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Abstract is used to obtain these matrices analytically. However,
- the accuracy of the finite element model in predicting the
A novel approach for the refinement of finite-element- dynamical behavior of the structure depends on a number

based analytical models of flexible structures is presented®f factors, such as proper knowledge of element and
The proposed approach models the possible refinemeng®mponent material and geometric properties, appropriate
in the mass, damping, and stiffness matrices of the finitaneshing, correct joint modeling, etc. From past experience
element model in the form of a constant gain feedbackwvith flexible structures, the accuracy of the finite element
with acceleration, velocity, and displacement measurementgnodel is limited when compared to test results from modal
respectively. Once, the free elements of the structuraparameter identification. In almost every structure, the
matrices have been defined, the problem of model refinemenifodal frequencies and amplitudes predicted using finite
reduces to obtaining position, velocity, and acceleration gaiglement models differ from those obtained from modal
matrices, which reassign a desired subset of the eigenvaluégsting. This is particularly the problem with modal
of the model, along with partial mode shapes, from theirfrequencies, and the problem worsens for higher modes.
baseline values to those obtained from system identificatiof his lack of accuracy in modal parameters can be a
test data. A sequential procedure is used to assign one seffetriment to control system design. Control system design
conjugate pair of closed-loop eigenvalues at each step usi(r)tf?r flexible systems is challenging because of their special
symmetric output feedback gain matrices, and the closeddynamic characteristics: a large number of structural modes
loop eigenvectors are partially assigned, while ensuringVithin the controller bandwidth; low, closely spaced modal
that the eigenvalues assigned in the previous steps afeequencies; very small inherent damping; and insufficient
not disturbed. The procedure can also impose that gaiknowledge of the parametérs
matrices be dissipative in order to guarantee the stability

of the refined model. A numerical example, involving Control system design requires accurate knowledge of
finite element model refinement for a structural testbed athe plant that is to be controlled. In the case of spacecraft
NASA Langley (CSI Evolutionary Model) is presented to control systems, this means that an accurate knowledge of
demonstrate the feasibility of the proposed approach.  the parameters associated with the flexible modes of the
spacecraft, such as modal frequencies, damping ratios, and
mode shapes is required. The need for accurate knowledge is
particularly critical for the modal frequencies. In traditional
gain—stabilized spacecraft control design, this knowledge is
required to achieve nominal performance while guaranteeing
Problem Statement stability margins in the form of phase and gain margins. In
modern control system design, which may be gain or phase
Typically, the spacecraft structure can be modeled astabilized, this knowledge is required to achieve nominal
a linear, time-invariant flexible system, which in turn can performance as well as specific degrees of stability and
be represented by the following second-order dynamicaperformance robustness.

equations: . . i One approach to obtain accurate models of flexible
Mi+Di+ Ke=Hf (1) structures is to use models that can be extracted directly

where M is the positive definite mass matrixy is the fromfsys’gglm identific%tioml(lr?)h or {)nodal test data. Tfhi|s-

positive definite (semidefinite, in the presence of rigidIS a eg& efapplr'oac; which has eehn qwt$ ]successf uh'ln

body modes) damping matrixi{ is the positive definite a number of applications. However, the usefuiness of this

(semidefinite, in the presence of rigid body modes) stiffnes pproach is limited in that the refined model obtained applies

matrix; /1 is the disturbance input influence matrix;is a nlydto :[[P]e hargvvlargtcpnflc??ratlon OI thelsDy(sjtetm.ID. I|n othl_edr
’ ; . i ’ words, the model obtained from system ata is only vali

k x 1 vector of displacements; anfl is a e x 1 vector of

. - t the input/output channels that are used in the test setup.
disturbances to the system. Usually, a finite element analysi the model of a component changes, additional inputs o

Pa— ; ; . outputs are included, or simply new elements are added,
i&nle.r Research Engineer, Guidance and Control Branch, Senior Membetrhe model 'o'btained through system 1D loses its relevancy
Copyright 1998 by the American Institute of Aeronautics and Astronau- unless additional SYSte”? ID tests are performEd' Moreover'
tics, Inc. No copyright is asserted in the United States under Title 17, U.S.these models do nOt.ea.S]ly lend themselves for other requ”e.d
Code. The U.S. Government has a royalty-free license to exercise all right9€rformance and reliability analyses, such as stress and strain
under the copyright claimed herein for Government Purposes. All othe@nalysis, vibration and jitter analysis, etc. To overcome the
rights are reserved by the copyright owner. limited aspect of the system ID models one can use an
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analytical model obtained through finite element analysis, Model Refinement
provided that these models can be made to have sufficient
accuracy for design and analysis. Thus, in this paper we  Observing the nominal dynamical model of the system
address the problem of refining the analytical model of thegiven in Eq. (1), the dynamics of the refined system may
flexible spacecraft using the system ID data. be written as

To date, different techniques have been proposed for - - - N
refining the finite element model of a flexible structure (M +AM)i+ (D + AD)i + (K + AK)r = Hf (2)

based on modal testing or system ID procedtrfesModel  \where A} is a symmetric matrix representing the
refinement involves techniques that refine the finite elemenfefinement in the mass matrix, satisfying/ + AAM) > 0;
model by minimizing the level of disagreement betweena p js a symmetric matrix representing the refinement in
the model and test results. These techniques generally stafe damping matrix, satisfyingD + AD) > 0; and AK

with a set of parameters of the model (typically, physicalis a symmetric matrix representing the refinement in the
parameters at the element level, e.g., material and geometrigitiness matrix, satisfying/x + AK) > 0. Note that the
properties), and systematically tune those parameters fgositive definiteness conditions for the refined stifiness and
reduce or minimize some measure of disparity between thaamping matrices reduce to positive semidefiniteness in the

model and test data. This measure may be a time relategtesence of rigid body modes. Now, expand the refinement
measure, e.g., the difference in time history responses, or @&yin matrices as follows:

modal related measure, e.g., difference in modal frequencies.
Various optimization schemes and least-square techniques AM = Ly Gy LY
have been suggested for the refinement process. M
AD = LpGpL} (3)

