
AIAA–98–4441

MODEL REFINEMENT USING EIGENSYSTEM ASSIGNMENT

Peiman G. Maghami*

NASA Langley Research Center, Hampton, VA 23681–0001

Abstract

A novel approach for the refinement of finite-element-
based analytical models of flexible structures is presented.
The proposed approach models the possible refinements
in the mass, damping, and stiffness matrices of the finite
element model in the form of a constant gain feedback
with acceleration, velocity, and displacement measurements,
respectively. Once, the free elements of the structural
matrices have been defined, the problem of model refinement
reduces to obtaining position, velocity, and acceleration gain
matrices, which reassign a desired subset of the eigenvalues
of the model, along with partial mode shapes, from their
baseline values to those obtained from system identification
test data. A sequential procedure is used to assign one self-
conjugate pair of closed-loop eigenvalues at each step using
symmetric output feedback gain matrices, and the closed-
loop eigenvectors are partially assigned, while ensuring
that the eigenvalues assigned in the previous steps are
not disturbed. The procedure can also impose that gain
matrices be dissipative in order to guarantee the stability
of the refined model. A numerical example, involving
finite element model refinement for a structural testbed at
NASA Langley (CSI Evolutionary Model) is presented to
demonstrate the feasibility of the proposed approach.

Problem Statement

Typically, the spacecraft structure can be modeled as
a linear, time-invariant flexible system, which in turn can
be represented by the following second-order dynamical
equations:

M �x+D _x+Kx = Hf (1)

whereM is the positive definite mass matrix;D is the
positive definite (semidefinite, in the presence of rigid
body modes) damping matrix;K is the positive definite
(semidefinite, in the presence of rigid body modes) stiffness
matrix; H is the disturbance input influence matrix;x is a
k x 1 vector of displacements; andf is a e x 1 vector of
disturbances to the system. Usually, a finite element analysis
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is used to obtain these matrices analytically. However,
the accuracy of the finite element model in predicting the
dynamical behavior of the structure depends on a number
of factors, such as proper knowledge of element and
component material and geometric properties, appropriate
meshing, correct joint modeling, etc. From past experience
with flexible structures, the accuracy of the finite element
model is limited when compared to test results from modal
parameter identification. In almost every structure, the
modal frequencies and amplitudes predicted using finite
element models differ from those obtained from modal
testing. This is particularly the problem with modal
frequencies, and the problem worsens for higher modes.
This lack of accuracy in modal parameters can be a
detriment to control system design. Control system design
for flexible systems is challenging because of their special
dynamic characteristics: a large number of structural modes
within the controller bandwidth; low, closely spaced modal
frequencies; very small inherent damping; and insufficient
knowledge of the parameters1.

Control system design requires accurate knowledge of
the plant that is to be controlled. In the case of spacecraft
control systems, this means that an accurate knowledge of
the parameters associated with the flexible modes of the
spacecraft, such as modal frequencies, damping ratios, and
mode shapes is required. The need for accurate knowledge is
particularly critical for the modal frequencies. In traditional
gain–stabilized spacecraft control design, this knowledge is
required to achieve nominal performance while guaranteeing
stability margins in the form of phase and gain margins. In
modern control system design, which may be gain or phase
stabilized, this knowledge is required to achieve nominal
performance as well as specific degrees of stability and
performance robustness.

One approach to obtain accurate models of flexible
structures is to use models that can be extracted directly
from system identification (ID) or modal test data. This
is a feasible approach which has been quite successful in
a number of applications. However, the usefulness of this
approach is limited in that the refined model obtained applies
only to the hardware configuration of the system ID. In other
words, the model obtained from system ID data is only valid
at the input/output channels that are used in the test setup.
If the model of a component changes, additional inputs or
outputs are included, or simply new elements are added,
the model obtained through system ID loses its relevancy
unless additional system ID tests are performed. Moreover,
these models do not easily lend themselves for other required
performance and reliability analyses, such as stress and strain
analysis, vibration and jitter analysis, etc. To overcome the
limited aspect of the system ID models one can use an
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analytical model obtained through finite element analysis,
provided that these models can be made to have sufficient
accuracy for design and analysis. Thus, in this paper we
address the problem of refining the analytical model of the
flexible spacecraft using the system ID data.

To date, different techniques have been proposed for
refining the finite element model of a flexible structure
based on modal testing or system ID procedures2–3. Model
refinement involves techniques that refine the finite element
model by minimizing the level of disagreement between
the model and test results. These techniques generally start
with a set of parameters of the model (typically, physical
parameters at the element level, e.g., material and geometric
properties), and systematically tune those parameters to
reduce or minimize some measure of disparity between the
model and test data. This measure may be a time related
measure, e.g., the difference in time history responses, or a
modal related measure, e.g., difference in modal frequencies.
Various optimization schemes and least-square techniques
have been suggested for the refinement process.

This paper describes a novel approach for the
refinement of finite element models. The approach presumes
that modal analysis or system identification tests have been
performed and modal parameters, such as frequencies,
damping ratios, and mode shapes (at sensor locations),
have been identified for modes in the range of interest.
The proposed approach models the possible refinements
in the mass, damping, and stiffness matrices of the finite
element model in the form of a constant gain feedback with
acceleration, velocity, and displacement measurements,
respectively. The freedom to change model parameters,
as well as the relative degree of change desired in one
parameter with respect to the rest, is embedded in the
elements of the input and output influence matrices for
the various measurements. Once the elements of the
input and output influence matrices have been defined
and fixed, the problem of model refinement reduces to
obtaining position, velocity, and acceleration gain matrices,
which reassign a desired subset of the eigenvalues of
the model, along with partial mode shapes, from their
baseline to target values. Hence, the problem of model
refinement becomes a problem of eigensystem assignment
with output feedback. However, symmetry and the positive
definiteness requirement of the mass matrix, and the positive
definiteness (semidefiniteness, if rigid body modes are
present) requirement of the stiffness and damping matrices,
necessitate that gain matrices should be constrained such
that the refined mass matrix remains symmetric and positive
definite, and the refined stiffness and damping matrices
remain symmetric and positive definite (semidefinite).
In this paper, a procedure for obtaining symmetric gain
matrices via eigensystem assignment is described first. To
perform the required eigensystem assignment, a modified
procedure to the sequential algorithm outlined in ref. 4 is
followed. The modified procedure provides the ability to
use acceleration feedback, needed to refine the mass matrix,
as well as the capability to partially assign closed-loop
eigenvectors. Second, additional constraints, in the form of
quadratic inequality constraints, are outlined to render the
symmetric gain matrices dissipative, and thus guaranteeing
the stability of the refined model. A numerical example
involving model refinement of a structural testbed at NASA
Langley (CEM phase II) is presented to demonstrate the
application of this approach.

