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ABSTRACT

Flat plate skin friction calculations over a range of
Mach numbers from 0.4 to 3.5 at Reynolds numbers
from 16 million to 492 million using a Navier Stokes
method with advanced turbulence modeling are com-
pared with incompressible skin friction coefficient cor-
relations. The semi-empirical correlation theories of van
Driest; Cope; Winkler and Cha; and Sommer and Short
T’ are used to transform the predicted skin friction coef-
ficients of solutions using two algebraic Reynolds stress
turbulence models in the Navier-Stokes method
PAB3D. In general, the predicted skin friction coeffi-
cients scaled well with each reference temperature the-
ory though, overall the theory by Sommer and Short
appeared to best collapse the predicted coefficients. At
the lower Reynolds number 3 to 30 million, both the
Girimaji and Shih, Zhu and Lumley turbulence models
predicted skin-friction coefficients within 2% of the
semi-empirical correlation skin friction coefficients. At
the higher Reynolds numbers of 100 to 500 million, the
turbulence models by Shih, Zhu and Lumley and Giri-
maji predicted coefficients that were 6% less and 10%
greater, respectively, than the semi-empirical coeffi-
cients.

NOMENCLATURE

= surface area,
A,B = temperature ratio constants for Van

Driest equation
= incremental surface area
= speed of sound
= average skin friction coefficient
= transformed average skin friction

coefficient
= constants for K-e equations
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= local skin friction coefficient,
= skin friction drag
= shape function
= near-wall damping function for
= total enthalpy
= freestream turbulence intensity
= turbulent kinetic energy
= mixing-length constant
= length of flat plate, 5-m
= mixing length
= Mach number
= number of grid points
= distance normal to wall
= production term for turbulent kinetic

energy
= static pressure, Pa
= dynamic pressure, Pa
= Reynolds number,
= transformed Reynolds number
= turbulent Reynolds number,
= strain tensor
= Sutherland’s constant, 110.33 K
= temperature
= intermediate reference temperature
= time
= velocity
= magnitude of velocity,
= Cartesian velocity components
= friction velocity,
= law-of-the-wall coordinate,
= vorticity tensor
= streamwise distance
= Cartesian displacement components
= law-of-the-wall coordinate,
= law-of-the-wall height of first cell
= vertical distance
= free parameter for K turbulent tripping

profile
= boundary layer thickness
= turbulent dissipation
= ratio of specific heats, 1.4
= boundary layer momentum thickness
= von Karman constant
= laminar viscosity
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= turbulent viscosity
= viscosity evaluated at
= kinematic viscosity,
= density
= density evaluated at  and
= shear stress
= viscosity power law power, Eqn. 24

Subscripts

= adiabatic wall
= correlation reference conditions
= incompressible
= laminar
= turbulent
= based on temperature
= freestream total conditions
= conditions at the wall surface
= conditions at the boundary layer edge
= freestream conditions

INTRODUCTION

The efficiency of airplane design has improved
considerably as computing power and computer pro-
grams have advanced and specialized tools, such as
inverse design methods and advanced graphic inter-
faces, have been developed. Despite this, some funda-
mental aerodynamic flow issues continue to elude both
the experimental- and the computational-based
researcher. One such issue involves several aspects of
skin friction, specifically, the measurement of skin fric-
tion experimentally; the determination of skin friction
through parametric correlations; and the prediction of
skin friction using advanced computational methods. A
survey of some of the semi-empirical theories of skin
friction can be found in (Refs. 1–5). Most of the semi-
empirical theories were fit to data over a limited range
of Mach number and Reynolds number and have had
varying degrees of success in obtaining accurate corre-
lations. Typically 5 to 10% error is quoted for the empir-
ical determination of skin friction due in part to scatter
and accuracy in the experimental data sets, corrections
for model effects and test techniques, and to a small
degree, simplifications made in deriving the theories.

The theories chosen for these comparisons will be
those of Van Driest, Cope, Winkler and Cha, and Som-
mer and Short.1 These correlations will be compared
with results from a three-dimensional Reynolds-aver-
aged Navier-Stokes (RANS) code PAB3D (Refs. 6–10)
using explicit algebraic Reynolds stress turbulence
models for calculations on a 5-meter flat plate with zero
pressure gradient. The conditions used for these com-

parisons were Mach numbers from 0.4 to 3.5 at unit
Reynolds numbers of 1 to 30 million per foot. Skin fric-
tion predictions are compared with the semi-empirical
theories. Estimations of solution convergence and errors
are discussed. Different transformations of Reynolds
number and skin friction are used for several compari-
sons with the skin friction theories.

