
NASA/CR-1998-206915

Formal Specification of a Flight Guidance
System

Francis Fung and Damir Jamsek
Odyssey Research Associates, Ithaca, New York

January 1998

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this
important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information.
The NASA STI Program Office provides
access to the NASA STI Database, the
largest collection of aeronautical and space
science STI in the world. The Program Office
is also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA
counter-part or peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that help round out the
STI Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing
research results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

• Email your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Phone the NASA Access Help Desk at
(301) 621-0390

• Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

NASA/CR-1998-206915

Formal Specification of a Flight Guidance
System

Francis Fung and Damir Jamsek
Odyssey Research Associates, Ithaca, New York

January 1998

Prepared for Langley Research Center
under Contract NAS1-20335

Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
800 Elkridge Landing Road 5285 Port Royal Road
Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171
(301) 621-0390 (703) 487-4650

Contents

1 Introduction 1

1.1 Introduction to the Flight Guidance System : 1

1.2 The Use of Formal Methods in Software Speci�cation : : : : : : : : : : : : : : : : : : 2

1.3 Structure of This Document : 2

2 Preliminaries on CoRE 3

2.1 Introduction : 3

2.2 Tables : 4

2.2.1 Condition Tables : 4

2.2.2 Event Tables : 5

2.2.3 Transition Tables : 5

2.2.4 Table Properties : 5

2.3 Remarks on CoRE Semantics : 6

3 The Flight Guidance System 7

3.1 Outline of the FGS : 7

3.2 The Mode Machines : 7

4 Questions Arising from the FGS Speci�cation 9

4.1 Introduction : 9

4.2 Simultaneous Events : 9

4.3 Possible Resolutions : 11

4.4 Continuous Transitions : 12

4.5 Possible Resolutions : 14

4.6 Miscellaneous Comments : 15

4.6.1 modeaAutopilot Entering ENGAGED : 15

4.6.2 monaNavaSourceaSignalaType : 15

4.6.3 Duration(INMODE) Booleans : 15

5 Preliminaries on the Z Notation 17

5.1 Introduction : 17

5.2 Schemas : 17

5.3 Transitions : 19

5.4 Axiomatic De�nitions : 19

5.5 Booleans in Z : 19

i

6 Formal Speci�cation of the FGS 21

6.1 Translating the Speci�cation into Z : 21

6.2 Initializing the Variables : 22

6.3 Numerical Quantities in Z : 23

6.4 Transitions : 23

6.5 Sustaining Conditions : 24

6.6 Hierarchical Mode Machines : 25

6.7 INMODE Booleans : 26

6.8 Translating Tables : 27

6.8.1 Condition Tables : 27

6.8.2 Event Tables : 27

6.8.3 Transition Tables : 30

6.9 Formal Veri�cation of Properties of the FGS : 31

6.10 General Principles : 32

6.11 Using Z/EVES on the FGS Formal Speci�cation : 32

6.12 Areas for Further Work : 34

7 Conclusions 35

7.1 The CoRE Speci�cation : 35

7.2 Using Z to De�ne the Semantics of the FGS Speci�cation : : : : : : : : : : : : : : : 35

7.3 Using Z/EVES on the Z Speci�cation : 36

7.4 Acknowledgements : 37

A Formal Speci�cation of the FGS 39

A.1 Declarations of Variable Types : 39

A.2 Variable Declarations : 41

A.3 Collections of Events : 48

A.4 Collections of modes : 49

A.5 Flight Mode Declarations : 50

A.6 The FGS State : 53

A.7 De�nitions of Some Input Events and Terms : 53

A.8 Event Tables : 57

A.9 REQ Relations for Some Annunciations : 62

A.10 More Term and Input Event De�nitions : 62

A.11 Lamp Annunciations : 67

A.12 Collections of Terms and Events : 69

A.13 Invariants : 72

A.14 Transition Tables : 74

ii

Chapter 1

Introduction

This document contains a formal speci�cation for the mode logic of a Flight Guidance System (FGS)

and a discussion of issues raised by writing the formal speci�cation. A
ight guidance system is an

example of life-critical code; this project aims to demonstrate the e�ectiveness of formal methods in

the requirements analysis and design of life-critical systems. The source document for our project

is \Specifying the Mode Logic of a Flight Guidance System in CoRE," by Stephen Miller and Karl

Hoech, Rockwell-Collins.

1.1 Introduction to the Flight Guidance System

Most modern aircraft possess a computerized system, called a Flight Guidance System (FGS), that

uses commands from the pilots to select
ight control laws for the aircraft. The resulting
ight

commands can then be used as advisories for the pilots, or the advisories can be routed to an

autopilot which will automatically guide the aircraft.

An FGS consists of two broad parts: the mode logic and the
ight control laws. The mode

logic comprises the possible settings of the FGS; it is altered by events such as pilot commands or

changes in monitored variables. The FGS reads the mode of the mode logic and then invokes the

corresponding set of
ight control laws to generate pitch and roll commands to guide the aircraft.

These commands can be taken as advisories to the pilot; or, if the autopilot is turned on, the

commands can be executed by the aircraft without any human intervention.

The work on this task is based on the source document \Specifying the Mode Logic of a Flight

Guidance System in CoRE," by Stephen Miller and Karl Hoech, which gives a description of a

simpli�ed speci�cation of a Flight Guidance System (FGS), using the CoRE speci�cation method.

The CoRE FGS speci�cation is designed to exhibit many of the di�culties that arise in specifying

an event-driven system such as an FGS. In particular, their model of the FGS is decomposed into

several concurrent (and hierarchical) state machines that are allowed to in
uence each other.

Miller and Hoech's speci�cation deals only with normal behavior of the system, and does not

discuss how to deal with internal errors, such as component failures. The authors have released

this speci�cation as a resource, on which to test various methods and tools. They state that their

speci�cation undoubtedly has errors; this, however, enhances its value as a example on which to

compare the results of various methodologies. In addition, they propose and use certain extensions

to the CoRE method, some of which they de�ne only informally. These extensions provide another

source of questions and comparisons.

1

In this report, we construct a formal Z speci�cation based on the CoRE FGS. There are at least

two inequivalent ways of formalizing the semantics of the source document, depending on whether

we use micro-time semantics or not. In order to translate the document into Z, we have chosen to

interpret the CoRE FGS using, to the extent possible, the SCR discrete-time formal model [3]. In

particular, we have not used any micro-time semantics. This approach is compatible with the Z

philosophy of specifying states and transitions. A complementary investigation of the CoRE FGS

using micro-time semantics appears in Naydich and Nowakowski [6].

The CoRE notation is very readable, and we are not claiming that the Z notation is more suited

for specifying this FGS. We are using the Z notation here to express a semantic de�nition for the

FGS, and also as input to the Z/EVES theorem prover [7, 8, 9].

Because we were only given the paper speci�cation and we did not have formal de�nitions of

the several aspects of the CoRE FGS, we have translated the speci�cation by hand. However, the

translation could certainly be automated.

1.2 The Use of Formal Methods in Software Speci�cation

A formal speci�cation of a system is a description given in a language that possesses a formally

de�ned and unambiguous syntax and semantics. The Z language [4, 10, 11] is an example of such a

language. A formal speci�cation is thus a precisely described constraint on the system's behavior.

The process of formulating a formal speci�cation of a system is useful in detecting ambiguities and

design
aws at an early stage in the life cycle of a software product.

A formal speci�cation allows us to perform certain kinds of type checks and consistency checks

on the speci�cation. We may also desire to prove that certain invariants hold for all states of the

system. We can use automated tool support, such as Z/EVES [7, 8], to aid us in proving consistency

checks and invariants.

Once we have constructed an algorithm that implements the system, it is desirable to generate a

formal veri�cation that the algorithm indeed satis�es the requirements of the speci�cation. Formal

veri�cation applies to all inputs to the system, and thus complements conventional trial-and-error

debugging methods, which can usually test only a certain sampling of the inputs.

1.3 Structure of This Document

Our report is structured as follows. Chapter 2 is an outline of the CoRE method, which was used by

Miller and Hoech to construct the source document. The canonical reference on CoRE is the Con-

sortium Requirements Engineering Guidebook [1] (or \CoRE Guidebook") by Faulk, Finneran, Kirby

and Moini. Chapter 3 is an introduction to the Flight Guidance System (FGS) that is speci�ed in

Miller and Hoech's report [5]. Chapter 4 is a discussion of some questions that arose from our investi-

gations of the CoRE speci�cation. Chapter 5 contains an outline of the Z speci�cation language; for

further reading, there are two books by Spivey: Understanding Z [10] and The Z Reference Manual

[11], as well as Jacky's The Way of Z [4]. Chapter 6 discusses our work in constructing a formal

speci�cation of the FGS in Z. Chapter 7 contains conclusions and acknowledgments. Appendix A

contains the formal speci�cation of the FGS in Z.

2

Chapter 2

Preliminaries on CoRE

2.1 Introduction

The CoRE (Consortium for Requirements Engineering) method [1], which is promoted by the Soft-

ware Productivity Consortium (SPC), is a method for developing and writing software requirements

in a reasonably formal yet readable manner. CoRE is a close relative of the Software Cost Reduction

(SCR) method [3]. The CoRE Guidebook [1] provides a detailed explanation of how to construct a

CoRE speci�cation.

We will give a brief summary of the CoRE method (see [1] for more details). First, CoRE

is built on Parnas' four-variable model of embedded-system behavior. In this model, a system is

viewed as interacting with the external world. The system monitors certain external quantities

(called monitored variables) and controls the values of other external quantities (called controlled

variables). The system is speci�ed as a collection of relations between the monitored variables and

the controlled variables.

The monitored variables are external quantities, such as air pressure and altitude. From these,

the system derives inputs to the software itself; for instance, a sensor on the outside of the plane

measures a monitored quantity and then sends a binary number to the computer. The inputs to the

software itself, such as this binary number, are called input variables.

The system, based on the values of the input variables, generates values for the output variables.

These may again be binary numbers, which are then converted into values of the controlled variables;

for instance, the display of the air pressure in the cockpit is a controlled variable.

The crux of the four-variable model is that we should specify the behavior of the system in terms

of relations between the monitored and the controlled variables, rather than in terms of inputs

and outputs to the software itself. The four-variable model encourages us to write a high-level

speci�cation of the system behavior, rather than attempting to implement design or hardware-level

decisions.

Once we have isolated the monitored and controlled variables, we must determine the constraints

on their values. Some of the constraints on the variables are imposed by environmental constraints.

