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Abstract

A buckling formulation for anisotropic
curved panels with variable curvature is pre-
sented in this paper. The variable curvature
panel is assumed to consists of two or more panels
of constant but different curvatures. Bezier func-
tions are used as Ritz functions. Displacement
(C?), and slope (C!) continuities between seg-
ments are imposed by manipulation of the Bezier
control points. A first-order shear-deformation
theory is used in the buckling formulation. Re-
sults obtained from the present formulation are
compared with those from finite element simula-
tions and are found to be in good agreement.

Nomenclature

Up, Uy displacement along axial and
transverse directions

w displacement along radial
direction

e, Oy rotations of normals to
middle surface or curvatures

z,y, z axial, circumferential, and
normal coordinates

fi(n,v) Bezier polynomial of order n

i Bezier control points
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non-dimensional coordinates
L length of segment

St width of segment [

R Radius of curvature

Introduction

The use of composite materials for aircraft
primary structures can result in significant ben-
efits on aircraft performance and structural cost.
Such applications of composite materials are ex-
pected to result in a 30-40 percent weight sav-
ings and a 10-30 percent cost reduction com-
pared to conventional metallic structures. Shells
with variable curvature are widely used for air-
craft fuselage and wing components. The vari-
able curvature configuration for these structures
is due to aerodynamic and functional considera-
tions. Hence the understanding of buckling be-
havior of composite shells with variable curvature
is of importance for aerospace structural design.

The earliest work reported on the buckling
analysis of shells with variable curvature was by
Marguerre [1] in 1951. He expanded the curva-
ture in a Fourier series with respect to the cir-
cumferential arc-length in order to more accu-
rately represent the varying curvature of wing
leading edge panels. His approach has been the
basis for subsequent analyses of shells with vary-
ing curvature for both buckling ([2]-[4]) and vi-
bration problems ([5]-[11]). In these References
Marguerre’s approach has been used for elliptical
cylinders or panels since the variation of curva-
ture (1/R) can be represented accurately by one
term in the Fourier series. Reference [4] provides



an excellent review for buckling and vibration of
shells and panels with variable curvature.

In addition to elliptical cylinders or panels,
shells with varying curvature such as isotropic
conical ([12, 13]) and torispherical shells ([13])
have been analyzed for free vibration. Irie et
al. [12] used the transfer matrix technique to
obtain natural frequencies of truncated conical
shells. According to Reference [12], the advan-
tage of the transfer matrix technique is its sim-
plicity compared to other methods which require
considerable analytical effort and computational
time. A review of the literature for conical shell
shell buckling is provided in Reference [12]. Singh
([13]) used a segment approach where a series of
circular arc segments tangential to each other at
the segment interface juncture is used to model
the shell with varying curvature (e.g., conical and
torispherical shell) without any approximation
in geometry. Trigonometric and quintic Bezier
polynomials are used to represent displacement
fields in each arc segment. Smooth deformed
surface of the shell are obtained by imposing C°
and C'! continuities at the juncture of two adja-
cent shell segments by using the properties of the
Bezier control points. Also boundary conditions
are applied by simple manipulation of the Bezier
control points. Bezier polynomials have been
used 1n a segment approach for the free vibration
of isotropic elliptic cylinders ([14]), composite el-
liptic eylinders ([15, 16]), and a laminated con-
ical shell ([16]). A first-order shear-deformation
theory has been used in References [15] and [16].
Detailed reviews of the free vibration of shells
with variable curvature are discussed in Refer-
ences [13]-[16]. The method presented in Ref-
erences [13]-[16] can be applied to different shell
geometries, shells with anisotropic material prop-
erties, and shells with arbitrary boundary condi-
tions. In addition, the method can incorporate
first-order shear-deformation theory or classical
laminated plate theory and is computationally
efficient.