Model Refinement

Observing the nominal dynamical model of the system
given in Eq. (1), the dynamics of the refined system may
be written as

(M +�M)�x+ (D +�D) _x+ (K +�K)x = Hf (2)

where �M is a symmetric matrix representing the
refinement in the mass matrix, satisfying(M +�M) > 0;
�D is a symmetric matrix representing the refinement in
the damping matrix, satisfying(D +�D) > 0; and �K
is a symmetric matrix representing the refinement in the
stiffness matrix, satisfying(K +�K) > 0. Note that the
positive definiteness conditions for the refined stiffness and
damping matrices reduce to positive semidefiniteness in the
presence of rigid body modes. Now, expand the refinement
gain matrices as follows:

�M = LMGML
T

M

�D = LDGDL
T

D

�K = LKGKL
T

K

(3)

where LM is a matrix representing the distribution of
refinements that are allowed in the mass matrix. The
elements of matrixLM can vary depending on what
elements in the mass matrix are chosen to vary. For example,
if the chosen element of the mass matrix is the one at the
ith row and jth column, then all the elements of the ith row
of matrix LM may be chosen to be zeros, except the jth,
which is set to 1. The matrixGM represents the symmetric
gain matrix associated with the mass matrix (acceleration
gain matrix), which determines the extent of the refinement.
The matricesLD, GD, LK , andGK are similarly defined to
characterize the refinement for the damping and stiffness
matrices, respectively. Note that the refinements in the
mass, damping, and stiffness matrices may be viewed as
constant gain, symmetric acceleration, velocity, and position
feedback. The system equations for the refined system may
be rewritten as follows

M �x+D _x+Kx = Hf + u

u = �
�
LKGKL

T

K
LDGDL

T

D
LMGML

T

M

�(x
_x
�x

)
(4)

Assume that a number of modes in the desired
frequency range have been identified via system ID
procedure, and let the modal frequencies, damping ratios,
and modal amplitudes (at the sensor disturbance and
measurement locations) be denoted by
t, Zt, and �t,
respectively. Here,
t is an r � 1 real vector of natural
frequencies of ther identified modes;Zt is an r � 1 real
vector of modal damping ratios; and�t is ans� r complex
matrix, whoser columns represent the mode shapes of
these identified modes ats locations. Noting that for real
systems, complex eigenvalues occur in pairs, let the target
eigenvalues and eigenvectors be defined as

�2i�1

t
= �Zit


i

t + j
it

q
1� Zi

2

t
; 	2i�1

t
= �it

�2i

t
= �Zi

t

i
t
� j
i

t

q
1� Zi

2

t
; 	2i

t
= �it ; i = 1; . . . ; r

(5)
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the overbar in the expressions in this section refer to
complex-conjugation of the elements of the corresponding
vector (or matrix) only, as opposed to the Hermitian
operator, which involves transposition and complex-
conjugation. Now, the problem of model refinement may be
expressed as the problem of finding symmetric acceleration,
velocity, and position gain matrices (GM , GD, andGK)
such that the2r eigenvalues of the system�

M + LMGML
T

M

�
�x+

�
D + LDGDL

T

D

�
_x+�

K + LKGKL
T

K

�
x = Hf

(6)

are assigned to�it, i = 1; 2; . . . ; 2r, and thes elements
of corresponding eigenvectors are assigned to	i

t
, i =

1; 2; . . . ; 2r, subject to the condition that the refined mass,
damping, and stiffness matrices are positive definite. The
partial assignment of eigenvectors may be defined as

~R� = 	t (7)

where matrix ~R represents the influence coefficient matrix
for the system ID sensor locations. The procedure developed
and followed to compute the gain matrices is described in
the next section.

Refinements in Damping Matrix
via Eigensystem Assignment

The task of assigning the eigenvalues and partial
eigenvectors of the system in Eq. (6) with symmetric output
feedback gain matrices is accomplished using a sequential
algorithm described by ref. 4. The algorithm is modified
here to accommodate the partial eigenvector assignment,
and acceleration terms to include refinements in the mass
matrix. For the simplicity of presentation, the procedure is
described for refinements in the damping matrix alone, and
then for an all inclusive model refinement.

In each step of the sequential procedure, one self-
conjugate pair of closed-loop eigenvalues is assigned to
desired values while making sure that the previously
assigned closed-loop eigenvalues are not disturbed. The
procedure uses a first-order descriptor representation of the
system, obtained from Eq. (6)�
I 0
0 M

��
_x
�x

�
=

�
0 I
�K �D

��
x
_x

�
+

�
0
LD

�
u+

�
0
H

�
f

u = �GDL
T

D
_x = �GD

�
0 LT

D

��x
_x

�
� �GDCD

�
x
_x

�
(8)

that is, the descriptor form

E _z = Az +Bu + Pf

u = �GDCDz
(9)

Here z =

�
x
_x

�
represents the state in the first-order

descriptor form, andCD = BT . A brief description of the

sequential procedure is given next. The reader is referred to
ref. 4 for a thorough description of the procedure.

a. The procedure employs the generalized ordered real
Schur transformations of the system matrices,E and
A.

b. Orthogonal transformations are used to move
previously assigned eigenvalue pairs to the top

left block of the pair
� eE; eA�, where

� eE; eA� are in
ordered real Schur form, and the structure of the new
gain matrix is prescribed such that it only affects
the eigenvalues in the lower bottom partition of the
system matrices. For example, assume that(k � 1)
self-conjugate pairs of the closed-loop eigenvalues
have been placed in the previous steps, and that they

are in the top left block of
� eE; eA�. Let eNDk

denote a
matrix whose columns form an orthogonal basis for the
left null space ofeCDk1

