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Abstract

BLISS is a method for optimization of engineering
systems by decomposition. It separates the system
level optimization, having a relatively small number of
design variables, from the potentially numerous sub-
system optimizations that may each have a large num-
ber of local design variables. The subsystem optimiza-
tions are autonomous and may be conducted concur-
rently. Subsystem and system optimizations alternate,
linked by sensitivity data, producing a design im-
provement in each iteration. Starting from a best guess
initial design, the method improves that design in it-
erative cycles, each cycle comprised of two steps. In
step one, the system level variables are frozen and the
improvement is achieved by separate, concurrent, and
autonomous optimizations in the local variable subdo-
mains. In step two, further improvement is sought in
the space of the system level variables. Optimum sen-
sitivity data link the second step to the first. The
method prototype was implemented using MATLAB
and iSIGHT programming software and tested on a
simplified, conceptual level supersonic business jet
design, and a detailed design of an electronic device.
Satisfactory convergence and favorable agreement with
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the benchmark results were observed. Modularity of
the method is intended to fit the human organization
and map well on the computing technology of concur-
rent processing.

0. Introduction

Optimization of complicated engineering systems by
decomposition is motivated by the obvious need to dis-
tribute the work over many people and computers to
enable simultaneous, multidisciplinary optimization. It
is important to partition the large undertaking into
subtasks, each small enough to be easily understood
and controlled by people responsible for it. This im-
plies granting people in charge of a subtask a measure
of authority and autonomy in the subtask execution,
and allowing human intervention in the entire optimi-
zation process.

Reconciliation of the need for subtask autonomy with
the system level challenge of “everything influences
everything else” is difficult. Each of the leading MDO
methods that have evolved to date (survey papers:
Balling and Sobieszczanski-Sobieski, 1996; and Sobi-
eszczanski-Sobieski, J., and Haftka, R. T, 1997) tries to
address that difficulty in a different way. In the system
optimization based on the Global Sensitivity Equations
(GSE) (Sobieszczanski-Sobieski, J. 1990, Olds, J.
1992, Olds, J. 1994), the partitioning applies only in
the sensitivity analysis while optimization involves all
the design variables simultaneously. The Concurrent
SubSpace Optimization method provides for separate
optimizations within the modules (Sobieszczanski-
Sobieski, J. 1988, Renaud and Gabriele, 1991, 1993,
and 1994; Stelmack and S. Batill, 1998) but handles all
the design variables simultaneously in the coordination
problem. The Collaborative Optimization method
(Braun and Kroo, 1996; Sobieski and Kroo, 1998) also
enables separate optimizations within the modules,
each performed to minimize a difference between the
state and design variables and their target values set in
a coordination problem. This problem combines the
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system optimization with the system analysis, therefore
its dimensionality may be quite large.

Most of the above method implementations had to
overcome difficulties with integration of dissimilar
codes. This has stimulated use of Neural Nets and Re-
sponse Surfaces as means by which subdomains in the
design space may be explored off-line and still be rep-
resented to the entire system. Unfortunately, effective-
ness of this approach is limited to approximately 12 to
20 independent variables, hence, it is best suited for the
early design phase. Consequently, a clear need remains
for a method applicable in later design phases when
the number of design variables is much larger. Meth-
ods that build a path in design space fit that require-
ment. Ultimately, one needs both domain-exploring
methods and path-building methods, enhanced with
seamless ‘gear-shifting’ between the two.

Motivated by the above state of affairs, BLISS attacks
the problem by performing an explicit system behavior
and sensitivity analysis using the GSE, autonomous
optimizations within the subsystems performed to
minimize each module contribution to the system ob-
jective under the local constraints, and a coordination
problem that engages only a relatively small number of
the design variables that are shared by the modules.
Solution of the coordination problem is guided by the
derivatives of the behavior and local design variables
with respect to the shared design variables. These de-
rivatives may be computed in two different ways, giv-
ing rise to two versions of BLISS.

In either version, BLISS builds a gradient-guided path,
alternating between the set of disjointed, modular de-
sign subspaces and the common system-level design
space. Each segment of that path results in an im-
proved design so that if one starts from a feasible state,
the feasibility in each modular design subspace is pre-
served while the system objective is reduced. In case of
an infeasible start, the constraint violations are reduced
while the increase of the objective is minimized. Be-
cause the system analysis is performed at the outset of
each segment of the path, the process can be termi-
nated at any time, if the budget and time limitations so
require, with the useful information validated by the
last system analysis. In addition to enabling complete
human control in the subspace optimization, BLISS
allows the engineering team to exercise judgment, at
any point in the procedure, to intervene before com-
mitting to the next successive pass.

BLISS has been developed in a prototype form and has
been successfully demonstrated on the small-scale test

cases reported herein.
1. Netation

BB - black box, a module, in the mathematical model
of a system.

BBA(Y,(Z,X,)) - analysis of BB, to compute Y, for
given Z and X,

BBOF, - BB Objective Function computed in BB,

BBOPT.(X.,0.,G;) - optimization in BB, defined by
eq.(2.1/9)

BBOSA(X; opi.Z,Y,s) - analysis of BB optimum for
sensitivity to parameters

BBSAD(Y,,(Z,X,,Y, ;) - sensitivity analysis of BB, to
compute its output derivatives w.r.t. Z, X, and Y,

D(V1,V2) - total derivative dV1/dV2

d(V1,V2) - partial derivative dV1/dV2;
D(), and d() dimensionality depends on the dimen-
sionalities of V1 and V2:
V1 and V2 - are both scalars, then D and d are
scalars
V1 vector, V2 scalar, then D and d are vectors
V1 scalar, V2 vector, then D and d are vectors
V1 vector, V2 vector, then D and R are matrices

G, - vector of constraints active at the constrained
minimum, length NG,

G; - vector of the constraint functions, g, local to BB, ,
g+ < 0 is a satisfied constraint

Gy, - constraints in a BB that have a stronger depend
ence on Y and Z, than on X

GSE - Global Sensitivity Equations (Sobieszczanski-
Sobieski, 1990); GSE/OS - GSE/Optimized Sub-
systems.

I - identity matrix.

L - vector of the Lagrange multipliers corresponding to
G,, length NG,

LP - Linear Programming

NB - the number of BBs in the system

NLP - NonLinear Programming

opt - subscript denotes optimized quantity

P - vector of parameters, p;, kept constant in the proc-
ess of finding the constrained minimum, length
NP.