This paper describes a novel approach for the
refinement of finite element models. The approach presumes AK = LgGr Lk
that modal analysis or system identification tests have been
performed and modal parameters, such as frequencieshere Ly, is a matrix representing the distribution of
damping ratios, and mode shapes (at sensor locationsiefinements that are allowed in the mass matrix. The
have been identified for modes in the range of interestelements of matrixZy; can vary depending on what
The proposed approach models the possible refinementdementsin the mass matrix are chosen to vary. For example,
in the mass, damping, and stiffness matrices of the finitéf the chosen element of the mass matrix is the one at the
element model in the form of a constant gain feedback withith row and jth column, then all the elements of the ith row
acceleration, velocity, and displacement measurement®f matrix Ly, may be chosen to be zeros, except the jth,
respectively. The freedom to change model parametersyhich is setto 1. The matrikiys represents the symmetric
as well as the relative degree of change desired in ongain matrix associated with the mass matrix (acceleration
parameter with respect to the rest, is embedded in thgain matrix), which determines the extent of the refinement.
elements of the input and output influence matrices forThe matriced.p, Gp, Lg, andGg are similarly defined to
the various measurements. Once the elements of theharacterize the refinement for the damping and stiffness
input and output influence matrices have been definednatrices, respectively. Note that the refinements in the
and fixed, the problem of model refinement reduces tamass, damping, and stiffness matrices may be viewed as
obtaining position, velocity, and acceleration gain matricesconstant gain, symmetric acceleration, velocity, and position
which reassign a desired subset of the eigenvalues deedback. The system equations for the refined system may
the model, along with partial mode shapes, from theirbe rewritten as follows
baseline to target values. Hence, the problem of model

refinement becomes a problem of eigensystem assignment Mz+Dr+Ke=Hf+u

with output feedback. However, symmetry and the positive x 4)
definiteness requirement of the mass matrix, and the positive , — —_[7, . G LT L,GrnLT LvGy LT 142
definiteness (semidefiniteness, if rigid body modes are (LxGrli LnGplh LwGuliy] 5

present) requirement of the stiffness and damping matrices,

necessitate that gain matrices should be constrained such Assume that a number of modes in the desired
that the refined mass matrix remains symmetric and positiverequency range have been identified via system ID
definite, and the refined stiffness and damping matriceprocedure, and let the modal frequencies, damping ratios,
remain symmetric and positive definite (semidefinite).and modal amplitudes (at the sensor disturbance and
In this paper, a procedure for obtaining symmetric gainmeasurement locations) be denoted ®y, Z;, and @,
matrices via eigensystem assignment is described first. Teespectively. Here{2, is anr x 1 real vector of natural
perform the required eigensystem assignment, a modifieflequencies of the identified modesZ; is anr x 1 real
procedure to the sequential algorithm outlined in ref. 4 isvector of modal damping ratios; arig} is ans x r complex
followed. The modified procedure provides the ability to matrix, whoser columns represent the mode shapes of
use acceleration feedback, needed to refine the mass matrikese identified modes atlocations. Noting that for real

as well as the capability to partially assign closed-loopsystems, complex eigenvalues occur in pairs, let the target
eigenvectors. Second, additional constraints, in the form ogigenvalues and eigenvectors be defined as

quadratic inequality constraints, are outlined to render the

symmetric gain matrices dissipative, and thus guaranteeing, -,_; iovi 1 i ] R

tﬁ/e stabilit;ﬁJ of the refined mgdel. A numericgl example gAt =2+ 1= 2 s T = 9

involving model refinement of a structural testbed at NASA . Jigy 97\/7 T~
’ tt_lt - ;; t = %;Z:J"'Jr

Langley (CEM phase ll) is presented to demonstrate theA;' =
application of this approach. (5)
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the overbar in the expressions in this section refer tesequential procedure is given next. The reader is referred to
complex-conjugation of the elements of the correspondingef. 4 for a thorough description of the procedure.

vector (or matrix) only, as opposed to the Hermitian
operator, which

expressed as the problem of finding symmetric acceleratio
velocity, and position gain matricessfy, Gp, and Gg)
such that the2» eigenvalues of the system

(M + Ly Gy Ly )i+(D + LpGp Ly, )i+

6
(K+LxGgLi)e=Hf ©)
are assigned ta\, i = 1,2,...,2r, and thes elements

of corresponding eigenvectors are assigned¥tg i =
1,2,...,2r, subject to the condition that the refined mass,

damping, and stiffness matrices are positive definite. The

partial assignment of eigenvectors may be defined as

(7)

where matrix2 represents the influence coefficient matrix

RO =1,

for the system ID sensor locations. The procedure developed
and followed to compute the gain matrices is described in

the next section.

Refinements in Damping Matrix
via Eigensystem Assignment

The task of assigning the eigenvalues and partial
eigenvectors of the system in Eqg. (6) with symmetric output
feedback gain matrices is accomplished using a sequential

algorithm described by ref. 4. The algorithm is modified

here to accommodate the partial eigenvector assignmend,
and acceleration terms to include refinements in the mass
matrix. For the simplicity of presentation, the procedure is

described for refinements in the damping matrix alone, and

then for an all inclusive model refinement.

In each step of the sequential procedure, one self-
conjugate pair of closed-loop eigenvalues is assigned te.
desired values while making sure that the previously
assigned closed-loop eigenvalues are not disturbed. THe
procedure uses a first-order descriptor representation of the

system, obtained from Eq. (6)

I O0fJzl_1]0 I x 0 0
b=l Bl e [
: : (8)
that is, the descriptor form
EF:=Az+ Bu+ Pf
9)

u = —GDCDZ

Here z = {i} represents the state in the first-order

descriptor form, and’, = B”. A brief description of the

3

involves transposition and complex-&:
conjugation. Now, the problem of model refinement may be

b.