, that is, eNDk
is a matrix with

orthogonal columns such thateNT

Dk

eCDk1
= 0. Here,eCDk1

denotes the first2(k � 1) column partition of
the output influence matrix in transformed coordinates.
If the gain matrix in the transformed coordinateseGDk

is constructed as

eGDk
= eNDk

bGDk

eNT

Dk
(10)

where bGDk
may be an arbitrary matrix, then output

feedback with the gain matrix will not affect the(k � 1)
eigenvalue pairs assigned in the previous steps.

c. At each step, an intermediate gain matrix is computed
to assign a pair of eigenvalues to desired values in
lower bottom partition of the system matrices. The
algorithm used in this eigenvalue assignment was
initially developed in ref. 4, but is modified here to
accommodate partial eigenvector assignment as well.

d. At each step, after computing the gain matrix that
assigns a pair of desired closed-loop eigenvalues, the
intermediate closed-loop matrix is transformed to a
generalized Schur form with all previously assigned
eigenpairs in the top left block of the updated system
matrix.

e. The overall gain matrix is constructed by accumulating
the gains from each step.

f. This process can be continued until up tom closed-loop
eigenvalues have been assigned to the desired locations,
wherem denotes the number of inputs or outputs.

Eigenpair Assignment

This section describes the approach to select output
feedback gains to assign one pair of complex conjugate
eigenvalues, while ensuring that the gain matrix is symmetric
and the closed-loop eigenvectors are as close as possible to
their corresponding target vectors. Assume that the kth
eigenpair is to be assigned. For notational simplicity, the
system matrices will be denoted asE22; A22; B2; C2, the
output feedback gain matrix will be denoted asG, and
the desired eigenvalue pair will be denoted

�
�; �

�
. The
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problem is to select a symmetric matrixG, such that
�
�; �

�
is a generalized eigenpair of the closed-loop system matrix,
(E22; A22 � B2GC2), and the eigenvectors are partially
assigned to desired values, as given in Eq. (7).

Let � be the closed-loop eigenvector corresponding
to the eigenvalue�. The generalized eigenvalue problem
becomes(�E22 �A22 +B2GC2)� = 0. This closed-loop
expression can be rewritten as

[�E22 �A22 j B2 ]

"
�

�� �
GC2�

#
� �

"
�

�� �
GC2�

#
= 0 (11)

It is obvious from Eq. (11), that the vector on the right
hand side of the expression must lie in the right null space
of �. LetN be a matrix whose columns form an orthogonal
basis for the null space of�, that is,�N = 0. Note that
unlike an actual control design problem where the number of
inputs/outputs are usually fixed, we may choose the number
inputs (parameters that can be changed in the model) large
enough as to provide the freedom to assign the desired
eigenvalues, and specified elements of the corresponding
eigenvectors. AlthoughE22; A22 andB2 are real matrices,
� andN are complex matrices since the eigenvalue� is a
complex scalar. However, to ensure that the gain matrix
is real the closed-loop eigenvector corresponding to the
complex-conjugate eigenvalue is chosen to be the complex-
conjugate of�, that is,� is chosen to be the eigenvector
corresponding to�.

Since columns ofN span the null space of�, it follows
that "

�
� ��
GC2�

#
= N� =

"
N1

� ��
N2

#
� (12)

where� is an arbitrary vector of complex elements, and the
matricesN1; N2 are formed by partitioningN compatibly
with � andGC2�. From Eq. (12),� = N1� andGC2� =
N2�, which leads to

GC2N1� = N2� (13)

The eigenassignment problem is now reduced to selecting�
such that there exists a symmetric gain matrix,G, satisfying
Eq. (13) . With� being the eigenvector corresponding to�,
real solutions for the gain matrixG can be obtained, and the
equations can be written out to involve only real arithmetic
operations as follows.

For the eigenvalue,�, with closed-loop eigenvector,�,
the matrix� =

�
�E22 �A22 j B2

�
, andN is a matrix

whose orthogonal columns span the null space of�. If the
arbitrary coefficient vector is chosen to be�, the complex-
conjugate of�, then it follows that

GC2N1� = N2� (14)

Eq. (13) and Eq. (14) can be rewritten as

GC2[ Re(N1) �Im(N1) ]

�
Re(�)
Im(�)

�
=

[Re(N2) �Im(N2) ]

�
Re(�)
Im(�)

� (15)

and

GC2[ Im(N1) Re(N1) ]

�
Re(�)
Im(�)

�
=

[ Im(N2) Re(N2) ]

�
Re(�)
Im(�)

� (16)

whereRe(�) denotes real part of the argument, andIm(�)
denotes imaginary part of the argument. In compact form
these equations are written out as

GW1p = V1p

GW2p = V2p
(17)

where p =
�
Re

�
�T

�
Im

�
�T

� �T
, W1 =

C2[Re(N1) �Im(N1) ], V1 = [Re(N2) �Im(N2) ],
W2 = C2[Im(N1) Re(N1) ], and V2 =
[Im(N2) Re(N2) ]. Note that Eq. (17) is a system of
quadratic equations in the unknown variables, namely,
the elements of the gain matrix,G, and the coefficient
vector, p. Furthermore, the elements ofG should be
constrained such thatG is symmetric, and the solution
of the system has to yield a closed-loop eigenvector, for
the whole system,� which satisfy the partial eigenvector
conditions of Eq. (7), i.e.,

RU� = 	2k�1

t
(18)

whereR =
�
~R 0

�
is the corresponding coefficient in the

descriptor form of the system equations,U is the right
unitary matrix in the generalized Schur form at the kth
step (that keeps the closed-loop matrices in Real Schur
form), and	2k�1

t
is the target partial eigenvector for the

kth step. Note that if the condition of Eq. (18) is satisfied
for one of the eigenvectors of the eigenpair, it would
identically satisfy its complex conjugate. Here, we assume
that the set of previously assigned eigenvalues does not
match the remaining eigenvalues of the system, either before
or after the eigenpair assignment. This mild assumption
ensures that the eigenvectors of the previously assigned
eigenvalues/eigenvectors remain unchanged as additional
eigenvalues are assigned. Furthermore, this means that
the eigenvector condition of the type in Eq. (18) can be
imposed one mode at a time, and once imposed for a closed-
loop eigenvector it need not be reimposed again. Now,
considering the eigenvalue problem of the whole system for
the eigenvalue being assigned, one can write�

�E11 � A11 �E12 �A12 +B1GC2

0 �E22 �A22 +B2GC2

��
'
�

�
=

�
0
0

�
(19)

Note that� =

�
'
�

�
. Solving for ' in terms of �, one

obtains

' = �(�E11 � A11)
�1(�E12 � A12 + B1GC2)� (20)

and by substituting forGC2� and� from Eq. (12), one has

� = N1�

' = �(�E11 �A11)
�1([�E12 � A12]N1 +B1N2)� � Q�

(21)
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or

� =

�
Q
N1

�
� � S� (22)

Using Eq. (22) into Eq. (18), and expanding and separating
the real and imaginary parts, yields

RU [ Re(S) �Im(S) ]

�
Re(�)
Im(�)

�
= Re

�
	2k�1
t

�
RU [ Im(S) Re(S) ]

�
Re(�)
Im(�)

�
= Im

�
	2k�1
t

� (23)

Recalling the definition of vectorp from Eq. (17), and
combining these equations, one obtains

Lp = q (24)

where

L =

�
RU Re(S) �RU Im(S)
RU Im(S) RU Re(S)

�
; q =

�
Re

�
	2k�1
t

�
Im

�
	2k�1
t

��
(25)

Therefore, a coefficient vectorp and a symmetric gain matrix
G which satisfy Eqs. (17) and (24) have to be found. The
condition for the existence of a symmetric gain matrixG
which satisfies Eq. (17) has been established in ref. 4, and
is given as the existence of a vectorp which satisfies

pT
�
V T
1 W2 � V

T
2 W1

�
p � pTJp = 0 (26)

To summarize, the conditions for the placement of an
eigenpair of the system to desired values, while partially
assigning the corresponding eigenvectors to target values,
reduces to computing a coefficient vectorp which satisfies
the quadratic equation given by Eq. (26), and the linear
system of equations represented by Eq. (24).

One possible approach to obtaining a coefficient vector
p which satisfies Eqs. (26) and (24), would be to first solve
for p in Eq. (24), to obtain

p = L+q + NL� (27)

where (�)+ denotes the pseudo-inverse of(�), NL is a
matrix collecting a set of basis vectors for the right null
space of matrixL, and� is a coefficient vector associated
with the basis vector, yet to be defined. Substituting forp
from Eq. (27) into Eq. (26), yields

f(�) ��TNT
L JNL� + �TNT

L JL
+q+

qTL+
T

JNL� + qTL+
T

JL+q = 0
(28)

Standard Newton methods for obtaining the solution of
nonlinear equations may be used to obtain a solution vector
�. Analytic gradients off(�) are readily available, since the
gradient of any quadratic,f(�) = �TQ1� + 2QT

2 � + c, is
given by @

@�
f(�) =

�
Q1 + QT

1

�
� + 2Q2. The nonlinear

problem of Eq. (28) is very well-behaved because the
function is quadratic in�, and analytic gradients are linear
in �.

Once a coefficient vectorp (�) has been determined, the
symmetric gain matrixG, that assigns the desired closed-
loop complex-conjugate eigenvalues, may be obtained as
follows. Denotey1 = V1p; y2 = V2p; x1 = W1p and
x2 = W2p, and letX = [x1 x2 ] andY = [y1 y2 ], then
Eq. (17) is rewritten asGX = Y . Let Q be an orthogonal
matrix, such that

QTY =

�eY1
0

�
(29)

where eY1 is a nonsingular2 � 2 matrix (otherwise, the
problem is solved trivially). The matrixQ can be obtained
by QR factorization ofY . Now, define eX1; eX2 as follows� eX1eX2

�
= QTX (30)

where eX1 is a2�2 matrix, and eX2 is a(m� 2)�2 matrix.
Now eX1 is nonsingular ifx1 andx2 are linearly independent
(otherwise, the problem is trivial). DefiningeG11 = eY1 eX�11 ,
it can be seen that� eG11 0

0 0

�� eX1eX2

�
=

�eY1
0

�
(31)

Therefore, it follows that the matrixG defined as

G = Q

� eG11 0
0 0

�
QT (32)

satisfiesGX = Y:

It should be noted that if only eigenvalue assignment is
required, i.e., it is not required to perform partial eigenvector
assignment, then the solution vectorp does not have to
satisfy Eq. (24), and only the quadratic equation given
by Eq. (26) needs to be satisfied. The solution to this
equation can be obtained through standard Newton methods
as mentioned earlier. However, since Eq. (26) is a simple
quadratic, the check for existence and computation of a
solution can be achieved via examination of the matrixJ .
A solution vector exists if and only if the symmetric part
of J is either indefinite, semidefinite. If the symmetric part
of the matrix has zero eigenvalues, then any corresponding
eigenvector is a solution for vectorp. If the symmetric
part of J is indefinite, then any linear combination of
eigenvectors of the symmetric part, whose corresponding
eigenvalues are not all of the same sign, qualifies as a
solution, if the coefficient of the linear combination are
chosen such that the quadratic in Eq. (26) vanishes.

Once, the gain matrixG is computed, the current
refinements in the damping matrix, represented by~GDk

is determined from Eq. (10), and the overall refinement is
updated as

GD  GD + ~GDk
(33)

The procedure described thus far determines a symmetric
gain matrix which reassigns a desired subset of the
eigenvalues of the model, along with partial mode shapes,
from their baseline to target values. However, the symmetry
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of the gain matrix does not necessarily guarantee that
the refined (combined) model remains stable. Since, in
most situations the flexible system is open-loop stable,
any refinements to the analytical model should be such
to maintain that stability. One approach to this could
be to use the design freedom in the solution vectorp
and impose constraints on eigenvalues of the refined
damping matrix. However, this could be cumbersome,
particularly, when the size of the system is large (thousands
or hundreds of thousands of degrees of freedom). Another
approach could be to require that at each sequence of
the eigensystem assignment procedure the overall gain
matrix GD remains positive semidefinite, i.e., the gain
matrix is dissipative. Alternatively, one can require that the
current gain matrix~GDk be dissipative at every sequence.
Although, dissipativity requirement can be constraining,
it will guarantee that the refined system remains stable.
In other words, at every sequence, a pair of closed-loop
eigenvalues are assigned via a symmetric and dissipative
gain matrix. Reference 4 provides an attractive set of
constraints to impose dissipativity of the gain matrix in
this setting. These constraints are in the form of quadratic
inequality constraints in the solution vectorp, as follows

f1(p) = pT
�
V T
1
W1 +

1

2

�
V T
1
W2 + V T

2
W1

��
p � 0

f2(p) = pT
�
V T
1
W1 �

1

2

�
V T
1
W2 + V T

2
W1

��
p � 0

f3(p) = pT
�
V T
2
W2 +

1

2

�
V T
1
W2 + V T

2
W1

��
p � 0

f4(p) = pT
�
V T
2
W2 �

1

2

�
V T
1
W2 + V T

2
W1

��
p � 0

(34)
These quadratic constraints go well with the quadratic
symmetry condition given in Eq. (26), and hence the
appealing computational nature of the algorithm is retained.