The present analysis method for buckling of
anisotropic shells with variable curvature uses
a segment approach where displacement fields
within each segment are represented by Bezier
polynomials and a first-order shear-deformation
theory is used. In general, segments can be used
in both axial and circumferential directions, how-
ever the present implementation considers only
segments in the circumferential direction. Conti-
nuity of displacement at the junctures of adjacent
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segments are imposed using C” and C! conditions
obtained from the properties of the Bezier control
points ([14]). The shell with variable curvature is
assumed to consist of two or more curved panels
of constant curvature which is representaiive of
fuselage or wing structures.

The present paper summarizes the analy-
sis approach. Two structure cases with curva-
ture are analyzed to demonstrate the capabilities
of the present analysis approach. Result from
the present analysis are compared with those ob-
tained from finite element analyses.

Analytical Approach

The coordinate system and the displacement
directions for a noncircular shell is shown in Fig-
ure 1. Any point in the wall of the shell is speci-
fied by means of curvilinear coordinate system &z,
y and z, where z is the axial coordinate fixed to
mid-surface, y is the circumferential coordinate
which follows the median line of the transverse
cross section, and z is the radial coordinate nor-
mal to both z and y. The noncircular shell is as-
sumed to consist of two or more segments in the
circumferential direction each of constant radius.
The normal and tangent of the two segments at
a juncture are equal as shown in Figure 1, where
ﬁl = ﬁ;} andt—‘l 2{2.

Bezier polynomials are used in the axial and
circumferential directions to represent the dis-

placement fields. The Bezier polynomial is given
by

n!

G- (n—i+ 1)

’/i—l (I/_])n—i-Fl

(1)
where n denotes the order of the polynomial and
0 < v < 1. For a Bezier polynomial of order n,
there are (n+ 1) control points. Any point on the
surface of the segment is given by a parametric
function of the form

filn,v)

X Y
Prs(&m) = DY flOf(Mars  (2)

r=1s=1

where the coordinates ¢ and 7 are defined as

3 x/ L
n V=) / W1 —w) (3)

with 0 < £, < 1, X and Y are the number
of control points in the axial and circumferen-
tial direction respectively, and ¢,, are the Bezier
control points or coefficients. The displacement
vector can be written as



[UO Vg w (f’x ¢y ]]T =
P 0 0 0 0 Girs
0 P, 0 0 0 qors
0 0 P, 0 0 q3rs (4)
0 0 0 Prs 0 q4rs
0 0 0 0 Pl g,

where uy and vy are the axial and transverse
membrane displacements, respectively. w is the
normal displacement and ¢, and ¢, are the cur-
vatures. Subscript j = 1, 2, 3, ... (XY). The
control points for each degree of freedom can be
used to impose boundary conditions on each de-
gree of freedom on each segment.

Continuity of displacement functions along
segment junctures are obtained by using the rela-
tions between control points of the adjacent seg-
ment based on (" and ("' continuities. Figure
2 shows two adjacent segments and the control
points that are involved in the C'° and ¢! con-
tinuities for the case of eleven control points in
the axial direction and six control points in the
"=1landY =6. In
the I'* segment, control points ¢z and qk5 are re-
lated to control points ¢;; and ¢;2 of the (I +1)t*
segment, where i, & = 1.2.3.4.5,6 according to

transverse directions, i.c.. .

qak = {1

¢ _ S gske + Siy1 qu 5)
Gk - ¥ ~ t
’ St o+ b]+1 ’

where Sy and Sy are the width of the I** and
(I 4+ 1) segment, respectively. Using these con-
ditions the unknowns ¢;; and ¢s; are expressed
in terms of gs; and ¢s, which are slaved to the
master control points ¢; and ¢»;.

Since the buckling analysis involves first-
order shear-deformation, only C'° continuity is
required in the variational formulation. However
the advantage of also imposing C'! continuity is
not only to obtain a more accurate analysis but
also to reduce the size of the stiffness and geo-
metric stiffness matrices when a larger number
of segments are used to represent the shell that
1s being analyzed. Table 1 shows the size of the
matrices with the number of segments for differ-
ent conditions of continuities when X = 11 and
Y = 6. If the segments are joined to approximate
a shell, the size of the matrices are less than that
for a panel. The size of the stiffness and geo-
metric stiffness matrices after assembly is given

ISIZE =
XX xY x NSEG — 110 x MJOIN (6)

for C° and C! continuities, where ISIZE is the
matrix size, NSEG is the number of segments,
and MJOIN = NSEG — 1 for a panel and
MJOIN = NSEG for a shell, i.e., MJOIN is
the number of junctures.

