundary conditions are imposed at intermediate levels of the scheme, a
technique which has been shown elsewhere (ref. 52) to be higher order. Because of the lack of cancellation
at the boundary, error terms of first order are generated at the first six grid points. The RKLW scheme
18 locally first-order accurate near the boundary and globally second-order accurate. Use of compact
derivative operators would spread this error over the entire domain because of the fullness of the matrix A
instead of confining it to only the boundaries.

Table 7 shows a grid refinement study of the (3-4E) Runge-Kutta scheme given in table 4 versus the
(3-4E) RKLW scheme given in table 3. Note that in this one-dimensional problem the domain contains
only 2 full wavelengths. Degradation from the boundaries requires significant resolution; full degradation
of the RKLW scheme does not occur until resolutions on the order of 8000 grid points per wavelength.
Machine precision becomes a factor as log1g Lo < —9.
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Time-stable wall boundary stencils for the explicit fourth-order, centered first derivative operator are
given by

fi= s (U 180~ 9f3 +201) (15)
fo= s (=201 = $f2+6f3— i) (46)

! / 1
fit+2fs= g (Shfi+Afa+ f3) (47)

for the compact, tridiagonal fourth-order operators. Fach of these equations is third-order accurate and
results in a formally fourth-order accurate inviscid derivative operator. A stable boundary stencil for the
third-order viscous operator is given by

Ji = gag (CLLL+ 182 = 973+ 2) (48)

To close the boundary point frlm—(i—l)’ the negative complex conjugate of the Fourier image of the

stencil at f; 1s utilized; this means for the stencil

brfio apfin Y[ apfig bpfito

/ _ . e . ..
fi= + Az + Az + Az + Az + Az + (49)
that
f/ o benJ:—(i—I-l) _ aanx—(i Tfna: (i—1) _ aLfnx—(i—Q) _ bLfnx—(i—B) o (50)
nz—(i—1) = Az Az Az Az Az

where nx is the number of grid points. Closure stencils for the viscous mterior stencils must be closed
with some care because a different number of points must be closed on the two sides of the computational
domain. For the explicit stencils used in this study for the (N — 1)th-order accurate viscous derivative
operators, (N — 1) boundary points need to be closed. The forward operator requires N/2 points to be
closed at the right computational boundary and (N — 2)/2 points at the left computational boundary.
This reverses when the backward viscous interior derivative operator is used. For example, the third-order

. . . o . . . 1 !
viscous interior derivative operator is closed with expressions for f, f2, Jnz on the forward stage and f;,

fm,, f;w 1 on the backward stage. The most interior point of these, f2 or f,._1,depending on which stage
18 being used, 1s closed with the negative complex conjugate of the interior stencil. Further discussion of
boundary closures focuses on the computational domain containing the leftmost boundary points.

Stable, fifth-order accurate boundary stencils for the centered-difference stencils are given by

!

f1= gy (F197/14690f2 — 13803 4 1850 f4 — 1575 f5 + 822f5 — 2407 + 303) (51)
/ 1

fo= goas (Z18f1 = 35f2 + 665 — 30fa+ 505 — 57f5 + 307 — 6s) (52)
!

F3= goag (431 =30/2—20f3+ 60f4— 155+ 2f5) (53)

for the explicit sixth-order derivative operator, by

fll = m(—éﬁ%ﬁ + 14525 f9 — 26250 f3 + 34475 fy — 301005+ 16611 fs — 5250 f7 4+ 725f3) (54)
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r 1
2= HiAr

for the compact tridiagonal sixth-order derivative, and by

(— 1351 — 844 fy + 1635 f3 — 1050 f1 + 575 f5 — 240 f5 + 69 f7 — 10g) (55)

1 1

N = Teooag (4630S1+ 147902 — 25746 5+ 20370f4 — 202055+ T674f6 — 1250f7 + 6/5)  (56)

! 1
F2= 50oas

for the compact pentadiagonal sixth-order derivative operator.

(—1416f1 — 19792 + 2460 f3 + 28204 — 2240 f5 — 129f6 + 684 f7 — 200f5)  (57)

Results for the compact tridiagonal sixth-order derivative operator were first given by Carpenter
(ref. 16). These results are referred to as 52,(52-6-52),52 schemes and are formally sixth-order accurate in

space. By using (#fp) to designate the number of free parameters and Oll- to denote the order of accuracy
of the first derivative approximation to a function f at grid point ¢, we designate schemes with as

! / li !
(Ol(#fp)’ 02(#fp)’ T Ointerior - ’On(flp)’ O;J#fp)> (58)

An (N — 1)th-order explicit stencil representing an approximation to fl requires N grid points. By
extending the stencil to (N + 2) grid points, two degrees of freedom are added through two free parameters.
The expression 52 implies a fifth-order accurate stencil with two free parameters using an eight point stencil.
To determine the minimum number of grid points needed to be closed for a centered-difference interior
derivative operator, the bandwidths for matrices P and Q must be considered. If the matrix with the
larger bandwidth has a bandwidth of ¢, then (¢ — 1)/2 boundary grid points must be closed on each
side of the computational domain. Where eighth-order spatial accuracy and higher 1s desired, additional
boundary stencils are added to allow sufficient degrees of freedom for a stable boundary closure to be
obtained. For eighth-order accuracy, four boundary grid points were needed at each end, each with four
degrees of freedom. Closure of tenth-order schemes may be done with six boundary grid points, each with
six degrees of freedom.

The boundaries are closed to lower order for the compact interior stencils by

[l 2Ly = (<3 + AL+ fy) (59)
1 ro 1 - 3
hthrifs=g (- A) (60)

The explicit sixth-order interior scheme uses the same three wall points as the fourth-order explicit scheme.
Both schemes are formally fourth-order accurate and are referred to as the (3,4-6-4,3) and (3,3,4-6-4,3,3)
schemes.

Fifth-order accurate boundary stencils for the fifth-order viscous operator, which are used in several
extended MacCormack and RKLW schemes, are given by

!

f1= M(—l?ﬂfl + 300fo — 300f3+ 200f4 — 75f5 + 12 f5) (61)
fy= o (<121 = 65 o+ 120f5 — 604+ 205~ 3s) (62)

Boundary conditions for higher order schemes are contained in appendix D. Note that stable high-order
boundary stencils for one scheme are likely to be violently unstable if used with a different interior scheme.
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All proposed central-difference stencils have been verified to have bounded left-half-plane eigenvalues for
the matrix A. This condition is necessary for stability of Runge-Kutta schemes but does not guarantee
stability for Navier-Stokes calculations. Table 8 gives the value of the real part R of the eigenvalue of
the matrix A, which has the largest real component for various grid sizes. In each case, the largest real
component of any derivative operator i1s contained in the left half of the complex plane. This notation
mdicates that the derivative operators will be time-stable.

In addition, the stability of all predictor-corrector (RKLW and extended MacCormack) schemes has
also been investigated for bounded left-half-plane eigenvalues of the matrix M = % (A+A; + A_Aj').

Several of the schemes listed have eigenvalues in the right-half-plane and are unstable; for instance, all
(2-6P), (2-8T), (3-6P), and extended MacCormack and RKLW schemes using seventh-order boundary
stencils are unstable. The value of the largest real eigenvalue of M is given in table 9. Again, these
schemes are only formally (2-2) schemes in the presence of numerical boundaries.

Filters

In reasonably well-resolved computations, numerical errors are still present and are introduced primarily
at high wave numbers. This can readily be seen by plotting the Fourier image of the finite-difference first
derivative versus the spectral derivative or, as 1s sometimes stated, modified wave number versus wave
number. (See ref. 13.) Figure b shows the accuracy of various centered-difference first derivatives relative
to the exact spectral derivative. It is immediately apparent that compact derivative operators (P # I)
are more accurate than their explicit counterparts because the representation of ¥ as a polynomial is
most accurately done as a Padé approximate. All derivative operators have no resolution at & = 7 and
have marginal resolution for wave numbers near m. Nonlinear interaction of these unresolved, nonphysical
waves of various wave numbers generates higher wave-number information. When the grid is unable to
resolve the highest wave-number information, the error is introduced into low wave numbers and eventually
contaminates the solution. In addition, successive application of the first derivative operator to obtain a
second-order derivative results in an amplification factor of unity at & = « for centered-difference operators;
this application facilitates what is commonly referred to as “odd-even” decoupling. To suppress these
effects, a numerical filter is used to create artificial viscosity. Several criteria exist for a useful filter.
Eigenvalues that correspond to low wave numbers that are resolved should be virtually untouched; the
relatively unresolved high wave numbers should be removed. Either an explicit or implicit filter can be
chosen. Although Lele (ref. 13) uses implicit filters up to sixth order, in this study an explicit filter is
used because 1t 18 computationally more efficient and 1ts design is more conceptually straightforward. As
a filtering function, we seek a function that is equal to 0 at & = 7 and is equal to 1 at £ = 0. A simple
function to satisfy this need is

| —sin2n & (63)

2

We also desire a filter whose accuracy may be chosen arbitrarily; the filtering function must have a slope
that approaches 0 to the chosen order as € approaches 0. Thus a (2n)th-order filter should have, to leading
order, U = £27 because ¢ tends to zero. The magnitude of the filter must also be equal to or less than 1.
Several discussions of filtering approaches can be found in the literature. (See refs. 19, 18, 17, and 53.)
This discussion follows that of Eriksson (ref. 54), who derived explicit filters of second, fourth, and sixth
order.