The procedure employs the generalized ordered real
Schur transformations of the system matriceésand

O'rthogonal transformations are used to move
previously assigned eigenvalue pa|rs to the top

left block of the paw(E A), where E A) are in

ordered real Schur form, and the structure of the new
gain matrix is prescribed such that it only affects
the eigenvalues in the lower bottom partition of the
system matrices. For example, assume ffiat 1)
self-conjugate pairs of the closed-loop eigenvalues
have been placed in the previous steps, and that they

are in the top left block of £, A). Let Nnk denote a
matrix whose columns form an orthogonal basis for the
left null space ofCDkl, that is, Np, is a matrix with
orthogonal columns such tﬁﬁgkCDkl = 0. Here,

Cp,, denotes the firse(k — 1) column partition of
the output influence matrix in transformed coordinates.

If the gain matrix in the transformed coordinatgs,
is constructed as
Gp, = Np,Gp, NJ, (10)
where G, may be an arbitrary matrix, then output
feedback with the gain matrix will not affect thie— 1)
eigenvalue pairs assigned in the previous steps.
At each step, an intermediate gain matrix is computed
to assign a pair of eigenvalues to desired values in
lower bottom partition of the system matrices. The
algorithm used in this eigenvalue assignment was
initially developed in ref. 4, but is modified here to
accommodate partial eigenvector assignment as well.
At each step, after computing the gain matrix that
assigns a pair of desired closed-loop eigenvalues, the
intermediate closed-loop matrix is transformed to a
generalized Schur form with all previously assigned
eigenpairs in the top left block of the updated system
matrix.
The overall gain matrix is constructed by accumulating
the gains from each step.
This process can be continued until upitoclosed-loop
eigenvalues have been assigned to the desired locations,
wherem denotes the number of inputs or outputs.

C.

Eigenpair Assignment

This section describes the approach to select output
feedback gains to assign one pair of complex conjugate
eigenvalues, while ensuring that the gain matrix is symmetric
and the closed-loop eigenvectors are as close as possible to
their corresponding target vectors. Assume that the kth
eigenpair is to be assigned. For notational simplicity, the
system matrices will be denoted &%-, Ass, B2, (5, the
output feedback gain matrix will be denoted &5 and

the desired eigenvalue pair will be denotéd, X). The
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problem is to select a symmetric mat(x such that(A, A)  and
is a generalized eigenpair of the closed-loop system matrix, Re
(E99, Ags — Bo(GCy), and the eigenvectors are partially GCo[Im(Ny) - Re(My) ]
assigned to desired values, as given in Eq. (7). R
Let ¢ be the closed-loop eigenvector corresponding [Tm(N2)  Re(Na) ] ¢
_ | : Im(w)
to the eigenvalue\. The generalized eigenvalue problem

becomes(AFyy — Ay + B,GC5)¢ = 0. This closed-loop  \yhereRe(s) denotes real part of the argument, dn(e)

(16)

expression can be rewritten as denotes imaginary part of the argument. In compact form
5 s these equations are written out as
GCy GOy e (17)
GWap = Vap

It is obvious from Eq. (11), that the vector on the right
hand side of the expression must lie in the right null spacgypere , = [Re(a”) Im(a7) ]T W, —
of I'. Let N be a matrix whose columns form an orthogonalC [Re(N,) —Im(N)], Vi = [Re(N: ) “Tm(Ns)]
basis for the null space df, that is, N = 0. Note that 2 ! 1oV = el M2l
unlike an actual control design problem where the number of "2 = Co[Im(N1)  Re(N1)], and  V; N

inputs/outputs are usually fixed, we may choose the numbef™(V2) Re(N)]. Note that Eq. (17) is a system of
inputs (parameters that can be changed in the model) Iar%‘adrat'c equations in the unknown variables, namely,
enough as to provide the freedom to assign the desireHl® €lements of the gain matrixy, and the coefficient
eigenvalues, and specified elements of the correspondingctor, p-  Furthermore, the elements @i should be
eigenvectors. Althoughy,, A5, and B, are real matrices, constrained such that: is symmetric, and the solution
[ and N are complex matrices since the eigenvaluis a of the system has to yield a closed-loop eigenvector, for
complex scalar. However, to ensure that the gain matri{he whole systemy which satisfy the partial eigenvector
is real the closed-loop eigenvector corresponding to th&onditions of Eq. (7), i.e.,

complex-conjugate eigenvalue is chosen to be the complex- -

conjugate of¢, that is, ¢ is chosen to be the eigenvector RUx = W3" (18)
corresponding to\.

Since columns ofV span the null space @f, it follows where R = [t 0] is the corresponding coefficient in the

that descriptor form of the system equationg, is the right
¢ N, unitary matrix in the generalized Schur form at the kth
|l =Na=]-=——a (12) step (that keeps the closed-loop matrices in Real Schur
GCs¢ No form), and U?*~! is the target partial eigenvector for the

: . kth step. Note that if the condition of Eq. (18) is satisfied
wherea is an arbitrary vector of complex elements, and thefor one of the eigenvectors of the eigenpair, it would

matrices N, , N, are formed by partitioningV' compatibly  jgentically satisfy its complex conjugate. Here, we assume

with ¢ andGC¢. From Eq. (12)¢ = Mo andGC2¢ = that the set of previously assigned eigenvalues does not
Nza, which leads to match the remaining eigenvalues of the system, either before
or after the eigenpair assignment. This mild assumption

GOy Ny = Noox (13)  ensures that the eigenvectors of the previously assigned

) ) ) . eigenvalues/eigenvectors remain unchanged as additional
The eigenassignment problem is now reduced to seleating eigenvalues are assigned. Furthermore, this means that
such that there exists a symmetric gain maifixsatisfying  the eigenvector condition of the type in Eq. (18) can be
Eq. (13) . With¢ being the eigenvector correspondingito  imposed one mode at a time, and once imposed for a closed-
real solutions for the gain matri% can be obtained, and the loop eigenvector it need not be reimposed again. Now,
equations can be written out to involve only real arithmeticconsidering the eigenvalue problem of the whole system for
operations as follows. the eigenvalue being assigned, one can write