The linear stiffness matrices are derived from
the strain energy which is given by

U= @7 Bs Dy 0 [{gaa @
A 0 0 G

where A;; is the extensional stiffness coefficient
matrix, Bj; is the coupling stiffness coefficient
matrix, Dy;; is the bending stiffness coefficient
matrix and Cp, is the transverse shear stiffness
coefficient matrix. The strain vector is {¢} and

{e}T ={ 52 7§y Ky Ky Kpy Yoz 7'y;}T (8)
The strain displacement relations are
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e T o
0 Ovg  wyg
& = — +—
Y Jy R
o _ Ju I
Toy = dy = Ox
Oy
Ky = —
dx
7
s _ ()@/T (9¢>y C‘g (9’00 _ (()LLO)
YT oy dr 2R Oz Ay
3w0
L0 9o
fez ¢r+ ax
a‘wo Vo
0 N
' = — —-C1—= 9

Here 'y and 'y are “tracer” coefficients used to
implement different strain-displacement relations
or shell theories. Accordingly when Cy = ¢, =
1, the first approximation of Sanders-Koiter shell
theory [17, 18] is obtained and when C; = 1, (5
= 0, Love’s shell theory [19] including transverse
shear deformations is obtained. Finally, when ()}
= 0 and C = 0, Donnell’s shell theory [20] in-
cluding transverse shear deformation is obtained.



The geometric stiffness matrix is derived
from the work done, (W), by the applied pre-
buckling loading and 1s

Wy = /( N:r‘erL + NyQ/NL
A
+ﬁxy7ry1\'L )dA (10)
where the nonlinear strain components are
(ez)ne = 5(170,3 +w,i )
1 2 V0 |2
()N = §(u0’y +(w,y —'E) )
w
(’}'ry INL = —Ug,y ('U()ay +§) — V0,r UQyx
o
+u77.'['(luﬂy_§) (11)

In the present analysis the applied prebuckling
loading is prescribed as a uniform in-plane stress
state. The linear stiffness and geometric stiffness
matrices are developed using analytical integra-
tion rather than numerical integration for com-
putational efficiency. Finally, an eigenvalue prob-
lem 1s solved for determining the critical buckling

load.
Numerical Results

Results are presented for a composite cylin-
drical panel subjected axial compression and a
composite wing leading-edge panel subjected to
combined axial compression and shear. Sanders-
Koiter ([17, 18]) shell theory is used in these stud-
les. Buckling loads from the present analysis are
compared with those obtained from the STAGS
([21]) finite element code. The STAGS finite
element model consists of the 410 element and
curved surfaces are approximated as an assem-
bly of flat surfaces. The nominal ply mechanical
properties for the composite material used are:
E11 = 13.75 Msi; Eag = 1.03 Msi; G1a=G13=Go3
= 0.420 Msi and 12 = 0.250, and the laminate
ply stacking sequence is [+45/0/90/ + 45], with
equal ply thickness for different laminate thick-
ness.

Cylindrical Panel

The first structure analyzed is a semi-
circular (o« = 180°) cylindrical panel 22.0-in.
long, and with a radius of 40.0 inches. as shown
in Figure 3. The simply-support boundary condi-
tions are also shown in Figure 3. The cylindrical
panel is modeled as five curved segments in the

present. analysis while the STAGS finite element
modeled consists of 20 and 40 elements in the ax-
ial and transverse direction respectively. Table 2
shows the results for the curved panel subjected
to axial compression load.

The results in Table 2 suggest that for ¢ =
0.072 in. the present analysis result is 4.3 per-
cent greater than the STAGS result while for ¢
= 0.144 in. and 0.216 in. the STAGS analysis
results is 1.4 percent below that of the present
analysis. The difference between results 1s due
to using the 410 shell element of STAGS which
do not include transverse shear deformation. The
STAGS results are above that of the present anal-
ysis for t = 0.144 in. and 0.216 in. since these
two panels are thicker and transverse shear de-
formation effects are significant. The buckling
mode shape for the curved panel obtained from
STAGS analysis results is shown in Figure 4.