For the finite-difference implementation of these filters, begin with the following defimtion of the explicit
central-difference operator for the (2n)th-order derivative of a function f:

(2n) Tfi fi+1 + fifl fi+2 + fi72 fi+3 4 fz’—S fi+4 + fif4
i - (A:U)(277') + a (AI)@n) + b (Ar)(2”) + ¢ (Ax)(2”) + d—(Aaz)(Qn) 4 (64)
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and the Fourier image given by
U =T+ 2a cos(§) + 2b cos(28) + 2¢ cos(3€) + 2d cos(4E) + - - (65)

If consideration is given only to the second-order accurate versions of these derivatives, the negatives of
the coefficients are given in table 10.

592
In Fourier space, the second-order accurate stencil of %] LW o= g2n g 0(527”2), s given by

T

¥ =(—1)"t! (2 sin g) " (66)

Table 10 shows the terms proportional to the interior stencil coefficients for filters of orders 2 (n = 1)

through 20 (n = 10).

If we choose a matrix filter function D that is symmetric, then it has real eigenvalues. Because this
filter function is based on a stencil that, when implemented with the temporal schemes discussed, has
eigenvalues that are negative, then U;D;;U; is always negative. This negative value guarantees that the

filter is completely dissipative. The filter function is mmplemented on a vector U as U= (1+ apD)U,

where U is the filtered vector; ap must be given by (—1)"T1272" for a (2n)th-order filter. Figure 6 shows
the filter strength in Fourier space.

To close the matrix D at the boundaries and retain symmetry, skewed stencils of order n are used with
an interior scheme of order 2n. Appendix E contains the upper left portions of the matrix D for filters of
orders two through twenty (n = 1 — 10). A formally tenth-order accurate scheme may now be closed with
no concern as to how the boundary points of the filter affect the spatial operator.

Results

Because of the large number of schemes presented in the text, the number of permutations of boundary
closures possible, and run times of several hours, only a few of the schemes could be run on large grids.
The flow field of interest was the spatially evolving, two-dimensional, compressible nitrogen-hydrogen
shear layer. This flow field was chosen because regions of intense gradients occur both near and far
from the flow centerline; this makes grid allocation difficult and places a heavy burden on the accuracy
and computational stability of the numerical method. It is also an important prelude to the supersonic,
hydrogen-air, reacting shear layer found in scramjet combustors.

Inflow conditions to all computations are Euler supersonic (ref. 55) and are described elsewhere in
reference 1. They represent a self-similar, supersonic, nitrogen-hydrogen shear layer with Ma, = 0.45,
where Ma,. is the convective Mach number. The inflow shear-layer thickness was fixed at 2 mm. A factor
of 100 between the shear-layer thickness and the transverse domain was used to ensure that no reflections
from the inflow plane returned to the shearing region before the domain ended. Forcing was applied at the
mflow to the transverse velocity component in the form of a sinusoidal disturbance. Amplitudes of 4 and
2 percent of the mean velocity were applied to the fundamental and subharmonic frequencies, respectively.
No attempt was made to adjust other inflow variables to preserve consistency with the governing equations
in the presence of this forcing. A result of this was a strong adjustment zone immediately downstream
of the inflow plane where large amplitude disturbances propagated toward the transverse boundaries,
potentially contaminating the shearing region with spurious boundary reflection. The forcing profile of
the transverse velocity was in the form of a near step function centered at the region of maximum velocity
gradient and falling off precipitously at the shear-layer edge; this was found to minimize the amplitude of
the disturbances impinging on the transverse boundaries.

Principal runs were done on grids of 301 by 451 with transverse grid clustering to represent a physical
domain of 200 by 100 mm. Only about 10 percent of the grid points was contained in the high-shearing
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regions of the shear layer because of this choice. The four schemes investigated were the (2-4T), (2-6T),
(3-4T) RKLW, and (3-6T) RKLW. No Runge-Kutta schemes are listed because several attempts were made
to use the (4-4T) and (4-6T) schemes but they lacked sufficient dissipation to remain stable on the grid
densities that were run. Boundary closures for the fourth- and sixth-order schemes were implemented as
(3-4-3) and (3,4-6-4,3). These combinations were chosen because they were believed to represent the most
practical schemes for these shear-layer simulations. All computations used Euler nonreflecting boundary
conditions (refs. 56 and 57) at the two transverse boundaries and supersonic Euler boundary conditions
at the outflow.

Differences in accuracy between the filtered (2-4T), (2-67T), (3-4T) RKLW, and (3-6T) RKLW schemes
were not striking. Flow-field variables like velocity, pressure, temperature, and, more importantly, the
differentiated quantities, vorticity and dilatation, were nearly independent of the scheme. All attempted
schemes used a tridiagonal derivative operator that was chosen to reduce the truncation error of the
derivative operator but caused a small increase in computational time due to the inversion of the matrix P.
Table 11 lists the truncation errors for various first-order derivatives, including several stencils not
considered in any schemes in this paper. The explicit stencils have large truncation errors relative to
the compact stencils; this is consistent with figure 5. Truncation error is mimmum for the 47T, 6T, 8P,
and 10P stencils. Further discussion of this situation is contained in appendix A. The penalty associated
with the large CFL limits of the explicit versions of the various schemes in figures 1 through 4 is now
clear—explicit stencils have large truncation errors. Inspection of terms that require signmficant resolution,
such as V X w and the dilatation gradient, in well-resolved simulations could help determine the efficacy
of sixth-, eighth-, and tenth-order accurate schemes. Schemes with spatial accuracy greater than 10 may
be readily derived by extending the current methodology; however, spectral schemes should probably be
considered as an alternative for such highly resolved computations.

Computational stability was found to be more sensitive to numerical method than accuracy. Extended
MacCormack schemes are more stable than the RKLW schemes and far more stable than the Runge-Kutta
schemes. Several runs on smaller grid densities with the (4-4T) and (4-6T) schemes were completed for
nitrogen-nitrogen shear layers; this suggests that the robustness required for disparate-mass gas mixtures
is significantly greater. Modifying the temporally third-order Runge-Kutta scheme with the addition of
the predictor-corrector sequence to form the RKLW family of schemes noticeably increases computational
stability., Higher order numerical boundary conditions are presented; however, they are not used because
dissipative schemes are, by definition, lower order at the boundary. In smaller nitrogen-nitrogen simulations
with the (4-4T) and (4-6T) schemes, the formally accurate boundary closures were found to be less forgiving
than the lower order closures and were more likely to lead to computational instability on any given grid.
This conclusion is based on the closure response to the manner in which the shear layer was forced.
Inadequate resolution and minimal dissipation from both the interior and boundary stencils make the
Runge-Kutta schemes impractical for these simulations until grid densities become significantly greater
than those chosen here.

The appropriate choice of schemes depends strongly on the accuracy, computational stability, and CFL
limits of the method and the needs and resources of the user. For smaller grid densities where robustness
was more important than CPU time, the (2-4T) scheme was very useful. The (2-6T) scheme was slightly
slower. On larger grid sizes, such as 301 by 451, the (3-6T) RKLW scheme was preferred because it was
slightly more accurate and actually faster than the (2-4T). A comparison of run times indicates that the
RKLW schemes may be run to the same physical time as its corresponding extended MacCormack scheme
(Le., (3-4T) RKLW versus (2-47T)), in significantly less CPU time. Relative to the (2-4T) scheme, the
run times of the (2-6T), (3-4T) RKLW, and (3-6T) RKLW schemes are 1.24,0.75, and 0.92, respectively.
The (3-8T) RKLW scheme is likely to require only 11 percent more CPU time than the (2-4T) scheme.
Although we did not attempt to run any of the explicit dissipative schemes, they have significantly larger
stability envelopes, are easy to code, require no imversion of the matrix P, and are, consequently, likely to
be very fast. Pentadiagonal schemes were presented here up to tenth order; however, these schemes may
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not be considered competitive because of the difficulty in inverting P until the truncation-error penalty of
the explicit or tridiagonal stencils is deemed sufficiently large.

A surprising finding in this work is the effect of filters. Filtering was applied to the vector U after
all full predictor-corrector and central-difference stages in order to remove spurious information before
it could move to lower wave numbers. The unfiltered dilatation field for the dissipative (2-4T) scheme
was badly contaminated; filtering resulted in a noticeable improvement. Figures 7(a) and 7(b) show a
section of the dilatation field from a 101 by 151 simulation using the (2-4T) scheme of a nitrogen-nitrogen
shear layer at Ma, = 0.45, with and without filtering. For comparison purposes, a very large 401 by 601
simulation was run with the (3-6T) RKLW scheme. (See fig. 7(c).) The filters were found to improve the
calculations more than any differences in temporal or spatial order of accuracy between the schemes. All
runs were made with the tenth-order filter to avoid lowering the order of the 52, 5%-6-52 52 schemes. The
appropriate filter order was chosen based on either the interior or boundary accuracy of the differencing
scheme. The strongest filter that did not degrade the accuracy of either the interior or boundary points
was used (i.e., the interior filter order could be no less than the order of the interior scheme nor could the
filter boundary order be less than the boundary order of the scheme). A twentieth-order filter could then
be used with a formally tenth-order scheme.

The fact that the filters had such a significant effect indicates that the simulations may not have been
completely resolved. To determine whether a calculation is well resolved, a good test (in addition to
grid refinement) is to compare filtered and unfiltered simulations. Dilatation was a particularly sensitive
variable to resolution. The 301 by 451 calculations should be considered “model-free simulations” but not
“direct numerical simulations.” Later simulations of the nitrogen-hydrogen shear layer at Ma, = 0.45 on
the 401 by 601 grid were believed to be fully resolved because contours of third derivatives of the velocity
were not only smooth but also physically plausible. Model-free simulations that “run” are no guarantee
that all relevant scales of the problem are resolved.