For the eigenvalue), with closed-loop eigenvectod,
the matrixI' = [XEy, — Ay, | B, |, and’N is a matrix |:AE11 — A AR — A+ B1G02] {SD} — {0}

whose orthogonal columns span the null spacé off the 0 Ay — App + BaGC2 | ¢ [ 7 |0
arbitrary coefficient vector is chosen to tig the complex- (19)
conjugate ofa, then it follows that Note thaty = {g} Solving for ¢ in terms of ¢, one
GCsNa = No& (14)  Obtains
Eq. (13) and Eq. (14) can be rewritten as o =—(AEn — A1) (AEra — Ay + BiGCh)g (20)
Re(a) and by substituting fof~C>¢ and ¢ from Eq. (12), one has
(15) ¢=Na
Re(a)] _ —1 -
Re(N;) —Im(N. = —(AE; — A AE)s — ANy + By No)a = Qo
[Re(N-) m( 2)][Im(a) ¥ (AEq 1) ([AEq, 12) V1 1N5) o
4
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or Once a coefficient vectar (5) has been determined, the
1@ — g 29 symmetric gain matrix7, that assigns the desired closed-
X= N, =P (22)  Joop complex-conjugate eigenvalues, may be obtained as
follows. Denotey; = Vip, yo» = Vop, 21 = Wip and
Using Eq. (22) into Eq. (18), and expanding and separating, = 1¥,p, and letX = [z; xz:]andY = [y -], then
the real and imaginary parts, yields Eq. (17) is rewritten ag/X =Y. Let ) be an orthogonal
matrix, such that

RU[Re(S) —Im(S) ]{IRHT((E‘)) } = Re(¥{") 9 QTY = [%] (29)

RU[Im(S) Re(S) ]{Iffl‘f((g)) } = Im(¥;") _
where Y] is a nonsingular2 x 2 matrix (otherwise, the
problem is solved trivially). The matrix) can be obtained

Recalling the definition of vectop from Eq. (17), and by QR factorization ofi". Now, defineX;, X as follows

combining these equations, one obtains

Lp=g 24 ] =ox (30)
X
where ~ _ ~ _
whereX; is a2 x 2 matrix, andX; is a(m — 2) x 2 matrix.
_ [RURe(S) —RUIm(S)] .  _ [ Re(¥7*77) Now X is nonsingular ifz; andz; are linearly independent
T |RUImM(S) RURe(S) |17 Im(T;F~") (otherwise, the problem is trivial). Defining;; = Y; X',
' (25) it can be seen that
Therefore, a coefficient vectprand a symmetric gain matrix ~ 1~ ~
G which satisfy Egs. (17) and (24) have to be found. The G 0| X | = 7 (31)
condition for the existence of a symmetric gain maitfix 0 0][X; 0
which satisfies Eq. (17) has been established in ref. 4, and

L

is given as the existence of a vecowhich satisfies Therefore, it follows that the matrig defined as
pT<‘/1TW2—‘/2TW1)pEpT]pIO (26) G:Q-6;61 8:|QT (32)

To summarize, the conditions for the placement of an

eigenpair of the system to desired values, while partiallysatisfiesGX = V.

assigning the corresponding eigenvectors to target values, It should be noted that if only eigenvalue assignment is

reduces to computing a coefficient vecjowhich satisfies  required, i.e., it is not required to perform partial eigenvector

the quadratic equation given by Eq. (26), and the lineaassignment, then the solution vecterdoes not have to

system of equations represented by Eq. (24). satisfy Eq. (24), and only the quadratic equation given
One possible approach to obtaining a coefficient vectoby EQ. (26) needs to be satisfied. The solution to this

p which satisfies Egs. (26) and (24), would be to first solveequation can be obtained through standard Newton methods

for p in Eq. (24), to obtain as mentioned earlier. However, since Eq. (26) is a simple
guadratic, the check for existence and computation of a
p=Ltq+ N 3 27) solution can be achieved via examination of the maiffix

A solution vector exists if and only if the symmetric part

_ _ of J is either indefinite, semidefinite. If the symmetric part
where ()" denotes the pseudo-inverse @f), Nz is a  of the matrix has zero eigenvalues, then any corresponding
matrix collecting a set of basis vectors for the right null eigenvector is a solution for vectgr. If the symmetric
space of matrixZ, and 3 is a coefficient vector associated part of J is indefinite, then any linear combination of

with the basis vector, yet to be defined. Substitutingsfor eigenvectors of the symmetric part, whose corresponding

+

from Eq. (27) into Eq. (26), yields eigenvalues are not all of the same sign, qualifies as a
solution, if the coefficient of the linear combination are
F(B) =" NTINLB+ FTNTTLT ¢+ chosen such that the quadratic in Eq. (26) vanishes.

(28) Once, the gain matrixi is computed, the current
refinements in the damping matrix, represented (by,
is determined from Eq. (10), and the overall refinement is
Standard Newton methods for obtaining the solution ofupdated as
nonlinear equations ma;(/ k;e used to obtain a solution vector
(. Analytic gradients off(5) are readily available, since the — s
gradient of any quadratici(3) = 87 Q8 + 2Q% 3 + ¢, is Gp = Gp + G, (33)
given by %f(ﬁ) = (@ +Q7)3 +2Q-. The nonlinear The procedure described thus far determines a symmetric
problem of Eq. (28) is very well-behaved because thegain matrix which reassigns a desired subset of the
function is quadratic in?, and analytic gradients are linear eigenvalues of the model, along with partial mode shapes,
in S. from their baseline to target values. However, the symmetry