For instance, the possible speed of an aircraft is limited by the mechanical properties of the aircraft.

Such constraints constitute the NAT relations on the variables, since they are \natural" or external

constraints on the values of the variables.

Once we have found the NAT relations, we must isolate the relations between the monitored and

controlled variables that are to be imposed by the system itself. For instance, a gauge on a
ight

control panel may be required by the system to display the altitude of the airplane, rounded o� to

3

the nearest hundred feet. These relations, which the software \requires" of the variables, are called

the REQ relations.

Finally, we must determine the relationship of the monitored variables to the inputs variables

(the IN relations) and the relationship of the output variables to the controlled variables (the OUT

relations). These are, of course, design-level decisions, based on the nature of the components used

to construct the system. We can analyze the REQ and NAT relations independently of the IN and

OUT relations. The speci�cation of the REQ and NAT relations of the system constitutes the CoRE

behavioral model of the system.

CoRE builds an additional model, the CoRE class model, on top of the behavioral model, by

arranging the variables into classes in an object-oriented fashion. For each class, certain variables

are visible to other classes and can thus be exported.

Often, it is the case that the same expression involving monitored variables appears several times

in the speci�cation. As a shorthand, we can introduce term variables which abbreviate expressions

of monitored variables, system modes, or other terms.

A state of the system consists of an assignment of a value to each variable of the system. The

state of the system changes exactly when the value of some variable changes. A change of a variable's

value constitutes an event.

The system's behavior may depend not only on the present state of the system, but also on

the previous values, or state history, of the system. The system can capture relevant state history

information using certain kinds of �nite state machines called mode machines. In CoRE, a mode

machine consists of a �nite set of states called modes, a distinguished initial mode, a set of transition

events, and a set of mode transitions that express the e�ect of the events on the mode machine.

Thus, a mode machine is a �nite state machine such that the behavior of the machine is de�ned

entirely in terms of the CoRE behavioral model, and also such that the machine does not actually

perform any actions, but only records state information. It is conceivable that a �nite state machine

can have a command such as \drill the rock" as a state; but the mode machines in CoRE are not

allowed to behave in this fashion. The modes are merely information, which can be read by other

aspects of the system.

2.2 Tables

Much of a CoRE speci�cation consists of tables. A table speci�es the value of a variable according

to values of other variables and possibly events. There are three kinds of tables: condition, event,

and mode transition.

2.2.1 Condition Tables

A condition table for a variable gives a partition of the system state into mutually exclusive con-

ditions, and a value of the variable for each condition. The rows are usually used to partition the

possible states according to the mode values of one or more system modes. Note that every system

state must satisfy one, and only one, of the conditions in the table. For instance,

a

a Condition Table for CondVar a
a

a

a Mode = A a Var1 = T a Var1 = F a X a
a

a Mode = B a X a X a TRUE a
a

a

a CondVar a Val1 a Val2 a Val3 a
a

4

gives the value of the variable CondVar in terms of the values of the values of Mode and Var1. If Mode

= A, then if Var1 = T, then CondVar = Val1; otherwise, if Var1 = F then CondVar = Val2. The X

means that if Mode = A then no condition can make CondVar equal to Val3. The second row, the

TRUE means that when Mode = B, there is no additional condition that must be satis�ed to make

CondVar equal to Val3.

2.2.2 Event Tables

An event table for a variable tells us which events cause the variable to change, and tells us the

possible new values of the variable. As with condition tables, the rows are usually used to partition

the possible states according to the values of one or more mode machines.

a

a Event Table for EventVar a
a

a

a Mode = A a Event1 a Event2 a X a
a

a Mode = B a Event2 a Event1 a Event3 a
a

a

a EventVar a Val1 a Val2 a Val3 a
a

The �rst row of this table means that if Mode = A, then the occurrence of Event1 will cause

EventVar changes to Val1, and the occurrence of Event2 will cause EventVar changes to Val2. The

second row has a similar meaning. It is implicit that, if no listed event occurs, the variable's value

does not change.

2.2.3 Transition Tables

A transition table for a mode machine gives the possible transitions of that mode machine. For each

mode of the machine, the table gives events that can change the mode, and also the resulting mode

of the machine after the event has occurred.

a

a Transition Table for Mode aa
a

a From a Event a To aa
a A a Event1 a B aa
a A a Event2 a C aa
a B a Event2 a C aa
a C a Event1 a A a
a

The �rst line says that if Mode = A and Event1 occurs, then Mode changes to B. The other rows

have similar interpretations. It is also implicit in this table that if no listed event occurs, then the

value of Mode does not change.

2.2.4 Table Properties

An essential property of a table is that it be disjoint. For condition tables, this means that in each

row, the conditions listed must be mutually exclusive. For event or mode transition tables, this

means that for each mode value, no two of the listed events can occur simultaneously. As well,

condition tables must be complete; this means that all possible states of the system satisfy one of

the listed conditions.

5

2.3 Remarks on CoRE Semantics

The variables in CoRE are considered as functions of (continuous) time. Events in CoRE are assumed

to occur instantly, and to be atomic (indivisible). Note that the change of any variable (not just

a monitored variable) is an event and can be used to initiate another transition. The continuous

nature of the CoRE variables can lead to some questions about the timing of events that are created

by other events, since the CoRE model supposes that they happen simultaneously.

The CoRE Guidebook leaves several issues, such as timing of events, up to the authors of a

speci�cation. One resolution is to use CoRE with the formal semantic model of SCR [3]. This

model uses discrete time polling cycles, rather than continuous time, and gives interpretations for

tables and so forth. A key feature of the SCR formal model is a partial ordering on the variables to

simulate one variable being dependent on another. The existence of such a partial order guarantees

that we can linearly order the updating of the variables in such a way that the new value of a given

variable depends only on old values of variables and new values of previously updated variables.

Given the SCR formal model, there is a set of static consistency checks (detailed in [3]) that can

be performed on the tables of the speci�cation. These checks guarantee complete and deterministic

behavior of the system (that is, for each old system state and input event that can occur, there is

one, and only one, new system state that can result).

The authors of the CoRE FGS speci�cation found the restrictions of the SCR formal model

inconvenient when they wrote their speci�cation. In particular, they wanted to use concurrent mode

machines that could trigger transitions in each other; such machines cannot be partially ordered by

dependency.

In addition, the authors introduce several concepts that are not formally de�ned in CoRE (some

of which are explicitly prohibited in the SCR formal semantic model). In particular, the CoRE

guidebook does not address how to deal with simultaneous events (which, when interpreted in certain

ways, can lead to \cascading" internal transitions), \continuously occurring" events, or concurrent

mode machines that are allowed to drive each other, all of which play large roles in the CoRE FGS

speci�cation. The authors of the CoRE FGS speci�cation have written some informal semantics for

these concepts. Therefore, in order to provide a formal speci�cation for the FGS, a formal semantics

must be chosen for these concepts.

6

Chapter 3

The Flight Guidance System

3.1 Outline of the FGS

Here is an outline of the Flight Guidance System. An aircraft can move about three axes: lateral

(roll), vertical (pitch) and side-to-side (yaw). The mode logic of the FGS is divided into a number

of mode machines; there is one for the lateral direction, and another for the vertical direction.

(The yaw control has been omitted from the CoRE FGS example for simplicity.) Two other mode

machines control the acquisition of a preselected altitude, and the vertical approach to a landing.

For each state, the FGS invokes
ight control laws that generate commands for the aircraft itself. For

instance, if the lateral mode is in a certain mode called HDG, then the FGS uses the corresponding

ight control laws to generate commands that will put the plane on a preselected heading.

These commands are either taken as advisories to the pilots (which are annunciated by the Flight

Director) or, if the Autopilot is activated, they are passed directly to the autopilot to control the

plane's motion.

For the most part, the modes are selected by the pilots, using switches on the
ight control panel

or a number of other controls. There are also some environmental events that can change a mode,

such as when the plane exceeds a certain speed.

3.2 The Mode Machines

The �rst four mode machines that we mention are the modeaActiveaLateral, modeaActivea-

Vertical, modeaAltitudeaSelect and modeaVerticalaApproach mode machines. Together, these

four determine the selection of the
ight control laws. The other mode machines of the FGS control

the
ow and annunciation of data.

Each of the mode machines is hierarchical, in the sense that some mode values have submodes.

Because CoRE allows one to specify what values to export, some mode values may also be considered

submodes of a \supermode" mode value, which can be used in transitions.

The modeaActiveaLateral mode machine selects the
ight control laws controlling the aircraft

in the horizontal plane, through the generation of roll commands. It can be in one of the following

modes: ROLL, HDG, NAV, APPR, or GA. Each of NAV and APPR has two submodes, Armed and

Track. As well, ROLL has two submodes, HdgaHold and RollaHold.

The modeaActiveaVerticalmode machine selects the
ight control laws controlling the aircraft

in the vertical plane, through the generation of pitch commands. It can be in one of the following

7

modes: PITCH, FLC, VS, ALTSEL, ALTHOLD, APPR, GA.

The modeaAltitudeaSelect mode machine describes the logic used to capture and track a

preselected altitude. It can be in one of the following modes: CLEARED, ARMED, or ACTIVE. There is

an ENABLED \supermode" that comprises ARMED and ACTIVE. The ACTIVE mode has two submodes:

Capture and Track.

The modeaVerticalaApproach mode machine describes the logic use to capture and track a

precision vertical approach. It can be in one of the following modes: CLEARED, ARMED, and TRACK.

There is an ENABLED \supermode" that comprises Armed and Track.

The mode machines are not independent; in fact, certain transitions of one mode machine are

initiated by a mode transition of a di�erent mode machine. Only certain combinations of modes are

possible; for instance, modeaAltitudeaSelect must be CLEARED whenever modeaActiveaVertical

is in one of the modes APPR, GA, or ALTHOLD.

The mode machine modeaAutopilot controls whether the autopilot is automatically applying the

ight control laws to the aircraft. It can be in one of the following modes: ENGAGED, DISENGAGED,

or DISENGAGEDaWARNING.

The mode machine modeaFlightaDirector controls annunciation of FGS-generated
ight com-

mands. It can be in one of the following modes: ON or OFF. The ON mode has two submodes: CUES

and NOaCUES.

The mode machine modeaOverspeed records whether the aircraft is going too quickly. It can be

in one of the following modes: SPEEDaOK or TOOaFAST.