In addition, misspecification of the physical boundary conditions, which i1s a current topic of research,
becomes more apparent as the accuracy of the method is increased. For sufficiently refined grids, supersonic
Euler outflow boundary conditions are clearly mnadequate m the center of the shear layer. Dilatation
provides a simple tool to gauge whether the nonreflecting physical boundary conditions used on the upper
and lower boundaries were, in fact, reflecting. Vorticity contours give virtually no indication of this
boundary contamination.

Concluding Remarks

An investigation was conducted of several numerical schemes that offered high spatial and temporal
accuracy and were used in the computation of two-dimensional, spatially evolving, laminar, variable-
density compressible shear layers. Three schemes with various temporal accuracies and arbitrary spatial
accuracy of both the inviscid and viscous terms were presented and analyzed. All integration schemes
made use of explicit or compact finite-difference derivative operators. Fxtended MacCormack schemes
retained the robustness of the original, uniformly second-order accurate method. Spatial accuracy was
enhanced, and the stability limit was somewhat restricted. Extending the original MacCormack scheme
resulted in longer run times; however, simulations achieved far greater spatial resolution. The (2-4T)
scheme, used mm conjunction with a tenth-order filter, provided an accurate, computationally stable,
general purpose numerical scheme. For large, well-resolved simulations where computational stability
(dissipation) was not as critical, the temporally third-order RKLW (Rusanov-Kutler-Lomax-Warming)
scheme was preferred. As with the extended MacCormack schemes, spatial accuracy of both the inviscid
and viscous terms could be chosen freely. Stability limts of the RKLW scheme were large because of
strong resemblance to the Runge-Kutta central-difference schemes. Computational stability was achieved
by the same space-time dissipative terms in the extended MacCormack schemes. This approach made
the RKWL schemes more stable than the Runge-Kutta schemes with the same workload per stage. An
additional benefit of the extended MacCormack and RKLW schemes was that computer codes written
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with the original MacCormack or Gottlieb-Turkel scheme may be readily upgraded to higher temporal
and spatial accuracy with minimal effort. Third- and fourth-order Runge-Kutta schemes, although very
accurate, possessed msufficient dissipation for the calculations conducted in this work. Filters did not add
enough dissipation to stabilize computations with significant compressibility and variable-density effects.
Tridiagonal difference operators were chosen for their low truncation error. Pentadiagonal operators are
not likely to be competitive below eighth-order accuracy.

In each of the schemes, stability was considered for the interior operators in the convection-diffusion
equation Uy + ally = ayUzr. Accuracy of the extended MacCormack and RKLW schemes was verified
for the nonlinear problem Uy + F;, = 0 and the viscous problem Uy = [b(x)U,],. Numerical boundary
treatments for Runge-Kutta schemes of various orders of accuracy were chosen and evaluated to be
asymptotically stable. Derived, formally accurate boundary conditions were given for explicit sixth-order,
pentadiagonal sixth-order, and explicit, tridiagonal, and pentadiagonal eighth-order central-difference
operators. Lower order closures were also presented and shown to be stable. All boundary closures
for the extended MacCormack and RKLW schemes were determined to destroy the formal accuracy of the
schemes; this problem is a serious limitation of these schemes and is likely to occur in many other common
dissipative schemes. Apparently, this problem has gone unnoticed for over two decades.

Damping of high wave-number, nonphysical data was accomplished for all schemes with the use of
explicit filters. Filters have been derived up to tenth order on the boundaries and twentieth order in
the mterior. These filters use explicit finite-difference stencils, are computationally efficient, and act
predominately on high wave-number data. Results of several simulations indicate that on moderately
well-resolved simulations, the effects of temporal and spatial accuracy differences between the schemes
were less important than filtering effects.

NASA Langley Research Center
Hampton, VA 23681-2199
July 31, 1997
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Appendix A

Derivation of General Stencils

To generate the centered finite-difference approximation of 6—{- to Nth-order accuracy, the problem is

divided into cases with k even and odd. When k = 2n — 1 is odd, the stencil is

oY B Y+ T Y+ Y
+alfPn) 4 Oy 4 g

e e
e e e <A1>

and its Fourier image is written as

i[2a sin(&) + 2b sin(28) + 2e sin(3¢) + 2d sin(4€) + 2e sin(bg) + - -]

v = A2
[1 4+ 2a cos(&) + 25 cos(28) + 2y cos(3&) + 26 cos(48) + -] (A2)
Expanding the sine and cosine functions as a Taylor series gives
o0
U=z Z w(Qm—l)‘f(Qm_l) (A3)
m=1

where the functions of w(?m—l) are (a,b,---,a,3,---). It is required that ¥ = (zf)k + O(£N+k) to
approximate the spectral derivative to order N. A tenth-order pentadiagonal approximation to fm may be
obtained by solving six (N—Jrkﬁl) simultaneous equations (1 = 5 = 17 = g = 11 = 0 and )3 = —1)

in six unknowns («, 3, a,b,¢, and d). Solutions do not always exist for these stencils. Similarly, when
k = 2n 1s even, then the stencil is

S T ) ) AU+ N el Y+ s
i Jivr + fia fivo + ficg | fixs + fig
(Aaj)(Q”) (Ax)@”) (Ax)(Q”) (Ax)(Q”)
Jiza + Jica Jivs + fizs Jive T Jice
+d (AI)(Qn) + e (Ax)@”) + f (Ar)@") +o- (A4)
and its corresponding Fourier image is given by
_ [T 4 2a cos(€) + 2b cos(28) + 2¢ cos(3E) + 2d cos(4€) + 2e cos(BE) + -] (A5)
B [1 4+ 2a cos(&) + 25 cos(28) + 2y cos(3&) + 26 cos(48) + -]
or -
U= Yo gt (A6)
m=1

A tenth-order heptadiagonal approximation to f¥! may be obtained by solving eight (N—é‘i) simultaneous

equations (19 = 1y = ¢4 = g = Y190 = ¥12 = 14 = 0 and g = —1) in eight unknowns («, 8, 7v,a,b, ¢,d,
and €). Again, it is required that ¥ = (i6)F + O(eNFh).
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For arbitrary skewed stencils representing the kth derivative, we may write

O L T Ty £ N AL Ay R F ATy )

+ arf + ars) + 1

fi apfi-1 + arfiy1 | brfio + brfis | crfioz + crfiys
(Az)(®) (Az)(k) (Az)(®) (Az)h)
dofia + drfiva | ertis + erfus | Julie + Jrfive (AT)
(Ax)k) (Az)(h) (Ax)k)

_|_

and give its Fourier image by

cos(é) +(br+b) c.os(Q«E) + (cp+ep) gos(35)+ ]}
sin(§) 4+ (bp — byp) sin(28) + (cp — ¢f,) sin(3&) + -]

——

{[T +(ap+ay
v

+ if(ap — ag (AS)
{ [+ (ap+ ap) cos(&)+ (B + F) cos(28) + ]}
+ i(ap — ap) sin(é) + (Br — B1) sin(28) + -]
or o .
U= 1/)(2m—2)5(2m_2) +iy ¢(2m—1)5(2m_1) (A9)
m=1 m=1

For the kth derivative, ¥ must be either purely imaginary (k is odd) or purely real (k is even). We now
must solve (N 4 k) simultaneous equations in (N + &) unknowns: ¢, = (4)¥ (for k even), ¢y, = ())¥—1 (for
k odd), andy; =0,{=0,1,--- (N+ k—=1),{#k.

In the special case of the centered first derivative, let p denote the number of bands in the matrix P,
let ¢ denote the number of bands in the matrix Q, and let n be N/2. The order of the derivative N is then
equal to p + ¢ — 2. Simple recursion relations for the coefficients of the matrix P can be found for p < ¢.
Stencils for which p > ¢ are of marginal practical utility because they are computationally inefficient and
have a larger truncation error than those with p = ¢. The following relations can be derived:

o P DN —(p— 1]
NS (410
=3 - DN (p+ DIV — (p— 1]

P T T DN (BN —(r—3)] (A1)

=== ) [V = (ot BN — (p+ DV = (= 1) ne

I IDeTD N (DI (- BV —(r—3)

f =D =5 DIV =+ IV = (DI~ DIV == 1]

ST I DI — 0N — (DN — (Y — (» —3)

and so on.

For example, the thirty-second-order (N = 32) nonadiagonal (p = 9) first derivative has the coefficients
o« = 48/65, 7 =132 /455, v = 176/3185, and § = 99/25480.
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Similar patterns can also be found in the matrix Q if p < ¢. For example,

4 [pN—(p— DIV +2)
p+1)?2 [N —(p-3)P

a =

If we define . .
-] i )
pale (4z—|—2
Z—T —i
I'. =
: H(p—l—i)
i=1
p—1
= —
then for p =1 and 3,
b —or, ¥ = (4 DIV — (0= 1
[N —(p=5)][N —(p—3)]

for p=1,3, and 5,

for p=1,3,5, and 7,

deor &V AN —(p+ DIV -+ DIV - (p— 1)
I ==V = (p - DIV = (r =5V = (r =3
and so on.
If we consider only explicit (p= 1, = 3= --- = 0) central-difference stencils, then
. .on—=0
“= T +1
b (n—0)(n—-1)
2(n+1)(n + 2)
. (n—0)(n—1)(n—-2)
3(n+1D)(n+ 2)(n+3)
J— (n—0)n—1)(n—2)(n—3)

4n+1)(n+ 2)(n+3)(n+4)
for the first derivative operators (first noted by Fornberg (ref. 58)), and
T =—-2a+bte+d+---)

2
(n4+0)(n+1)
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a =

(A14)

(A15)

(A16)

(A7)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)



_ 2(n—1)
b= (n+0)(n+1)(n+2) (A25)

B 2(n—1)(n — 2)
T AT Dt D+ 3) (A26)

B 2(n—1)(n—2)(n—3)
) CEEN L B CEE) (A27)

for the second derivative operators.

