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Abstract
Wave packets produced by localized disturbances play
an important role in transition in three-dimensional
boundary layers, such as that on a swept wing.
Starting with the receptivity process, we show the
effects of wave-space energy distribution on the
development of packets and other three-dimensional
disturbance patterns.  Nonlinearity in the receptivity
process is specifically addressed, including
demonstration of an effect  which can enhance
receptivity of traveling crossflow disturbances.  An
efficient spatial numerical simulation method is
demonstrated for the computation of these flows,
allowing most of the simulations presented to be
carried out on a workstation.

Introduction
Over the past ten years, technology for the

prediction of transition to turbulence in boundary
layers has progressed well beyond the use of quasi-
parallel linear stability theory, with the recognition that
much of the disagreement between theory and
experiment were the result of physical effects beyond
the scope of such methods.  Among these are:
receptivity - the process by which external disturbance
energy is internalized into disturbances which grow in
the boundary layer; effects of nonparallelism and
surface curvature; nonlinear transfer of energy between
disturbance modes; and effects of local
inhomogeneities on the growth of disturbances.  While
numerical simulation technology has progressed to the
point that full spatial DNS of the transition process is
at least feasible and has been carried out for a few
select cases, examination of the above effects across a
broad parameter range is impractical due to the
expense of such simulations.

Many of these problems of interest may be
cast in a linear or weakly-nonlinear framework, for

which the modest spatial resolution requirements
would render DNS a quite tractable tool for parametric
studies.  For the most part, only the steady-state results
of such simulations are of interest; the start-up
transients, which are always present in simulations
carried out in the time-dependent formulation, contain
little useful information regarding the long-time
asymptotic state of transition of a given flow.   For
instance, if a time-dependent simulation of a single-
frequency wave is carried out from an impulsive start
of the harmonic “driver”, then the transient will be
observed as a leading-wave region which travels
downstream; this region will consist of a broad
spectrum of disturbances, initiated due to the step-
function input.  Each component wave will travel
downstream at its characteristic group velocity, the
slowest of which for the most part determines the
length of the transient period.  For many problems
involving stationary or low-frequency disturbances,
this period may be quite lengthy, and the simulation
correspondingly expensive.

However, if the assumption is made that the
disturbance field is comprised of only a few select
frequencies, then efficient use can be made of many of
the algorithmic elements of full spatial DNS, while
enabling the use of fast direct linear solvers.  The
advantage of such a methodology is that solutions may
be obtained rapidly on workstation-level machines,
enabling a researcher to perform the desired parameter
studies of complex transition physics.  This paper is an
overview of the use of one such implementation over
the past five years; studies carried out have included
the generation of validation data for engineering
transition prediction methods including receptivity-
prediction methods, the detailed design of hybrid
laminar flow control suction surfaces, studies of linear
and weakly-nonlinear wave packets, and computations
of the effects of streamwise and spanwise
inhomogeneities on the evolution of disturbances.
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Algorithmic Aspects
What follows is a brief outline of the basic

incompressible harmonic linear Navier-Stokes (HLNS)
solver which was used in various forms to produce the
results discussed below; a more complete description of
the method will appear in a subsequent paper [1].

The first step in the formulation is expansion
about a steady base flow:

u = Ub + ε u’

where ε is assumed (for now) to be a small parameter.
After substitution into the three dimensional
incompressible Navier-Stokes equations, equations of
like order are separated.  The O(1) equations state that
the base flow must satisfy the steady NS equations;
however, we frequently use approximate solutions
(such as solutions to the boundary-layer equations) for
convenience, and for direct comparison with results
from other methods. The O(ε2) equations contain the
nonlinear terms, and are used to compute weakly-
nonlinear corrections to the HLNS solutions.  The O(ε)
equations, the linear disturbance equations, are of
primary interest here.  The use of a disturbance
equation formulation is well-known to be required in
computations of the initial stages of transition, as the
accurate representation of the evolution of disturbances
several orders of magnitude smaller than the base flow
is essential.
The following assumptions are then utilized in the
linear disturbance equations:

∂u’/∂t = -iω u’ ∂u’/∂z = iβ u’

the first of which reflects the single-harmonic
assumption, the second being the assumption of
spanwise (z) homogeneity.  The latter is directly useful
for oblique disturbances in a two-dimensional base
state, and for disturbances evolving within the infinite-
swept wing framework.  For more complex flows, a
Fourier integral method is used to represent the
spanwise dependencies, as will be discussed later.