The FGS interacts with several systems, such as the Flight Control Panel, Control Yokes, Throt-

tles, Air Data Computer, navigation sources, and several displays. The Flight Control Panel, Control

Yokes, and Throttles comprise knobs and switches to select system modes and to set references such

as desired heading and airspeed. The Air Data Computer provides data about the measured state

of the aircraft, such as airspeed and altitude.

8

Chapter 4

Questions Arising from the FGS

Speci�cation

4.1 Introduction

The CoRE speci�cation of the Flight Guidance System has several mode machines, which are allowed

to in
uence each other's behavior. In particular, a change in the value of a variable such as the

mode modeaActiveaVertical is considered an event, and can be used to trigger other transitions.

As we described above, we chose a formal semantic model for the CoRE speci�cation based on

the SCR discrete-time formal model. Using this model, we �nd several di�culties in the CoRE

speci�cation as written. For each one, we have to discuss whether the error arises because our model

does not quite capture the intent of the authors of the CoRE speci�cation, or because of an actual

error in the CoRE speci�cation.

The major issues that we found are discussed below. We have given ideas for possible resolutions

where feasible. Our goal in this project is to translate these concepts using SCR discrete-time

semantics, of which the main ideas are as follows. An implementation of an event-driven system is

very likely to be implemented as a discrete-time entity, where the state of the system is known only

at regularly spaced intervals. At each interval, we poll the values of each variable; thus the interval

can be referred to as a polling cycle. The state of the system at the beginning of the cycle is the

old state, and the state at the end is the new state. We will use typewriter variables for variables

in the CoRE speci�cation, and italic variables for variables in our discrete-time translation. By

convention, for any variable Var of the old state, we denote by Var 0 the corresponding variable for

the new state.

Once we have chosen these interpretations of event and transition, then \two events are simul-

taneous" means that the two variables change in the same polling cycle.

4.2 Simultaneous Events

A Flight Guidance System is an example of an event-driven system; that is, the system reacts to

events by changing its state. A fundamental question for any such system is how to deal with

simultaneous events.

First, an input event is a change in a monitored variable. These are the only events that are

allowed to instigate a change in the state of the system. There will always be physical constraints

9

in an actual implementation as to how quickly a system can process input events. So, there will

always be some question of what to do when the system cannot tell whether one input event is prior

to another. Thus either we must make the assumption that all external events can be separated in

time, or we must specify how the system behaves when confronted with simultaneous events.

One option is to assume that the system acts nondeterministically and randomly picks the order

in which to process the input events. This is, of course, not desirable if we want predictability in

our system.

Another option is to attempt to formulate responses for all combinations of input events. This

rapidly becomes messy and impractical, especially because the number of responses that we have to

specify will grow exponentially with the number of input events happening simultaneously. Another

option is to formulate a priority hierarchy for the input events. This may be feasible, but it can

be argued that we can separate the speci�cation of this aspect of the system from the rest of the

speci�cation.

Investigators of SCR, a close CoRE relative, have studied the so-called One Input Assumption,

where one assumes that only one input event can happen at a given time. We have chosen to

use this assumption. We can assume, if necessary, that we will give a separate speci�cation of

a \preprocessor" which would take simultaneous events and, by some method such as one of the

options above, construct a sequence of non-simultaneous events to feed to the system. Even with

the One Input Assumption, we still face questions concerning simultaneous internal events, because

changes of internal variables are also events and can be used to drive mode machines.

Each event in CoRE can be represented as a change in a Boolean variable Bool from FALSE to

TRUE, or from TRUE to FALSE. The corresponding events are called @T(Bool) and @F(Bool). The

Boolean Bool could very well be a Boolean expressing whether one of the mode machines is in a

certain mode.

Suppose the event @T(Bool1) causes Bool2 to change from FALSE to TRUE, therefore spawning

@T(Bool2). If these are to be considered events, then does @T(Bool1) occur \before" @T(Bool2)?

Perhaps there is a machine whose transitions are triggered by both @T(Bool1) and @T(Bool2). To

which event does this machine respond?

For example, consider the following three transitions taken from the CoRE speci�cation of the

FGS. The notation
a

HDG means \any mode value except HDG".

From the modeaActiveaLateral transition table:

a Number a From a Event a To aa
a 27 a GA a @F(modeaActiveaVertical = GA) a ROLL aa
a 28 a

a

HDG a @HDGaSwitchaPressed a HDG aa

From the modeaActiveaVertical transition table:

a Number a From a Event a To a
a

a 57 a GA a @F(modeaActiveaLateral = GA) a PITCH a
a

Suppose that modeaActiveaLateral = GA and modeaActiveaVertical = GA. Then suppose

the HDG switch is pushed; by Transition 28, modeaActiveaLateral mode switches from GA to HDG.

This creates the event @F(modeaActiveaLateral = GA), which by Transition 57 causes modea-

ActiveaVertical to change from GA to PITCH. But this creates the event @F(modeaActiveaVertical

= GA). If these three events (@HDGaSwitchaPressed, @F(modeaActiveaLateral = GA), @F(modea-

ActiveaVertical = GA) are assumed to occur simultaneously, then then modeaActiveaLateral is

asked simultaneously to change from GA to ROLL, and from GA to HDG.

10

In the semantics we have chosen for the Z speci�cation, the behavior in the previous paragraph

is inconsistent. There are other methods (such as RSML) whose semantics support \micro-time"

between the external events, in which the internal events occur in sequence, so the above \cascade"

would be considered valid. The CoRE guidebook is silent on the issue of micro-time.

The authors of the FGS wrote that they had chosen an interpretation where internal events

happen in sequence. They state (p. 20) that \if more than one chain is possible, a chain is selected

non-deterministically"; apparently this means that if multiple con
icting transitions are initiated

then one is chosen at random. However, they do not formulate a precise semantics for their interpre-

tation; in particular, there are no rules for ordering the spawned internal events into a sequence. One

can easily provide examples where using di�erent rules would give rise to di�erent system behavior.

For instance, we could resolve events breadth-�rst, where the input event spawns several events, and

then each of these is resolved before any of the events that they spawn are considered; or we could

resolve in some depth-�rst manner, where each event and all its consequences are resolved before

the next event is considered.

Without formal de�nitions or semantics for internal events, it is very di�cult to resolve any

ambiguities because di�erent users of the speci�cation can easily hold contradictory interpretations,

and may have di�culty Communicating with each other unless these interpretations are made ex-

plicit. A formal speci�cation is therefore very useful in establishing a common and unambiguous

frame of reference for all users of the speci�cation.

4.3 Possible Resolutions

Since we do not assume any notion of micro-time, the three events given above would happen

simultaneously, and thus Transitions 27 and 28 would be nondisjoint. A method to resolve this

di�culty is to restrict Transitions 28 and 57 so that they can never occur simultaneously.

It appears that the intent of Transition 28 is that modeaActiveaVertical and modeaActivea-

Lateral should always leave the mode GA together, and if an event occurs that \directly" forces

modeaActiveaVertical to leave GA but the event does not \directly" a�ect modeaActiveaLateral,

then modeaActiveaLateral should go to ROLL. Of course, the analogous statement holds for events

that \a�ect only modeaActiveaLateral directly".

We can make the notion of \an event directly a�ecting a mode" explicit as follows. We begin by

collecting a list of input events. Because of the One Input Assumption, only one input event can

occur in any given polling cycle. Given a list of the possible input events (which we construct for

our Z formal speci�cation), then we de�ne a subset VerticalaEvents of the input events that we

consider to directly a�ect the modeaActiveaVertical mode machine; it will certainly include those

input events that appear in the modeaActiveaVerticalmode transition table, as well as some of the

input events that cause internal events that appear in the modeaActiveaVertical mode transition

table.

Then we can translate the event that triggers Transition 57 to be \@F(modeaActiveaLateral=

GA) and the input event is in the set LateralaEvents but not in the set VerticalaEvents".

For instance, we would put HDGaSwitchaPressed in the LateralaEvents subset, but not in

the VerticalaEvents subset. Then the modi�ed Transition 28, whose event trigger is \@F(modea-

ActiveaVertical) = GA and the input event is in the set VerticalaEvents but not in the set

LateralaEvents" would not be triggered.

Modifying the transitions in this manner e�ectively forces them to be mutually exclusive, since

the two sets of input events associated to the modi�ed transitions are disjoint.

11

Since the two subsets are quite close to the same information carried in the transition tables in

the CoRE speci�cation, this construction is not so arti�cial. However, if the transition tables are

heavily dependent on internal events, it may require some e�ort to decide which external events

directly a�ect a mode machine, and which should be excluded.

4.4 Continuous Transitions

Another controversial aspect of the FGS CoRE speci�cation is the use of so-called \continuous"

actions and mode transitions. The authors state that this has a simple and intuitive meaning.

However, they do not give a formal de�nition of the notion in the CoRE speci�cation.

For instance, the event table de�ning the variable termaReferenceaIAS is as follows, where (FD

= modeaFlightaDirector, AV =modeaActiveaVertical).

a FD a AV aa Event a
a

a OFF a N/A a X a X a
a

a ON a
a

FLC a X a @SpeedaKnobaChanged a
a

a ON a FLC a ENTERED a @SpeedaKnobaChanged a
a

a a a
CONTINUOUSLY WHEN

termaSYNC a a
a

a

a
termaReferenceaIAS

a
monaIndicatedaAirspeed

a
limit(0, 512,

termaReferenceaIAS0 +

1*(termaSpeeda

KnobaRotation)) a
a

First, the variable termaReferenceaIAS can change only when modeaFlightaDirector = ON.

Then termaReferenceaIAS is required to be \continuously" equal to the monitored monaIndicateda-

Airspeed whenever modeaActiveaVertical= FLC and termaSYNC = TRUE). However, the other

part of the de�nition of termaReferenceaIAS says that the variable termaReferenceaIAS also

changes, according to a certain formula, when the SpeedaKnob is changed. Since termaSYNC corre-

sponds to a button being held down, it is possible that the crew will try to change the Speed knob

while termaSYNC = TRUE. Without a formal de�nition of \continuously" we cannot say whether this

event table is nondisjoint. (The authors of the CoRE speci�cation had already stated this in their

document.)

One would like to capture the continuous event as follows: whenever modeaFlightaDirector =

ON, modeaActiveaVertical = FLC and termaSYNC = TRUE, we want to set termaReferenceaIAS

equal to monaIndicatedaAirspeed. This is akin to a condition table. To capture the second

condition, we would say that in a polling cycle where the Speed Knob is changed, we give terma-

ReferenceaIAS the value given by the formula in the table. But this is a feature of an event table.