General Model Refinements

The approach for a total model refinement, which
includes refinements in the mass, damping, and stiffness
matrices, parallels the one described in the previous sections
for the refinement in the damping matrix alone. In each
step of the sequential procedure, one self-conjugate pair
of closed-loop eigenvalues is assigned to desired values
while making sure that the previously assigned closed-loop
eigenvalues are not disturbed. The procedure uses a first-
order descriptor representation of the system, obtained from

Eq. (6) �
I 0
0 M

��
_x
�x

�
=

�
0 I
�K �D

��
x
_x

�
+�

0 0 0
LM LD LK

�(uM
uD
uK

)
+

�
0
H

�
f

uM = �GML
T

M
�x = �GM

�
0 LT

M

�� _x
�x

�
� �GMCM

�
_x
�x

�
uD = �GDL

T

D
_x = �GD

�
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D

��x
_x

�
� �GDCD

�
x
_x

�
uK = �GKL

T

K
x = �GD

�
LT
K

0
��x

_x

�
� �GDCK

�
x
_x

�
(35)

that is, the descriptor form

E _z = Az + Bu+ Pf

u =

(
uM
uD
uK

)
(36)

The same sequential procedure is now used to assign
the closed-loop eigenpairs, one at a time. As in the
damping case, the structure of the three gain matrices,
GM ; GD; andGK , is prescribed such that it only affects
the eigenvalues in the lower bottom partition of the system
matrices. For example, assume that(k � 1) self-conjugate
pairs of the closed-loop eigenvalues have been placed in
the previous steps, and that they are in the top left block

of
� eE; eA�. Let eNMk

; eNDk
; eNKk

denote matrices whose
columns form an orthogonal basis for the left null space ofeCMk1

; eCDk1
; eCKk1

, respectively. Here,eCMk1
; eCDk1

; eCKk1

denote the first2(k � 1) column partitions of the output
influence matrices in transformed coordinates. If the gain
matrices (in the transformed coordinates) are constructed as

eGMk
= eNMk

bGMk

eNT
MkeGDk

= eNDk

bGDk

eNT
DkeGKk

= eNKk

bGKk

eNTKk

(37)

with bGMk
; bGDk

; and bGKk
arbitrary matrices, then output

feedback with the gain matrices will not affect the(k � 1)
eigenvalue pairs assigned in the previous steps.

Eigenpair Assignment

This section describes the approach to select output
feedback gains to assign one pair of complex conjugate
eigenvalues, while ensuring that the gain matrices are
symmetric and the closed-loop eigenvectors are as close
as possible to their corresponding target vectors. Assume
that the kth eigenpair is to be assigned. For notational
simplicity, the system matrices will be denoted as
E22; A22; BM2

; CM2
; BD2

; CD2
; BK2

; CK2
, the output
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feedback gain matrices,bGMk
; bGDk

; and bGKk
, will be

denoted respectively, asG1; G2; andG3, and the desired
eigenvalue pair will be denoted

�
�; �

�
. The problem is to

select symmetric matricesG1; G2; andG3 , such that
�
�; �

�
is a generalized eigenpair of the closed-loop system matrix,
(E22 + BM2

G1CM2
; A22 � BD2

G2CD2
� BK2

G3CK2
),

and the eigenvectors are partially assigned to desired values,
as given in Eq. (7).

Let � be the closed-loop eigenvector corresponding
to the eigenvalue�. The generalized eigenvalue problem
becomes

[�(E22 +BM2
G1CM2

)� A22 + BD2
G2CD2

+

BK2
G3CK2

]� = 0
(38)

. This closed-loop expression can be rewritten as

[�E22 �A22 �BM2
BD2

BK2
]

2
64

�
G1CM2

�
G2CD2

�
G3CK2

�

3
75 �

�

2
64

�
GMCM2

�
GDCD2

�
GKCK2

�

3
75 = 0

(39)
It is obvious from Eq. (39), that the vector on the right
hand side of the expression above must lie in the right null
space of�. Let N be a matrix whose columns form an
orthogonal basis for the null space of�, that is,�N = 0.
Since columns ofN span the null space of�, it follows that2

64
�

G1CM2
�

G2CD2
�

G3CK2
�

3
75 = N� =

2
64
N1

N2

N3

N4

3
75� (40)

where� is an arbitrary vector of complex elements, and
the matricesN1; N2; N3; N4 are formed by partitioningN
compatibly with�;G1CM2

�;G2CD�; andG3CK2
�. From

Eq. (40), one has

� = N1�

G1CM2
� = N2�

G2CD2
� = N3�

G3CK2
� = N4�

(41)

or
G1CM2

N1� = N2�

G2CD2
N1� = N3�

G3CK2
N1� = N4�

(42)

Following algebraic manipulations, similar to those outlined
in Eqs. (13)-(17) for the damping refinement case, the
eigenpair assignment problem reduces to the solution of

G1WM1
p = VM1

p ; G1WM2
p = VM2

p

G2WD1
p = VD1

p ; G2WD2
p = VD2

p

G3WK1
p = VK1

p ; G3WK2
p = VK2

p

(43)

where p =
�
ReT(�) ImT(�)