COMPUTATIONAL PROCEDURE

Governing Equations

The general three-dimensional Navier-Stokes
method PAB3D version 13 was used. This code has sev-
eral computational schemes and different turbulence
and viscous stress models.9–10 The governing equations
are the RANS equations obtained by neglecting all
streamwise derivatives of the viscous terms. The result-
ing equations are written in generalized coordinates and
conservative form. Viscous model options include thin-
layer assumptions in any direction or any two indices
fully coupled with the third uncoupled. Typically, the
fully three-dimensional viscous stresses are reduced to a
thin-layer assumption, but this assumption may not
always be appropriate. Experiments such as the investi-
gation of supersonic flow in a square duct were found to
require fully coupled two-directional viscosity to prop-
erly resolve the physics of the secondary cross-flows.6

The Roe upwind scheme with third-order accuracy
is used in evaluating the explicit part of the governing
equations, and the van Leer scheme is used to construct
the implicit operator. The diffusion terms are centrally
differenced, and the inviscid flux terms are upwind dif-
ferenced. Two finite volume flux-splitting schemes are
used to construct the convective flux terms. The code
can utilize min-mod, van Albeda, Spekreijse-Venkat, or
modified Spekreijse-Venkat limiters. All solutions were
developed with the third-order-accurate scheme for the
convective terms and second-order scheme for the vis-
cous diffusion terms. The min-mod limiter was utilized
in the blocks containing wall-bounded flow, otherwise
the van Albeda limiter was used.

The code can utilize a 2-, 3-factor, or diagonaliza-
tion numerical scheme to solve the flow equations. The
2-factor scheme can be used when the predominant flow
direction is oriented along thei-index of the grid. An
example would be a jet-plume or nozzle configuration
where the  index grids generally represent cross-
planes of the exhaust flow. Though this scheme
typically requires 10–15% less memory than the
3-factor scheme it is less applicable to many general
3-D aerodynamics problems due to inconsistency
between the mesh topologies and the flow solution.
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These flow simulations were performed using the 3-fac-
tor scheme.

Turbulence Simulation

Version 13 of the PAB3D code used in this study
has options for several algebraic Reynolds stress (ASM)
turbulence simulations. The standard model coefficients
of the  equations were used as the basis for all of the
linear and nonlinear turbulent simulations as shown in
Table 1.

The near wall damping function of Launder and
Sharma,11

determined the behavior of  as a function of
. The boundary conditions for  and

at the wall are

and

The turbulence model equations are uncoupled from the
RANS equations and are solved at the same time step as
that of the mean flow solution. Relatively high Courant-
Friedrichs-Lewy (CFL) numbers can be used (e.g.

) and though rather problem dependent,
occasionally flow solution transients can force a tempo-
rary time step reduction of the solution of the turbulence
equations. More often it is a grid-resolution or grid-
quality issue rather than strictly a turbulence modeling
difficulty that requires lower CFL numbers to be used.
The turbulence equations are solved at all grid levels,
not just at the finest grid level.

The algebraic Reynolds stress turbulence model by
Girimaji12 with the Speziale, Sarkar and Gatski (SSG)
coefficients13 and the model by Shih, Zhu and Lumley14

(SZL) were utilized in this study. The coefficients of the
linear  model were used unmodified as there has
not yet been a recalibration performed with any of the
ASM’s in this code. The model developed by Shih, Zhu

and Lumley is based on the turbulent constitutive rela-
tions developed by Shih and Lumley.15 The model by
Girimaji is also based on a set of algebraic relations
between the turbulent Reynolds stresses and the mean
velocity field but uses the pressure/strain relationship by
Speziale et al.13 The model is similar to that of Gatski
and Speziale16 except for the determination of the vari-
able coefficient . Further discussion of the turbulence
model equations and the algebraic Reynolds stress tur-
bulence model implementation can be found in (Ref. 9).

Turbulent Trip Tactics

The tripping of laminar flow to turbulent can be
fixed through the imposition of  and  profiles at
user-specified points or grid lines. The line or plane of
the specified trip area is surveyed for the maximum and
minimum velocity and vorticity, and a shape function
from 0 to 1 is created. The shape function, F, is defined
as

where

and

 is the product of the velocity, , and vorticity magni-
tude, .   The turbulent kinetic energy profile is then
generated using

where  is a free parameter that determines the magni-
tude of  and  profiles as a percent of the local veloc-
ity magnitude . The value used for this paper is 0.1%
( ). The  profile is developed from the
assumption that production over dissipation of
turbulence is 1, that is, . This results in the
equation

(1)

The result of the tripping is typically observed as a
localized spike in the  field. Depending upon the flow
conditions, such as local Reynolds number, momentum
Reynolds number, or freestream Mach number, turbu-
lence may or may not develop downstream of the trip
point.   Turbulence quantities such as the production ,
or the turbulent stresses are left as floating
point numbers and are not explicitly set to zero or any

Table 1.   Linear  Standard Coefficients

Constant Value

 1.44

 1.92
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other value “upstream” of trip points. The initial levels
of these quantities are determined by thresholds of

 and  that are parameters in a user input file.
Table 2 lists the limits used for these calculations.