Since these two types of tables have rather di�erent interpretations in a polling cycle model, we have

to �nd a way to reconcile them.

We have chosen to view termaSYNC = TRUE as overriding the @SpeedaKnobaChanged event. How-

ever, since we want the e�ect to be \continuous," we use a di�erent interpretation from that of the

\when" guard. The One Input Assumption guarantees that @SpeedaKnobaChanged will never occur

simultaneously with @T(termaSYNC), so there will be no con
ict. We will discuss more details of

our translation in a later section on translating event tables into Z.

12

A formal interpretation of \continuous transition" also seems slippery. (Let us note that the

authors of the CoRE speci�cation introduced this concept speci�cally to generate debate about the

various methods of de�ning it.)

Let us give an example from the modeaActiveaVertical transition table. Transition 52 of the

CoRE speci�cation reads

a Number a From aa Event a To a
a

a
52

a
a

FLC; APPR; ALTHOLD; ALTSEL

a
CONTINUOUSLY

WHEN termaOverspeed a
FLC

aa
The term termaOverspeed is a Boolean which is TRUE exactly when the aircraft is exceeding the

maximum safe operating speed. This transition is intended to force the plane to stay in one of the

modes FLC, APPR, ALTHOLD, or ALTSEL; approximately, if any actions causes modeaActiveaVertical

to enter some mode other than FLC, APPR, ALTHOLD, or ALTSEL, then modeaActiveaVertical should

immediately be switched into FLC.

An informal interpretation of this \continuous transition," which the authors of the CoRE speci-

�cation seem to support, is that if modeaActiveaVertical is switched out of the set of mode f FLC,

APPR, ALTHOLD, ALTSEL g, (say for example to GA) then modeaActiveaVertical mode is \as soon

as possible" switched to FLC. This interpretation raises several questions.

� The �rst question is: for how long is modeaActiveaVertical actually in the other mode before

switching into FLC?

Here is a sample scenario. Suppose modeaActiveaVertical is in ALTSEL, modeaActivea-

Lateral is in HDG, and termaOverspeed = true. Now suppose the GA switch is pressed.

If we model the transitions by polling cycles, then does modeaActiveaVertical actually change

to the other mode GA for a cycle and then change again to FLC? Or does modeaActiveaVertical

switch out of ALTSEL directly into FLC?

� This raises another interesting question: what e�ect does this continuous transition have on

the other modes, such as modeaActiveaLateral? Suppose modeaActiveaVertical enters the

mode GA for one polling cycle when the GA switch is pressed. Now, according to Transitions

31 and 55, when the GA switch is pressed, modeaActiveaVertical and modeaActiveaLateral

both switch to GA. Then modeaActiveaVertical is switched \as soon as possible" to FLC.

When modeaActiveaVertical mode is switched out of GA, then, by Transition 27, modea-

ActiveaLateral mode switches to ROLL. (Note that this continuous transition would cer-

tainly not be included in our proposed LateralaEvents set, so a modi�ed Transition 27 would

still apply here).

� Now suppose that modeaActiveaVerticalmode is switched directly to FLCwhen the GA switch

is pushed. Then does the modeaActiveaLateralmode switch directly to ROLL as a result, even

though neither modeaActiveaVertical or modeaActiveaLateral was actually in GA at all?

Or should modeaActiveaLateral simply stay in HDG mode?

The authors of the CoRE speci�cation (personal communication) say that they consider

modeaActiveaVertical to enter and leave the GA mode very brie
y. However, this does

not tell us which of the above discrete-time polling cycle models best captures their intention.

When asked whether modeaActiveaLateral should stay in HDG, or switch to ROLL, in the

above scenario, they replied that a case could be made for either. Since this is a question at

13

the customer requirements level, we cannot answer it here. However, it is clearly a question

that an actual speci�cation, in order to be unambiguous, must be able to answer.

4.5 Possible Resolutions

One might be tempted to simply include some sort of IF-THEN-ELSE clause at the beginning of the

modeaActiveaVertical transition table, such as \if termaSYNC = TRUE then (some e�ects) else (nor-

mal behavior of modeaActiveaVertical)". Or, similarly, for every transition of modeaActiveaVertical

into a mode which is not one of APPR, ALTSEL, ALTHOLD, or FLC, we could split the transition into

two parts. When termaOverspeed = FALSE, then modeaActiveaVertical ends up in the desired

mode. When termaOverspeed = TRUE, then modeaActiveaVertical ends up in FLC. This is of

course a rather inelegant approach, since there could easily be a large number of such transitions,

and there ought to be a convenient way of expressing this behavior succinctly. The bene�t of this

approach is that it �ts very strictly into the polling cycle framework.

However, the modeaActiveaVerticalmode machine cannot be considered in isolation. We would

also have to modify transitions in other tables, such as the e�ect of @GAaPressed on modeaActivea-

Lateral = HDG. Since one of the intended invariants of the speci�cation is that modeaActiveaLateral

is in GA only when modeaActiveaVertical is in GA, we must then send modeaActiveaLateral to a

di�erent mode from GA if we send modeaActiveaVertical to a di�erent mode �rom GA.

If we assume that the intention is that modeaActiveaVertical indeed enters the GA mode mo-

mentarily, then we are faced with another di�culty. Suppose that we implement the mode transition

so that, when termaOverspeed = TRUE and modeaActiveaVertical is switched out of (f APPR,

ALTSEL, ALTHOLD, FLCg), then modeaActiveaVertical is then switched back to FLC. Then the

switch to FLC really must be considered as happening \after" the original switch. This leads us back

to the lack of \micro-time" semantics.

We believe that a crucial advantage of CoRE, as interpreted using the SCR discrete-time model,

is that when a transition is speci�ed (with an old mode value, event, and new mode value), the

transition indeed gives the stated relation between the old state and the new state. In order to

introduce micro-time semantics, we would have to give up this advantage entirely. We do not see

any easy interpretation of a continuous transition in our formal semantic model, without a drastic

rearrangement of the transitions as described above.

Because we have interpreted transitions such as Transition 55 above to actually send modea-

ActiveaVertical to GA, we cannot guarantee the CoRE FGS Invariant 11, which requires that

(termaOverspeed = TRUE) modeaActiveaVertical 2 fALTSEL, ALTHOLD, APPR, FLCaOverspeedg).

Interestingly enough, the authors of the CoRE FGS speci�cation suggest (personal communication)

that their intent is that modeaActiveaVertical goes to GA momentarily during the continuous tran-

sition. Thus their speci�cation cannot guarantee this invariant either, unless they de�ne a semantics

in which their invariant only holds \once all of the internal events have resolved" (which of course

would also require a formal de�nition).

Using micro-time opens up a new range of questions. Once you admit multiple steps in a single

transition, then you have to choose whether to allow only a �xed number, or you must must be

prepared to check for in�nite cascades and loops. You must also de�ne an order in which to evaluate

the internally generated events. Naydich and Nowakowski [6] have explored this option in detail for

the CoRE FGS speci�cation. They translated the speci�cation into PROMELA, and used the SPIN

model checker to understand the consequences of using a micro-time semantics for this speci�cation.

14

4.6 Miscellaneous Comments

Here we note a few other points in the CoRE speci�cation that deserve comment.

4.6.1 modeaAutopilot Entering ENGAGED

The modeaAutopilotmode machine has a mode ENGAGED with two submodes Normal and Sync. The

ENGAGED submode transition table and the descriptive text suggest that the authors' intent is that

modeaAutopilot be in ENGAGED/Sync whenever termaSYNC = TRUE. However, modeaAutopilot =

ENGAGED is initialized to the Normal submode, and there is no statement that modeaAutopilot=

ENGAGED should initialize to the SYNC submode if termaSYNC = TRUE when modeaAutopilot enters

ENGAGED.

4.6.2 monaNavaSourceaSignalaType

There is no explicit invariant given between monaNavaSourceaSignalaType<VNR<N>> and mona-

NavaSourceaFrequency<VNR<N>>. Without such an invariant, it is possible for the value of mona-

NavaSourceaSignalaType(monaSelectedaNavaSource) to change from, say, LOC to VOR without

causing the event @NavaSourceaChange; this would also cause the variable termaSelectedaNavaType

to change. Thus Invariant 7, which asserts that modeaActiveaLateral = APPR/Track) terma-

SelectedaNavaType 2 fLOC, FMSg could be violated. Apparently, the intent is that monaNava-

SourceaSignalaType<VNR<N>> is supposed to be a function of monaNavaSourceaFrequency<VNR<N>>,

and cannot change independently. However, this is not stated explicitly in the CoRE speci�cation.

4.6.3 Duration(INMODE) Booleans

Transitions 43 and 53, both in the modeaActiveaVertical transition table, may not be disjoint.

Transition 43 occurs exactly when Transition 64 occurs, and Transition 53 occurs exactly when

Transition 69 occurs. Here are the transitions in question.

a

a modeaAltitudeaSelect ENABLED Submode Transition Table a
a

a

a Id a a From aa Event a To aa

a
64

a a
ARMED

a
@T(termaALTSELaCond = Capture AND

Duration(INMODE) > constaminaarmedaperiod) a
ACTIVE

a
a

a

a modeaVerticalaApproach ENGAGED Transition Table a
a

a

a Id a a From aa Event a To aa

a
69

a a
ARMED

a
@T(termaVerticalaApproachaCondaMet AND

Duration(INMODE) > constaminaarmedaperiod) a
TRACK

aa
The transition of modeaAltitudeaSelect into ACTIVE triggers Transition 43, and the transition

of modeaVerticalaApproach to TRACK triggers Transition 53.

Now, it is not clear whether a Duration(INMODE) Boolean (which is not really an input event)

can become TRUE at the same time that, say, termaVerticalaApproachaTrackaCondaMet becomes

TRUE. If these two can become TRUE simultaneously, then the two transitions above could happen

simultaneously.

15

Furthermore, if it is possible that modeaAltitudeaSelect enters ARMED at the same time that

modeaVerticalaApproach enters ARMED, then both of their Duration(INMODE) Booleans could be-

come TRUE simultaneously. Then if both termaALTSELaCond = Capture and termaVerticala-

ApproachaCondaMet = TRUE before the Duration(INMODE) Booleans become TRUE, then the two

transitions could go o�.