SA((P,Z,X),Y) - system analysis; a computation that
outputs Y for a system defined by P, Z, and X

SOF - System Objective Function computed in one of
the BBs

SOPT(Z,®) - system objective optimization defined by
eg. (2.2.3/1)

SSA(D(Y,(Z,X)) - system sensitivity analysis to com-
pute sensitivity of the system response Y w.r.t. Z
and X

TOGW - take-off gross weight

T - superscript denotes transposition.
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X, - vector of the design variables x;; , length NX,,
these variables are local to BB,; X without sub-
script - a vector of all concatenated X, , length NX

XL, XU - lower and upper bounds on X, side-
constraints.

Y, - vector of behavior (state) variables output from
BB,, these are the coupling variables; an element
of Y, is denoted y;;; some of y;; are routed as in-
puts to other BBs, and may also be routed as out-
put to the outside; the Y, length is NY,; Y without
subscripts - a vector of all concatenated Y., length
NY

Y. - vector of variables input to BB, from BB, these
are the coupling variables; an element of Y, is de-
noted y;;; note that by this definition Y, is a sub-
set of Y, vector length NY,

Z - vector of the design variables z, that are shared by
two or more BBs, these are the system-level vari-
ables; length NZ

0 - subscript denotes the present state from which to
extrapolate, or the optimal state.

Z1., ZU - lower and upper bounds on Z, side-
constraints

A - increment

AZ1., AZU - move limits

¢, - the local objective function in BB,

@ - the system objective function equated to one, par-
ticular Yii

2. The Algorithm

In this section, the symbols defined in Notation are
used in a shorthand manner without repeating their
definitions.

z X,

— 1 O
Y21

4 Y.
2 3

Figure 1: System of Coupled BBs

| | %

23

Y3.2

The algorithm is introduced using an example of a
generic system of three BBs, as shown in Figure 1.
Three is a number small enough for easy conceptual
grasp and compact mathematics, yet large enough to
unfold patterns that readily generalize to larger NB.
Even though the system in Figure 1 is generic, it may
be useful to bear a specific example in mind. Let it be
an aircraft so that:

3

BB1 - performance analysis

BB2 - aerodynamics

BB3 - structures

@ - maximum range for given mission characteristics

Y, - includes the acrodynamic drag; Y, ;- includes the
structural weight; Y ; - includes Mach number;
Y3, - includes TOGW; Y, 3 - includes the struc-
tural deformations that alter the aerodynamic
shape; Y3, - includes the aerodynamic loads

£, - a noise abatement constraint on the mission pro-
file; g, - limit of the chordwise pressure gradient;
g3, - allowable stress

X1~ cruise altitude; X, ; - leading edge radius; x3; —
sheet metal thickness in the wing skin panel No.
138

z; - wing sweep angle; z, - wing aspect ratio; z; - wing
airfoil maximum depth-to-chord ratio; z, - loca-
tion of the engine on the wing

The algorithm depends on the availability of the de-
rivatives of output with respect to input for each BB.
That assumes the differentiability of the BB internal
relationships to at least the first order. It is immaterial
how the derivatives are computed, finite differencing
may always be used, but it is expected that in most
cases one will utilize one of the more efficient analyti-
cal techniques (Adelman and Haftka, 1993).

The algorithm comprises the system analysis and sen-
sitivity analysis, local optimizations inside of the BBs
(that includes the BB-internal analyses), and the sys-
tem optimization. We will not elaborate on SA beyond
pointing out that it is highly problem-dependent, and
likely to be iterative if there are any non-linearities in
the BB analyses. Each pass through the BLISS proce-
dure improves the design in two steps: first by concur-
rent optimizations of the BBs using the design vari-
ables X and holding Z constant; and next, by means of
a system-level optimization that utilizes variables Z.
We begin with the BB-level optimization.

2.1. BB-level (discipline or subsystem)
optimizations.

The basis of the algorithm is the formulation of an
objective function unique for each BB such that mini-
mization of that function in each BB results in the
minimization of the system objective function. To in-
troduce that formulation let us begin with the system
objective function (SOF). The SOF is computed as a
single output item in one of the BBs; without loss of
generality we assume that it is BB, so that

D=y, @
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is one of the elements of Y.

Total derivatives of Y w.r.t. x,;, D(Y, X;), are com-
puted according to Sobieszczanski-Sobieski, 1990, by
solving a set of simultaneous, algebraic equations
known as Global Sensitivity Equations, GSE, (see Ap-
pendix, Section 1, for details) for a particular x,;

[A] {D(Y.xc)} = {d(Y, )} )
where A is a square matrix, NYxNY, composed of
submatrices forming this pattern

1 Al,2 A1,3
A2,1 I A2,3
Az |Agp | T

3

where I stands for identity matrix, NYxNY,, and A,
are matrices of the derivatives that capture sensitivity
of the BB, output to input. For example

Azz = -[d(Y2,Y3)], NY,xNY;
A3z =-[d(Y5,Y7)], NY3xNY, )
One should note that eq. 2 can be efficiently solved for
many different x.; using techniques available for linear
equations with many right-hand sides.

Having D(Y,x,;) computed from eq. 2 for all x,;, we
can express @ as a function of X by the linear part of

the Taylor series

@ =y = (y190+ D(y1 X1 )'AX, +

D(y15 X2)'AXz + Dy, Xa)'AX;  (5)
where D-terms are vectors of length NX, .
We see from eq. 5 that
A® = D(y1,X1) X, + D(y1,,X;)"AX; +
D(y1,X3) 'AX; (6)

the three terms showing explicitly the contributions to
of the local design variables from each of the three
BBs.

It is apparent that to minimize A® we need to charge
each BB with the task of minimizing its own objective.
Using BB, as an example, objective ¢ is

$2=D(yi; XZ)TAXZJ ,j=1->NX, )

4

The above equations state mathematically the fun-
damentally important concept that in a system op-
timization the contributing disciplines should not
optimize themselves for a traditional, discipline-
specific objective such as the minimum aerodynamic
drag or minimum structural weight. They should
optimize themselves for a ‘synthetic” objective
function that measures the influence of the BB, de-
sign variables X, on the entire system objective
function,

Another way to look at it is to observe that, in long-
hand

$2= D(Y14 X21)'AXs1 + D(y1 X22) AX3 5 +...