Under some circumstances, these thresholds can be
manipulated so as to cause a laminar boundary layer to
transition without any explicit tripping specified. As an
example, given the freestream conditions of M = 0.4,

, and a unit Reynolds number of 1 million,
with , the flat plate flow was fully tur-
bulent. If , transition never occurred. As
a point of interest, the lower limit of  can be related to
the freestream turbulence intensity, , as

(2)

So that  would correspond to a fairly
low freestream turbulence intensity of . A pro-
posed lower limit of freestream turbulence intensity to
significantly influence transition is 0.08%.17

Unfortunately the use of the particular ratios,
 and , for setting the lower threshold values

for the various turbulent quantities makes a definitive
correlation with I difficult because of the relationship
between  at its lower threshold and . That is,

(3)

 would have to be varied as the square of  to
maintain a fixed  so potentially a correlation
between I and transition to turbulence for this configura-
tion could then be developed.

Calculations performed for this paper explicitly set
the trip point at the leading edge of the plate. Depending
up the freestream Mach number and the unit Reynolds
number, transition to turbulence occurred at different
locations downstream of the leading edge. A section in
Results and Discussion will address this issue further.

SEMI-EMPIRICAL THEORIES

The following is a short review of the theories used
in this paper. Discussions of additional theories can be
found in (Ref. 1).

Karman-Schoenherr Equation

A number of semi-empirical correlations have been
derived for skin friction coefficients with Reynolds
number. The basis for most of the correlations in this
report is a relationship by Schoenherr derived from the
work of von Karman.18 A numerical fit by von Karman
to a set of experimental data resulted in

(4)

 and  are defined here as

(5)

and

(6)

though not explicitly defined (Ref. 1), total drag is
defined as the summation of the incremental shear stress
at the wall times the incremental area,

(7)

Equation 4 is a result of a number of simplifications
and assumptions about the character of an incompress-
ible boundary layer. Typically, the viscous sublayer
below , is neglected and the velocity gradient
at the low end of the log-layer region, ,
is set equal to 0.218.19 Additionally, the turbulent stress
in the log-layer region is assumed constant and equal to
the laminar stress at the wall. This assumption simplifies
the solution of the velocity distribution (to be discussed
in the following paragraphs) for a specific wall shear-
stress which would be associated with a particular skin-
friction coefficient and set of free-stream conditions and
is fairly consistent with the nature of the total stress in
the boundary layer.   Figure 1 shows the interplay
between the laminar stress and turbulent stress in the
boundary layer for M = 0.4, R = 1 million/ft. near the
trailing edge of the flat plate ( ).

The cross-over in the stresses occurs at approxi-
mately  which is fairly close to the previously
stated assumption of 11.5. The log-layer extends to
approximately 0.2δ which is in this is case is

, and the turbulent stress in the log-layer is
observed to be slightly less than that of the laminar
stress at the wall. The boundary layer velocity profile is
plotted for visual reference.

Table 2.   Numerical Thresholds for Turbulence
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Historically, either Prandtl’s ( ) or von
Karman’s ( ), theory have been
used for the mixing-lengthl and will produce similar
forms for the skin friction equation (Eqn. 4) but differ-
ent coefficients on either side of the relation. Subse-
quent to this, various techniques have been applied to
deriving the skin-friction relationships. The von Karman
momentum integral (Eqn. 8) is the basis for relating the
skin friction and Reynolds number. Since the integral
equation is quite intractable analytically, several alter-
nate representations (typically numerical approxima-
tions) of the integral have been derived.19

(8)

Van Driest Method

Van Driest’s analysis used Prandtl’s mixing length
and an interpolation expression representing von
Karman’s integral equation considering for the effects
of compressibility.   This resulted in the following equa-
tion from (Ref.1).

(9)

where

(10)

(11)

and

(12)

 and  are defined as:

(13)

and

(14)

An alternate form of the factors A and B are published in
(Ref. 19) using Mach number and temperature.   Equa-
tions (11) and (12) are equivalent to the following
equations, Eqs. (15) and (16), if the boundary layer edge
conditions, , are taken to be the same at the free-
stream conditions and .

(15)

 and

(16)

Both Van Driest and the theory by Cope evaluate quanti-
ties by the conditions at the wall and an outside
reference. Reference 1 is not explicit in the outside ref-
erence condition definition. The subscript  was defined
as “conditions outside the boundary layer,” whether that
implies free-stream conditions or the conditions at the
point of , which by definition place some
flow quantities 0.5% less than free-stream, is not dis-
cernible. For the flat plate cases considered in this
report, the reference shift results in slight shifts in both

Figure 1.  Laminar and turbulent stresses in boundary
layer.
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Reynolds number and skin friction, such that the result-
ant numbers remain generally along the same curve.

Cope Method

The theory by Cope, rather than working from a
mixing length law, assumes that the compressible veloc-
ity profile can be transformed to the incompressible pro-
file by using the wall density and viscosity.   The
resulting equation is shown.