LY INL B +q" LT T g =0
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of the gain matrix does not necessarily guarantee thaEq. (6)

the refined (combined) model remains stable. Since, in

most situations the flexible system is open-loop stable, 7 0]z 0 7 z
any refinements to the analytical model should be such [0 M]{ }: [ ]{
to maintain that stability. One approach to this could

be to use the design freedom in the solution vegtor [ 0 0 0 ]{UM} [0 ]f
_|_
H

7

and impose constraints on eigenvalues of the refined Ly Lp Lk
damping matrix. However, this could be cumbersome,

particularly, when the size of the system is large (thousands T P P
or hundreds of thousands of degrees of freedom). Anothetys = —Gar Ly = =Gy [0 LT, ] e } = _GMCM{'l;}
approach could be to require that at each sequence of

the eigensystem assignment procedure the overall gain _ x| _ x
matrix G remains positive semidefinite, i.e., the gain %P = ~Gplpd =—Gpl0 L ]{x} = _GDCD{ab}
matrix is dissipative. Alternatively, one can require that the

current gain matrixGp, be dissipative at every sequence. yj = —GKL}}x =—Gp [Lﬁ 0] {x} = —GDCK{x-}
Although, dissipativity requirement can be constraining, x +
it will guarantee that the refined system remains stable, (35)

In other words, at every sequence, a pair of closed-looghat is, the descriptor form
eigenvalues are assigned via a symmetric and dissipative

gain matrix. Reference 4 provides an attractive set of E:=Az+ Bu+ Pf

constraints to impose dissipativity of the gain matrix in u

this setting. These constraints are in the form of quadratic w= uM (36)
inequality constraints in the solution vectoras follows - UIZ

The same sequential procedure is now used to assign
the closed-loop eigenpairs, one at a time. As in the
p >0 damping case, the structure of the three gain matrices,
= Gy, Gp, andGg , is prescribed such that it only affects
the eigenvalues in the lower bottom partition of the system
p >0 matrices. For example, assume tigat— 1) self-conjugate
a pairs of the closed-loop eigenvalues have been placed in
the previous steps, and that they are in the top left block

of (E,ﬁ . Let NMk,Nnk, N;(k denote matrices whose
columns form an orthogonal basis for the left null space of
0 Cuyys Opy s Ok, respectively. Herel'sr,,, Cny,, Crops
denote the firs2(k — 1) column partitions of the output

34
These quadratic constraints go well with the q(uagratidnfluence matrices in transformed coordinates. If the gain
symmetry condition given in Eq. (26), and hence thematrices (in the transformed coordinates) are constructed as

appealing computational nature of the algorithm is retained.

1
PT{VlTW1 + 3 VIEWs + VQTW1)

fi(p) (
F>(p) pT{VTVW —%(VFWQH/JWO
f3(p) (

1
:pT V2TW2+§ %TW2+‘/2TW1) P Z 0

v

N~

1
Fa(p) IPT{VQTWQ = S (VIWa + V") op

Gp, = Np,Gp, N, (37)
GKk = NKkGKkNIT(k
with @Mk, @nk, and @Kk arbitrary matrices, then output

feedback with the gain matrices will not affect the-1)
eigenvalue pairs assigned in the previous steps.

General Model Refinements

Eigenpair Assignment

The approach for a total model refinement, which
includes refinements in the mass, damping, and stiffness This section describes the approach to select output
matrices, parallels the one described in the previous sectiorfsedback gains to assign one pair of complex conjugate
for the refinement in the damping matrix alone. In eacheigenvalues, while ensuring that the gain matrices are
step of the sequential procedure, one self-conjugate pasymmetric and the closed-loop eigenvectors are as close
of closed-loop eigenvalues is assigned to desired valueas possible to their corresponding target vectors. Assume
while making sure that the previously assigned closed-loophat the kth eigenpair is to be assigned. For notational
eigenvalues are not disturbed. The procedure uses a firsgimplicity, the system matrices will be denoted as
order descriptor representation of the system, obtained fromts2, Aso, Bar,, Car,, Bn,, Cn,, Bk, Ck,, the output
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feedback gain matrices(yxs,,, Gp,, and Gg,, will be
denoted respectively, a3, GG», and G5, and the desired
eigenvalue pair will be denote(h, X). The problem is to
select symmetric matrices, , GG, andGs, such thaI(A, ﬂ

is a generalized eigenpair of the closed-loop system matri
(B9 + Bur,G1Chiy, Ass — Bp,GoCp, — Br,G3Cx,),

AIAA-98-4441

where p = [Re"(a) ImT(a)] . The matrices
WMIJWM2JWD17WD2’ K1aWKzaVM1aVM2a
Vb,, Vb, Vk,, and Vg, are formed from
the imaginary and real parts of the matrices

M, Cp,, Ck,, N1, Nay N3, Ny, similar to what was

one for the damping refinement case in Egs. (15) and

and the eigenvectors are partially assigned to desired valuegl6)- Note that Eq. (43) is a system of quadratic equations

as given in Eq. (7).

Let ¢ be the closed-loop eigenvector corresponding

to the eigenvalue\. The generalized eigenvalue problem
becomes

[A(E22 + Buy, Gi1Cy,) — Aso + Bp,GoCp,+

38
Br,G3Ck,]¢ =0 (38)

. This closed-loop expression can be rewritten as

¢
Moz —As ABw,  Bp,  Br,] Cé;gn;ﬁ =
G3Ck,¢
Grronr 6
M Mo _
r GpCh, =0
GKCK2¢

(39)

It is obvious from Eq. (39), that the vector on the right
hand side of the expression above must lie in the right null

space ofl'. Let N be a matrix whose columns form an
orthogonal basis for the null space Bf that is,['V = 0.
Since columns ofV span the null space df, it follows that

. é v
1VUM, _ 2
GoCpoo | = Na = Na o (40)
G3Ck, ¢ Ny

where « is an arbitrary vector of complex elements, and

the matricesN, No, N3, N, are formed by partitioningV
compatibly with¢, G1Chr, ¢, G2Cp ¢, and GsCk,¢. From
Eq. (40), one has