+ D(Y1, X2)) ' AXpj + ..., j = 1--->NX, (8)
so it may be regarded as a composite objective function
commonly used in multiobjective optimization. One
may say, therefore, that in a coupled system the local
disciplinary or subsystem optimizations should be
multiobjective with a composite objective function. The
composite objective should be a sum of the local design
variables weighted by their influence on the single ob-
jective of the whole system. It should be emphasized
that this is true also in that particular BB, where @ is
being computed. In the aircraft example it is ® = y;; in
BB, according to eq. 1. However, the BB, optimization
objective is not ¢, = y;;. Instead, it is ¢; from an equa-
tion analogous to eq.8.

The local optimization problem may be stated formally
for BB,

Given: X5, Z,and Y51, Yu5 ©)
Find: X3 ; length NX,

Minimize: ¢, = D(y;,X,)"AX,

Satisfy: G, <0, including side-constraints

Incidentally, we adhere to the convention which calls
for minimization of the objective function. If the appli-
cation requires that function be maximized, as it does
in the example of aircraft range, we convert the objec-
tive, e.g., ® = - (range).

The optimization problem for BB, , and BB; are anal-
ogous. All three problems being independent of each
other may be solved concurrently. This is an opportu-
nity for concurrent engineering and parallel process-
ing.

By solving eq. 9 for all three BBs, we have improved
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the systemn because, according to eq. 5 and 6, we have
reduced @ by A®D, while satisfying constraints in each
BB.

2.2. System-level optimization.

So far we have improved the system by manipulating X
in the presence of a constant Z. We can score further
improvement by exploiting Zs as variables. To do so
we need to know how Z influences @ = y; ;. That is, we
need D(yl J,Z).

At this point, the BLISS algorithm forks into two al-
ternatives, termed BLISS/A and BLISS/B.

2.2.1. BLISS/A

This version of BLISS computes the derivatives of Y
with respect to Z by modified GSE, eq.(2.1/2) (equa-
tions from other sections are cited in (), the section
number given before the /). The GSE modification ac-
counts for the fact that optimization of a BB turns its X
into a function of Y and Z that enter that particular BB
as parameters. The modification leads to a new gener-
alization of GSE that takes the following form

[M]{D(Y,zk)} _ {d(Y, zk)}
D(X,z,) d(X,z,)
termed GSE/OS for GSE/Optimized Subsystems. The
GSE/OS yields a vector D(Y,z,) and D(X,z,), and be-
cause @ is one of the elements of Y, ® = y; ;, we get the
desired derivative D(®,z,). Derivation and details of
the GSE/OS structure, including the definition of the
matrix M, are in Section 2 of the Appendix. At this
point it will suffice to say that the matrix of coefficients
in GSE/OS is populated with d(Y,,Y;), d(Y.X,), and

d(X;,Y,). These terms and the RHS terms of d(Y,z)
and d(X,z) are obtained from the following sources

0

*d(Y5Yy), d(Y.. X)), and d(Y,z)
¢ d(X;,z), d(X,,Y)

from BBSA
--------------------- from BBOSA
The terms d(X,z,) and d(X,Y,) are the derivatives of
optimum with respect to parameters that, in principle,
may be obtained by differentiation of the Kuhn-Tucker
conditions, e.g., an algorithm described in Sobieszc-
zanski-Sobieski et al, 1982. That approach, however,
requires second order derivatives of behavior, too
costly in most large-scale applications. Therefore, an
approximate algorithm adapted from Vanderplaats and
Cai, 1986, is given in Section 3 of the Appendix. In
that algorithm, parameters are perturbed by a small

5

increment, one at a time, and the BB optimization is
repeated by Linear Programming (LP) starting from
the optimal point. Derivatives of optimal X and Y
with respect to parameters are then computed by finite
differences.

2.2.2. BLISS/B

This version of BLISS avoids calculation of d(X,zy)
and d(X.,Y,) altogether by using an algorithm that
yields D(®,P), where P includes both Y and Z. The
algorithm, described in literature (e.g., Barthelemy and
Sobieszczanski-Sobieski, 1983) is based on the well-
known notion that the Lagrange multipliers may be
interpreted as the prices, stated in the units of ®, for
the constraint changes caused by incrementing p;. For a
general case of the objective F=F(P) and G,= G,(P), the
algorithm gives the following formula for D(F,P),

D(F,P),=d(F,P) + L"d(G,,P)

To use the above in BLISS, consider that in P we have
an independent Z but Y=Y(Z) so that the terms d()
require chain-differentiation. Hence, the above general
formula tranforms to

D(y12Z)," = (L'd(Go,Z)); + (LT d(G,,2)); +
(L'd(G,,2))s + [(LT d(Go, )1+ (LT (G, Y)),
+(LTd(G,,Y)); I(D(Y,2)) + D(v1;,2)" (1)

where L is the vector of Lagrange multipliers and ( ),,
()2, and ( ); identify the BBs 1, 2, and 3.

The terms in the above equation originate from the
following sources:

* d(G,,Z) and d(G,,Y) - BBSA performed on iso-
lated BB,

L - obtained for BB, at the end of BBOPT

* D(Y,Z) - from GSE in SSA

* D(y1;,Z) — the column corresponding to y; ;in the
above matrix D(Y,Z)

BLISS/B is substantially simpler in implementation
than BLISS/A and it eliminates the computational cost
of one LP per parameter Y and Z. Optimizers that yield
L as a by-product of optimization are available for use
in BBOPT, or L may be obtained as described in
Haftka and Gurdal, 1992.

2.2.3. Optimization in the Z-space.

Once D(y, ;,Z) have been computed from either eq.
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(2.2.1/1) or as D(y1,Z), from eq. (2.2.2/1), we can
further improve the system objective by executing the
following optimization, using any suitable optimizer

Given: Z and @, ¢))
Find: AZ

Minimize: @ = &y+ D(y;;,Z)"AZ

Satisfy: ZL.<Z + AZ <7U; AZL. £ AZ < AZU

Where @ is inherited from the previous cycle SA for
X and Z (initialized if it is the first cycle). It is rec-
ommended to handle the Z constraints by means of a
trust-region technique, e.g., Alexandrov 1996. In the
above, term D(y;;, Z) is a constrained derivative that
protects G, = 0 in all BBs. Therefore, the optimization
is unconstrained except of the side-constraints and
move limits.