(17)

Winkler and Cha Method

The theory by Winkler and Cha uses a different
scaling assumption for arriving at the compressible skin
friction, i.e.,

(18)

and results in the following equation

(19)

where now  and  are defined as previously dis-
cussed under the Karman-Schoenherr equation sec-
tion.   For this correlation all quantities are evaluated at
free-stream conditions, with the exception of the total
drag integration which the author assumes still utilizes
the viscosity at the wall for the determination of the wall
shear stress.

Sommer and Short  method

The  method utilizes an empirical relationship
between the Mach number and temperature at the edge
of the boundary layer, and the wall temperature to arrive
at a reference temperature at which the properties (den-
sity and viscosity) of the boundary layer are evaluated.
Several equations have been proposed, as discussed in
(Ref. 1), but only the method of Sommer and Short will
be shown.5 The reference temperature is calculated from

(20)

The skin friction formula then has the form

(21)

where  and  are now evaluated at the reference

conditions as follows:

(22)

and

(23)

Each theory has a different set of normalizations
and are shown in Table 3.

The skin friction coefficient calculated by the
Navier-Stokes (NS) method, are non-dimensionalised
by different coefficients than most of the correlations.
The definitions for skin friction,  and Reynolds num-
ber,  in the computational method are the same as
Eqs. (5) and (6); therefore, the transformations shown in
Table 4 are required to compare the computational
results with most of the correlations.

For simplicity in the analysis, several theories use
the single power relation of

(24)
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where typically . A slightly more accurate
relation is Sutherland’s law.

(25)

Figure 2 shows the difference in the viscous ratio
using the power law compared to Sutherland’s law. The
temperature  is substituted for  when those
reference conditions are used. For temperature ratios
less than 2, the viscosity scaling error would be 5% or
less using the power law compared to Sutherland’s law.
Since temperature ratio ranged from 1.02 at M = 0.4 to
2.41 at M = 3.5, the Sutherland’s law relation was uti-
lized for post processing the skin friction predictions.

Solution Process

Turbulent flow solutions that use ASM and the two-
equation linear  model require 23 words of mem-
ory per grid point. The code speed is dependent on the
turbulence model, viscous model assumptions, and
numerical schemes. All solutions for this study were
performed on Silicon Graphics workstations. The code
was compiled using Fortran 90, double-precision
(64-bit) with O2 level of optimization. The code speed
at the finest grid level was approximately 110 micro-
seconds/iteration/grid point running a 3-factor solution
scheme, 1 thin-layer viscous direction and using an
algebraic Reynolds stress turbulence model. The com-
puter memory requirement was approximately
18 megabytes.

Solution residual and total skin friction were used
to gauge solution convergence. Total skin friction was
solution converged and grid converged.

RESULTS AND DISCUSSION

Determination of Boundary Layer Edge Criteria

An accurate and consistent determination of the
edge of the boundary layer is important for calculation
of momentum thickness Reynolds number, shape
factors, and edge conditions. The skin friction correla-
tion, , was used to evaluate the applicability of
several velocity and enthalpy edge values.   Figures 3
through 5 are the two criteria for M = 0.4 and figures 6
through 8 are for M = 1.2 at the Reynolds number of
1 million/ft. The skin friction and Reynolds numbers
plotted here are evaluated using free stream values. At
M = 0.4, the laminar and turbulent coefficients are con-
sistent up to the velocity edge criteria of 0.995. The
enthalpy edge criteria is consistent up to 0.99.   The
equivalence of the two criteria for this condition is
shown in figure 5.

The transonic case, M = 1.2, required much lower
edge criteria, (Figs. 6 and 7). With the exception of the
first cell, the velocity criteria of 0.98 and enthalpy crite-
ria of 0.97 give fairly consistent results for the skin fric-
tion correlation. These two criteria are plotted in figure
8 and show similar results. For the higher supersonic
conditions of Mach = 2.4 and 3.5, a consistent boundary
layer edge could be determined with the enthalpy crite-
ria as high as 0.995. The choice of which edge criteria is
used results in different temperature and viscosity val-
ues being used in determination of the boundary layer

Figure 2.  Viscosity ratio from temperature ratio.
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edge conditions. Recall that the semi-empirical theories
of Cope and Sommer and Short used boundary layer
edge conditions for the scaling of the skin friction and
Reynolds number rather than the free-stream. No matter
which criteria is applied, the edge conditions will be
slightly different than the free-stream. The variation of
the edge velocity is plotted in figures 9 and 10 for the
two edge criteria at M = 0.4 and 1.2. The two edge crite-
ria produce very similar edge velocities for the subsonic
case, but the particularly difficult transonic condition of
M = 1.2, determines significantly different edge veloci-
ties depending upon the criteria chosen.