Truncation error of centered first derivative operators can also be put in general formulas. The first
derivative stencil truncation error for p < ¢ may be written as

b =) () [Tz 26— 1) (v 41
N D T 20041 (A28)

If we compare two different first derivative approximations that are each Nth-order accurate with the
subscripts a and b distinguishing the two and let 4, > 7, then the ratio of the truncation errors for p < ¢

18 given by
I .
(n —7a)! (ra)! Hilrb—l—l (20— 1)
=) ) T, 2 RO = 9+ 1]
As r4 becomes progressively larger than rp, the ratio becomes very small; this implies, for example, that
for a twentieth-order derivative, a nonadiagonal derivative has far less truncation error than a tridiagonal
derivative. Truncation error is minimized by lettingp = ¢ (N =4,8,12,---)orp =¢—2 (N = 2,6, 10,---)
for p < ¢. This approach has been empirically verified in cases where p < 9 for all possible values of ¢.

(A29)
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Appendix B
Low-Storage Runge-Kutta Methods

Consider the equation Uy + Fr = 0, where ¥ = F(U) and Fo = FpUs = fUz. The traditional
three-stage Runge-Kutta method may be represented in the equation Uy = —F), as

U* — Un _ a?lAanUn
U** — Un _ GSIA]ENAUH _ Cl32)\f*AU* (Bl)

Ul = 0" b A fPAUT — b AFAUT — by )\ AU

where A is the matrix derivative operator and A = % Alternatively, in Butcher array form (ref. 42), this
appears as

0
2 az1
€3 azlr  as2 (B2)

In some cases, storage requirements of computations should be minimized. We briefly elaborate on the
Runge-Kutta scheme given by Williamson (ref. 43). He derives formulas that allow storage of only two
values (2M) of the vector U, where U has a vector length M. In the low-storage format, this becomes

qn — /\f”AU’L— Alq_*
¢" = MNFAU" — Agqg"

Fok * * (BS)
U™ =U" — Byq
Un-{-l — U** _ B3q**
or
U =U" — BIAf"AU"
U™ = U* = By(AfFAU* = AAf"AU™) (B4)

Un—H = 7 _ Bg[Af**AU** —Ag(/\f*AU* _A2/\anUn)]

Setting A1 to zero creates a self-starting procedure. This procedure results in a one-parameter family of
schemes. The relationship between low-storage and traditional methods may also be shown with the aid

of

0
0
2 ar B, By
3 31 as2
7 Br+ Ba(Ay+ 1) [A9 By + Bj] By (B5)

[A2(A3Bs + By) + B1] (A3Bs+ Bz) Bs
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where (A1, A9, B1, B2, B3 ) correspond to the variables (a1, az, b1, b2, b3) in Williamson’s work. (See ref. 43.)
Because the stability bounds of the two-parameter family of the third-order, three-stage Runge-Kutta
method are independent of the parameter choice, the analysis presented in the text is valid for the low-
storage formulas as well.

For ¢9 #0,2/3, or ¢3 and c3 # 0, we define

21 = /(36c + 366 — 1353 + 8dep — 12)

z9 = 26% + c9g—2
23 = 12§ — 18¢3 4+ 183 — lleg + 2

(B6)
24 = 36¢) — 36¢3 + 13¢5 — 8co + 4
25 = 6963 — 62¢3 + 28¢y — 8
26 = 34c¢) — 46¢3 + 343 — 13cy + 2
The one-parameter family is given by
Bl = )
2
B — 12¢9(eg — 1)(32z9 — z1) — (3292 — 1)
2= 144cy(3cy — 2)(cg — 1)2
A —24(3c9 — 2)(cy — 1)2
3 j—
(329 — 21)2 — 12¢9(cog — 1) (329 — 21) (B7)
Ay = —(66% —4deg+ 1)z + 323
27 (2e2 1 Dz — 3(eg + 2)(2eg — 1)2
e — —z4z1 + 108(2c9 — 1)6% — 3(2e9—1)z5
5T Yziea(eg — )T + T2e7 + 72¢5(2¢; — 13) )

which can be verified, provided that none of the respective denominators vanish. Williamson’s optimized
scheme appears in Butcher form as

0
1
1 1 0 3
3 3 Al Bl
5 15
3 3 15 — Ay By = —3 0 (B8)
1 6 16
Az Bs 153
1 3 8 T 128 15
6 10 15

Allen Wray of the Ames Research Center (personal communication) has considered cases where ¢9 = 2/3.
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If an extra stage is added, a three free-parameter family of low-storage schemes may be devised. Several
schemes are given that are third-order accurate for the nonlinear problem and fourth-order accurate for
the linear problem (Fiy = Constant), where the stability bounds of the convection-diffusion equation are
the largest for four-stage schemes. If we set ¢ = e3, then

0
1
1 1 0 3
3 3
3
1 5 3 oL
3 12 4 = ) (B9)
-1 Z
1 12
1 2 .z 3
4 12 3 '
-1 -
o L o1 N
3 12 4
If we set ¢3 = ¢4, then
0 1
1 1 0 1
4 4
5 11
11 uou 1 T
12 36 9 = (B10)
11 18
11 419 16 18 % Tl
12 396 9 11
182 1
B R 11 12
1 4 66 12
and 0
0 19
19 19 36
36 36
205 27
3 5127 243 19
1 % 1o = (B11)
619 243 2
3 Wy 2 38 9
4 36 9 _
13 21 1 1 2 L
= 2 - 9 4
57 76 6 4
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Appendix C
Nonlinear Analysis

Consider the equation Uy + F, = [b(z)Uz], in a periodic domain, where b(z) is taken to be exact.
Let B = 0 and F, = FyU, = fU,. The accuracy of the extended MacCormack (2-[2r]) and RKLW
(3-[2n]) families of schemes is now verified (the first number representing the temporal accuracy and the
[2n] representing the spatial accuracy of the overall schemes, viscous and inviscid) with viscous stencils
whose order of accuracy is [2n-1]. This verification is done in two parts. First, the equation Uy = [b(2)Uz]z
is examined to determine the accuracy of the viscous terms; second, for the equation Uy + F, = 0 the
nonlinear accuracy is verified. The analysis provided is somewhat different than that given in the section
“Formal A ccuracy.” Previous researchers have investigated some of these issues for spatially fourth-order
accurate MacCormack schemes (ref. 9). Use of the variable n as a superscript on the vector U represents
the nth time step; otherwise, 1t denotes spatial accuracy of the derivative operator. In matrix notation,
the RKLW scheme may be represented for the equation Uy = [b(x) U], in matrix form as

3\

!
U* = [T+ B81A,A BAU"
!
U™ = I+ /1A, ATBAJU*
# _ n *k TR (Cl)
UF = [U"+ fo(U U™
1 .
U= U7+ 2T+ N, AT BAT U H]
J
At
where A, = AT If we let
AT = AT 1 X
AT = A" -X -
Azi— — A27L + X’U ( )
ALT — A27L _ X’U
then we may define
A27LBA27L — Z1
ABX, = Zo
¥ ©)
XBA™" = Z3
XBX, = Z4

To facilitate our analysis, note in tables 2, 4, and 7 that X, the forward, first derivative matrix operator
of (2n — 1)th-order accuracy, may be rewritten as

(5% 0),= ("), + i} (130), -

where <(1)A(+2n71))i, (mA(CQn))i, and ((zn)A&)) i represent the explicit, forward, first derivative operator

to (2n — 1)th-order accuracy at grid point é; the explicit, centered, first derivative operator to (2n)th-order
accuracy at grid point ¢; and the explicit, centered, (2n)th derivative operator to second-order accuracy
at grid point ¢, respectively.

The matrix X may be considered by rewriting the finite-difference stencil of which it 18 composed

Ffi—g + Dfi—o + Bfic1 + Gfi + Bfix1 + Dfiyo + Ffigs (CH)
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as

F [<(2)AE2)>H2 + ((2)A(c2))i2] + (D+2F) [((Q)A(CQDHI + ((2)A52))i1]

+ (B +2D+3F) ((2)AE’2)) , (C6)

Although we do not utilize these results, for the special case of B = — (4D + 9F'), the finite difference
stencil in X is shown to be given by

[(5) ¢ (950, ] + 04am (930), e

1—1

where G is still given by G = —2(B + D + F) or, in this particular case, G = 2(3D + 8F). By further
enforcing 1) = —64", equation (C7) becomes

F (<6>Ag‘2))i (C8)

and the stencil in X then represents the second-order accurate approximation to the sixth derivative.

The matrices A2nJ X, and Xy may be represented as
A= an{ L4 ol(A?]
Oz

X o (Ax)? {8—2 + 0{(&6)2]} (C9)

D?