However, some BBs may have constraints that depend
on Z and Y more strongly than on X (in the extreme
case some constraints may not be functions of X at all,
only of Y and Z). Such constraints, denoted Gy,, may
be difficult (or impossible) to satisfy by manipulating
only X in BBOPT. To satisfy them, one must add to the
Z-space optimization in eq.1 their extrapolated values

Gy," = Gyo" + (d(Gye,Z) +

d(G,= Y)D(Y,Z))"AZ < 0 @)
where d(Gy,,Z), and d(G,,,Y) are obtained from BBSA.
In this instance, the Z-space optimization becomes a
constrained one.

3. Iterative Procedure

The two operations, the local optimizations in the BBs
and the system-level optimization, described in Sec. 2,
result in a new system, altered because of the incre-
ments on X and Z. This means that inputs to and out-
puts from SA, BBA, BBSA, SSA, BBOPT, BBOSA
(BLISS/A), and SOPT all need to be updated, and the
sequence of these operations repeated with the new
values of all quantities involved, including new values
of all the derivatives because they would change if
there were any nonlinearities in the system (as there
usually are).

In a large-scale application where execution of each
BLISS cycle may require significant resources and
time, the engineering team may wish to review the
results before committing to the next cycle. That inter-

6

vention may entail a problem reformulation, such as
overriding the variable values, deleting and adding

variables, constraints, and even BBs.

X=X, + AX,
nitialize X & Z ———> SA o2 = Zomr
Z=Z o+ Ager
¢ eq. (A1-A6)
STOP EVALUATE
o <«————— TERMINATE
CRITERIA
eq. (A1-A6) R 2 » eq. (A1-A6)
) v
BBSA BBSA
BB, BB,
a(Y,Y,) ¥ «z,,;,f
d(Y,X) da(Y,,
d(c',,Y, 5 SSA d(c’,,v’,,)
d(G,Z) eq. (2.172) d(G,T)
¥
) DEY.X) 3
BBOPT BBOPT
BB, BB,
eq. (2.1/9) €q.(2.1/9)
AXopr
D(@,2)
eq. (2.2.21)
SOPT
€q. (22.3/1,2)
] o
UPDATE X=Xo+AXoer
VARIABLES 2220+ Ao

Figure 2: BLISS/B Flowchart

Thus, the following procedure emerges, illustrated also
by a flowchart in Figure 2 for BLISS/B with the
BLISS/A operations, if different, noted in [ ].

0. Initialize X & Z

1. SA to get Ys and Gs; this includes BBAs for all
BBs.

2. Examine TERMINATION CRITERIA, exercise
judgment to override the results, modify the problem
formulation, and CONTINUE or STOP.

3. BBSA to obtain d(Y,X), d(Y,.Ys), d(G,Z), and
d(G)Y), and SSA, eq. (2.1/2), to get D(Y,X) [and
D(Y,Z)]; Here is an opportunity for concurrent proc-
essing.

4. BBOPT for all BBs, eq. (2.1/9) using ¢ formulated
individually for each BB (eq. (2.1/6, 7)), get Oope and
AXp; obtain L for G, [skip L]. Here is an opportunity
for concurrent processing.

5. Obtain D(®,Z) as in eq. (2.2.2/1). [Execute BBOSA
to obtain d(X,Z) and d(X,Y), and form and solve
GSE/OS (Appendix, Section 3) to generate D(Y,Z)].
Here is an opportunity for concurrent processing.

6. SOPT to get AZ,,, by eq. (2.2.3/1 and 2) herein.
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7. Update all quantities, and repeat from 1.
X=Xo +AXop; Z=Z+ AZ,;

Note: Termination is placed as #2 after SA to ensure
that the full analysis results document the final system
design, as opposed to having it documented only by the
extrapolated quantities. Also, at this point the engi-
neering team may decide whether to intervene by
modifying the variable values, and adding or deleting
the design variables and constraints.

When started from a feasible design, the procedure will
result in an improved system, while the local con-
straints are kept satisfied within extrapolation accu-
racy, even when terminated before convergence.

In case of an infeasible design start, the improvement
will be in the sense of reductions in the constraint vio-
lations, while the objective may exhibit an increase, at
least initially. The procedure achieves the improvement
by virtue of optimization alternating between the do-
main of NB X-spaces (Step #4) and the single Z-space
(Step #6).

Twist (X.P)
bd
&

085

P = Rosulmnt Lift

X = Wingbox X-section

Figure 3: Polynomial Representation of Wing Twist

Caveat: because in BLISS/B the extrapolation of @ in
eq. (2.2.3/1) is based on the Lagrange multipliers in
eq. (2.2.2/1), its accuracy depends on the BBOPT
yielding a feasible solution, and on the active con-
straints G, remaining active for updated Z. If some
constraints leave the active set G,, or new constraints
enter, a discontinuous change of the extrapolation error
may result. For example, consider the wing aspect ratio
AR as a Z-variable and suppose that for AR = 3 it is
the stress due to the wing bending that is one of the
active constraints in the structures BB. If optimization
in the Z-space took the design to AR = 4, the next cy-
cle may reveal that the stress constraint is satisfied but
a flutter constraint becomes critical. Past experience
(Sobieszczanski-Sobieski, 1983) shows that this dis-

continuity is likely to slow, but not to prevent, the pro-
cess convergence, and may be controlled by adjusting
the move limits.

4, Numerical Tests and Examples

BLISS/A was tested on a sample of test problems from
Hock and Schittkowski, 1981, and on a design of an
electronic package. BLISS/B was exercised on the lat-
ter, and also on a very simplified aircraft configuration
problem. Both versions of BLISS performed as in-
tended in all of the tests. The sole purpose of these
initial numerical experiments was to test and to dem-
onstrate the BLISS procedure logic and data flow,
therefore, the BBs were merely surrogates of the nu-
merical processes that need to be used in real applica-
tions.

4.1, Aircraft Optimization

The aircraft test was an optimum cruise segment of a
supersonic business jet based on the 1995-96 AIAA
Student Competition. This problem was selected be-
cause of its available data base and the availability of
the black boxes written in Visual Basic in form of Ex-
cel spreadsheets. The supersonic business jet was mod-
eled as a coupled system of structures (BB,;), aerody-
namics (BB,), propulsion (BBs;), and aircraft range
(BB,). All the disciplines were represented by modules
comprising an analysis level typical for an early con-
ceptual design stage.