ESTIMATION OF LAMINAR-TO-TURBULENT
FLOW RATIO EFFECTS

Laminar flow present in a computational flow solu-
tion changes the predicted skin friction from that of an
assumed fully turbulent flow. For a given physical
geometry, obviously the Reynolds number of the
problem is a major factor in determining the degree of
laminar flow that might exist. Secondarily, the existence
of laminar flow in the CFD solution is also dependent

Figure 4.  Enthalpy edge criteria M = 0.4, R = 1 million/
ft.

Figure 5.  Equivalence of velocity and enthalpy edge,
M = 0.4, R = 1 million/ft.
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Figure 6. Velocity edge criteria at M = 1.2, R = 1
million/ft.

Figure 7. Enthalpy edge criteria at M = 1.2, R = 1
million/ft.
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upon whether there is sufficient grid density to actually
predict the laminar flow. Assuming an incompressible
flow with a critical Reynolds number of 500,000,
Table 5 is an estimation of the expected laminar run for
the 5-m flat plate at different unit Reynolds numbers.
The third column is an estimation of the percentage of
the flow that would be laminar. The fifth and sixth col
umns are the two terms of an expression for total skin
friction derived in Schlichting18 accounting for the
initial laminar region. The first term is the regular
expression for fully turbulent flat plate skin friction and
the second term is a correction for the laminar segment.

,

Figure 11 shows the variable A as a function of crit-
ical Reynolds number. The quoted Reynolds number
range of applicability is less than , so it must be
noted that applying it to the present problem is an
extrapolation of this equation. At Reynolds numbers
greater than 4 million per ft., the laminar aspect of the
flat plate flow becomes less than 1/2 of 1 percent of the
total length of the plate. Additionally, the estimated
decrease in total skin friction coefficient is less than
0.00003. Therefore, a leading edge spacing of 0.01 m
should be sufficient to predict the laminar flow at the
lower Reynolds numbers. It is inadequate to resolve any
laminar flow in the high Reynolds number range, but the
degree of error in total skin friction coefficient is esti-
mated to be less than 0.00003.

Figure 8.  Equivalence of velocity and enthalpy edge,
M = 1.2, R = 1 million/ft.

Figure 9.  Normalized velocity at boundary layer edge,
M = 0.4, R = 1 million/ft.
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Figure 10.  Normalized velocity at boundary layer edge,
M = 1.2, R = 1 million/ft.

Figure 11. Variation of constant A with critical
Reynolds number.
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Flat-Plate Grid

The 5-m flat-plate multiblock grid had an H-type
mesh topology, with three blocks placed streamwise.
The computational domain included an inflow block,
block 1, extending 2.5 m upstream from the leading
edge of the 5-m flat plate. The plate, block 2, had an
initial streamwise grid spacing at the leading edge of
0.01 m and was exponentially stretched from the leading
edge to the trailing edge at a rate of 6.7% using a total of
61 grid points. Block 3, downstream of block 2, was
2.5 m long. This was to displace the outflow boundary
away from the plate trailing edge. The first cell height of
the baseline grid was varied according to the unit
Reynolds number as shown in Table 6. The first cell
height was fixed at both ends of the plate and exponen-
tially stretched from the surface to the outer boundary.
The upper boundary was 20 m away and the lateral
width of the grid was 0.098 m.

The grids had the following dimensions.

Grid Convergence

One subsonic case and one supersonic case are
shown as representative grid convergence trends.
Figures 12 and 13 show total skin friction predictions
with inverse of total grid count for M = 0.4 and 1.2
respectively, at several different unit Reynolds numbers.
Each computation was run out to establish solution con-
vergence at each grid level so that total drag varied less
than 0.00005 for several hundred iterations. Addition-
ally, the difference in total skin friction coefficient
between the medium and fine density meshes was
within 0.00005 for all unit Reynolds numbers except 1
million/ft. where the two levels were within 0.00008 at
M = 0.4. Slightly better grid convergence was obtained
at M = 1.2. These variations within the same bounds of
error are documented for the incompressible calcula-
tions.9

Transition to Turbulent Flow

As mentioned earlier, explicit tripping was placed
at the leading edge of the flat plate. Transition to
turbulent flow occurred at different locations down-
stream depending upon the freestream conditions. The
point at which the flow actually transitioned was deter-
mined for each solution by first calculating the peak of
the ratio of turbulent viscosity to the local bulk viscosity

Table 5.  Estimation of laminar flow contribution to total skin friction coefficient

Reynolds
number

(million/ft.)

Reynolds
number
(million)

Est. Laminar
run, x (m)

x/L (%)
L=5 m

      1.  16. 0.1524 3.0 0.00268 -.00010

      2.  32. 0.0762 1.5 0.00233 -.00005

      4.  65. 0.0381 0.8 0.00203 -.00003

      8. 131. 0.0191 0.4 0.00176 -.00001

    15. 246. 0.0102 0.2 0.00155 -.00001

    30. 492. 0.0051 0.1 0.00135 -.00000

0.074

RL
5
------------- A RL⁄–

Table 6.   Reynolds number variation of grid spacing at
surface

Reynolds
number

(million/ft.)