The above process results in a complex two-
dimensional equation set with two parameters:  ω -
related to the frequency of the disturbance, and β - the
spanwise wavenumber.  The streamwise (x) and
normal (y) directions are discretized using relatively
standard high-order methods:  Chebyshev collocation
is used in y, while fourth-order centered differences are
used in x.  These are natural choices given the solution
scheme to be discussed below.  Analytic mappings are

used in both discretizations to improve resolution
where required.  Surface curvature is accounted for in
the present method using the standard body-
conforming thin-layer assumptions, which result in the
simple addition of a few geometric factors to the
Cartesian equation set; the Cartesian equations are
smoothly recovered as the surface curvature becomes
small.

The resulting complex algebraic system of
equations are in the form of a block pentadiagonal
system; the blocks are of size 4NYx4NY , and are full
due to the spectral discretization in the y-direction.
The key to the usability of this method is the efficient
direct solution scheme developed for the discretized
equation set; the system is solved using standard
recursion, but the recursion coefficients computed
during the forward-sweep phase are stored on disk.
Asynchronous I/O, in which the actual disk operations
are carried out simultaneously which the computation
of the next set of coefficients, speeds the overall
throughput.  In an average computation with NX =
1200 and NY = 51, a solution can be obtained in about
15 minutes on an SGI workstation; about 1.5 Gb of
temporary disk storage is required.

Boundary conditions are a sensitive aspect of
this formulation; it was found during the early
development of this method that some boundary
conditions which are commonly used for time-
dependent simulations can result in spectacularly poor
and meaningless results when applied in the harmonic
framework.  This is due to two reasons:  First, the
condition number of the system is large to begin with,
since the terms on the diagonal are relatively small.  A
boundary condition set which would have the effect of
merely limiting the maximum time step allowable in a
time-dependent simulation could render the direct
solution so contaminated by roundoff error as to be
useless.  Second, the harmonic solution is long-time
asymptotic; outflow boundary conditions (in particular)
which build spurious error slowly over time result in
solutions dominated by the effect of reflections when
applied to this framework.  The buffer-domain method
[2], in which the momentum equations are smoothly
parabolized to convect disturbances through the
outflow boundary, was found to be robust and reliable
here.

Disturbance forcing is accomplished in many
ways, depending on the particular physics being
simulated.  Regions or distributions of non-zero wall-
normal velocity are used to simulate oscillating
suction/blowing, for instance; formulations for
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receptivity simulations result in either non-zero surface
tangential velocity or field-forcing, as discussed below.

Receptivity, the conversion of farfield
disturbance energy into instability waves, results from
the bilinear interaction between the unsteady signature
of the farfield disturbance and a short-scale meanflow
variation.  In other words, a freestream disturbance of
the proper frequency but long wavelength is scattered
onto the short-wavelength instability spectrum by the
local (steady) meanflow distortion of a surface
inhomogeneity, such as a roughness element.  See [3]
for more details.  The flowfield may be expanded as:

U(x,y,t) ≅ Ub(X,y)  +  εwUw(x,y)  +  εacUac(x,y)e-iωt  +
εw εacUw,ac(x,y)e-iωt

where the coordinate “X” in Ub(X,y)  denotes slow
variation in x.  Uw may be computed for very small
roughness heights using the HLNS solver with ω=0,
and extrapolating the flow-tangency condition to y=0
to produce an inhomogeneous boundary condition on
the tangential velocity:

Uw(x,0) =  ∂Ub(X,0) /  ∂y  •  h(x)
where h(x) is the normalized roughness shape.
Alternatively, the full distorted steady field
corresponding to Ub(X,y)  +  εwUw(x,y) may be
computed directly using a Newton-iterated nonlinear-
solver variant of the HLNS method, where the
roughness geometry is represented exactly using a
shearing transformation.  As will be described later,
the local effect on the evolution of the recepted
instability wave of this distorted base flow is the
dominant nonlinear effect when the roughness height
εw is finite.

Uac(x,y), the signature of the farfield
disturbance, may be approximated in the case of
acoustic receptivity by a Stokes wave; a more exact
representation may be obtained through a solution of
the linearized unsteady boundary-layer equations
(LUBLE) [4].  Once Uac and Uw are computed, their
nonlinear interaction is used on the RHS of the HLNS
solver for solution of the Uw,ac problem.