= .'.l,'—,.
tie,h, M, AR, A, S

Range
A-wing sweep
é A-taper ratio
Figure 4: Data Dependencies for Range Optimization
The aircraft optimization was a maximization of ther-

ange computed through the Breguet range equation.
For testing purposes, additional design and state vari-
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ables were introduced in BBs 1 through 3, and func-
tional relationships not present in the original BBs
were supplied to reflect what is commonly known
about the typical functions involved in design. For ex-
ample, stress is expected to fall as a reciprocal of the

chosen by varying the six design variables that are not
arguments in the polynomial functions. The choice of
initial values for variables that are arguments of the
polynomial functions was limited due to the nature of

. . num \ den Y x C T t/c
increase of the skin thickness in a wing box. Such re- W, SoTTa6l 171536 001981 0.15744] 0.12714
lationships were represented by polynomial functions. We 0 0 0 0| 0.72626
Lo R ) 20.03342] 0.19971] 3.31E-15| -1.73E-14] -2.10E-14
One plot of such a function is shown in Figure 3, por- L 001146 171536 0.01981[ -0.15744]_ 0.12714
traying the wing twist as a function of the wing box D -4.19E-05| _0.00581| 0.12457] -0.00049| 0.68108
. . . . ) 00115 1.7095] _-0.1046] -0.15694] -0.54835
cross-sectional dimensions scale factor and the wing SFc T o8E-20| 5.05E-18] B.70E17] 0.08544 5
lift. W 4.40E-05] 0.0061] 0.13083| -1.03986] 0.71531
ESF 4.19E-05| _0.00581| _0.12457| -0.99059] 0.68108
var \ cycle* 1 2 3 4 5 R .0.00077| -0.12692] -0.12581] -0.07299| 0.10115
Range (SSA) 535.79 1581.67 3425.35| 3961.41| 3963.98 num \ den h M AR Sweep St
Extpl. Error -535.79] -536.67{ -431.63 -56.26 -3.43
W 0.33931] 0.31958] 0.08208]  0.2537| 055182
BB1 Extpl. 17.17 -0.16 23.26 -0.86 0.00 W, 0 o 035043 o To9211
BB2 Extpl. 16.85 0.00 0.00 0.00/ 0.00 ® 1.03E-13| -6.16E-14] -0.10766] 3.77E-14] -0.10766
BB3 Extpl. 26.00f 11092] -7684 0.00] _ 0.00 L -0.33931] _0.31958] _0.08208| _ 0.2537|  0.55182
X Extpl. 60.02] 110.75] -80.10) -0.86] _ 0.00 D 2.1339] _2.00984] 3.37E-06] -0.83983] 0.99838
Z Extpl. 449.19( 1301.30] 559.90 0.00; _ 0.00 LD 1.84108] -1.6507] 0.08207| 1.10064| -0.43675
Range (Extpl.) | 1045.00] 2963.72] 3905.15| 3960.55| 3963.98 SFC 0.12046]0.05555] 2.31E-17| -1.86E.16 0
L2 0.25] 0.14951] 0.17476| 0.25776| 0.38757 W, 224115 _2.11086] 3.54E-06] -0.88204 1.04857,
x 1 0.75 0.75 0.75 0.75 ESF 2.1339] 2.00984] 3.37E-06] -0.83983| 0.99838
C 1 0.75 0.75 0.75 0.75 R 2.07616] -1.04784] -0.39618] 0.82904] 0.15535|
T 0.5] 0.1676] 0.20703| 0.15624] 0.15624]
tic 0.05 0.06 0.06 0.06 0.06 . L
h(ft) 45000 54000 60000 60000] 60000 Table 2: Normalized Y Derivatives w.r.t. X and Z
™M 16 1.4 1.4 14 1.4
AR 55 44 3.3 2.5 2.5 ) ) e
AC) 55 o 70 70 70| the polyn.oxfual formulation. This l}nntatlon is not a
S (D) 1000 1200 1400 1500 Tsoo| characteristic of the BLISS method itself, as the poly-

*One cycle is one pass through the BLISS procedure
Table 1: A/C Results for 20% Move Limit

Section 4 of the Appendix defines the BBs in this ex-
ample by their input and output variables, and by the
functions that link output to input. Table Al also iden-
tifies local constraints and side constraints. Note that
BB, contains a constraint that does not depend on its X
or Y input, thus the Z-space optimization is a con-
strained one, per eq. (2.2.3/1 & 2). Side constraints on
Z were judiciously selected to guard against conditions
not accounted for in the BBAs. For example, the lower
bound of 2.5 on aspect ratio stemmed from the sub-
sonic performance considerations.

The BBs are coupled by the output-to-input data
transfers (design structure matrix) depicted in Figure 4.
Note that BB, is an analysis-only module and does not
feedback any data to other BBs.

This test was conducted entirely using MATLAB 5 and
its Optimization Toolbox. To establish a benchmark,
the system was first optimized using an all-in-one ap-
proach in which the MATLAB optimizer was coupled
directly to SA and saw no distinction between the X
and Z variables. Next, the test case was executed using
BLISS/B, starting at different infeasible initial points

nomial functions would not be required in a large scale
optimization problem. With the move limits ranging
from 10 to 70 %, the procedure convergence was sat-
isfactory through the move limits of 60% for all initial
points tested. However, in nearly all cases, no addi-
tional improvement in convergence rate was recorded
for move limits greater than 20%. For instance, the
objective function was advanced to within 1% of the
benchmark in 5 passes for move limits 20 and 30%.
Onset of an erratic behavior was observed with move
limits increased past 60%, the procedure converged or

diverged dependent on the starting point.
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Table 1 displays a sample of typical results for the
move limits value of 20%. It shows that the initial de-
sign range was extremely poor, only 536 nm. BLISS/B
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Figure 6: Range Sensitivities (1% cycle)

improvements advanced the range to 3964 nm. The
range converged monotonically, although in some
cases small amplitude oscillations were observed.
Comparison of the extrapolated and actual values of
the objective and constraints shows reasonable accu-
racy and conservatism of the extrapolations. The opti-
mal values of the design variables reflect numerous
tradeoffs typical for aircraft design. For instance, opti-
mal t/c resulted, in part, from a trade-off between the
wave drag and structural weight. Table 2 shows nor-
malized (logarithmic) derivatives of all Ys , including
the range, w.r.t. all the X and Z variables, sampled in
Cycle 1 to illustrate sensitivity of the system solution to
design variables.
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Figure 7: BB and System Contributions to Range

Figure 5 illustrates the range histogram, and depicts
the extrapolation error as being effectively controlled
by the move limits. Range sensitivities to X and Z
variables are shown in Figure 6. As expected, altitude
and Mach number have the largest effect on the objec-
tive function, while taper ratio has the smallest.