These two scenarios could be prevented by ensuring that termaALTSELaCond = Capture and

termaVerticalaApproachaCondaMet = TRUE are mutually exclusive. While this is probably the

authors' intent, it is not stated in the speci�cation.

16

Chapter 5

Preliminaries on the Z Notation

5.1 Introduction

Z (pronounced zed) is a formal speci�cation language [4, 10, 11]. Thus it has a strictly de�ned

syntax and semantics, and it is very useful in describing what a piece of software is supposed to do.

However, it is by its nature not an executable language, as it describes only the objective of the

program, not how to accomplish it.

The Z language is well-suited to handling an event-driven system with �nitely many states. Z

deals in variables and predicates, which are expressions of the variables that are either true or

false. All variables in Z are typed. Examples of types are the natural numbers, or a free type with

enumerated elements (such as fHDG, GA, : : :g). The free type construction in Z allows us to, for

instance, enumerate the possible modes of a mode machine.

5.2 Schemas

Z is essentially �rst-order predicate calculus plus schemas. A schema models the state of a system; so

we can use schemas to model change, which is essential for specifying state machines. For instance,

a
aAaSchemaa

a Var : N
a
a

a

a 1 � Var � 50
aa

declares a variable Var with values in the naturals, and constrains Var to have values between 1 and

50.

We can build more complicated schemas by including this one in the declaration part of another,

such as below:

a
aAnotheraSchemaa

a AaSchema

a Var2 : N

a Var3 : N
a
a

a

a Var2 = Var + 5

a Var3 � 0
a
a

17

This schema declares two new variables Var2 and Var3, and then asserts an invariant relating

Var2 and Var, and another involving Var3. A Z convention is that predicates stated on separate

lines are conjoined.

We illustrate these concepts with a sample mode machine. The actual Z speci�cation in the

appendix is constructed along these lines.

We can de�ne a free type for the modes of modeaActiveaLateral as follows.

LATERALaMODE ::= LaGA j LaAPPR j HDG j NAV j ROLL

We can de�ne the modeaActiveaLateral mode machine as a variable whose values are in the

LATERALaMODE free type.

a
aDef aOf amodeaActiveaLaterala

a modeaActiveaLateral : LATERALaMODE
a
a

Once we have de�ned several mode machines, we can combine them together into one large

schema.

a
aModeaMachinesa

a Def aOf amodeaActiveaLateral

a Def aOf amodeaActiveaVertical

a Def aOf amodeaAltitudeaSelect

a Def aOf amodeaVerticalaApproach
a
a

We can declare our other variables in the same way.

a
a SomeaVariablesa

a Var1 : N

a Var2 : VAR2

a : : :
a
a

a
aMoreaVariablesa

a Var3 : N

a Var4 : VAR4

a : : :
aa

Then we can assemble everything into a large State schema.

a
a Statea

a ModeaMachines

a SomeaVariables

a MoreaVariables
aa

Once we have de�ned a schema, we can use a powerful convention of Z that allows us to declare

another type of variable, namely a schema binding. Any schema can be viewed as the set of all

values of the variables of the schema that also satisfy the predicate of the schema. Thus the schema

State can be viewed as the set of all possible states of the system. An arbitrary element of this set,

called a schema binding, can be referred to by the shorthand �State (reminiscent of \the" State).

18

5.3 Transitions

The Z notation provides a convention for transitions, using operation schemas. Given a schema

named State, for instance, we can de�ne another copy State0 of the schema, all of whose variables

have the same names as the variables of State, except that they are primed. The convention is that

the unprimed State represents the \before" state, and the primed State0 represents the \after". Then

the schema � State, by convention, contains both State and State0, and is considered the \change

in State".

Thus, to specify a transition in Z, it su�ces to write down a schema that includes � State and

asserts a relation between the values of State and the values of State0. The Z convention is that a

transition is simply a constraint between the old and new states, such as

a
aAaTransitiona

a �State
a
a

a

a Mode = A ^ Event1 ^ Mode0 = B
aa

Note that the Z operation schema does not mention implication; the predicate is not Mode = A

^ Event1) Mode0 = B. This is because it is not meant to always hold as a predicate on �State.

Rather, it is meant to be one of several transitions, and the disjunction of these transitions is to be

the total operation. See Section 6.8.3 for an example.

5.4 Axiomatic De�nitions

Another important feature of Z is the use of axiomatic de�nitions. These are used to globally de�ne

constants, functions, or subsets. In contrast to a schema, where each binding of a schema produces

a separate copy of the variables inside it, an axiomatic de�nition produces one globally accessible

de�nition of a variable.

For instance, the constant constaminaarmedaperiod would be declared in an axiomatic de�nition

as follows:

a constaminaarmedaperiod : N
aa
a

a constaminaarmedaperiod = 500

5.5 Booleans in Z

One aspect of Z which may seem disconcerting at �rst is the lack of a built-in Boolean data type. In

Z, all relations (and thus functions) are de�ned as sets; a function is simply a special kind of binary

relation, and is thus a set of ordered pairs. Thus, for example, the unary relation odd(x) is in fact

a subset of Z consisting of all the odd integers. It is not natural in Z to de�ne a function odd(x)

that takes an integer x to a value \TRUE" if x is odd and \FALSE" otherwise. In fact, TRUE and

FALSE are predicates in Z; and in Z, predicates are not merely \expressions with Boolean values",

as they are in many other languages.

This lack of Boolean types is in concordance with Z's philosophy of speci�cations. Since TRUE

and FALSE has no built-in advantage over, say, VALID and INVALID, we are encouraged to use

appropriate names for the values of the variables.

19

In our treatment of the FGS, we have de�ned a Boolean type TRU and FALS and used it rather

often, in order to facilitate comparison with the CoRE speci�cation. The reason for changing the

spelling is that Z/EVES 1.4 may mistakenly print out the predicate (true) instead of TRUE.

20

Chapter 6

Formal Speci�cation of the FGS

6.1 Translating the Speci�cation into Z

We have chosen to organize the Z speci�cation in a similar manner to the CoRE speci�cation. The

de�nitions are roughly in the same order as they appear in the CoRE speci�cation. Z requires all

variables to be declared before they can be otherwise used, so we occasionally had to reorganize

some of the variable declarations. The variables tend to have the same names unless they did not

appear in the CoRE speci�cation at all. Some mode names, such as GA and APPR, were overloaded

in the CoRE speci�cation; they stood for two mode values, one for modeaActiveaLateral and one

for modeaActiveaVertical. Since Z requires that di�erent free types (such as the possible modes

of modeaActiveaLateral and modeaActiveaVertical) be disjoint, we changed some names slightly. For

instance, we use LaAPPR and VaAPPR instead of just APPR.

Many of the di�culties that we encountered in translating the CoRE speci�cation into Z arise

because the CoRE model is purely event-driven: an event occurs and its e�ect is felt instantaneously.

Therefore, when we translate the FGS into a polling cycle model, we must decide on interpretations

of certain aspects of the FGS accordingly.

We have chosen to interpret the CoRE FGS speci�cation using, as much as possible, the discrete-

time formal model for SCR semantics [2]. In particular, we use its de�nitions of events and simul-

taneity of events. The SCR model is quite compatible with Z, since events and transitions are de�ned

in terms of comparisons between two system states (unprimed and primed), just as in Z. However,

in order to analyze the CoRE speci�cation, we must ignore some constraints of the SCR model (in

particular, the requirement that the variables be partially ordered by dependency). In doing so,

we give up some of the bene�ts, such as the su�ciency of static consistency checks in determining

exhaustiveness and determinism of the system.

For instance, consider the example discussed in Section 4.2. The most straightforward translation

of Transitions 28 and 57 into a discrete-time model is as follows. Transition 28 would translate to

a
aTransitionaTwentyEighta

a Transition
a
a

a

a modeaActiveaVertical = V aGA

a modeaActiveaVertical 0 6= V aGA

a modeaActiveaLateral = LaGA

a modeaActiveaLateral 0 2 ROLL
aa

21

and Transition 57 would translate into

a
aTransitionaFiftySevena

a Transition
a
a

a

a modeaActiveaLateral = LaGA

a modeaActiveaLateral 0 6= LaGA

a modeaActiveaVertical = V aGA

a modeaActiveaVertical 0 = PITCH
a
a

Clearly these two transitions will con
ict with any transition that takes these two modes from

LaGA and VaGA to any modes other than PITCH and ROLL.

Furthermore, these two transitions, by themselves, are nondeterministic. If modeaActiveaLateral

= LaGA ^ modeaActiveaVertical = VaGA , then the above two predicates are satis�ed if modea-

ActiveaLateral 0 = LaGA ^ modeaActiveaVertical 0 = VaGA , but they are equally satis�ed if modea-

ActiveaLateral 0 2 ROLL ^ modeaActiveaVertical 0 = PITCH. Thus we cannot exclude the possibility

of \spontaneous transition" if both transitions are allowed to hold simultaneously.

If Transitions 28 and 57 were the only transitions in their respective tables, then the tables would

individually be nondisjoint, but the system as a whole would still be nondeterministic.

6.2 Initializing the Variables

The CoRE speci�cation requires that each variable be initialized to a certain value. However, many

initial values are computed from the other variables' initial values using condition or event tables.

In Z, initialization is described as follows. Suppose our schema that declares the variables is called

State. Then we de�ne another schema, conventionally called InitState, whose predicates contain the

initialization of the variables.

For example, suppose we have a schema

a
a Statea

a Var1 : 1 : : 50

a Var2 : 1 : : 600
a
a

Then a possible initialization would be

a
a InitStatea

a State
a
a

a

a Var1 = 25

a Var2 = 1
a
a

The InitState schema is merely a constraint on the possible initializations. If not all variables are

given a value in InitState, then there could be several possible initializations that satisfy InitState.

Of course, it is imperative that the initialization actually be a legal state. The legality check for

the initial state takes the form of a theorem asserting that there in fact exists a state (i.e. a binding

of State) that satis�es the predicates of the schema InitState; that is, the values assigned in InitState

are not inconsistent with the predicates given in State. The spot is the Z \such that" notation.

22

Theorem InitaIsaOK:

9 State � InitState

The CoRE speci�cation is not very explicit about when the FGS is to be initialized. Is it to

be activated when the plane is still on the ground? Is it possible that the FGS will turn on when

the plane is in the air and is already overspeed? Should this cause the modeaOverspeed machine to

initialized to TOOaFAST?