�T
. The matrices

WM1
; WM2

; WD1
; WD2

; WK1
; WK2

; VM1
; VM2

;
VD1

; VD2
; VK1

; and VK2
are formed from

the imaginary and real parts of the matrices
CM2

; CD2
; CK2

; N1; N2; N3; N4, similar to what was
done for the damping refinement case in Eqs. (15) and
(16). Note that Eq. (43) is a system of quadratic equations
in the unknown variables, namely, the elements of the gain
matrices,G1; G2; G3, and the coefficient vector,p. The
elements of the gain matrices should be constrained such
that they are symmetric, and the solution of the system has
to yield a closed-loop eigenvector,�, for the whole system
which satisfy the partial eigenvector conditions of Eq. (18)
for the kth eigensystem assignment. The assumption that
the set of previously assigned eigenvalues does not match
the remaining eigenvalues of the system, either before
or after the eigenpair assignment still holds here. Now,
considering the eigenvalue problem of the whole system
for the eigenvalue being assigned, one can write�

X11 X12

0 X22

��
'
�

�
=

�
0
0

�
X11 = �E11 �A11

X12 = �(E12 + BM21
G1CM2

)� A12+

BD21
G2CD2

+BK21
G3CK2

X22 = �(E22 + BM22
G1CM2

)� A22+

BD22
G2CD2

+BK22
G3CK2

(44)

Note that� =

�
'
�

�
. Solving for ' in terms of �, one

obtains
' = �X�1

11
X12� (45)

and by using Eq. (41), one has

� = N1�

' = �X�1
11

�
[�E12 �A12]N1 + �BM21

N2+

BD21
N3 + BK21

N4�
�
� Q�

(46)

or

� =

�
Q
N1

�
� � S� (47)

Using Eq. (47) into Eq. (18), and expanding and separating
the real and imaginary parts, one obtains an expression
similar to the one for the damping case (see Eq. (24))

Lp = q (48)

where matricesL and q have been defined in Eq. (25).
The condition for the existence of symmetric gain matrices
G1; G2; andG3 , which satisfies Eq. (43), reduces to the
existence of a vectorp which satisfies

pT
�
V TM1

WM2
� V TM2

WM1

�
p � pTJ1p = 0

pT
�
V T
D1
WD2

� V T
D2
WD1

�
p � pTJ2p = 0

pT
�
V TK1

WK2
� V TK2

WK1

�
p � pTJ3p = 0

(49)

To summarize, the conditions for the placement of an
eigenpair of the system to desired values, while partially
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assigning the corresponding eigenvectors to target values,
reduces to computing a coefficient vectorp which satisfies
the three quadratic equations given by Eq. (49), and
the linear system of equations represented by Eq. (48).
This is very similar to the problem obtained for the
damping refinement case, with the exception that instead of
one quadratic equation we have three quadratic equations.
Hence, the approach proposed for the damping case, which
involved a combination of the solution of the linear system of
equations along with standard Newton methods, may be used
to solve for a feasible coefficient vectorp. Once a coefficient
vector p is obtained, the procedure to compute the gain
matricesG1; G2; and G3 is straightforward, and follows
the treatment described for computing the gain matrix in
the damping refinement case (see Eqs. (27)-(32)). Once the
gain matricesG1; G2; and G3 are computed, the current
refinements in the mass, damping, and stiffness matrices,
represented by~GMk

; ~GDk
and ~GKk

, are determined from
Eq. (37), and the overall refinements are updated as

GM  GM + ~GMk

GD  GD + ~GDk

GK  GK + ~GKk

(50)

The procedure outlined determines symmetric gain matrices
GM ; GD; andGK which reassigns a desired subset of the
eigenvalues of the model, along with partial mode shapes,
from their baseline to target values. As described for the
case of damping matrix refinements, the symmetry of the
gain matrices does not necessarily guarantee that the refined
(combined) model remains stable. Since, in most situations
the flexible system is open-loop stable, any refinements
to the analytical model should be such to maintain that
stability. One approach to this could be to use the design
freedom in the solution vectorp and impose constraints
on eigenvalues of the refined mass, damping, and stiffness
matrices. However, this could be cumbersome, particularly
when the size of the system is large (thousands or hundreds
of thousands of degrees of freedom). Another approach
could be to require that at each sequence of the eigensystem
assignment procedure the overall gain matricesGM ; GD;
andGK remain positive semidefinite, i.e., the gain matrices
are dissipative. Alternatively, one can require that the
current gain matrices~GMk

; ~GDk
and ~GKk

be dissipative
at every sequence. Although dissipativity requirement can
be constraining, it will guarantee that the refined system
remains stable. In other words, at every sequence, a pair
of closed-loop eigenvalues are assigned via a symmetric
and dissipative gain matrix. Similar to the damping case,
dissipativity of the gain matrices can be achieved through a
set of 12 (4 per gain matrix) quadratic inequality constraints
in the solution vectorp. The from of the inequality
constraints for each gain matrix is exactly the same as the
ones given in Eq. (34), except that the appropriate coefficient
matrices are used instead of matricesW1;W2; V1; andV2.

Numerical Example

The approach for model refinement using eigensystem
assignment has been applied to a finite element model of

the phase 2 CSI Evolutionary Model (CEM), a testbed for
control of flexible space structures at NASA Langley. Here,
the proposed approach is used to refine the damping and
stiffness matrices of the structure using simulated identified
modal frequencies and damping ratios.

The phase 2 CEM structure consists of a 62–bay central
truss (each bay is 10 inches long), along with two horizontal
booms for suspension, a vertical laser, and a vertical reflector
tower, as shown in Fig. 1. This structure has 10 modes
with frequencies up to about 5 Hz, and 95 modes with
frequencies under 60 Hz. The first six modes are rigid
body modes, due to suspension of the structure from the
laboratory ceiling, that have frequencies up to about 0.3 Hz.
Eight control stations housing collocated and compatible
sensors and actuators are located at the bays shown in Fig.
1. Air thrusters, providing linear forces, are available at
these locations along the directions shown in Fig. 1. Linear
velocities are assumed to be available at these locations
along the same directions.