Figure 7 shows the individual BB and system contri-
butions to the range objective in each cycle. Here it is
observed that, in this particular case, the contribution
of system level variables is significantly larger than
that of the local variables in the extrapolation of range.

This test case was also implemented in a software
package for system analysis and optimization called
iSIGHT (iSIGHT, 1998). The iSIGHT and MATLAB
results cross-check was completely satisfactory.

4.2 Electronic Package optimization

The electronic packaging was introduced as an MDO
problem in Renaud, 1993. Its electrical and thermal
subsystems are coupled because component resistance
is influenced by operating temperatures and the tem-
peratures depend on resistance.

(X1,X2,X3,X4)

I
-

Figure 8: Electronic Packaging Data Dependencies

(X5, X6,X17,X3)
Re sistance

(Y2,Y3)
[ m

Temperature
(Y11,Y12)

The objective of the problem is to maximize the watt
density for the electronic package subject to con-
straints. The constraints require the operation tem-
peratures for the resistors to be below a threshold tem-
perature and the current through the two resistors to be
equal. The system diagram in Figure 8 shows the data
dependencies for two BBs, representing electrical re-
sistance analysis and thermal analysis. As Figure 8
indicates, there are no “natural” Z’s in this case.
Therefore, Z’s were created as targets imposed on each
of the Y’s and the BBOPT’s were required to match
the Y values to those Z targets (similar as it is done in
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the Collaborative Optimization method). Details of the
electronic packaging problem may be found in Padula,
1996.

This test case was implemented in iSIGHT using
BLISS/A and B. A benchmark result was obtained by
executing an all-in-one optimization from various
starting points (“A-in-O” column). BLISS/A and B
were started from the same points. Table 4 displays the
benchmark and the BLISS/A and B results as showing
a good agreement. Table 4 also indicates a comparison
of the computational labor (the “Work” column) meas-
ured by the number of BB evaluations necessary to
converge the fixed-point iterations in BBAs and in SA,
all repeated as needed to compute derivatives by finite-
differences in a gradient-guided optimization. As Table
4 shows, the BLISS/B computational labor was sub-
stantially lower than the benchmark case and that of
BLISS/A was between the two.

initial Design | Init. Des. Max | Final Design | Fin. Des. Max

Method | Case| Objective Constr. Viol. Objective Constr. Viol. | Work
A-inrO 1 7.79440E+01 2.16630E-08; 6.39720E+05 1.22E-03 498]
2 6.83630E+03] -2.89560E-01! 6.39720E+05 1.22E-03 264]
3 1.51110E+03{  -4.29240E-02{ 6.36540E+05 1.45E-03 264
4 1.46070E+01| -1.02490E-03| 6.36940E+05! 1.42E-03 175
BLISS/A| 1 | 7.79440E+01]  2.16630E-08] 6.39700E+05] 1.20E-03] 436
2 | 6.83630E+03] -2.89560E-01] 6.39050E+05] 1.18E-03]  508|
3 1.51110E+03{  -4.29240E-02| 6.39050E+05] -4.89E-04 174
4 1.46070E+01}  -1.02490E-03| 6‘39290E+051 3.70E-04| 313]
BLISS/B| 1 7.79440E+01 2.16630E-08] 6.39720E+05] 122E-03 365
2 6.83630E+03]  -2.89560E-01] 6.39720E+05] 1.22E-03 207
3 1.51110E+03| -4.28240E-02| 6.39720E+05| 1.22E-03 114
4 1.46070E+01]  -1.02490E-03| 6.39720E+05] 1.22E-03 105

Table 4: Electronic Packaging Data

5. BLISS Status, Assessment, and Concluding

Remarks

A method for engineering system optimization was
developed to decompose the problem into a set of local
optimizations (large number of detailed design vari-
ables) and a system-level optimization (small number
of global design variables). Optimum sensitivity data
link the subsystem and system level optimizations.
There are two variants of the method, BLISS/A and
BLISS/B, that differ by the details of that linkage. In
the paper, the method algorithm was laid out in detail
for a system of three subdomains (modules). Its gener-
alization to NB subdomains is straightforward. The
same algorithm may be used to decompose any of the
local optimizations, hence optimization may be con-
ducted at more than two levels.

MATLAB and iSIGHT programming languages were
used to implement and test the method prototype on a
simplified, conceptual level supersonic business jet
design, and a detailed design of an electronic device.

10

Dimensionality and complexity of the preliminary test
cases was intentionally kept very low for an expedi-
tious assessment of the method potential before more
resources are invested in further development. Favor-
able agreement with the benchmark results and a sat-
isfactory convergence observed in the above tests pro-
vided motivation for such development and future
testing in larger applications.

Assessment of BLISS at the above development status
is as follows. BLISS relies on linearization of a gener-
ally nonlinear optimization, therefore its effectiveness
depends on the degree of nonlinearity. As any gradi-
ent-guided method, it guarantees a cycle-to-cycle im-
provement, but if the problem is non-convex, its con-
vergence to the global optimum depends on the starting
point and may strongly depend on the move limits. In
this regard, BLISS’s strong points are in the procedure
being open to human intervention between the cycles
and in the autonomy of the subdomain optimizations in
local variables. These optimizations may be conducted
by any means deemed to be most suitable by discipli-
nary experts, hence non-convexity, and strong nonline-
arities in terms of the local variables often encountered
in subdomains, e.g., the local buckling in thin-walled
structures, are isolated and prevented from slowing
down the system-level optimization convergence. On
the other hand, the optimization robustness may be
adversely affected by the local constraints leaving and
entering the active constraint set. Effect of the above
on BLISS/A is much less than on BLISS/B. This is
probably the only reason to continue the development
of BLISS/A alongside with BLISS/B, even though
BLISS/B has a distinct advantage in simplicity and a
much lower computational cost. Once there is more
information on the relative merits and demerits of both
variants, the better variant may be selected.

The demand BLISS puts on the computer storage is the
same the subdomains would require for their own,
stand-alone optimizations, with exception of the gen-
eration and solution of the Global Sensitivity Equa-
tions. If there is a pair of BBs that exchange large
number of the y. ; - quantities, dimensionality of the
corresponding matrices that store the derivatives, and
computational cost of these derivatives needed to form
GSE, may become prohibitive. Some relief may be pro-
vided here by application of condensation techniques
and by deleting from GSE those derivative matrices
that are known to have negligible effect on the system
behavior.