Initial grid
stretching

rate

      1.     7.50 0.42    14%

      2.     3.20 0.34    15%

      4.     1.80 0.37    16%

      8.     0.94 0.37    17%

    15.     0.50 0.35    18%

    30.     0.25 0.34    19%

y1

10-6m( )
y1

+

Table 7.   Grid dimensions

Block i-dim j-dim k-dim

1 11 2 121

2 61 2 121

3 13 2 121
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at each point along the plate. In regions of laminar flow,
this ratio was nominally a constant between 1 to 10
depending upon conditions. Then, at the onset of the
development of turbulence, the ratio increases rapidly,
typically changing by several orders of magnitude.
Figure 14 is a plot of the turbulent viscosity ratio against
distance downstream of the leading edge. This trend is
representative of solutions with some region of laminar
flow upstream of the transition point. In this case, transi-
tion occurred at approximately x = 0.02 m, which is
equivalent to a local Reynolds number of 0.58 million.
The symbols are an indication of the streamwise distri-
bution of the grid along the plate.

Figure 15 is the compilation of the location of tran-
sition with Mach number for each unit Reynolds num-
ber. The open symbols are solutions in which there were
less than 7 cells of laminar flow and the filled symbols
are the transition points for solution with greater than
7 cells. Critical Reynolds number is typically quoted as
extending from 0.3 to 3 million18.   The flat plate flow
transitioned close to, but not always within, these values
when greater than 6 cells were upstream of the transition
point for unit Reynolds numbers less than 8 million/ft.
As discussed in the first section, at unit Reynolds num-
ber of 8 million/ft. or greater, there is little expectation

of realizing a laminar flow solution. There is some vari-
ation of critical Reynolds number with Mach number at
unit Reynolds number greater than 8 million/ft., but this
is due to the change in local Reynolds number of the
first cell and not due to any physical shift in the transi-
tion point.   Even if there were sufficient grid density in
the leading edge region to capture the laminar flow
aspect of the higher Reynolds number flows, the error in
skin friction is estimated to be limited to 0.00001.

Total Skin Friction

The  theory of Sommer and Short using the
Karman-Schoenherr skin friction equation is plotted in
figure 16 for the two Mach numbers of 0.10 and 3.50.
As per the theory’s design, the fully turbulent lines
collapse to the same skin friction values, as do the par-
tially laminar estimations. The difference between the
incompressible and compressible lines are the trans-
formed Reynolds numbers  that occur at each Mach
number that can be seen by the offset in the open and
closed symbols. The Mach 3.50 results would predict
skin friction coefficients significantly less than the
incompressible results if plotted using untransformed
skin friction and Reynolds number due to changes in
both dynamic pressure and kinematic viscosity.

Figure 12. Grid convergence of total skin friction for
M = 0.4.
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Figure 13. Grid convergence of total skin friction for
M = 1.2.
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The computations are compared with the four skin
friction theories in figures 17 through 20.   The solid
line and dashed lines are each theory’s fully turbulent

and partially laminar (assuming a critical Reynolds
number of 500,000) total skin friction coefficients. The
apparent shifting of the same computational result plot-
to-plot are the result of the specific transformation
required to make the comparisons for each semi-empiri-
cal method.

Figure 14.  Viscosity ratio growth with distance,
M = 1.2, RL = 1 million/ft.

Figure 15.  Critical Reynolds number with Mach num-
ber, Girimaji ASM.
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Figure 16. Sommer and Short T’ theory at low and high
Mach numbers.

Figure 17.  CFD transformed by Van Driest theory com-
pared with incompressible skin friction coefficients.
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The skin friction coefficients predicted by the
Girimaji turbulence model consistently transformed
approximately 0.0002 greater than the incompressible
skin friction curve for Reynolds numbers greater than

100 million regardless of the semi-empirical theory
used. The high Mach number, low Reynolds number
cases which had the larger extent of laminar flow
matched very closely the incompressible skin friction
curve using either the van Driest or Sommer and Short
theories to transform the CFD.   Interestingly, the use of
wall quantities with Cope did not bring the skin frictions
down to the partially laminar theory curve. The transfor-
mations with Winkler and Cha did not transform the
Reynolds number with increasing Mach number as
much as van Driest or Cope, though the fall off in skin
friction coefficient for M = 3.5, R = 1 million/ft. is at
least discernible.

The theory by Sommer and Short explicitly calls
out use of the conditions at the edge of the boundary
layer in the equation of determination of the reference
temperature. As a result of the fairly benign nature of
the flat plate flow, the use of free-stream values for
Mach number and temperature appear not to signifi-
cantly alter the comparison of the incompressible curves
and the transformed CFD, as seen in figure 21, as com-
pared to figure 20. In addition, use of either set of refer-
ence values did not affect how well the predicted skin
friction coefficients collapsed to a single curve.
Figure 22 is a comparison of skin friction with flat plate
Reynolds number with CFD using the ASM by Shih,
Zhu and Lumley. These calculations collapse to the
incompressible data similar to the results using the

Figure 18. CFD transformed by Cope theory compared
with incompressible skin friction coefficients.