An 8 degree of freedom structural model, which
includes the first 8 modes of the structure, is obtained
following dynamic condensation techniques, and is used in
this numerical example. A low inherent damping ratio of 0.1
percent has been assumed for the each of the 8 modes. The
nominal eigenvalues along with damping and frequencies
are shown in Table 1. Assume that only modes no. 2 and 8
are to be considered for refinement, and that the frequency
of mode no. 2 is low by 10% and its damping ratio is off
by almost 25%, and the frequency of mode no. 8 is high by
12% and its damping ratio is off by almost 10%. Moreover,
assume that the mass matrix is perfectly known, such that
no refinements in the matrix is required. However, it is
desired to refine the damping and stiffness matrices, using
the proposed eigensystem assignment technique, such that
the frequencies and damping ratios of modes no. 2 and
8 of the refined system matches the identified values. No
identified eigenvectors are included, i.e., there is no need
for partial eigenvector assignment.

Assume that there is uncertainty in the elements of the
damping and stiffness matrices corresponding to degrees of
freedom, 1, 2, 7, and 8. The input/output influence matrices
(see Eq. (3)) were somewhat arbitrarily chosen as

LK =

2
66666664

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

3
77777775
; LD = 0:1 � LK (51)

to provide freedom for the appropriate elements of damping
and stiffness matrices to change.

The first objective was to decrease the natural frequency
of the second mode by 10% and increase its damping
ratio to 25% so that the first desired pair of closed-loop
eigenvalues was�1;2 = �0:228�0:8841j. First, symmetric
position and rate gain matrices were sought to reassign
the pair of eigenvalues. Following the procedure described
in the previous section, the gain matrices were computed
from the solution of system of quadratic equation given in
Eq. (49), except for no equations corresponding to mass
matrix refinements. The quadratic equations were solved
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using MATLAB’s6 nonlinear equation solver routine entitled
’FSOLVE’, which uses a Levenberg-Marquardt method. The
eigenvalues of the system, with the intermediate position
and rate gain matrices in place, are provided in Table 2.
This table indicates that the complex conjugate pair were
successfully reassigned to desired values. However, the
resulting refined system has an unstable pole on the real
axis. This is to be expected since, as mentioned earlier, the
symmetry of gain matrices does not typically guarantee the
stability of the system.

For the second step, the damping ratio in the eighth
mode of the system was to be increased to 10 %, while
its frequency was to be decreased by 12%, resulting in the
second pair of desired complex-conjugate eigenvalues to
be �3;4 = �1:3149 � 13:0835j. Following the sequential
approach outlined, first the pair of complex conjugate
eigenvalues were placed on the top left partition of the real
Schur form of the system using orthogonal transformations5.
Then, the gain matrices were defined such that the eigenpair
remain unchanged (see Eq. (37)) while the new pair of
eigenvalues were assigned. The cumulative position and
rate gain matricesGD andGK , which assign the two pairs
of complex conjugate eigenvalues, were computed to be

GD =

2
64
30:367 78:615 68:806 24:593
78:615 369:249 220:096 63:317
68:806 220:096 233:235 94:726
24:593 63:317 94:726 40:439

3
75

GK =

2
64
134:819 �26:937 �27:664 �81:395
�26:937 15:249 23:763 9:922
�27:664 23:763 38:679 6:733
�81:395 9:922 6:733 36:126

3
75

(52)
The eigenvalues of the system, with the position and rate
gain matrices in place, are provided in Table 3, where it
is observed that the two pairs of eigenvalues had been
successfully assigned to the identified values. Furthermore,
the resulting refined system is stable, although there were
no measures imposed to guarantee such stability. Also,
note that the remaining eigenvalues (those that were not
reassigned) have changed, some significantly. One could
make some of those eigenvalues invariant during refinement
by allowing more elements of the damping and stiffness
matrices to change. The refinements in the damping and
stiffness matrices are computed from Eq. (3). From these
equations, the refinements in the damping and stiffness
matrices, namely,�D and�K, are of the same order as the
matrices themselves. However, because of the structures of
the assumedLD andLK , only the elements corresponding
to degrees of freedom 1, 2, 7, and 8 are nonzero, and are
given below

�D1 = 0:01 �GD

�K1 = GK
(53)

whereGD andGK are given in Eq. (52).
As mentioned earlier, there are a number of ways of

guaranteeing that the refined system remains stable. One
of the proposed approaches was to take advantage of the
freedom beyond eigensystem assignment, and determine the
solution vectorp such that the gain matrices, representing
the refinements in the model, are dissipative. In the second
example, the same model refinement problem, as in the first

case, was considered with the exception that position and
rate gain matrices were constrained to be dissipative. The
position and rate gain matrices were computed from the
solution of the system of quadratic equalities, given by Eq.
(49), and quadratic inequalities, given by Eq. (34), except
for no equations corresponding to mass matrix refinements.
First, the gain matrices were determined to reassign the
eigenvalues of the second mode to its target values at
�1;2 = �0:228�0:8841j. The system of quadratic equalities
and inequalities were posed in the form of a minimax
problem and was solved using MATLAB’s minimax solver
routine entitled ’MINIMAX’. The eigenvalues of the system,
with the intermediate position and rate gain matrices in
place, are provided in Table 4. This table indicates that
the complex conjugate pair were successfully reassigned to
desired values. The remaining eigenvalues were all stable,
i.e., the resulting refined system was stable. This is to be
expected since the dissipative nature of the gain matrices
guarantees the stability of the system. Next, the second pair
of complex-conjugate eigenvalues was reassigned to�3;4 =
�1:3149 � 13:0835j. Following the sequential approach
outlined, first the pair of complex conjugate eigenvalues
were placed on the top left partition of the real Schur form
of the system using orthogonal transformations5. Then,
the gain matrices were defined such that the eigenpair
remain unchanged (see Eq. (37)) while the new pair of
eigenvalues were assigned. The cumulative position and
rate gain matricesGD andGK , which assign the two pairs
of complex conjugate eigenvalues, were computed to be

GD =

2
64
77:920 27:566 24:411 �60:682
27:566 46:150 22:419 12:532
24:411 22:419 63:469 6:453
�60:682 12:532 6:453 257:219

3
75

GK =

2
64

60:661 �32:170 3:756 �121:149
�32:170 42:725 �3:516 �7:936
3:756 �3:516 0:696 �1:421

�121:149 �7:936 �1:421 455:059

3
75

(54)
The eigenvalues of the system, with the position and rate
gain matrices in place, are provided in Table 5, where it
is observed that the two pairs of eigenvalues had been
successfully assigned to the identified values. Furthermore,
the resulting refined system is stable, as expected. Also,
note that the remaining eigenvalues (those that were not
reassigned) have changed, some significantly. Again, one
could make some of those eigenvalues invariant during
refinement by allowing more elements of the damping and
stiffness matrices to change. The refinements in the damping
and stiffness matrices are computed from Eq. (3), and are
given in Eq. (53), with the gain matrices from Eq. (54).