6.3 Numerical Quantities in Z

Z does not possess a built-in type for real numbers. Its only built-in type is the integers, along with

some subsets such as the naturals. The CoRE speci�cation is not very explicit about some of the pre-

cisions to which numerical values should be stored (such as conaSelectedaHeadingaAnnunciation,

which is in degrees, but the number of signi�cant �gures is not declared).

In Z, we can declare a type, say ALTITUDE, as a copy of the the naturals, and then we can

declare variables whose values are of type ALTITUDE. However, Z/EVES does not perform this

kind of typechecking; if both ALTITUDE and AIRSPEED, say, are copies of the naturals, Z/EVES

will not distinguish between them.

In order to translate the numerical types of the CoRE speci�cation into Z, we have chosen a

precision that is consistent with the CoRE declarations. For instance, if a CoRE variable declaration

is given as -5.0 to 5.0 degrees, then our corresponding Z declaration would be -50 : : :50. In the

CoRE speci�cation, several variables of type AltitudeaRate were measured to di�erent precisions.

We chose to declare the Z type ALTITUDEaRATE with the largest increments (0.001 kft/min) that

all allowed all of these variables to be measured to the desired precision with an integral number of

increments.

6.4 Transitions

We are operating under the assumption that only one monitored variable changes during each polling

cycle. Therefore, we want to tag each cycle with the input event that occurs in that cycle. First we

must de�ne a free type EVENT containing all of the event labels that we will use.

EVENT ::= AtaSwitchaPressed j Event2 j NoaEvent : : :

Then we declare a variable taking values in EVENT.

a
aTheaEventa

a event : EVENT
a
a

Since each event constitutes a change in a monitored variable, we de�ne an event using a schema

of the following form. Suppose we have a switch Switch taking the values ON and OFF, declared as

follows.

SWITCH ::= ON j OFF

a
aAaSwitcha

a Switch : SWITCH
a
a

23

Then we can de�ne the event AtaSwitchaPressed corresponding to the Switch going from OFF

to ON as follows

a
aEventaSwitchaPresseda

a �AaSwitch

a TheaEvent
aa
a

a (event = AtaSwitchaPressed), (Switch = OFF ^ Switch0 = ON)
aa

For convenience, we have overloaded some of the event labels. For instance, sometimes there are

two switches with the same function; in this case, pushing either will generate the same event. There

are also some other places where the overloading is a bit greater, such as ALTSELaTrackaCondaMet.

In this case, the variable termaALTSELaTrackaCond is a compound Boolean, and it would be rather

inconvenient to list the changes of all of the monitored variables as separate input events.

Some CoRE events are de�ned essentially as disjunctions of other events; for instance, @Laterala-

ModeaRequested occurs exactly when one of @HDGaSwitchaPressed, @NAVaSwitchaPressed, APPRa-

SwitchaPressed, or GAaPressed occurs. to simulate this in Z, we de�ne a subset LateralaModeaRequested

consisting of the appropriate input events. Then we translate the event @LateralaModeaRequested

into the statement event 2 LateralaModeaRequested.

We must be conservative about overloading, because it is easy to get confused about what should

be considered an input event and what is properly an internal event. The labeling is designed

speci�cally to guarantee the One Input Assumption; so we must be sure that an external event can

in
uence only one event label.

6.5 Sustaining Conditions

CoRE allows parts of the speci�cation, such as variables, to be \tagged" with sustaining conditions.

A sustaining condition is a predicate, and the tagged part is not to be accessed or changed in any

way unless the predicate is true. So, for instance, a variable with a sustaining condition is not

supposed to be accessed or changed unless the sustaining condition is true.

However, the CoRE Guidebook [1] is not very speci�c on what variables can or cannot be tagged,

and it does not give much idea of the best way to translate such a condition into our polling-cycle

model. For instance, is it permissible to access or to change a tagged variable in the same polling

cycle that the sustaining condition changes?

As well, the CoRE FGS speci�cation tags other quantities such as mode machines. Since a mode

machine records state history, the mode of a mode machine cannot only be calculated from the values

of variables in the present state. The CoRE FGS speci�cation even tags invariants with sustaining

conditions; since some variables involved have sustaining conditions, the authors must restrict the

validity of the invariant to the states where such variables can be accessed.

A further indication of the authors' intent is given by the use of the sustaining condition

modeaFlightaDirector = ON for the mode machines modeaActiveaLateral, modeaActiveaVertical,

modeaAltitudeaSelect, modeaVerticalaApproach. For instance, suppose modeaFlightaDirector

= OFF, so that these four mode machines are inaccessible. Now suppose that a
ight mode is re-

quested: say @HDGaSwitchaPressed occurs. First, note that the this event causes modeaFlighta-

Director0 = ON. It is clear that the modeaActiveaLateral table is in e�ect for that polling cycle,

so that modeaActiveaLateral0 = HDG.

24

So a sustaining condition is not quite like a guard in a conditioned (\when") event. A variable in

a given state can be accessed as long as the sustaining condition is true in that same state. For term

variables, our interpretation is that the tagged variable can be changed only when the sustaining

condition is TRUE in the new state.

However, in the case of the mode machines, it seems important that we use the mode machine's

value to keep track of the sustaining conditions. To each mode machine, we add an NOTaINaMODE

mode value, and add transitions to ensure that the mode machine is in NOTaINaMODE exactly

when it sustaining condition is not true. So it seems that a reasonable interpretation is to state

an invariant of the system, that each mode machine is in its corresponding NOTaINaMODE mode

whenever its sustaining condition is not true. Furthermore, in the transition tables, we add two

transitions detailing what happens when the sustaining condition becomes true, and when the sus-

taining condition becomes false. In the case when an invariant has a sustaining condition, we have

rewritten the invariant to say that the sustaining condition implies the invariant.

6.6 Hierarchical Mode Machines

The authors of the CoRE FGS speci�cation extended the CoRE method by allowing the use of

hierarchical mode machines, where a given mode of a mode machine may have its own submodes,

which can be governed by a separate transition table.

For instance, the ModeaAltitudeaSelect mode machine has two \top-level" modes, CLEARED

and ENABLED. The ENABLED submode has two submodes, ARMED and ACTIVE. The ACTIVE submode

has two submodes, Capture and Track.

One way to model the modeaAltitudeaSelect machine in Z would be to construct separate,

current mode machines for each submode. However, this requires two more mode machines (say

ALTSELaENABLEDaMode and ALTSELaACTIVEaMode). Since all Z variables have to have a value at all

times, we would be wise to construct extra NOTaINaMODE values for these machines, for the times

when the the top-level mode machine is not in the respective mode.

A less complicated alternative is to
atten the hierarchical mode machine, and then to intro-

duce subsets corresponding to the top-level modes. For instance, we could de�ne the free type for

modeaAltitudeaSelect as follows:

ALTSELaMODE ::= ALTSELaCLEARED j ALTSELaARMED j ALTSELaCAPTURE

j ALTSELaTRACK

Then we give an axiomatic de�nition

a ALTSELaENABLED ;ALTSELaACTIVE : PALTSELaMODE
aa
a

a ALTSELaENABLED = fALTSELaARMED ;ALTSELaCAPTURE ;ALTSELaTRACKg
a

a ALTSELaACTIVE = fALTSELaCAPTURE ;ALTSELaTRACKg

Then any CoRE reference to modeaAltitudeaSelect = ACTIVEwould be replaced in Z with modea-

AltitudeaSelect 2 ALTSELaACTIVE.

Most CoRE mode machines are given with an initial value. For instance, the CoRE ACTIVE

submode machine has the initial value Capture. So we can translate a CoRE transition that

sends modeaAltitudeaSelect to ACTIVE into a Z transition that sends modeaAltitudeaSelect to

ALTSELaCAPTURE.

25

However, some submode machines are given with transition tables that discuss entry into the

mode. In this case, the transitions that give entry into the mode should be broken up into di�erent

transitions, one for each possible submode.

This approach seems compatible with the intent of the authors of the CoRE speci�cation. In

particular, this approach also allows us to capture the intent of the ENABLED supermodes in the

modeaAltitudeaSelect and modeaVerticalaApproach mode machines. In the CoRE speci�cation,

one is allowed to write a transition that sends modeaAltitudeaSelect to ENABLED; but rather the

submode values ARMED or ACTIVE are actually the values exported to other mode machines. In Z we

translate a transition into ENABLED as a predicate asserting that modeaAltitudeaSelect 0 lies in the

subset ENABLED.

6.7 INMODE Booleans

Several places in the CoRE speci�cation use a Boolean such as @T(Duration(INMODE) > 10 sec),

as in the following table.

a

a modeaAutopilot DISENGAGED Transition Table a
a

a

a Id a a From a Event a To a
a

a 11 a a Warning a @T(Duration(INMODE(Warning)) > 10 sec) a Normal a
a

In our Z translation, we construct a Boolean for each mode and duration that is used in the

speci�cation. For the above, we declare

a
a INMODEaBooleana

a DurationaINMODEaAPaDisengagedaWarningagtatenasec : BOOLEAN
a
a

which is to be TRU when modeaAutopilot has been in the mode APaDISENGAGEDaWARNING

for more than 10 seconds. (We do not, however, specify a clock or a mechanism for changing the

value of this Boolean; that can be done at a later stage in the design process.)

We make one constraint, which is that if this Boolean (which we abbreviate toDurationaINMODE

for now) is TRU, then the corresponding mode machine was in the appropriate state during the

previous polling cycle.

a
aTransitionaINMODEaRequirementa

a �INMODEaBoolean

a �State
a
a

a

a DurationaINMODEaAPaDisengagedaWarningagtatenasec0 = TRU

a) (modeaAutopilot = DISENGAGEDaWARNING)
a
a

This constraint might seem odd, since it would seem reasonable to require if the DurationaINMODE

Boolean is TRU in a given state, then the corresponding mode machine is that mode. However, to

capture the intent of Transition 11 above, where DurationaINMODE = FALS ^ DurationaINMODE 0

= TRU is used as a trigger for setting modeaAutopilot 0 = APaDISENGAGEDaNORMAL, it seems

most reasonable to make our constraint as above.

We have not been more speci�c with the details of these Booleans, such as specifying a clock.

This is concordant with the use of Z; we can add a more speci�c constraint at a later point in the

speci�cation lifecycle.

26

6.8 Translating Tables

A CoRE table associated to a variable assigns a value to that variable. A condition table for a

variable decides, based on the values of certain other variables, which of several values to assign the

variable. An event table or mode transition table decides, based on the changes in certain other

variables that occur in a given transition, which of several values to assign to the variable in the

new state.