The principal advantage of BLISS appears to lie in its
separating overall system design considerations from
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the considerations of the detail. This makes the re-
sulting mapping of its algorithm fit well on diverse,
and potentially dispersed, human organizations. This
advantage remains to be demonstrated in further de-
velopment toward large-scale, complex applications.
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Appendix

This Appendix provides details of the Global Sensitiv-
ity Equations (GSE) applied to a system which opti-
mizes BBs, the details of a technique for the BB Opti-
mum Sensitivity Analysis, and the details of the air-
craft range optimization model.

1. Global Sensitivity Equations

Derivatives of Y w.r.t. X, and Z, are obtained rigor-
ously from the Implicit Function Theorem in Sobieszc-

zanski-Sobieski,1990. The condensed derivation is
provided below. It begins by recognizing that

(A1) Yi2=Y12Z Xo, Y21, Y23)
(A2)  Yi3=Y13(Z, X5, Y3, Y32)
(A3)  Y21=Y2(Z Xy, Y12, Y13)
(A4)  Y3=Y23(Z, X3, Y3, Y32)
(AS)  Y31=Y31(Z X, Yi2, Y13)
(A6)  Yi2=Y32Z Xy, Y2, Y23)

where the independent variables are X and Z.

Observe that eq. A1-A6 are coupled by Y; e.g., Y31
depends on Y;; in eq. AS, and Y3 depends on Y3, in
eq. A2. Consider for an example, the chain-
differentiation w.r.t. x; applied to eq. A3. It yields

A7) D(Y3,1,X15) = d(Y2,1,X15) +
d(Y2,1,Y1) D(Y1,x19) +
d(Y2,1,Y3) D(Y3,x1,)

Repeating the above for the remaining equations,
treating Y, as a subset of Y;, and collecting the terms
leads to eq. (2.1/2 and 3).

The derivatives of Y w.r.t. z, are obtained by simply
replacing x; with z, in eq. (2.1/2) to obtain

AB) [A] {D(Y,z9)} = {d(Y,z)}
2. GSE/Optimized Subsystems

In the preceding section both X and Z are independent
variables. By virtue of BBOPT conducted for constant
Z and Y inputs, X becomes dependent on Z so that
derivatives of X w.r.t. exist in addition to derivatives of
Y w.r.t. Z. For example, optimal X, depends on Z,
Y1, and Y53, that are parameters in the optimization
of BB,. Hence, to compute the derivatives of Y and X
w.r.t. Z, we begin by rewriting the functional relation-
ships in eq. A1-A6, adding the new dependencies in all
three BBs in the system,

(A9) Yi2=Y12Z, Xz, Y1, Yo3)
(AIO) Y1,3 = Y1,3(Z, X, Y3,1, Y3,2)
(A1D) Y21 =Y21(Z, X1, Y12, Y13)
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(A12) Y23 =Y23(Z, X3, Y31, Y3,0)
(A13) Y31 =Y31(Z X1, Y12, Y13)
(A14) Y32 =Y32(Z, Xz, Y21, Y23)
(A15) X1 =Xi(Z, Y12, Y153)
(A16) X2 =XoZ, Y2, Y2,3)
(A17) X3 =X3(Z, Y31, Y32)

The same Implicit Function Theorem that is the basis
of the GSE derivation may be applied to the above
equations to obtain D(Y,Z). For example, by applying
chain-differentiation to Y, treated as a subset of Y,
we obtain

(A18) D(Y3,z) = d(Y2,zi) + d(Y2,X2)D(X5,2y) +

d(Y2,Y)D(Y1,2:) +
d(Y2,Y3)D(Y3,29

and for X, again as one example:
(A19)

D(X3, i) = d(X3,21) + d(X2,Y1)D(Y1,2) +
d(X2,Y3)D(Y3,2i)

In the above, the D-terms are the total derivatives we
seck, while the d-terms are the partial derivatives of
two, different kinds. The derivatives of Y, w.r.t. Y, and
Y, w.r.t. X, are obtained from BBSA, using any sensi-
tivity analysis algorithm appropriate for the particular
BB; (including the option of finite differencing). The
derivatives of X, w.r.t. z, and X, w.r.t. Y, are produced
by an analysis of optimum for sensitivity to parameters,
BBOSA,, explained in later in this Appendix.

As a mathematical digression, one should mention at
this point that the derivatives termed partial in the
above would be called total in both BBSA and BBOSA.
This is not a contradiction. It is so because the partial
and total derivatives are hierarchically related in a
multilevel system of parents and children. What is a
total derivative in a child is partial at the parent level.
In the application herein, the system of coupled three
BBs is a parent, each BB is a child.

The chain-derivative expressions for Y;, Y3, X; and X;
look similar to eq. A18 and A19, differences are only
in the subscripts. When the entire set of six chain-
derivative expressions is written it forms a set of si-
multaneous, algebraic equations in which the total de-
rivatives such as D(Y>,z,) and D(Xy,z,) appear as un-
knowns. This is a new generalization of GSE,

termed GSE/OS for GSE/Optimized Subsystems.
For the case of three-BB system, these equations may
be presented in a matrix format like this

(A20) [My,{D(Y,z0} + [My:{D(X,z:)} = d(Y,z)
My {D(Y,29} + Mu]{D(X,29} = d(X,z)

The internal structure of the M-matrices in the above is

for [My,] :
I -d(Y,,Y,) | -d(Y;, Yy)
-d(Y,,Y)) 1 -d(Y,,Y,)
-d(Y,,Y)) [ -d(Y,,Y,) |
for [M,] :
-d(Y;, X)) 0 0
0 -d(Y,,X,) 0
0 0 -d(Y;, X,)
for [Myy] :
0 -d(X,,Y,) | -dX;,Y;)
-dX,,Y)) 0 -d(X,,Y;)
-dX,,Y)) | -d(X;,Y,) 0
and for [M] :
1{0]0
01110
0101

Again, in the above, all Y, are folded into Y, for
compactness, and the terms are falling into the previ-
ously introduced categories as follows:

e  My,M,, and d(Y,z)
e M, and d(X,zy)

---- from BBSA
-- from BBOSA

As in GSE, one may obtain D(Y>,z,) and D(X,,z,) for
all z, k = 1--->NZ by means of one of the efficient
techniques for linear equations with many right-hand-
sides.

3. Black Box Optimum Sensitivity Analysis (BBOSA)

Analysis of optimum for sensitivity to parameters (also
called the post-optimum analysis) is preceded by solv-
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ing a BB optimization problem

(A21) Given: P
Find: X
Minimize: X,p)
Satisfy: G(X,P) £ 0, including side-

constraints and move limits

where P are parameters kept constant while an opti-
mizer manipulates X.