X, x (Ax)™ {% + O[(Aﬂfﬂ}

The terms A??, X, and X, that occur in both extended MacCormack and RKLW schemes are now given
by
A% x (Ax)
X x (Ax)? (C10)
X, (A:E)Q"
Equations (C10) imply that

(C11)

Also note that AQn,X, and Xy, are antisymmetric, symmetric, and symmetric, respectively. FEach
symmetric matrix has identical diagonal elements; this implies that Z1 and Z4 are symmetric, Z» and
Zg are antisymmetric, and therefore

A+BAU_A_BAU+ = (Z1 - Z4)2 —(Zg — Zg)2 +2[Z21(Z3 — Z3) — Zy(Z3 + Z3)] } (C12)

ATBA, + A"BA = 2Z1—Zy)
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The full RKLW scheme is written as

2 2 Ie I
—)\,UZ1 + §62ﬁ12/\vz(1+/\vzl)

n+l é / / _
U =(I+ 352ﬁ1/\U(I+AvZ1)(Z1 Z4) + 5

A n @ w0 )

and the extended MacCormack schemes are given as
gl = (I + —{ (21— Z4)? — (Zy — Z3)? + 2(21(Z3 — Zo) — Za(Z3 + Zo)]
+ AN(Zy — z4)) m (C14)
With g1 =1 and g5 = %, the RKLW schemes become
« 1 1/ 2 1/ 3 1. / 1. 1
gl — (I + (nz) + 5 (vz1) + - (nz1) - T+ A Z0)Z0 = AR+ X, Z)
 {(Bs = 2" = 22,20+ 234 220(B — 2) — (s + 2]} ) 0" 15)
and similarly, for the extended MacCormack schemes,

gl (1 + (Xoz1) + %(A;Zl)Q—A;Zzl

1
= (2 - 22) — 2202 + T + 2(21(25 - z2>—z4(zg+Zz)1})U" (C16)

Making use of the following relations

Ut = [b(@)Uy' ]«
— (AJL’)_Q(A2”BAQH)U"
= (Ax)"2(Z)U" (C17)
Utr = {b(x)[b(x) U}/ Jo } o
( ) 4(A2nBA2nA2nBA2n)U
(Az) ™2, Z1)U" (C18)

2) N2y 2y 2y )U" (C19)

(

Uty = (b@) b))} ) ) o
=(A
=(A
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gives

1 1 1 1
UrH = U (AU 4 AU+ (AU - SN (L N ZDZs — 2N+ A Z)

X {(ZS — Z9)* — 22174+ 25+ 2(21(Z3 — L2) — Zu(Z3 + ZQ)]} ur (€20)
for the RKLW schemes and
, 1
U = U 4 (AOT] + SHADU — N2

1 f
= N {(Zs = 20)’ =280y 4 B4 220 (g — By) — L(By + Ty)]f U (C21)

for the extended MacCormack schemes.

The lowest order error terms present in the extended MacCormack scheme are those proportional
to A/UQ(Zg - Z2)2, A/UQZ1(Z3 —Z»), and )\;Z4. These three terms have respective errors of (At)2(Aa:)2,

(AD)2(Ax), and (At)(Az)?" (n = 1). RKLW error terms are very similar with the term (1 + /\;Z1) being
equal to (14 At).

Both Zy and Zj are cross-coupling terms present in the extended MacCormack and RKLW schemes,
and linear occurrences may be removed by a procedure discussed later in this appendix. Error terms that
contain only Zj and/or Z4 cannot be removed by this procedure. Therefore, the (3-2E) scheme does not
retain formal accuracy. In cases of n > 1, the leading order error terms are (At)*(Az)? and (At)(Ax)?".
All extended MacCormack and RKLW schemes except (3-2E) are formally accurate to their stated order
i the absence of boundaries on the viscous problem.

We now consider the second part of the problem, namely

U+ Fe =0

where F'= F(U) and Fr = FyUz = fUz. With no loss of generality, the term [b(x)Uz]z is absorbed into
Fyp. The RKLW schemes may be represented for the equation Uy = —F), as

U* = (I _ 61/\an+)Un )
U™ = (I—-HAfTAT)U?
C22
gt = %[U" +2(I— Af* AP UH#)
. _ A/. .
where, again, A = F7. With
A27LfX — Z6
XfA™ =7y (C23)
XfX =174
2 =75+ 1Ze— 17— 1g |
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the full RKLW scheme is written as
2
o= (1= DA AT (ST + AT 4 (- 1OX] + )
2 2 59
If we expand f* and f** in a Taylor series with the coefficients from the Butcher array for the RKLW
scheme (¢; = (0, 1, 1)), then

(coAt )?
2
(At)?

2

Ff=1"+ (A fi + f+ -

="+ (AD + f+ (C25)

(e3At )2 ,

="+ (AN + fit + -

, At) At)?
=1+ (Q—t)f{‘ + %fﬁ + (C26)

The expansions for f* are identical for the extended MacCormack and the RKLW schemes. Note that the
error of the quantities Zy, Zg, Z7, and Zg are proportional to (Az)?, (Az)3, (Az)?, and (Az)*, respectively.
Inserting the values of 81 and 82 and expanding give

6
In addition,
Utn — _ fﬂUl?}
— (AI)_l(—f"A2“)Un (C28)
Ul = = [0+ ['(MUD)a
— (A:c)*Q(—ffAQ” + anannA2n)Un (C29)
Uip = — iUy + 200U e + SV )e — U )ele

— (AI)fS(_fﬁAZn + thnAannA2n + an2nftnA2n _ AannA2nan2n)Un (C30)

If we use equations (C28), (C29), and (C30) and neglect the terms with error proportional to (At)? and
higher and cross-couple terms proportional to (At )Z(ASL‘)k, where [+k > 4 and higher, then after significant
manipulation, RKLW schemes are
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1 1
UMt = U+ (AOU] + (AU + AU,

r 2
+ A(?t)ftnx + %f”(A2an _ XfAQIL) Un
[A(At)? (AL . A2(At ‘
I/\Q
+ | XX U (C31)

The terms in brackets have an error that is proportional to (A#)2(Az), (At)3(Az), and (A#)2(Az)2,
respectively; the first group must be removed in order to retain the formal accuracy of the scheme on the
nonlinear problem. Ideally, all other error terms listed should also be removed. For the hinear problem,

It = fj; =0 and A2 fX = X fA?"; the scheme is formally (3-[2n])th-order accurate, with the highest
error contributed by the term %(Xf"X)U". For the nonlinear problem, the step from time level (n + 1)
to (n+2) is shghtly different from the step from time level (n) to (n+1). Let F, B, and C denote forward,
backward, and centered differencing, respectively. Until this point, consideration has only been given to
the RKLW scheme where the sequence of forward-backward-centered operations are repeated indefimtely:

F-B-C, - ... If this sequence were modified to be F-B-C, B-F-C, ... then each term for which the error
is proportional to (At )?(Az) and (At)3(Az) vanishes. The term %E(Xf”X)U" still remains with an error

proportional to (At)z(Ax)Q. If the forward and backward operators are not permutated, the cross-coupling
terms would remain and the scheme would be formally (2-[2n])th-order accurate.

The full, extended MacCormack scheme is written as

« A AfF
Un—l—l { I : [(f* fn) A 2n (fn f*) X] - g Z} n (C32)
or
, , , 1 , A(AL) 22 , , ,
Un—l—l o ( ft)Ut” 2( ft)QUﬁ (2 )ftn - fn( A an}( )(f A Qn):| n

/\2
+ [?X f"X] un (C33)

Again, the two terms in the first set of brackets of equation (C33) are proportional to (At)Q(Ax) and may
be removed by implementing the scheme as an F-B, B-F, - .- sequence. The error terms in the first set
of brackets disappear for the hnear problem and for the nonlinear problem with permutated operators,
which leaves the last error term m the second set of brackets with an error proportional to (At)Q(A;L’)Q.
In multidimensions, this permutation would be implemented as

F.F, - B,B, BB, - F,F, F,B,— B,F, B,F, —F,B, -

for the extended MacCormack schemes and

F.Fy — B;By — C.Cy,B;By — F;Fy— C;Cy, F;By — BoFy — C,Cy, By Fy — FoBy — C2Cy, - -
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for the RKLW scheme. In the present computations, we found 1t sufficient to only implement the RKLW
scheme as

F,F,-B,B, - C,.C,,B,B,— F,F, - C,C

and the extended MacCormack scheme as

FLFy - B:L‘Bya BwBy - FLF!/’ h

A discussion of multidimensional stability for finite-difference schemes can be found in the work of Beckers.

(See ref. 59.)

This analysis does not need to be performed for the Runge-Kutta central-difference schemes because the
spatial and temporal accuracies are not coupled in the numerical scheme; therefore, each scheme retains
its respective formal accuracy for the nonlinear problem.

Further work might include replacing X with a stencil having an error that is proportional to (A:U)4.
Using forward and backward differences with different weightings on all three stages of the RKLW scheme
might minimize error terms.
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Appendix D
Higher Order Boundary Treatments

When eighth-order spatially accurate, central-difference stencils are coupled with either third- or fourth-
order temporally accurate Runge-Kutta schemes, seventh-order accurate stable boundary stencils for the
explicit eighth-order accurate spatial derivative operator result and are given by

/

fi = m(— 37515011 + 1565172f9 — 40391403 + 7180075 /4
— 8503950 f; + 6676740f; — 3378844 f; + 1024890 f3
— 157500 f9 + 8400f19 — 840f11 + 147 f19) (D1)
/
2 = T5ro00ag (364001 — 725676, + 23319455 — 43228504
+ 5296900f5 — 4232970fs + 2147502f7 — 641320 fg
+ 94500f9 — 5250f10 + 945f11 — 126f12) (D2)
1
fé = m(mm — 66262f2 + 181370f3 — 336385f4
+ 4071205 — 28935275 + 1146747 — 180703
— 1890f9 + 630f10 — 84f11 + 63/12) (D3)
!
fy = m(16480f1 — 121338 f, + 348810f3 — 944475 f4
x
+ 1234800f5 — 792120fs + 323876f7 — 77310f3
+ 16800fg — 7350f19 + 1890f1; — 63f19) (D4)

For the tridiagonal eighth-order accurate derivative operator, the boundary stencils are given by

!

i (— 127530 f, + 738864f, — 2323230f; + 4529525,

~ 21000Ax
— 56689505 4+ 4618740 f5 — 2394728 f7 + 730230 f3

— 105000fy + 2100f19 — 210f1; + 189f9) (D5)

!

fy = (18504f; — 2019361, + 660765 f3 — 1241625 f,

21000A
+ 1510460 5 — 1183518 fs+ 578382 f7 — 159890 /3

+ 18900fy — 210f10+ 189f11 — 21f12) (D6)
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!