Wing Leading-Edge Panel

The wing leading-edge panel is shown in Fig-
ure 5. Tt consists of three curved segments of
radii 50.0 in., 6.136 in., and 50.0 in., respectively.
The boundary conditions of the panel is shown
in Figure 5 and correspond to classical simply
support conditions. Each ply of the laminate is
0.006-n. thick. Using the present analysis, the
wing leading edge was modeled as combination
of two segments for the 50.0-in. radius section
and one segment for the 6.136-in. radius sec-
tion. The STAGS finite element model consists
of the 410 shell element and 30x 30 elements in
each curved segment, and the formulation of the
410 element is based on the classical laminated
plate theory. Table 2 shows the results obtained
from the present analysis and those from STAGS
for some selected combined load cases and Figure
6 shows the buckling load interaction curve be-
tween axial compression and positive shear load-
ing.

The results from the present analyses are
about 4.0 percent above those of STAGS ex-
cept for the case of negative shear loading where
the result from the present analysis is 6.4 per-
cent above that of STAGS. Better agreement can
be obtained from the present method by using
more control points in the axial direction. How-
ever this will lead to more computational effort
and the present percentage difference between
STAGS and results from the present analyses is
considered acceptable for a preliminary design.
The buckling mode shape for the wing leading



edge obtained from STAGS analysis results are
shown in Figure 7, 8 and 9 for axial compres-
sion, and positive and negative shear, respec-
The shell deformation is mostly in the
50.0-n. radius curved segments. For the case of
positive shear, the shell deformation is mostly in
one of the 50.0-in. radius curved segment.

tively.

Concluding Remarks

A formulation has been developed for buck-
ling of anisotropic laminated shells with vari-
The variable curvature is ap-
proximated by two or more segment of constant
bat different curvatures. Bezier polynomials are
used as Ritz {functions in the structural axial and
transverse directions.  Displacement (CY) and
slope (C1) continuity are imposed between seg-
Results obtained from the formulation
arc validated using finite element simulations.
Buckhng loads obtained from finite element so-
lutioms are determined to be four percent lower
than those of the present analysis.

able curvature.

ments,
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Table 1  Size of stiffness matrices for panel and
shell for increasing number of segments.
NSEG ISIZE ISIZE

(Panel) (shell)

[ [e* ¢t | (el

1 330 330 -
2 605 550 440
3 880 770 660
4 1155 990 880
5 1430 1210 1100
6 1705 1430 1320

Table 2 Comparison of buckling loads results
for composite curved panel.

Thickness STAGS  Present
t (in.) analysis
(Ibs/in.)  (Ibs/in.)

0.072 374.55 390.68
0.144 1481.08  1459.45
0.216 3328.25  3278.86

Table 3 Comparison of buckling loads results
for wing-leading edge panel.

Loading | STAGS  Present
condition analysis
Ny  Ngy | (Ibs/in.) (lbs/in.)
1.0 0.0 | 304.67 317.03
1.0 04 194.48 202.57
1.0 1.0 106.68 110.90
04 1.0 124.39 129.53
0.0 1.0 | -11773  -125.37
0.0 1.0 139.31 145.55




Figure 1: Coordinate system and geometry of shell with variable curvature.
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Figure 2: Control points for joining shell segments.
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Figure 4: Buckling mode shape for curved composite panel.
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Figure 5: Geometry and dimensions of composite wing leading-edge panel.
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Figure 6: Buckling load interaction curve for the composite wing-leading edge panel.
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e composite wing leading-edge panel in axial compression
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Figure 7: Buckling mode shape for th

Figure 8: Buckling mode shape for the composite wing leading-edge panel in negative shear
loading.
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Fieure 90 Buckling mode shape for the composite wing leading-edge panel in positive shear loading.
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