Since each (ω,β) component is computed
independently in the linear formulation, wave packets
may also be easily constructed.  For instance, the
disturbance produced by an isolated roughness which is
compact in the z-direction has energy distributed in the
β-plane; the Fourier integral of the bump shape
provides the necessary wall-forcing as a function of β:

The Fourier integral is discretized using a Chebyshev
collocation quadrature formula:

This discretization results in a set of {βi} at which the
HLNS solutions are required.  The packet is then
constructed  in the physical space via the inverse
integral:

Results
Crossflow Stability

As mentioned in the Introduction, the effects
of streamline curvature and nonparallelism on the
development of disturbances in three-dimensional
boundary layers has been a significant concern in the
development and application of transition prediction
methods, especially for swept wings.  Extensive use of
the subject HLNS method has been made in the
evaluation of these effects and in the calibration of
advanced transition prediction tools.

To illustrate these effects, results are
presented for crossflow disturbance growth in the
boundary layer on the wing used in the ASU 45°
swept-wing experiment [5], the pressure distribution
for which is presented in Fig. 1.  The modest favorable
pressure gradient over the first 70% of the wing gives
rise to consistent growth of crossflow disturbances over
a relatively narrow band of spanwise wavenumbers,
and napthaline surface flow visualization indicated the
presence of strong stationary (ω = 0) crossflow
disturbances.  The effect of surface curvature on the
evolution of one representative spanwise-wavenumber
disturbance in terms of the local growth rate evaluated
using the maximum streamwise disturbance velocity is
shown in Fig. 2; for comparison, the result from a
standard quasi-parallel linear stability theory (LST)
calculation  is also shown.  Note that the effect of
surface curvature is to significantly reduce the local
growth rate in this region near the leading edge;
farther downstream, the two HLNS results merge as
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the curvature decreases.  The large increase in growth
rate shown by the HLNS results near the leading edge
stem from the strong nonparallel effect, as the
boundary layer grows rapidly in the first 5%-chord
arclength from the attachment line.  The fact that the
LST and HLNS results appear to agree after about x/c
= .07 is completely fortuitous; results for other
flowfields show significant disagreement between the
very approximate LST and the virtually exact (for

linear disturbance evolution) HLNS method.  An
additional result for this flowfield is shown in Fig. 3;
in this figure, a comparison between HLNS, PSE and
LST results is made.  Although the PSE results show
some effect due to boundary-layer nonparallelism, this
effect is still underestimated.  Also shown in the figure
is the effect of changing the streamwise placement of
the suction/blowing strip which was used in the HLNS
calculations to initiate the crossflow disturbance.

Figure 1 Pressure distribution on ASU swept wing

 

Figure 2 Stationary crossflow growth rate

Figure 3 Stationary crossflow growth rate, comparison of LST, PSE, and HLNS
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Crossflow Receptivity - Packets

Significant use of the HLNS method to predict
the receptivity and evolution of crossflow disturbances
in the presence of localized suction was made during
the design and execution of a NASA / Boeing hybrid
laminar flow control (HLFC) swept-wing experiment
[6]; results from this test are proprietary, but overall
indicated that standard LST transition prediction
methods are quite unsatisfactory for use in swept-wing
flows.

The computation of the development and
evolution of a packet of crossflow disturbances behind
a roughness element near the leading edge of a swept
wing will serve as an example of the use of the
spanwise Fourier-integral method described above.  A
surface bump, circular in plan and Gaussian in cross-
section, was represented using linear boundary
conditions near the attachment line in a swept-wing
boundary layer.  Fig. 4 shows a plan view of
isosurfaces of the streamwise component of disturbance
velocity, red denoting positive and blue negative, with
the lateral boundaries of the displayed computational
region being parallel to the freestream direction and
the inflow boundary (left) parallel to the leading edge
of the wing.  A particular pressure distribution was
chosen for the infinite-swept mean flow which results

in a rather wide-band growth of crossflow
disturbances, and the small-scale roughness element
which induces the disturbance packet in the
computation creates initial energy in a range of scales
which includes this growth band.  The small variation
of wave angle and growth direction across this band of
growing crossflow disturbances is visible in the
downstream evolution of the packet; disturbances with
small spanwise wavelength appear on the downstream
side of the packet, whereas those of longer wavelength
propagate on the windward side.  This effect is more
apparent in Fig. 5, in which disturbance streamwise
velocity from cuts at various chordwise locations is
shown.

Similarly, the initiation of stationary crossflow
disturbances by perforated suction surfaces may be
computed.  In Fig 6 are shown isosurfaces of positive
and negative disturbance velocity for flow of a swept-
wing boundary layer over a spanwise-periodic array of
suction holes; the 7 rows of holes in the simulation are
evident in the figure.  For this case, the spacings and
angles of the rows of holes were chosen to produce
near alignment of the holes along constant disturbance-
phase lines, resulting in constructive interference of the
waves from one row to the next.  Simulations of this
type have been used to study the performance
sensitivity of perforate patterns for use in HLFC
applications.
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Figure 4 Isosurfaces of disturbance velocity behind roughness element on swept wing.