In the BLISS application, the parameters P in BB, are
Zi, and Y. because these quantities are kept constant

in BBOPT..

After O, and X, are found, one may seek sensitivity
of these quantities to the change of P in form of the
derivatives D(¢pn,P) and D(Xop:,P).

Vanderplaats and Cai, 1986, review techniques, rigor-
ous and approximate, available for calculating
D(Xopi,P). The technique adapted for the BLISS/A
purposes comprises the following steps executed for
BB.:

1. Choose parameter Py, an element of Z or Y, and in-
crement it by a AP

2. Use derivatives from SSA to extrapolate F and G,

Table A1: BB Definitions

Internal
c S rer 1+ 27
AR A . b/2=4fSeeeAR/2; R=——; ©=
A, S e A 31+24)°
Y .S e pf(x,/ R, L), Fol = pf(x); W, = (0.0051(W_N,)**7§,."** W W,
Structures fy_ w,_, AR°5(/)'°“(1+ 1)"1(0.18758 3zp)"" / cos(A)Fol; W, = o
L, |68 REF/IS)(/t)42.5 W, =W, +Wo; Wo=W, +W, +W,
Nodox [#Wei 012 05=pi(/ LY R)
[ Constraints 6l 65<1.09; 0.96< © < 1.04
M h if h < 36089ft, V = M1116.39,/1- (6.875¢- 06)h, p = (2.377¢-03)(1
1AL Y (6.875¢- 06h))* 2% V = M968.1, p = (2.377e - 03)g " 00 28067
t W
AR, /. |ifh > 36089 ft; C, = —————; Fol= pf(ESF,C,); C,,, =
A 0.5pV S pp
€ro- Srerr Ws c Fol+ 3.05¢¢ 3 %. L,D L
dynamics [o ggp, |ComnuaFOl+ 3 Q(A) cos(A) % k =1/(x0.8AR); Fo2 = pf(e)]L.D.
C, =(Cp,, +kC, ")F02; L=W_; D=C_0.5pV’S 3
CDmin,M(l’ dp / dx = pf(y)
C C
f
Constraints dp /dx £1.04, evaluated at system level
T=T*16168.6; Temp = pf(M,h,T); ESF = (%)/T;
SFC =1.1324 +1.5344M - (3.2956€ - 05)h - (1.6379% - 04)T
M.LD -031623M 2 + (82138¢ - 06)Mh - (10.496¢ - 05)TM - (8.574e -11)h®
Propulsion| w’ 1’ +(3.8042¢ - 09)Th + (1.0600e - 08)T ; W, = 3W , ESF'"; ;‘;%Wa’
BE Tua = 11484+ 10856M - 0.50802h + 3200.2M *.0.29326Mh
+(6.8572¢ - 06)h
Constraints 05< ESF<1. 5; T<Tw; Temps 02
M,h’L 0 =1-6.875¢-06*h,if h < 36089f; © = 0.7519
Range D ;
W, W if h>36089ft; R = M(L’D)“l‘/;ln Wy R
SFC SFC W - W

Szde Con-01<x<04 075<x<125
30000 < h < 60000;

straints

0755 C, <125 0.1sT<1.0; 001<tc
14<M<18; 25<AR<85; 40<A<70; 500<8S

< 009
<1500

REF =
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linearly and by Linear Programming solve

Find X
Minimize F
Satisfy G, <0

XL <= X <= XU; where XL and XU incorporate
the side constraints and the move limits;

to obtain X,
3. Approximate D(X,P) = AX,,/AP

4. Repeat from #1 for all elements of Z and Y input
into BB,.

Repeated for all BBs, the above procedure yields a set
of D(X,Z) and D(X,Y) to be entered as d(X,Z) and
d(X,Y) into GSE/OS, eq. A20. Solution of eq. A20
provides D(X,Z) and D(Y,Z). The latter is substituted
into eq. (2.2.3/2), and D(®,Z), extracted from D(Y,Z),
goes into eq. (2.2.3/1).

4. A/C Range Optimization Model.

Table Al shows the equations used in each of the BBs
for the aircraft model. Polynomial functions are repre-
sented by ‘pf()’ with independent variables in the pa-
rentheses. Each polynomial function is of the form:

(A22) PF=A,+A*ST+ (1/2)*S*A;*ST
]

Where S is the vector of independent variables, and A,,
A;, and A;; are coefficient terms.

In calculating the polynomial functions using eq. A22,
terms in the S vectors are in the same order as they
appear in pf() in Table Al. The off diagonal terms of
Ay are random numbers between O and 1. For this
model, they are

0.1108]
0.1138
0.0019
0.0169
09239 | ——

[ —— ]0.3970
04252 | ——

A;=0.0329
0.0878
0.8955

0.8152
0.6357
0.8856 | ——

0.7248
0.4568

0.9230
0.7435
0.3657
01978 | —-

0.8075

The remaining coefficient are:

e ©-->  A,=[10]; A;=[0.3-0.3-0.3-02];
A;=1[0.4-0.4-0.4 0];

e Fol-—-> A,=[L0]; A =[6.25]; A; = [0];

e ol-—> A,=[1.0% A =[-0.750.5-0.75 0.5

0.5]; A;=[-2.50-2.500];

e 02---> A,=][1.0]; A;=]-0.50.333 -0.50.333
0.333]; A;=[-1.111 0-1.111 0 0];

e 03> A, =[1.0]; A;=[-0.3750.25 -0.375
0.25 0.25]; A; =[-0.625 0 -0.625 0 0];

s o4--> A,=[1.0}; A;={-0.30.2-0.30.20.2];
A;=[-040-0400];

e o5--> A ,=[1.0}; A;=[-0.250.1667 -0.25
0.1667 0.1667]; A; = [-0.2778 0
-0.2778 0 0];

e Fo2--> A,=[1.0]; A;=[0.20.2); A;=[00];

e Fo3---> A,=[1.0]; A;=[0]; A; =[0.04];

e dp/dx ---> A, =[1.0]; A; = [0.2]; A; = [0];

e Temp ---> A, =[1.0]; A;=[0.3-0.30.3];

A;=[0.4-0.40.4];

Equations for SFC and the upper constraint bound on
throttle setting in the Propulsion BB are polynomials
representing surfaces fit to engine deck data (AIAA/
UTC/Pratt & Whitney, 1995/96).
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