Figure 19. CFD transformed by Winkler and Cha theory
compared with incompressible skin friction coefficients.
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Figure 20. CFD transformed by Sommer and Short
with Karman-Schoenherr theory compared with incom-
pressible skin friction coefficients, edge reference con-
ditions, Girimaji model.
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Girimaji model, except for a slight shift below the corre-
lations. These results are very similar to the incompress-
ible calculations of Ref. 9.

If the total stress in the boundary layer is examined,
a potential reason for the difference in predicted skin
friction between the two turbulence models (Girimaji
and Shih, Zhu and Lumley) can be seen. Figures 23
through 25 present the total shear stress predicted by the
two turbulence models. Figures 23 and 24 present calcu-
lations at M = 0.4 at a local Reynolds number of
444 million (R = 30 million/ft., near the trailing edge of
the plate) which are compared with data from reference
20. Figure 25 presents a calculation at M = 1.2 at a local
Reynolds number of 14.2 million. The log scale for
in Figures 24 and 25 expands the inner region for clar-
ity, though the lack of data preclude solid conclusions
about the comparisons in that region of the boundary
layer. A boundary layer profile is plotted on the opposite
axis for reference in figure 23. Additionally, Tables 8
and 9 are a sample of the wall values predicted by the
two turbulence models at the station plotted for each
Mach number. The Girimaji model predicts a higher
level of total stress, velocity and friction velocity com-
pared to predictions using Shih, Zhu and Lumley. The
Girimaji model also predicts a higher overall total stress
level in the boundary layer above y/δ = 0.2, as seen by
the dashed line in figure 23. Possibly the prediction of a
higher total shear stress in the log-layer region by Giri-
maji results in over-prediction of the wall skin friction
coefficient. At the lower Reynolds number, Rx = 14.2
million, where the two models are less different, the
total stress in the boundary layer is also more closely
matched.

Figure  21.  CFD transformed by Sommer and Short
with Karman-Schoenherrtheory compared with incom-
pressible skin friction coefficients, free-stream reference
conditions, Girimaji model.

Figure 22. CFD transformed by Sommer and Short
with Karman-Schoenherr theory compared with incom-
pressible skin friction coefficients, boundary layer edge
reference conditions, Shih, Zhu and Lumley model.
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Figure 23. Comparison of total shear stress in the
boundary layer, M = 0.4, R = 30 million/ft.
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CONCLUSION

Compressible Navier-Stokes solutions using two
algebraic Reynolds stress turbulence simulations rang-
ing from low to very high Reynolds numbers are trans-
formed using several different semi-empirical methods
to be compared with incompressible data.   Calculations
were performed on a 5-meter flat plate geometry at
Mach numbers from 0.4 to 3.5 at unit Reynolds number
from 1 to 30 million/ft. with zero pressure gradient free-
stream flow. Solution convergence at each grid level
was typically better than 0.00005 drag coefficient.
Errors due to grid density were also typically within
0.00005 drag coefficient. Transition to turbulence was
tracked and accounted for as an issue for overall drag.
Both algebraic Reynolds stress models tested here pro-
vided consistent and well behaved solutions to very high
Reynolds number throughout the Mach number range.
The semi-empirical theories of van Driest and Sommer
and Short both collapsed the computational compress-
ible skin friction coefficients closely to a single line.
While the turbulence model proposed by Girimaji has a
slightly more physical basis than the theory by Shih,
Zhu, and Lumley, the high Reynolds number skin fric-
tion coefficients predicted using Girimaji were typically
high. At the lower Reynolds numbers 3 to 30 million,
both turbulence models predicted skin-friction coeffi-
cients within 2% of the semi-empirical theories. At very
high Reynolds numbers, 100 to 500 million, the turbu-
lence model by Shih, Zhu and Lumley predicted skin-
friction coefficients 6% less than the semi-empirical
theories and Girimaji predicted coefficients 10% above
the correlations.

REFERENCES

1Peterson, J.B., “A Comparison of Experimental and
Theoretical Results for the Compressible Turbulent-
Boundary-Layer Skin Friction with Zero Pressure
Gradient,” NASA TND-1795, March, 1963.

2Rubesin, M.W., Maydew, R.C. and Varga, S.A., “An
Analytical and Experimental Investigation of the Skin
Friction of the Turbulent Boundary Layer on a Flat
Plate at Supersonic Speeds,” NASA TN-2305,
February, 1951.

3Wilson, R.E., “Turbulent Boundary-Layer Characteris-
tics at Supersonic Speeds-Theory and Experiment,”
Journal of the Aeronautical Sciences, Vol. 17, No. 9,

Figure 24. Detail of total shear stress in the boundary
layer, M = 0.4, R = 30 million/ft.