Figure 5 Crossflow packet disturbance velocity at various chordwise locations.

Figure 6 Disturbance velocity isosurfaces, perforated suction surface.



7
American Institute of Aeronautics and Astronautics

Effect of Spanwise Meanflow Distortion

When a stationary crossflow disturbance of
a particular spanwise wavenumber βw evolves in a
meanflow field that contains a small-amplitude slow
spanwise variation, the disturbance is distorted.  This
distortion may be approximated, if the spectrum of
the spanwise variation of the meanflow is confined
to small wavenumbers, by the bilinear scattering of
the βw into sidebands.  For instance, if the meanflow
variation possesses only a single spanwise
component βo, then this bilinear interaction forces
sideband disturbances of spanwise wavenumber βw ±
βo.  If βo is sufficiently small, these sideband
disturbances will grow on their own, since their
spanwise wavenumbers will lie in the same unstable
range as the original disturbance.  Thus, only a short
streamwise region of meanflow variation is
necessary to produce a disturbance field with rich
spanwise content.

The simple bilinear interaction is
demonstrated by the example of a single crossflow
disturbance, initiated by a roughness strip, evolving
into an unstable mean boundary layer on which a
1%-amplitude distortion with small spanwise
wavenumber is imposed.  In Fig. 7 is plotted the
growth of the streamwise component of disturbance
velocity; the initiation of the original wave
(βw=4500) is apparent near the leading edge.  The
spanwise distortion of the meanflow occurs over the
region .01 ≤ s/c; note that the scattered sideband
disturbances grow rapidly to nearly comparable
amplitude of the original disturbance.  However,
since the continued forcing of these waves is at a
slightly different streamwise wavenumber than the
disturbances which grow at the sideband spanwise
wavenumbers (β = 4186 & 4814), constructive and
destructive interference occurs in the evolution of
these waves.  The reconstructed disturbance
flowfield shows the expected spanwise variation in
amplitude, as seen in Fig. 8.

Figure 7 Disturbance amplitude, effect of spanwise
meanflow distortion on stationary crossflow
disturbance

Figure 8 Contours of disturbance velocity,
corresponding to Fig. 7
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Nonlinear Receptivity

The HLNS method has also been used
extensively in the calibration of receptivity-prediction
methods and theories, to be used in engineering
amplitude-prediction tools for transition prediction.  As
described above, both linear and weakly nonlinear
acoustic receptivity predictions are possible using
HLNS methods.  Two examples of receptivity of two-
dimensional TS waves are shown here, the first
resulting from a roughness strip, the second from a
suction slot.  The first case, shown in Fig. 9 in terms of
receptivity coefficient against roughness height,
indicates that the finite-Reynolds number local method

of Choudhari, et al [7], is in complete agreement with
the purely linear simulation result; however,
significant deviation is seen between these results and
the experimental results of Saric, et al [8].  The weakly
nonlinear results, in which the effect of the roughness
distortion on the local stability of the disturbance is
taken account, shows much better agreement.
Similarly, the local and HLNS results agree well for
the suction-slot case shown in Fig. 10; however, the
local-stability modification effect is even stronger for
this case, and the weakly-nonlinear results deviate
from the linear results significantly even for small
suction rates

Figure 9 Roughness receptivity coefficient Figure 10 Suction receptivity coefficient

Distributed Receptivity

Since the surface roughness distribution may
be specified arbitrarily in the HLNS predictions,
distributed roughness receptivity effects are easily
simulated.  Shown in Fig. 11 is the disturbance
amplitude maxy{Uw,ac(x,y)} (without roughness height
and acoustic amplitude parameters εw and εac),
corresponding to the experiment of Wiegel and
Wlezien [9] in which a series of tape strips were placed
at spacings corresponding to the wavelength of the TS
wave excited at the acoustic-driver frequency in a flat-
plate boundary layer.  The receptivity saturation
observed in that experiment, and predicted by an

extension of the local receptivity theory [10], is
apparent.