¢)IN]O[
G.C = N.
1Cnm, ¢ 20 (41)
GQCD2¢>IN3Q
G30K2¢>IN4Q
or
G10M2N10z INZOz
GQCD2N10[: NgOé (42)

G30K2N1 o = N4Oz

Following algebraic manipulations, similar to those outline
in Egs.
eigenpair assignment problem reduces to the solution of
GiWar,p = Var,ps GiWar,p = Var,p
GoWp,p=Vn,p; GoWnop = Vnap
GsWie,p = Vi, 05 GaWi,p = Vie,p

(43)

7

in the unknown variables, namely, the elements of the gain
matrices, G1, G5, (G5, and the coefficient vectorp. The
elements of the gain matrices should be constrained such
that they are symmetric, and the solution of the system has
to yield a closed-loop eigenvectoy, for the whole system
which satisfy the partial eigenvector conditions of Eq. (18)
for the kth eigensystem assignment. The assumption that
the set of previously assigned eigenvalues does not match
the remaining eigenvalues of the system, either before
or after the eigenpair assignment still holds here. Now,
considering the eigenvalue problem of the whole system
for the eigenvalue being assigned, one can write

Xia | [y

o ) {gr={0

0
X = AEn — An
Xio = ME19 + By, GiCw,) — Aro+
Bp,, G2Cn, + Br,, G3Ck,
Xoo2 = A(Faz + Bary, G1Ch,) — Asa+
Bp,,G2Cp, + Bk,,G3Ck,

0
0

(44)

Note thaty = {g} Solving for ¢ in terms of ¢, one
obtains 1
and by using Eqg. (41), one has
¢) = N] «
Sp = —X1_11 ([AE]Q — A] Q]N] + ABM21 N2+ (46)
By, N + B,QINW) = Qa
or
€9 |, =
X = [N1 a=Sa 47)

Using Eq. (47) into Eq. (18), and expanding and separating
the real and imaginary parts, one obtains an expression
similar to the one for the damping case (see Eq. (24))
Lp=gq (48)
where matricesL and ¢ have been defined in Eq. (25).
The condition for the existence of symmetric gain matrices
G4, G2, and G5, which satisfies Eq. (43), reduces to the

dexistence of a vectop which satisfies
(13)-(17) for the damping refinement case, the

P (Vi War, = Vi, Wi )p=p" Jip=0
p (Vi Wh, = VI Wp )p=p"Jop=0
p (VA Wk, = Vie,Wk,)p=p" Jap=0

(49)

To summarize, the conditions for the placement of an
eigenpair of the system to desired values, while partially
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assigning the corresponding eigenvectors to target valuethe phase 2 CSI Evolutionary Model (CEM), a testbed for

reduces to computing a coefficient veciowhich satisfies  control of flexible space structures at NASA Langley. Here,

the three quadratic equations given by Eq. (49), andhe proposed approach is used to refine the damping and
the linear system of equations represented by Eq. (48}tiffness matrices of the structure using simulated identified
This is very similar to the problem obtained for the modal frequencies and damping ratios.

damping refinement case, with the exception that instead of  The phase 2 CEM structure consists of a 62—bay central
one quadratic equation we have three quadratic equationguss (each bay is 10 inches long), along with two horizontal
Hence, the approach proposed for the damping case, whiglboms for suspension, a vertical laser, and a vertical reflector
involved a combination of the solution of the linear system oftgwer, as shown in Fig. 1. This structure has 10 modes
equations along with standard Newton methods, may be useglith frequencies up to about 5 Hz, and 95 modes with
to solve for a feasible coefficient vector Once a coefficient ~ frequencies under 60 Hz. The first six modes are rigid
vector p is obtained, the procedure to compute the gainbody modes, due to suspension of the structure from the
matricesGy, G», and G5 is straightforward, and follows |aboratory ceiling, that have frequencies up to about 0.3 Hz.
the treatment described for computing the gain matrix ingight control stations housing collocated and compatible
the damping refinement case (see Egs. (27)-(32)). Once thgnsors and actuators are located at the bays shown in Fig.
gain matrices1, G», and G; are computed, the current 1. Ajr thrusters, providing linear forces, are available at
refinements in the mass, damping, and stiffness matriceshese locations along the directions shown in Fig. 1. Linear
represented byry, , Gp, and Gk, , are determined from velocities are assumed to be available at these locations
Eq. (37), and the overall refinements are updated as along the same directions.

An 8 degree of freedom structural model, which

Gy = Gw + G, includes the first 8 modes of the structure, is obtained

Gp — Gp +Gp (50)  following dynamic condensation techniques, and is used in
ok this numerical example. A low inherent damping ratio of 0.1
Gk — Gk + Gk, percent has been assumed for the each of the 8 modes. The

ominal eigenvalues along with damping and frequencies

The procedure outlined determines symmetric gain matricegre shown in Table 1. Assume that only modes no. 2 and 8

Gwm, Gp, andGx which reassigns a desired subset of the ; :
eigenvalues of the model, along with partial mode Shapesare to be considered for refinement, and that the frequency

: . h of mode no. 2 is low by 10% and its damping ratio is off
from their baseline to target values. As described for th y almost 25%, and the frequency of mode no. 8 is high by

case of damping matrix refinements, the symmetry of th o . ; L
; : ; ' . 6 and its damping ratio is off by almost 10%. Moreover,
gain matrices does not necessarily guarantee that the refin @sume that the pmegss matrix is E)/erfectly known, such that

(combined) model remains stable. Since, in most situation o refinements in the matrix is required. However, it is