Figure 25. Detail of total shear stress in the boundary
layer, M = 1.2, R = 1 million/ft.

Table 8.  Wall values at Rx = 444 million, M = 0.4.

Model uw(m/sec) τw(N/m2) ut(m/sec)

Girimaji 1.426 220.6 4.173

SZL 1.189 183.8 3.812

10-5 10-4 10-3 10-2 10-1 100

y/δ

0.5

0.6

0.7

0.8

0.9

1

τ/
u τ2

τ/uτ
2 - Girimaji

τ/uτ
2 - SZL

τ/uτ
2 - NASA TN-3178

10-6 10-5 10-4 10-3 10-2 10-1 100

y/δ

0.5

0.6

0.7

0.8

0.9

1

τ/
u τ2

τ/uτ
2 - Girimaji

τ/uτ
2 - Shih, Zhu & Lumley

τ/uτ
2 - NASA TN-3178

Table 9.   Wall values at Rx = 14.2 million, M = 1.2.

Model uw(m/sec) τw(N/m2) ut(m/sec)

Girimaji 4.303 21.91 14.217

SZL 3.864 19.65 13.491



16

American Institute of Aeronautics and Astronautics

Sept. 1950, pp. 585–594.
4Chapman, D.R. and Kester, R.H., “Turbulent Bound-

ary-Layer and Skin-Friction Measurements in Axial
Flow Along Cylinders at Mach Numbers Between 0.5
and 3.6,” NACA TN-3097, March, 1954.

5Sommer, S.C., and Short, B.J., “Free-Flight Measure-
ments of Turbulent Boundary-Layer Skin Friction in
the Presence of Severe Aerodynamic Heating at
Mach Numbers From 2.8 to 7.0,” NACA TN-3391,
March, 1955.

6Abdol-Hamid, K.S., Carlson, J.R., and Lakshmanan,
B., “Application of Navier-Stokes Code PAB3D to
Attached and Separated Flows for Use with
Turbulence Model,” NASA TP-3480, Jan. 1994.

7Abdol-Hamid, K.S., “A Multi-Block/Multizone Code
(PAB3D-v2) for the Three-Dimensional Navier-
Stokes Equations: Preliminary Applications,” NASA
CR-182032, Oct. 1990.

8Abdol-Hamid, K.S., Carlson, J.R., and Pao, S.P., “Cal-
culation of Turbulent Flows Using Mesh Sequencing
and Conservative Patch Algorithm,” AIAA Paper 95-
2336, July 1995.

9Carlson, J.R., “Application of Algebraic Reynolds
Stress Turbulence Models Part1: Incompressible Flat
Plate,” Journal of Propulsion and Power, Vol. 13,
No. 5, 1997, pp. 610–619.

10Abdol-Hamid, K.S., “Implementation of Algebraic
Stress Model in a General 3-D Navier-Stokes Method
(PAB3D),” NASA CR-4702, Dec. 1995.

11Launder, B.E., and Sharma, B.I., “Application of the
Energy Dissipation Model of Turbulence to the Cal-
culation of Flow near a Spinning Disk,”Letters in

Heat and Mass Transfer, Vol. 1, 1974, pp.131–138.
12Girimaji, S.S., “Fully-Explicit and Self-Consistent

Algebraic Reynolds Stress Model,” Inst. for Com-
puter Applications in Science and Engineering, 95-
82, Dec. 1995.

13Speziale, C.G., Sarkar, S., and Gatski, T.B., “Modeling
the Pressure-Strain Correlation of Turbulence: An
Invariant Dynamical Systems Approach,”Journal of
Fluid Mechanics, Vol. 227, 1991, pp. 245–272.

14Shih, T-H., Zhu, J., and Lumley, J.L., “A New Rey-
nolds Stress Algebraic Model,” NASA TM-166644,
Inst. for Computational Mechanics, 94-8, 1994.

15Shih, T-H., and Lumley, J.L., “Remarks on Turbulent
Constitutive Relations,” NASA TM-106116,
May 1993.

16Gatski, T.B., and Speziale, C.G., “On Explicit Alge-
braic Reynolds Stress Models for Complex Flows,”
NASA CR-189725, Inst. for Computer Applications
in Science and Engineering, 92-58, Nov. 1992.

17Bradshaw, P., Editor, “Turbulence,”Topics in Applied
Physics, Vol. 12, Springer-Verlag, New York, 1976.

18Schlichting, H., “Boundary-Layer Theory,” 7th ed.,
McGraw-Hill, New York, 1979, pp. 639–641.

19Rubesin, M.W., Maydew, R.C., and Varga, S.A., “An
Analytical and Experimental Investigation of the Skin
Friction of the Turbulent Boundary Layer on a Flat
Plate at Supersonic Speeds,” NACA TN-2305,
Feb. 1951.

20Klebanoff, P.S.,“Characteristics of Turbulence in a
Boundary Layer with Zero Pressure Gradient,”
NACA TN-3178, Jul. 1954.

K ε–