I3 9992011 — 818104fy + 2402330f3 — 4643275 f4

= 570000A7"
+ 5814200f; — 4407620f; + 1947008f; — 391330 &

— 21000fy + 18900f19 — 1050f11 + 21f19)

f/ _ 1
47 210000Ax

+ 7182005 — 474600f + 225092f; — 659705

(5140f; — 36246 f, + T4970f3 — 456225 f,

+ 10500f9 — 1050f19 + 210f11 — 21f12)

and for the compact pentadiagonal eighth-order accurate derivative operator, by

!
J1 = oo (~596152/1 + 33169085 — 10530450f3 + 205204254
— 25599000 f5 + 20734644f5 — 10674356 f + 3236550 [
— 470400 f9 + 12600f19 — 42f11 + 273f12)
7= (99660f1 — 1065099 f» + 3490410f3 — 6562500
2 = 105000Az 1 2 3 4
4 T964320f5 — 62130605 + 3014508 f; — 822760 fs
94500 5 — 945f,0 + 1050fy; — 84f;9)
= 99920 818104 2402330 4643275
fs = m( f1 - fo + f3 — f4

+ 5814200f; — 4407620 f¢ + 1947008f; — 391330 fy
— 21000fy + 1890010 — 105011 + 21f19)

f, _ 1
4 7 210000Ax

+ 256200f5 — 1012205 4+ 32228f7 — 6330fs

(—1580f1 + 17136/ — 110670f3 — 86625 f4

+ 2100fq - 2100f10 + 1050f11 — 189f12)

(D8)

(D9)

(D10)

(D11)

(D12)

Each of these expressions is denoted by 74,74,74,74—8—74,74,74,74 schemes and is formally eighth-order
accurate in space. We were not able to find stable, accuracy-preserving numerical boundary conditions for

the eighth-order spatially accurate dissipative schemes.

Seventh-order accurate boundary stencils for the seventh-order viscous operator used in the eighth-order

extended MacCormack and RKLW schemes are

1
ho= 420Ax

— 3675f5 + 1764fs —490f7 + 60f3)

(—1089f1 + 2940f5 — 4410f3 + 490044
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! 1

fo = 420Ax(_60f1 — 609f9 + 1260f3 — 105014
+ 700f; — 315fs + 84f; — 10fg) (D14)
! 1
= 10f1 — 140f9 — 329 700
I3 420Ax(+ f1 J2 J3 + 700 f4

— 350f5 + 140f5 — 35f7 + 4fs) (D15)

The values of f; on the backward step and f;m_3 on the forward step are closed by using the seventh-
order viscous interior stencil and the negative of its complex conjugate (in Fourier space), respectively.
For the tenth-order spatially accurate Runge-Kutta schemes given in table 4, ninth-order accurate stable
boundary stencils for the central and dissipative stencils were derived but were subject to severe CFL
restrictions; hence, these are not presented.

These boundaries may be closed to lower order also. Explicit stencils may be closed as (3,3, 4, z,y-10-
y, ¢,4,3,3), where x is either the fourth- or sixth-order accurate explicit stencil and y is either the fourth-,
sixth-, or eighth-order accurate explicit stencil. Tridiagonal stencils may be implemented as (3, 4, z,y-10-
y,z,4,3), where z is the fourth- or sixth-order accurate tridiagonal stencil and y is either the fourth-,
sixth-, or eighth-order accurate tridiagonal stencils. The pentadiagonal stencil is closed with (3,4, 2-10-
z,4,3), where x is either a sixth-order accurate tridiagonal or an eighth-order accurate pentadiagonal
stencil. Fach of these lower order closures results in a formally spatially fourth-order scheme. Other
closures not mentioned may also be constructed.

The viscous boundaries for the (3-10P) RKLW scheme are closed with the following ninth-order stencils:

/ 1
L= ———(—7129 22680 f, — 45360 7056014 — 79380
N 2520Aa:( J1+ Jo f3 + J4 I
+ 63504fc — 35280f7 + 12960fs — 2835fy + 280f10) (D16)
/ 1
fo = 2520Ax(_ 2801 — 4329f9 + 10080f3 — 11760f4 + 117605

—8820fs + 4704f7 — 1680f3 + 360f9 — 35f10) (D17)

! 1

f3 = m(-l- 35f1 — 630f2 — 2754f3 + 5880f4 — 4410f5
! 1

— 1890 f + 840f7 — 270f3 + 54f9 — 5f10) (D19)

The values of fé on the backward step and f;w_4 on the forward step are closed by using the ninth-order
viscous interior stencil and the negative of its complex conjugate (in Fourier space), respectively.
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Appendix E
Explicit Finite-Difference Filters

To filter the vector U, the dissipation matrix D must be specfied, including boundary points.
Coeflicients for the interior portion have already been given in table 7 and should be familiar as elements of
Pascal’s triangle. The boundary portions (upper left portion of D) of the dissipation matrix are given for
filters of orders two through twenty in the interior and orders one through ten at the boundary. The lower
right portion of D on a grid of N, pomts is given by D; ; = Dy 1 1_; y, 41— To clarify the information
presented, the full dissipation matrix is written out for the second-order filter and its first-order boundary
points as

{1—1000
1 42 -1 0 0

_|_

o -1 42 -1 0
o )

0

0

oo O
NE— |

0o -1 42 -1
0 0o -1 42 -1
0 0 0 -1 +1

Boundary points for the second-order dissipation matrix D are
+1 -1
[—1 +2] (E2)

The lower row and the right column are the interior operator. Similarly, the full dissipation matrix can
be constructed for the fourth-order filter with

1 42 -1
42 -5 +4 (E3)
-1 44 -6

for sixth order with
|'—|-1 -3 43 -1 '|
-3 +10 —-12 46
{+3 12 419 —15
-1 46 =15 420

(E4)

for eighth order with
{—1 +4 -6 +4 -1 '|
+4 —17 428 —-22 48
—6 428 —5H3 452 —28 (E5)
+4 =22 452 —69 +56
-1 +8 =28 456 -—70

for tenth order with

[ +1 -5 410 —10 +5 —1 7
-5 426 =55 460 =35 410
+10 =55 +126 —-155 4110 —45
—10 +60 —155 +226 —205 +120
+5 =36 +110 —-205 4251 —210

| -1 +10 —45 4120 —-210 +42b2]

(E6)
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for twelfth order with

for fourteenth order with

[ +1
-7
+21
—35
+35
—21
+7

L —1

for sixteenth order with

for eighteenth order

[ +1
-9
+36
—84
+126
—126
+84
—36
+9
-1

-1
+8
—28
+56
=70
+56
—28
+8
L —1

-9
+82
—333
+792
—1218
+1260
—882
+408
—117
+18

+8
—65
+232
—476
+616
—518
4280
—92
+16

with

+36

—333
+1378
—3357
+5328
—5754
+4284
—2178

+732

—153

r—1 +6 =15 +20 15 +6 -1 7

+6 =37 496 —135 4110 —-51 +12

=15 496 —262 4396 —-360 +200 —66

+20 —-135 4396 —662 4696 —480 +220

—-15 +110 —360 4696 —887 +786 —495

+6 =51 +200 —480 4786 —923 4792

L -1 412 —66 4220 —495 4792 —924 ]

-7 +21 —35 +35 -21 +7 -1 7

+50 =154 4266 —280 4182 —70 +14

—-154 +491 —-889 41001 —-721 4329 91

+266 —889 41716 —2114 41736 —966 4364

—280 41001 —2114 42941 -2849 +1981 —1001

+182 —721 41736 —2849 43382 —2996 42002

=70 4329 —966 +1981 —2996 +3431 —3003

+14 -91 4364 —1001 +2002 —-3003 +3432]

—28 +56 —70 +56 —28 +8 -1 7
+232 —476 4616 —518 +280 —92 +16
—849 +1800 —2436 42184 —1302 4504 —120
+1800 —3985 45720 5572 43752 —1750  +560
—2436 45720 —8885 +9640 7532 +4312 —1820
+2184 —5H572 49640 —12021 411208 —7980 +4368
—1302 43752 —7532 +11208 —12085 411432 —8008
+504 —1750 44312 —=7980 +11432 —12869 +11440
—120 4560 —1820 44368 —8008 +11440 —12870
-84 +126 —-126 +84 —36 +9 -1 7
+792 —1218 41260  —882 +408 —-117 +18
—3357 45328 —5Tb4 44284 2178 +732 —153
+8434 —13941 415912 —12810 47308 —2934  +816
—13941 +24310 —29817 426496 —17346 48442 —3060
+15912 —29817 +40186 —40401 +31032 —18480 48568
—12810 +26496 —40401 447242 —43425 431788 —18564
+7308 —17346 431032 —43425 +48538 —43749 431824
—2934  +8442 18480 +31788 —43749 448619 —43758
+816  —=3060 48568 —18564 431824 —43758 448620
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and for twentieth order with

r—1 +10 —45 +120 —210 +252 —210 +120 —45 +10 -1 7
+10 =101 4460  —1245 42220 —2730 +2352 —1410 +570 —145 +20
—45 4460 —2126 45860 —10695 413560 —12180  +7752 —3435 41020 —190