Egetgleexékr)llgl ?i)éztlemoldseIogﬁgd%o%esg?(l:% t?)mr/neZierIlcgienm%g esired to refine the damping and stiffness matrices, using
bili y h hi Id b he desigrin€ Proposed eigensystem assignment technique, such that
stability. One approach to this could be to use the desigy,¢ feq encies and damping ratios of modes no. 2 and

gﬁegognm;gldgg SFLEQOPef%eeCJ%:SHSd (;Irgrao?r? Cgﬂztrgt'i?ftﬁe %of the refined system matches the identified values. No
'9 : ’ ping, : Jdentified eigenvectors are included, i.e., there is no need
matrices. However, this could be cumbersome, partlcularlﬁ8r partial eigenvector assignment

when the size of the system is large (thousands or hundre : S
of thousands of degrees of freedom). Another approach _Assume that there is uncertainty in the elements of the
could be to require that at each sequence of the eigensystef@Mping and stiffness matrices corresponding to degrees of
assignment procedure the overall gain matricas, G, reedom, 1, 2, 7, and 8. The input/output influence matrices
andGx remain positive semidefinite, i.e., the gain matrices(S€€ Ed. (3)) were somewhat arbitrarily chosen as
are dissipative. Alternatively, one can require that the
current gain matricessy;, , Gp, and Gg, be dissipative
at every sequence. Although dissipativity requirement can
be constraining, it will guarantee that the refined system
remains stable. In other words, at every sequence, a pair Ly =
of closed-loop eigenvalues are assigned via a symmetric
and dissipative gain matrix. Similar to the damping case,
dissipativity of the gain matrices can be achieved through a
set of 12 (4 per gain matrix) quadratic inequality constraints L
in the solution vectorp. The from of the inequality i ) )
constraints for each gain matrix is exactly the same as th& provide freedom for the appropriate elements of damping
ones given in Eq. (34), except that the appropriate coefficier@nd stiffness matrices to change.
matrices are used instead of matrié&s, -, Vi, and V5. The first objective was to decrease the natural frequency
of the second mode by 10% and increase its damping
ratio to 25% so that the first desired pair of closed-loop
eigenvalues was, » = —0.228+£0.8841j. First, symmetric
position and rate gain matrices were sought to reassign
. the pair of eigenvalues. Following the procedure described
Numerical Example in the previous section, the gain matrices were computed
from the solution of system of quadratic equation given in
The approach for model refinement using eigensystenkq. (49), except for no equations corresponding to mass
assignment has been applied to a finite element model ahatrix refinements. The quadratic equations were solved

 Lp=01xLg (51

O—ROoOOoOoCoOOo o
—OoOooooo o

OO OO
OO
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using MATLAB’s® nonlinear equation solver routine entitled case, was considered with the exception that position and
'FSOLVE’, which uses a Levenberg-Marquardt method. Therate gain matrices were constrained to be dissipative. The
eigenvalues of the system, with the intermediate positiorposition and rate gain matrices were computed from the
and rate gain matrices in place, are provided in Table 2solution of the system of quadratic equalities, given by Eq.
This table indicates that the complex conjugate pair werd49), and quadratic inequalities, given by Eq. (34), except
successfully reassigned to desired values. However, thir no equations corresponding to mass matrix refinements.
resulting refined system has an unstable pole on the re#lirst, the gain matrices were determined to reassign the
axis. This is to be expected since, as mentioned earlier, theigenvalues of the second mode to its target values at
symmetry of gain matrices does not typically guarantee the\; , = —0.228+0.8841;. The system of quadratic equalities
stability of the system. and inequalities were posed in the form of a minimax
For the second step, the damping ratio in the eighttProblem and was solved using MATLAB’s minimax solver
mode of the system was to be increased to 10 %, whilgoutine entitled 'MINIMAX'. The eigenvalues of the system,
its frequency was to be decreased by 12%, resulting in thwith the intermediate position and rate gain matrices in
second pair of desired complex-conjugate eigenvalues tglace, are provided in Table 4. This table indicates that
be A3 4 = —1.3149 + 13.08355. Following the sequential the complex conjugate pair were successfully reassigned to
approach outlined, first the pair of complex conjugatedesired values. The remaining eigenvalues were all stable,
eigenvalues were placed on the top left partition of the real-€., the resulting refined system was stable. This is to be
Schur form of the system using orthogonal transformafions €xpected since the dissipative nature of the gain matrices
Then, the gain matrices were defined such that the eigenpa@iiarantees the stability of the system. Next, the second pair
remain unchanged (see Eq. (37)) while the new pair off COmplex-conjugate eigenvalues was reassignes o=
eigenvalues were assigned. The cumulative position ang1.3149 + 13.0835). Following the sequential approach
rate gain matrice&’, andG, which assign the two pairs Outlined, first the pair of complex conjugate eigenvalues

of the system using orthogonal transformatfonsThen,

30.367 T78.615 68.806 24.593 the gain matrices were defined such that the eigenpair

78615 369.249 9220.096 63.317 remain unchanged (see Eq. (37)) while the new pair of
Gn = 68806 220096 233935 94726 eigenvalues were assigned. The cumulative position and

24593  63.317 94.726 40.439 rate gain matriceé/p andG'x, which assign the two pairs

- of complex conjugate eigenvalues, were computed to be
134.819 —26.937 —27.664 —81.395