Comparisons of the refinements in each example
indicate that no conclusions can be made in regards to
the direction or magnitude of the computed refinements.
In these examples, the computed refinements in damping
matrix, for the second example, are typically lower than
those obtained for the first example. However, the situation
is reversed for the refinements in the stiffness matrix. This
may be attributed to the variability in the solutions of the
minimax optimization algorithms as well as the nonlinear
equation solvers, in the sense that they may converge to
different solutions depending on the starting points. In these
examples, the starting estimate for the solution vectorp
was randomly chosen, in each example. Conceivably, one

9
American Institute of Aeronautics and Astronautics



AIAA–98–4441

could attempt to exploit the freedom beyond eigensystem
assignment to minimize, in some sense, the norm of the
gain matrices in order to minimize the effective refinement
needed for partial model matching.

Concluding Remarks

This paper presented a novel approach for the
refinement of the dynamic model of flexible structures
using an eigensystem assignment technique. The approach
presumes that modal parameters, such as frequencies,
damping ratios, and mode shapes (at sensor locations),
have been identified for modes in the range of interest.
The proposed approach models the possible refinements
in the mass, damping, and stiffness matrices of the finite
element model in the form of a constant gain feedback with
acceleration, velocity, and displacement measurements,
respectively. The freedom to change model parameters,
as well as the relative degree of change desired in one
parameter with respect to the rest, is embedded in the
elements of the input and output influence matrices for the
various measurements. Once the elements of the input and
output influence matrices have been defined and fixed, the
problem of model refinement reduces to obtaining position,
velocity, and acceleration gain matrices, which reassign
a desired subset of the eigenvalues of the model, along
with partial mode shapes, from their baseline values to
those obtained from system identification test data. Hence,
the problem of mode refinement becomes a problem of
eigensystem assignment with output feedback. The proposed
procedure assigns one self-conjugate pair of closed-loop
eigenvalues at each step using symmetric (or symmetric and
dissipative) output feedback gain matrices, while ensuring
that the eigenvalues assigned in the previous steps are
not disturbed. The advantages of the proposed approach
are that (a) it provides a systematic and computationally
tractable means for exact model refinement, i.e., the
refined model would match the identified values exactly,
without dependence on a nonlinear optimizer; and (b) it
characterizes the freedom beyond model refinement for
possible exploitation, which is inherent in the elements of
the input and output matrices, as well as the elements of
the position, velocity, and acceleration gain matrices. This

freedom may be exploited to minimize the sensitivity of
the refined model, to minimize global or local changes to
the system matrices, etc. A numerical example, involving
finite element model refinement for a structural testbed at
NASA Langley (CSI Evolutionary Model) was presented to
demonstrate the feasibility of the proposed approach.
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Table 1. Nominal Eigenvalues

Open-loop
Eigenvalues

Damping
Ratio

Frequency
(rad/sec)

-0.0008� 0.8180j 0.0010 0.8180

-0.0008� 0.8301j 0.0010 0.8301

-0.0009� 0.8565j 0.0010 0.8565

-0.0011� 1.1308j 0.0010 1.1308

-0.0011� 1.1401j 0.0010 1.1401

-0.0019� 1.9100j 0.0010 1.9100

-0.0107� 10.7278j 0.0010 10.7278

-0.0149� 14.9425j 0.0010 14.9425

Table 2. Eigenvalues of Refined
System with Intermediate Gains

Closed-loop
Eigenvalues

Damping
Ratio

Frequency
(rad/sec)

-0.5018� 0.6423j 0.6156 0.8151

-0.0068� 0.8404j 0.0081 0.8404

-0.1148� 0.8554j 0.1330 0.8630

-0.0068� 0.8905j 0.0076 0.8906

-0.2283� 0.8841j 0.2500 0.9131

-0.0222� 10.6262j 0.0021 10.6262

-0.3956� 14.4418j 0.0274 14.4472

6.2235 -1.0000 6.2235

-19.3636 1.0000 19.3636

Table 3. Eigenvalues of Refined System

Closed-loop
Eigenvalues

Damping
Ratio

Frequency
(rad/sec)

-0.4955� 0.5715j 0.6551 0.7564

-0.1219� 0.8600j 0.1403 0.8685

-0.0054� 0.8813j 0.0062 0.8813

Closed-loop
Eigenvalues

Damping
Ratio

Frequency
(rad/sec)

-0.2283� 0.8841j 0.2500 0.9131

-0.1458� 4.9129j 0.0297 4.9151

-0.1640� 12.8917j 0.0127 12.8927

-1.3149� 13.0835j 0.1000 13.1494

-5.3957� 15.7620j 0.3239 16.6600

Table 4. Eigenvalues of Refined
System with Intermediate Gains

Closed-loop
Eigenvalues

Damping
Ratio

Frequency
(rad/sec)

-0.0025� 0.8346j 0.0029 0.8346

-0.0137� 0.8636j 0.0158 0.8637

-0.2283� 0.8841j 0.2500 0.9131

-0.2313� 1.1556j 0.2002 1.1322

-0.0127� 1.9112j 0.0066 1.9113

-2.3693� 4.8741j 0.4372 5.4195

-0.0633� 10.8268j 0.0058 10.8270

-0.3471� 14.8576j 0.0234 14.8616

Table 5. Eigenvalues of Refined System

Closed-loop
Eigenvalues

Damping
Ratio

Frequency
(rad/sec)

-0.0023� 0.8454j 0.0027 0.8454

-0.0094� 0.8707j 0.0108 0.8707

-0.2283� 0.8841j 0.2500 0.9131

-0.3734� 1.1556j 0.2943 1.2686

-0.1416� 6.3839j 0.0222 6.3855

-1.3149� 13.0835j 0.1000 13.1494

-0.9821� 13.2494j 0.0739 13.2857

-0.7522� 14.4382j 0.0520 14.4577
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Figure 1. Schematic of Phase 2 CEM
Structure, With Location of 8 Control Stations.
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