6.8.1 Condition Tables

The translation of a CoRE condition table to our Z polling cycle model is straightforward.

Suppose our condition table is

a Sample Condition Table aa
a

a Mode = A a Var1 = T a Var1 = F a X aa
a Mode = B a X a X a TRUE aa
a

a CondVar a Val1 a Val2 a Val3 a
a

Given the schema State, we write out the conditions of the table, �rst by rows, and then within

each row, by columns. We suppose that the variables that are involved in the condition table are

declared within the schema Variables.

a
aConditionaTablea

a Variables
a
a

a

a (Mode = A ^ Var1 = T ^ CondVar = Val1) _

a (Mode = A ^ Var1 = F ^ CondVar = Val2) _

a (Mode = B ^ CondVar = Val3)
aa

Since the condition table for a variable de�nes that variable in terms of other variables in the

same state, we shall include condition tables as part of the State schema. Then in each state, the

condition table will hold and will thus compute the value of its variable.

6.8.2 Event Tables

An ordinary event table also has a straightforward translation. Suppose we have an event table of

the following form.

a Sample Event Table a
a

a

a Mode1 = A a Event1 a Event2 a X a
a

a Mode1 = B a Event2 a Event1 a Event3 a
a

a

a EventVar a Val1 a Val2 a Val3 a
a

We can translate the table into Z as follows. We suppose that the variables involved in the event

table are declared in Variables, and the input event variable is declared in TheaEvent.

27

a
aEventaTablea

a �Variables

a TheaEvent
aa
a

a (Mode1 = A ^ Event1 ^ EventVar 0 = Val1) _

a (Mode1 = A ^ Event2 ^ EventVar 0 = Val2) _

a (Mode1 = B ^ Event2 ^ EventVar 0 = Val1) _

a (Mode1 = B ^ Event1 ^ EventVar 0 = Val2) _

a (Mode1 = B ^ Event3 ^ EventVar 0 = Val3) _

a (: ((Mode1 = A ^ Event1) _ (Mode1 = A ^ Event2) _

a (Mode1 = B ^ Event2) _ (Mode1 = B ^ Event1) _

a (Mode1 = B ^ Event3)) ^ EventVar 0 = EventVar)
aa

The negation of the disjunction of all the event triggers is used as the trigger for no change in

the value of EventVar. This construction is necessary in order to de�ne the value of EventVar for

all possible changes of State.

One type of event used in the CoRE speci�cation that deserves special mention is the ENTERED

(otherwise known as @T(Inmode)) event. This event occurs when the mode machine enters the

mode corresponding to the row in which the ENTERED appears. Of course, this means that the mode

machine was not in that mode in the initial state, but was in that mode in the �nal state. The SCR

method arranges the event table so that each row corresponds to a possible old mode of the system,

and events listed in that row may happen while the old mode is equal to that row's mode value.

The translation of the hypothesis for an ENTERED event is still straightforward, but the old state will

not be in the mode where the ENTERED event is listed, so we should not compare this event to the

other events in that row.

In order to partition the events properly, we must rewrite the ENTERED events. If an ENTERED

event appears in the i-th row corresponding to the mode value Mai, then we rewrite the event as

@T(Mode = Mai) and transfer this event to all of the other rows (since those correspond to the

possible old values of Mode before @T(Mode = Mai). For instance, suppose we have a table as below.

a Sample Event Table with @T(INMODE) aa
a

a Mode1 = A a @T(INMODE) a Event2 a X aa
a Mode1 = B a X a Event1 a Event3 a
a

a Mode1 = C a X a Event1 a Event2 a
a

a

a EventVar a Val1 a Val2 a Val3 a
a

The @T(INMODE) really means @T(Mode1 = A). So we should remove this event from the row

Mode1 = A and put it in the other rows where it could occur, namely the rows for Mode1 = B and

Mode1 = C.

The rewritten table would be

a Rewritten Event Table with @T(INMODE) a
a

a

a Mode1 = A a X a Event2 a X aa
a Mode1 = B a @T(Mode1 = A) a Event1 a Event3 aa
a Mode1 = C a @T(Mode1 = A) a Event1 a Event2 aa
a

a EventVar a Val1 a Val2 a Val3 aa

28

We also must discuss the translation of the CONTINUOUSLY events. For instance, let us look at

one row of a table containing such an event.

a Continuous Event Table for EventVar a
a

a

a Mode = A a CONTINUOUSLY WHEN Bool = TRUE a Event2 a
a

a EventVar a Val1 a Val2 a a
a

Since this is an event table, we have decided that the polling cycle translation should only

specify the value of EventVar 0 in the new state, rather than stating an invariant about the unprimed

EventVar as well. We believe that the authors' intent is that EventVar should equal Var1 in any

state where Bool = TRU and Mode = A. So we make this assertion for the new (primed) state, and

then translate the other entries of the table in order not to con
ict with this assertion.

a
aContinousaEventaTablea

a �State
a
a

a

a (Mode0 = A ^ Bool 0 = TRU ^ EventVar 0 = Val1) _

a (Mode = A ^ Bool 0 = FALS ^ Event2 ^ EventVar 0 = Val2)
a
a

Now let us demonstrate on a table that contains both ENTERED and CONTINUOUS events. We

abbreviate modeaFlightaDirector to FD and modeaActiveaVertical to AV. Here, because two

mode machines are involved, the ENTERED could mean either AV entering FLC while FD is ON, or

also FD entering ON at the same time as AV enters FLC. We believe that the authors' intent is that

the both of these events will trigger the transition in question.

a FD a AV aa Event a
a

a OFF a N/A a X a X a
a

a ON a
a

FLC a X a @SpeedaKnobaChanged a
a

a ON a FLC a ENTERED a @SpeedaKnobaChanged a
a

a a a CONTINUOUSLY WHEN termaSYNC a a
a

a

a
termaReferenceaIAS

a
monaIndicatedaAirspeed

a
limit(0, 512,

termaReferenceaIAS0 +

1*(termaSpeeda

KnobaRotation)) a
a

Some of this translation, such as using 2 instead of = in some places, comes from other aspects

of the translation into Z.

29

a
aDef aOf atermaReferenceaIASa

a �aggraReferences

a �aggraFCPaKnobs

a �aggraAiraData

a �SYNC

a TheaEvent

a �aggraFlightaModes
a
a

a

a (modeaFlightaDirector 0 2 FDaON ^ modeaActiveaVertical =2 FLC ^

a modeaActiveaVertical 0 2 FLC ^ termaSYNC 0 = FALS

a ^ termaReferenceaIAS 0 = monaIndicatedaAirspeed 0)

a _ (modeaFlightaDirector 0 2 FDaON

a ^ modeaActiveaVertical 0 2 FLC ^ termaSYNC 0 = TRU

a ^ termaReferenceaIAS 0 = monaIndicatedaAirspeed 0)

a _ (modeaFlightaDirector 2 FDaON ^ modeaActiveaVertical =2 FLC

a ^ event = SpeedaKnobaChanged

a ^ monaIndicatedaAirspeed 0 = termaReferenceaIAS 0 =

a minf512;maxf0; termaReferenceaIAS + termaSpeedaKnobaRotation0gg)

a _ (modeaFlightaDirector 2 FDaON ^ modeaActiveaVertical 2 FLC

a ^ termaSYNC 0 = FALS ^ event = SpeedaKnobaChanged

a ^ monaIndicatedaAirspeed 0 = termaReferenceaIAS 0 =

a minf512;maxf0; termaReferenceaIAS + termaSpeedaKnobaRotation0gg)

a _ (: ((modeaFlightaDirector 0 2 FDaON ^ modeaActiveaVertical =2 FLC ^

a modeaActiveaVertical 0 2 FLC ^ termaSYNC 0 = FALS)

a _ (modeaFlightaDirector 0 2 FDaON

a ^ modeaActiveaVertical 0 2 FLC ^ termaSYNC 0 = TRU)

a _ (modeaFlightaDirector 2 FDaON ^ modeaActiveaVertical =2 FLC

a ^ event = SpeedaKnobaChanged)

a _ (modeaFlightaDirector 2 FDaON ^ modeaActiveaVertical 2 FLC

a ^ termaSYNC 0 = FALS ^ event = SpeedaKnobaChanged))

a ^ termaReferenceaIAS 0 = termaReferenceaIAS)
a
a

6.8.3 Transition Tables

We can translate the the transition tables of the CoRE speci�cation into Z transition schemas. For

instance, consider a table for a certain mode machine M with modes A, B, C, : : :and transition table

with events Event1 and Event2, that looks like:

a Sample Transition Table for Mode aa
a From a Event a To a
a

a

a A a Event1 a B a
a

a B a Event2 a C a
a

a C a Event1 a A a
a

Recall the structure of an operation schema from Section 5.3. We translate the rows of the

transition table into schemas as follows. We presume that all of the variables in the table appear in

the Variables schema.

30

a
aTransitionaOnea

a �Variables
a
a

a

a Mode = A ^ Event1 ^ Mode0 = B
a
a

a
aTransitionaTwoa

a �Variables
aa
a

a Mode = B ^ Event2 ^Mode0 = C
aa

a
aTransitionaThreea

a �Variables
a
a

a

a Mode = C ^ Event1 ^Mode0 = A
aa

We must also specify that that value ofMode does not change when none the above events occurs.

a
aTransitionaFoura

a �Variables(: ((Mode = A ^ Event1) _ (Mode = B ^ Event2) _ (Mode = C ^ Event1))

a ^Mode0 = Mode)
aa

Finally, the translation of the transition table is the disjunction of the above four schemas. This

schema thus asserts that at least one of the above operations must hold.

TransitionaTable b=

TransitionaOne _

TransitionaTwo _

TransitionaThree _

TransitionaFour

As we noted before, this translation has the property that if two rows are not disjoint, then the

table is nondeterministic; either outcome will satisfy the predicate of the table. This is in contrast

to an imperative translation of the table, with, a conjunction of predicates like Mode = A ^ Event1

) Mode0 = B; such a conjunction would be inconsistent and thus equivalent to false if two rows

were in con
ict.

6.9 Formal Veri�cation of Properties of the FGS

We can use our Z speci�cation to construct formal veri�cations of desirable properties of the spec-

i�cation. For instance, for each condition, event, or transition table, we can generate a theorem to

check disjointness of the entries; and for condition tables, we generate a theorem to check that the

table covers all possibilities.