Gr = |Z20987 280 23108 992 [ 77.920 27.566 24.411 —60.682
el : : : _ | 27.566 46.150 22.419 12.532
[—81.395  9.922  6.733  36.126 Gp = 94411 22419 63469 6.453
_ _ (52 —60.682 12.532 6.453  257.219
The eigenvalues of the system, with the position and rate -
gain matrices in place, are provided in Table 3, where it 60.661 ~ —32.170  3.756 ~ —121.149
is observed that the two pairs of eigenvalues had been ¢y, — | —32.170  42.725  —3.516  —7.936
successfully assigned to the identified values. Furthermore, 3.756 —3.516  0.696 —1.421
the resulting refined system is stable, although there were [—121.149  —7.936 —1.421  455.059
no measures imposed to guarantee such stability. Also (54)

note that the remaining eigenvalues (those that were nothe eigenvalues of the system, with the position and rate
reassigned) have changed, some significantly. One coul@@in matrices in place, are provided in Table 5, where it
make some of those eigenvalues invariant during refinemer$ observed that the two pairs of eigenvalues had been
by allowing more elements of the damping and stiffnesssuccessfully assigned to the identified values. Furthermore,
matrices to change. The refinements in the damping anthe resulting refined system is stable, as expected. Also,
stiffness matrices are computed from Eq. (3). From thes@ote that the remaining eigenvalues (those that were not
equations, the refinements in the damping and stiffnesieassigned) have changed, some significantly. Again, one
matrices, namelyA D and A K, are of the same order as the could make some of those eigenvalues invariant during
matrices themselves. However, because of the structures &#finement by allowing more elements of the damping and
the assumed., and Lx, only the elements corresponding stiffness matrices to change. The refinements in the damping
to degrees of freedom 1, 2, 7, and 8 are nonzero, and a®nd stiffness matrices are computed from Eq. (3), and are

given below given in Eq. (53), with the gain matrices from Eq. (54).
Comparisons of the refinements in each example
AD, =0.01%Gp indicate that no conclusions can be made in regards to
AK: = (53)  the direction or magnitude of the computed refinements.
1= K

In these examples, the computed refinements in damping
. . matrix, for the second example, are typically lower than
whereGp and Gk are given in Eq. (52). those obtained for the first example. However, the situation
As mentioned earlier, there are a number of ways ofis reversed for the refinements in the stiffness matrix. This
guaranteeing that the refined system remains stable. Omeay be attributed to the variability in the solutions of the
of the proposed approaches was to take advantage of thminimax optimization algorithms as well as the nonlinear
freedom beyond eigensystem assignment, and determine tleguation solvers, in the sense that they may converge to
solution vectorp such that the gain matrices, representingdifferent solutions depending on the starting points. In these
the refinements in the model, are dissipative. In the secondxamples, the starting estimate for the solution vegtor
example, the same model refinement problem, as in the firstas randomly chosen, in each example. Conceivably, one

9
American Institute of Aeronautics and Astronautics



AIAA-98-4441

could attempt to exploit the freedom beyond eigensystenfreedom may be exploited to minimize the sensitivity of
assignment to minimize, in some sense, the norm of théhe refined model, to minimize global or local changes to
gain matrices in order to minimize the effective refinementthe system matrices, etc. A numerical example, involving
needed for partial model matching. finite element model refinement for a structural testbed at
NASA Langley (CSI Evolutionary Model) was presented to
demonstrate the feasibility of the proposed approach.
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Table 1. Nominal Eigenvalues

Open-loop Damping Frequency

Eigenvalues Ratio (rad/sec)
-0.0008+ 0.8180; 0.0010 0.8180
-0.0008=+ 0.8301; 0.0010 0.8301
-0.0009-+ 0.8565; 0.0010 0.8565
-0.0011+ 1.1308; 0.0010 1.1308
-0.0011+ 1.1401; 0.0010 1.1401
-0.0019+ 1.9100j 0.0010 1.9100
-0.0107+ 10.7278; 0.0010 10.7278
-0.0149+4 14.9425; 0.0010 14.9425

Table 2. Eigenvalues of Refined
System with Intermediate Gains

Closed-loop Damping Frequency

Eigenvalues Ratio (rad/sec)
-0.5018=+ 0.6423; 0.6156 0.8151
-0.0068+ 0.8404; 0.0081 0.8404
-0.1148+ 0.8554; 0.1330 0.8630
-0.0068+ 0.8905; 0.0076 0.8906
-0.2283+ 0.8841; 0.2500 0.9131
-0.0222+ 10.6262; 0.0021 10.6262
-0.3956+ 14.4418 0.0274 14.4472
6.2235 -1.0000 6.2235
-19.3636 1.0000 19.3636

Table 3. Eigenvalues of Refined System

Closed-loop Damping Frequency

Eigenvalues Ratio (rad/sec)
-0.4955t 0.5715; 0.6551 0.7564
-0.1219+ 0.8600; 0.1403 0.8685
-0.0054+ 0.8813; 0.0062 0.8813
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Closed-loop Damping Frequency

Eigenvalues Ratio (rad/sec)
-0.2283+ 0.8841; 0.2500 0.9131
-0.1458+ 4.9129; 0.0297 4.9151
-0.1640+ 12.8917; 0.0127 12.8927
-1.3149+ 13.0835; 0.1000 13.1494
-5.3957+ 15.7620j 0.3239 16.6600

Table 4. Eigenvalues of Refined
System with Intermediate Gains

Closed-loop Damping Frequency

Eigenvalues Ratio (rad/sec)
-0.0025+ 0.8346; 0.0029 0.8346
-0.0137+ 0.8636; 0.0158 0.8637
-0.2283+ 0.8841; 0.2500 0.9131
-0.2313+ 1.1556; 0.2002 1.1322
-0.0127+ 1.9112; 0.0066 1.9113
-2.3693+ 4.8741; 0.4372 5.4195
-0.0633+ 10.8268; 0.0058 10.8270
-0.3471+ 14.8576 0.0234 14.8616

Table 5. Eigenvalues of Refined System

Closed-loop Damping Frequency

Eigenvalues Ratio (rad/sec)
-0.0023+ 0.8454; 0.0027 0.8454
-0.0094+ 0.8707; 0.0108 0.8707
-0.2283+ 0.8841; 0.2500 0.9131
-0.3734+ 1.1556; 0.2943 1.2686
-0.1416+ 6.3839; 0.0222 6.3855
-1.3149+ 13.0835; 0.1000 13.1494
-0.9821+ 13.2494; 0.0739 13.2857
-0.7522+ 14.4382 0.0520 14.4577
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Gimbal A

Accelerometers (1-8)

? Thrusters (1-8) @ /

Figure 1. Schematic of Phase 2 CEM
Structure, With Location of 8 Control Stations.
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