When the relative phases of waves induced by
individual roughness elements in a distributed-
receptivity situation do not precisely correspond, the
receptivity is “detuned” and significantly weaker.  Of
course, for true distributed roughness on an aircraft
surface, detuning would always be present and must be
predicted, at least in the mean.  An example of this
detuning is shown in Fig. 12, in which the TS
disturbance amplitude for acoustic receptivity at a
particular frequency over a wavy wall is shown, first
for the case in which the acoustic frequency
corresponds to the wavelength of the wall, and second
for the case in which the wavelength of the wall is 10%
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shorter.  Evident is the destructive interference between
the waves produced in the leading part of the wavy-
wall region (denoted by the filled triangles) with the
waves produced later in the region.  Work in this area

of distributed-roughness receptivity, especially for the
case of stationary crossflow receptivity, is continuing
using statistical models of roughness measured directly
from surfaces of various levels of finish.

Figure 11 Disturbance amplitude, distributed
roughness receptivity Figure 12 Disturbance amplitude, tuned and

detuned wavy-wall receptivity

Nonlinear Crossflow Receptivity

In the case of traveling (i.e. non-zero
frequency) crossflow disturbances, it was noted that the
full distorted steady field corresponding to Ub(X,y) +
εwUw(x,y) in the above formulation should also include
the finite-amplitude stationary crossflow disturbance
recepted by the roughness, as well as the nonlinear
local distortion produced directly by the roughness.
Since the streamwise wavenumber of the stationary
disturbance is slightly different than that of the
traveling disturbance, the interaction of the stationary
disturbance with the Stokes’ wave produces an
additional receptivity mechanism that is detuned.  This
detuning results in an oscillatory amplitude increment
over what would result from the interaction of the
Stokes’ wave with the local roughness flowfield
distortion.  An example of this additional receptivity is
shown in Fig. 13, for the case of a roughness strip with
a particular spanwise wavelength, positioned near the
leading edge of the ASU swept wing.  Note that there
are regions in which this additional receptivity
mechanism adds an order of magnitude to the
amplitude of the traveling crossflow disturbance, and
that this increment is not a function of either εw or εac.

Figure 13 Disturbance amplitude, nonlinear
traveling crossflow receptivity
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Harmonic Point Source

In 1995, Watmuff [11] published results from
very high resolution hot-wire measurements of the
wave packet produced by oscillatory suction and
blowing through a small hole in the surface under a
flat-plate boundary layer.  Ostensibly for studying the
effect of discrete suction used for laminar flow control,
the data provides an excellent test for approximate
simulation methods.   Initial comparisons with wave
packets generated by summation of modes from linear
stability theory, and with packets computed using the
linear parabolized stability equations (PSE), showed
that even for the small amplitude used in the
experiment, some nonlinearity was present.  This may
be seen by comparing the isosurfaces of streamwise
disturbance velocity from the experiment (Fig. 14) with
those from the summation of 17 (symmetric) spanwise
modes computed using the HLNS method (Fig. 15).
Although the general wave pattern is captured by the
linear computation, the experiment shows some detail
on the centerline which is missing in the linear results;
additionally, the experimental wave fronts are
somewhat flatter than seen in the linear computation.

Based on the conjecture that the disagreement
was due to stabilizing meanflow distortion near the
centerline of the packet, a nonlinear harmonic Navier-
Stokes computation was carried out, in which only the
primary, zero-frequency, and first harmonic temporal
modes were included.  The computation was done in a
brute-force iterative manner, with the values of the
nonlinear terms for each spanwise and temporal
harmonic mode calculated from the previous global
iteration and carried as forcing functions.  These
forcing functions were computed by exact
decomposition for the temporal terms, and by
reconstructing the total flowfield in successive
streamwise planes, computing the nonlinear terms, and
performing a spanwise FFT; the spanwise grid used for
reconstruction used twice the number of spanwise
modes, to dealias the computation.  The results of this
ongoing computation are shown in Fig. 16; the results
near the centerline agree far better with the
experiment, demonstrating the stabilization by the
zero-frequency component; the computation does,
however, suffer from lack of spanwise resolution.

Conclusions

A number of example applications of the
HLNS method have been presented.  It should be
recalled that all of the results shown were computed on

workstation-level hardware, and that broad parameter
studies for many of the physical aspects of transition on
swept wings discussed here have been carried out using
a suite of codes developed around this method.
Additionally, weakly nonlinear effects on disturbance
growth, secondary instability, and disturbance
scattering by meanflow distortions have also been
computed using this method; these will be described in
subsequent papers.
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Figure 14 Isosurfaces of disturbance velocity, Watmuff HPS experiment

Figure 15 Isosurfaces of disturbance velocity, linear HLNS computation

Figure 16 Isosurfaces of disturbance velocity, nonlinear harmonic N-S computation