+120 —1245 45860 —16526 431060 —40935 +38760 —26580 413152  —4635 +1140
—=210 +2220 -10695 431060 —-60626 +83980 —85035 +63960 —36030 +15252 —4845
+252 —2730 +13560 —40935 +83980 —124130 +136900 —115275 +75300 —38550  +15504 (Ell)
—210 42352 —12180 438760 —85035 4136900 —168230 +162100 —124725 477400 —38760
+120 —1410 +7752 —26580 +63960 —115275 +162100 —182630 -+167500 —125925 477520

—45 4570  —3435 413152 36030 475300 124725 4167500 —184655 +167950 —125970

+10 —-145 +1020 —4635 415252 —38550 477400 —125925 +167950 —184755 +167960
L —1 +20 —-190 41140 —4845 415504  —38760 477520 —125970 +167960 —1847564

onu

Each of these groups of boundary stencils representing oy to second-order accuracy has a very predictable
xr

pattern in Fourier space with coefficients that appear in Pascal’s triangle.
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Definitions of Symbols Used in Tables

AB, ... coefficients i predictor-corrector stencils
a,B,..., T ab, ... coefficients in matrices P and Q

AA, AB, AM CFL numbers for matrices A, B, and M
Amax maximum CFL number

¢ wave number

Subscripts:

L left

R right
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Table 1. Extended MacCormack Predictor-Corrector Stencils

Scheme I3 e A B C D E F G Amax
1 1
(2-2E) 0 0 3 3 0 0 0 0 -1 1.00
2 1 1 2
(2-4E) 0 0 3 0 - 3 0 0 —3 0.72
1 3 V3 V3
(2-47) 0 n 1 v 0 0 0 0 -5 0.57
3 1 3 2 1 2 54
(2-6E) 0 0 1 : ~5 = m = T 0.63
1 7 1 1 1 32
(2-6T) 0 3 3 3 % T 0 0 - 0.50
1 17 15 5 10
(2-6P) T = m I 0 0 0 0 T 0.48
25 1 1 7 1 1 37
(2-87) 0 - = n % —5 150 -3 T 0.46
1 4 20 1 25 1 7
Table 2. Skewed Viscous Stencils
Scheme dL CL bL (IL T (IR bR CR dR €R
First order forward 0 0 0 0 -1 1 0 0 0 0
Third order forward 0 0 0 —% —% 1 —é 0 0 0
. 1 2 1 2 1
Fifth order forward 0 0 % -1 —3 1 -3 m 0 0
Seventh order forward 0 L L —= ! 1 _3 L L 0
105 10 4 10 15 140
Ninth order forward L _ L 1 _1 —= 1 —i = L L
504 42 7 6 5 12 21 56 630
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Table 3. RKLW Predictor-Corrector Stencils

Scheme I « A B C D E F G Amax
1 1
(3-2E) 0 o |5 | 0 0 0 0 1 | 159
(3-4E) 0 0 2ol | =L | -2 0 0 : 1.34
3 12 9 9
1 3 1 2
(3-4T) 0 N 0 0 0 0 -2 | Los
3 3 3 1 1 1 2
(3-6E) 0 . — — | == |
(3-6T) 0 E U - T 0 0 ik 92
3 21 36 11 231
1 17 15 1 2
(3-6P) = = | T |3 0 0 0 0 - 94
3 25 11 1 3 1 11 6
(3-8T) 0 s = |»w | w | 5| m | Tw |3 83
(3-8P) L Szl e |2 0 0 W s
36 9 27 25 216 13 325
1 1 17 3 101 4 1 11 3
GO % 2 |@w |5 |0 | 5| wo | Tm | 2|
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Table 4. Fourth- and Third-Order Runge-Kutta Stencils

A ccuracy Amax
Fourth Third Fourth | Third
order order I o a b ¢ d € order order
(4-4E) | (3-4E) 0 o |z |-5 | o 0 0 206 | 126
(4-4T) | (3-47) 0 o B 0 0 0 1.63 1.00
3 3 1
(4-6E) (3-6E) 0 0 n ~% 0 0 0 1.78 1.09
1 1
(4-6T) (3-6T) 0 3 = % 0 0 0 1.42 0.87
1 17 15
(4-6P) (3-6P) ~Tu = o 0 0 0 0 1.44 0.88
4 1 4 1
(4-8E) (3-8E) 0 0 z - 0 ~5%0 0 1.63 1.00
3 25 1 1
(4-8T) (3-8T) 0 3 = % ~ 0 0 0 1.32 0.81
1 4 20 25
(4-8P) (3-8P) % 5 > 316 0 0 0 1.28 0.78
) 5 ) 5 1
(4-10E) (3-10E) 0 0 5 —31 ) ol 260 1.53 0.94
2 39 1 1 1
(4-10T) | (3-10T) 0 1S5 |- | =5 0 1.26 0.77
1 1 17 101 1
(4-10P) (3-10P) % 5 ) 500 500 0 0 1.21 0.74
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Table 5. Temporal Accuracy of (4-8P) Scheme on Uy + Uy, =0

(74,74 74 st 7 T T | Convergence

CFL log1og Lo rate

0.8 —5.282

0.6 —5.896 491

04 —6.638 421

0.2 —7.854 4.04

0.1 —9.053 3.98
0.05 —9.399 1.15

Table 6. Spatial Accuracy of (4-8P) Scheme on Uy + U, =0

(74,74, 74 7874 74 74 74y | Convergence
Grid log 1y L2 rate
41 —4933
51 —5.741 8.34
101 —8.388 8.79
151 —9.797 8.00
201 —10.606 6.48

Table 7. Temporal Accuracy of Third-Order Runge-Kutta and
RKLW Schemes on Ut + Uz =0

RK RKLW
(3,3-4-3,3) Convergence | (3,3-4-3,3) Convergence
Grid log1g Lo rate logio Lo rate
41 —2.512 —1.877
ol —2.794 2.91 —2.121 2.60
101 —3.681 2.94 —2.913 2.62
201 —4.575 2.97 —3.672 2.53
251 —4.864 2.98 —3.910 243
501 —bH.763 2.99 —4.612 2.33
1001 —6.665 2.99 —5.275 2.20
2001 —7.567 3.00 —5.911 211
4001 —8.469 3.00 —6.531 2.06
8001 —9.369 2.90 —7.143 2.03
16001 —10.099 2.42 —7.749 2.01
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Table 8. Stability of Various Boundary Closures

Interior stencil

max R(Ap) max R(Ay) max R(Ay)
Order Type Scheme (n =51 (n =201) (n=501)
Fourth |Explicit (3,3-4-3,3) —2.92x107° |—432x 1077 | =275 x 1078
Fourth |Tridiagonal (3-4-3) —266 x 1077 |—3.88 x 107 | —2.45 x 10~8
Sixth  [Explicit (3,34-6-4,33) —441x10°° |—=633%x 107 | =3.99x 108
Sixth |Explicit (52,52 5-6-5,52, 5%) —1.01x 1073 |—=1.17x 107 |=7.07 x 1077
Sixth |Tridiagonal (3,4-6-4,3) —6.03x 107° |—882x 1077 [=5.57x 10~8
Sixth | Tridiagonal (52,52-6-52,52) —124x 1073 |=156x 1075 | =9.60 x 10~8
Sixth |Pentadiagonal (3,4-6-4,3) —55Tx107° | =814x 1077 [=5.14x 1078
Sixth |Pentadiagonal (52,52-6-52,52) —330x107* | —=5.08 x 1075 [ —6.48 x 106
Eighth |Explicit (3,3,44-8-4,43,3) —122x107% | —155%x 1077 [ -9.56 x 10—
Eighth |Explicit (3,3,4,6-8-6,4,3,3) ~2.18x 107 [-292x 1077 [-1.81 x 1078
Eighth [Explicit (74,74 7 78T 7 Ty | =850 x 1074 [ —9.11 x 1070 | —5.43 x 107
Eighth |Tridiagonal (3,44-8-4,43) —548x 1077 | =7.72x 1077 [-4.84 x 108
Eighth |Tridiagonal (3,4,6-8-6,4.3) —758% 1077 [—1.01x 107 [ —6.95 x 1078
Eighth |Tridiagonal (74,74 T gt Ay | — 174 x 1073 [ —1.89x 1077 | —1.13 x 106
Eighth |Pentadiagonal (3,4-8-4,3) —815x 1075 [=120x 1076 [ —7.55 x 108
Eighth |Pentadiagonal | (74 7% 74 74874 74 74 7%) | =456 x 1073 | =167 x 107* [ -8.48 x 107°
Tenth |Explicit (3,3,4,4,4-10-4,4.4,3,3) —2.04x 1076 | =228 x 1078 [ —1.30 x 109
Tenth |Explicit (3,3,4,6,810-8,6,4,3,3) —958x 106 | —1.19x 107 [-7.32x 108
Tenth |Tridiagonal (34,44-10-4,44,3) —189x 1077 [—238x 1077 [—1.46 x 1078
Tenth |Tridiagonal (3,4,6,8-10-8,6,4,3) — 578 x 1072 | —=8.09 x 10~7 | —5.06 x 108
Tenth |Pentadiagonal (3,4,4-10-4,4,3) —451x107° | —=6.13x 107 [-3.82x 108
Tenth |Pentadiagonal (3,4,.8-10-8,4.3) ~810x 1077 [—1.17x 1079 [-7.37x 1078
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Table 9. Stability of Boundary Closures for Dissipative Schemes for M = %(A“"Av_ + A™ Aj’)
[0.001 = 1.00(—3)]

Error Error Error
Boundary max R(Anp) max R(Anp) max R(Ang)
Stencil closure (n=51) (n=201) (n =501)

(a) scheme (a) (a) (a)
2-2E) [(3-2E)] (1-2-1) —394(—3) [=3.94(=3)] | —247(=4)[-2.47(—4)] | =3.95(—5)[-3.95(=5)]
2-4F) [(3-4F)] (3,3-4-3,3) —394(=3)[=3.94(=3)] | —247(=4)[-2.47(—4)] | =3.95(=5)[-3.95(=5)]
2-4T)[(3-4T)] (3-4-3) —394(=3)[=3.94(=3)] | —247(=4)[-2.47(—4)] | =3.95(=5)[-3.95(=5)]
2-6E) [(3-6F)] (3,3,4-6-4,3,3) —394(=3)[=3.94(=3)] | —247(=4)[-2.47(—4)] | =3.95(=5)[-3.95(=5)]
2-6F) [(3-6F)] (52,52 5-6-5,5%,5%) —3.94(=3)[-3.94(=3)] | —247(=4)[-2.47(—4)] | —=3.95(=5)[-3.95(=5)]
2-6T) [(3-6T)] (34-6-4,3) —377(=3)[=3.76(=3)] | —244(—4)[-2.44(—4)] | =3.93(=5)[-3.93(=5)]
2-6T)[(3-6T)] (52,5%6-52, 5%) —293(=3)[-2.93(=3)] | —227(—4)[-2.27(—4)] | =3.81(=5)[—3.81(=5)]
2-6P) [(3-6P)] (34-6-4,3) +167(4+2) [+2.49(+2)] | +1.72(+2) [+2.56(+2)] | 4+2.12(+2) [+3.29(+2)]
2-6P)[(3-6P)] (52,5%-6-52,52) +6.65(+2) [+7.40(+2)] | +6.65(+2) [+7.40(42)] [ +6.65(+2)[+7.40(+2)]
2-8T)[(3-8T)] (3,4,4-84,4,3) +261(40) [-9.42(—3)] | +2.73(4+0) [~4.66(—3)] | 42.74(40)[~4.38(—3)]
2-8T)[(3-8T)] (3,4,6-8-6,4,3) +261(40) [-9.42(—3)] | +2.73(4+0) [~4.66(—3)] | 42.74(40)[~4.38(—3)]
2-8T)[(3-8T)] | (74, 74 7, 74874, 74 74,74 | +1.09(+1) [+1.06(+1)] [ +1.09(+1)[+1.06(+1)] | +1.09(+1)[+1.06(+1)]
2-8P) [(3-8P)] (3,4-8-4,3) —370(—3)[=3.73(=3)] | —243(—4)[-2.43(—4)] | —3.92(—5)[-3.92—5)]
2-8P)[(3-8P)] | (74,7, 77t v T Y | 4168(42) [F1.68(42)] | +1.68(+2) [+1.68(42)] | +1.68(+2) [+1.68(+2)]
[(3-10P)] (3,4,4-10-4,4,3) [—3.95(—3)] [-2.47(—4)] [—3.95(—5)]
[(3-10P)] (3,4,6-10-6,4,3) [—3.95(—3)] [-2.47(—4)] [—3.95(—5)]
[(3-10P)] (3,48-10-8,4,3) [—3.95(—3)] [-2.47(—4)] [—3.95(—5)]

m -
Brackets indicate values from scheme 2; other values are from scheme 1.
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. . . . o
Table 10. Interior Filter Stencil, Second-Order Accurate Stencils for {—WH

H2n
[a—xrﬂ T b ¢ d e f g h
9 -
Zf | 2 1 0 0 0 0 0 0 0o |o
4
ar —6 +4 ~1 0 0 0 0 0 0 |o
[ Ox* ]
o
| 525 +20 —15 +6 -1 0 0 0 0 0 0
2L | =70 +56 —28 +8 -1 0 0 0 0
F 108
gz +252 —210 +120 —45 +10 -1 0 0 0
'ale' _ _ _ _
517 924 +792 495 +220 66 +12 1 0 0
14
g—xré- +3432 —3003 42002 [ —1001 | 4364 91 +14 -1 0
'al(jf' . . . . .
5217 12870 | +11440 8008 | +4368 1820 | 4560 120 | +16 1
- 18 1
271-{; 448620 | —437H8 | +31824 |—18564 | 48568 | —3060 | +816 | —153 | +18 | —1
R
g;p —184756 [4+167960 |—125970 [+77520 |—38760 [+15504 [—4845 |+1140 [—190 [+20
Table 11. Truncation Error of First Dernvative Operators
Accuracy Explicit | Tridiagonal |Pentadiagonal |Heptadiagonal |Nonadiagonal
1 s 1 -

Fourth order | — %f - mf’

. 1 1 1

Sixth order _E{%? —m57 _ﬁ57

: Lo | L g9 __L 9 _ 2 9
Fighth order | —225¢ 610 PYTTIN 22650
Tenth order |——mgll| gl | L _gll | __L 11 |28 e
2772 124740 582120 495000 14968800
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(2-2E)

Inviscid stability, A

1.0

Viscous stability, Ay

Figure 1. Stability limits of extended MacCormack schemes on one-dimensional convection-diffusion
equation as function of inviscid CLF (A) and viscous CFL (A,) numbers.

201
< T (3-28)
151 (3-4E)
(3-4T)

' (3-6E)
1.0

Inviscid stability, A

=
W

0 5 1.0 15
Viscous stahility, Ay

Figure 2. Stability lirmts of RKLW schemes on one-dimensional convection diffusion equation as function

of inviscid CFL (A) and viscous CFL (A,) numbers.
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20

(3-4E)
(3-6E)
(3-4T) and (3-8E)

(3-10E)
(3-6P)
(3-6T)
(3-8T)
(3-8P)

Inviscid stability, A

0 5 1.0 1.5
Viscous stability, Ay

Figure 3. Stability limits of third-order Runge-Kutta schemes on one-dimensional convection-diffusion
equation as function of inviscid CFL (A) and viscous CFL (A,) numbers.

25

(4-4E)
(4-6E)
(4-4T) and (4-8E)
20 (4-10E)
(4-6P)
’ (4-6T)
N
= \ / (4-8P)
: 9
1%}
LAY
2 10f \s“
5k
(4-10T)
(4-10P)
I | J
0 5 10 15

Viscous stability, Ay

Figure 4. Stability limits of fourth-order Runge-Kutta schemes on one-dimensional convection-diffusion
equation as function of inviscid CFL () and viscous CFL (Ay) numbers.
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Figure 5. Various Fourier images of first-derivative spatial operator compared with exact Fourier derivative
as function of wave number €.
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Figure 6. Filter functions of various orders in Fourier space as function of wave number £.
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(a) Unfiltered (2-4T) scheme on 101 by 151 grid.
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(b) Filtered (2-4T) scheme on 101 by 151 grid.

Figure 7. Dilatation field V - @ in nitrogen-nitrogen compressible shear layer at Mac = 0.45.
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(¢) Filtered (3-6T) RKLW scheme on 401 by 501 grid.
Figure 7. Concluded.

57



Form Approved

REPORT DOCUMENTATION PAGE o 168

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1997 Technical Paper

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Comparison of Several Numerical Methods for Simulation of Compregsible
Shear Layers WU 505-59-50-05

6. AUTHOR(S)
Christopher A. Kennedy and Mark H. Carpenter

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

NASA Langley Research Center L-17382

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

National Aeronautics and Space Administration NASA TP-3484

Washington, DC 20546-0001

11. SUPPLEMENTARY NOTES

Kennedy: University of California, San Diego, CA; Carpenter: Langley Research Center, Hampton, VA.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified—Unlimited
Subject Category 02
Availability: NASA CASI (301) 621-0390

13. ABSTRACT (Maximum 200 words)

An investigation is conducted on several numerical schemes for use in the computation of two-dimensi
tially evolving, laminar variable-density compressible shear layers. Schemes with various temporal accu

bnal, spa-
acies and

arbitrary spatial accuracy for both inviscid and viscous terms are presented and analyzed. All integratio

diffusion equatiorlJ; + aU, = aU,,. Accuracy is also verified on the nonlinear problem+ F, = 0. Numeric
treatments of various orders of accuracy are chosen and evaluated for asymptotic stability. Formally
boundary conditions are derived for several sixth- and eighth-order central-difference schemes. Dampir
wave-number data is accomplished with explicit filters of arbitrary order. Several schemes are used td
variable-density compressible shear layers, where regions of large gradients exist.

schemes

use explicit or compact finite-difference derivative operators. Three classes of schemes are consideredf an exten-
sion of MacCormack’s original second-order temporally accurate method, a new third-order variant of theschemes
proposed by Rusanov and by Kutler, Lomax, and Warming (RKLW), and third- and fourth-order Runge-Kutta
schemes. In each scheme, stability and formal accuracy are considered for the interior operators on the gonvection-

accurate
g of high
compute

14. SUBJECT TERMS 15. NUMBER OF PAGES

Numerical methods; Compressible flow; Binary mixtures; Numerical filters; Numerical accuracy; Run 62

Kutta methods; Rusanov scheme; Finite difference methods; Shear layers; Mixing layers; Nume}t T CODE

bility; Compact finite difference; MacCormack’s scheme; Kutler-Lomax-Warming scheme ' AO4
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102