In addition, we may have additional invariants about the speci�cation that we wish to prove.

For instance, the CoRE FGS speci�cation requires that modeaActiveaVertical 2 fAPPR, GA,

ALTHOLDg , modeaAltitudeaSelect = CLEARED. A usual method of showing that an invariant

holds for all states is to show that it holds for one state of the system (such as the initial state), and

then to show that every transition preserves the invariant.

We are using Z/EVES 1.4 [7, 8], a theorem prover for the Z language, to generate proofs of table

checks and system invariants.

31

� Z/EVES can perform syntax and type checking of a Z speci�cation.

� Z/EVES can perform schema expansion, which replaces an included schema by its text; this

is very useful, especially in a large speci�cation.

� Z/EVES can do precondition calculation, to determine the necessary conditions for an opera-

tion to be invoked; not taking into account all of the preconditions of an operation is a frequent

cause of actual program failure.

� Z/EVES can perform domain checking, to ensure that functions are applied on elements that

are actually on their domain.

� Z/EVES provides an interface to the EVES theorem prover, which provides powerful auto-

mated support (e.g. heuristics and conditional rewriting) as well as user commands to direct

the theorem prover.

6.10 General Principles

The EVES theorem prover is designed to manipulate predicates into equivalent but hopefully simpler

ones. In particular, the prover tries to manipulate true predicates (i.e., theorems) to true. In order

to study a speci�cation, we must determine which predicates to give to the theorem prover to

manipulate.

For instance, if we have a rather complicated schema such as a transition table, we can ask the

theorem prover to manipulate the predicate of the schema, in the hopes of getting a simpler form

which we can more easily understand. This can be very useful when we are trying to �gure out

exactly what the system is doing, and when the predicate is written in a redundant form, such as a

standard translation from a CoRE table.

We can also use the theorem prover to attempt to prove theorems such as table consistency

checks. The prover may not be able to manipulate the predicate to true. However, if the check

is indeed false, the prover may be able to strip away most of the predicate and reveal plainly the

aspect of the predicate that may not be true. Then, we can inspect the simpli�ed predicate for

counterexamples; such counterexamples will also falsify the original putative theorem.

6.11 Using Z/EVES on the FGS Formal Speci�cation

Recall that the CoRE FGS contains elements such as concurrent mode machines that depend on

each other, which are prohibited in the SCR formal model. Thus many of the pleasant properties

of the SCR formal model are lost. The SCR formal model requires an ordering of the variables by

dependency. Thus, in this model we can perform consistency checks on tables that depend only on

monitored or otherwise checked variables, so there is no chance of being forced to use an unchecked

table in a consistency check of another table. This is how the SCR formal model uses consistency

checks to guarantee exhaustiveness and determinism.

Consistency of the transition tables is still however a valuable and necessary property of the

speci�cation. For each transition table, we have generated the consistency check as a large number

of pairwise comparison theorems, such as \if row 4's hypothesis holds, then row 7's does not".

Suppose the hypothesis of row 4 is Mode = B ^ Event4 and the hypothesis of row 7 is Mode = C ^

Event7. Then the corresponding check will take the form

32

Theorem TableaCheckaFouravsaSeven:

(LegalaState ^ TransitionaTables)) ((Mode = B ^ Event4)) : (Mode = C ^ Event7))

Since, in our FGS example, we cannot order the mode machines by dependency, we may be

forced to assume tables that we do not yet know are disjoint. For instance, some rows of the

modeaActiveaVertical transition table refer to the modeaVerticalaApproach transition table, but this

table also refers back to the modeaActiveaVertical transition table. For the check to hold, certain

system invariants may also have to be satis�ed by the old state; these are collected in LegalaState.

Recall that our Z translation of a table has the property that if two rows are not disjoint, then

the table is nondeterministic (as opposed to identically false, which would happen if we translate

the tables as a conjunction of implications). So a consistency check using such a nondisjoint table

is meaningful regardless of which of the several nondisjoint rows occurs. In contrast, if we had

used possibly inconsistent table translations, then any theorem using an inconsistent table would be

vacuously true, since the theorem would assume false hypotheses.

We have generated these consistency checks and we have done many experiments with proving

them. Most of them are straightforward and yield to Z/EVES almost automatically. Some, however,

require more e�ort; due to the rather large size of the Z FGS speci�cation relative to the present

capabilities of Z/EVES, some checks have not been fully investigated.

We may also wish to prove invariants, such as this invariant translated from the CoRE speci�-

cation.

a
a InvariantaThreea

a State
a
a

a

a (termaAPaEngaged = TRU) modeaFlightaDirector 2 FDaON)
aa

One method of proving this theorem is to prove it inductively: show that it holds for, say, the

initial state, and then that it is preserved by all transitions. In our Z FGS speci�cation, all of the

transitions are collected in TransitionaTables.

This theorem would take the form

Theorem InvariantaThreeaTheorem:

InvariantaThree ^ TransitionaTables) InvariantaThree0

In our Z translation, we collect several invariants on State that we want to hold into a schema

called LegalaState. So a check of all the invariants simultaneously would take the form

Theorem LegalaStateaTheorem:

LegalaState ^ TransitionaTables) LegalaState0

For the present Z FGS speci�cation, this theorem is not true as stated; for instance, for reasons

we have discussed earlier in Section 4.5, InvariantaEleven fails. We can us Z/EVES to help us

construct counterexamples to candidate invariants, if they are indeed false.

We can also state a test for exhaustiveness of the entire system. This says that for any legal

state and any input event, there exists a (primed) legal state such that the three are related by the

predicates of TransitionaTables.

Theorem ExhaustivenessaCheck:

8LegalaState; event : EVENT � 9LegalaState0 � TransitionaTables

33

We can even state a test for determinism. It is as above except that it requires that the primed

legal state also be unique.

Theorem DeterminismaCheck:

8LegalaState; event : EVENT � 9
1
LegalaState0 � TransitionaTables

We have, in some experiments, used proof attempts on these theorems to detect nondeterminism

in smaller systems. However, due to the complexity of the Z FGS, which comprises several thousand

lines, an analysis of this kind is at present impractical on our current hardware using the present

version of Z/EVES.

We did quite a bit of testing on our Z speci�cation. Many times, when a consistency check

fails, the falsi�cation demonstrates that there was a missing hypothesis on the state, which allowed

consideration of a state that we did not want to consider legal.

6.12 Areas for Further Work

It would be very interesting to compare our results with those of the Rockwell-Collins groups work-

ing on PVS and SCR (Miller and Hoech) and SMV (Yakhnis), as well as the work at ORA of

Dimitri Naydich and John Nowakowski using SPIN. Enhancements to Z/EVES and added compu-

tational power would greatly increase the feasibility of performing more substantial veri�cation on

our speci�cation.

34

Chapter 7

Conclusions

7.1 The CoRE Speci�cation

The Flight Guidance System (FGS) speci�ed in Miller and Hoech's document [5] is intended as an

example for evaluating various requirements engineering methods. Miller and Hoech used the CoRE

method [1] to specify the FGS. The CoRE method can be used with the constraints of the SCR

discrete-time formal model [3], but the authors chose not to use it. Unless the author one adheres

to constraints such as those of the SCR formal model (e.g. a dependency ordering on the variables),

he can easily write down statements whose meaning is not clear, such as the transitions for leaving

GA, discussed in Section 4.2.

Miller and Hoech also found that the CoRE method is not entirely able to capture their intent,

so their speci�cation is expressed in a variant of CoRE that includes several of their own extensions.

There are no formal semantics for these extensions, and some of them, such as the continuous

transitions, are not well de�ned.

7.2 Using Z to De�ne the Semantics of the FGS Speci�ca-

tion

In this project, we have endeavored to supply a formal semantics for the CoRE speci�cation, using

a discrete-time model based on the SCR formal model, and expressing the results in Z. We are not

proposing that the FGS speci�cation should have been written in Z in the �rst place; the tabular

notation of CoRE is quite readable and well-suited to the FGS speci�cation. The corresponding Z

translation of the FGS speci�cation is signi�cantly more verbose. We have used Z as a vehicle for

expressing formal de�nitions of concepts that appeared in the CoRE speci�cation without formal

de�nitions. The Z notation is quite well-suited to this task, for several reasons.

The standard Z approach to specifying transitions as constraints between an old state and a new

state is very similar to the SCR discrete-time formal model's approach. We attempted to translate

into Z all of the CoRE FGS notions such as events and transitions using the de�nitions of the SCR

formal model, where an event is a change of variable between the old state and the new state of a

polling cycle. If this event triggers another event, then both events occur in the same polling cycle.

The schema notation of Z allows us to assemble large systems from smaller components. We can

also tailor the level of detail to the situation (such as with the Duration(INMODE) Booleans). Z

allows us to constrain the behavior of our system as much or as little as is appropriate.

35

In this manner, all of the concepts admitted a reasonably straightforward translation into our

Z model, except for the \continuous transition to FLC", described in Section 4.5. We wanted to

preserve the property that a transition, once stated as a constraint between the old state and the

new state of a polling cycle, actually held true and could not be altered in the same polling cycle.

Since the intent of this \continuous transition" is to alter the new state immediately, we could not

�nd a satisfactory translation without signi�cantly altering the structure of the speci�cation. The

concept appears to be most suited to micro-time semantics, which we have chosen to avoid.

We found the that act of expressing the notions of the CoRE FGS speci�cation in Z helped us

to �nd di�culties in the original speci�cation. For instance, while trying to formulate the concept

of a simultaneous event in Z, we explored the di�culties caused by the modeaActiveaVertical and

modeaActiveaLateral machines driving each other to leave the GA mode

7.3 Using Z/EVES on the Z Speci�cation

Our experience has been that writing a speci�cation, even one which is neither large nor complicated,

is prone to errors (especially trivial errors of omission, misremembered and mistyped variable names,

and so forth). Automated reasoning tool support can be quite e�cient and cost-e�ective at detecting

the existence of such errors, and eliminating them at an early stage of the software lifecycle.

Z/EVES provides strong, automated deduction and simpli�cation capabilities. Type checking is

done automatically. The Z/EVES user interface is well integrated with the Z notation. However,

using the prover requires a good understanding of the Z notation and of predicate logic. As with most

automated theorem provers, one must understand what Z/EVES does and does not do automatically,

in order to provide additional guidance when Z/EVES requires it. The tutorial documentation is

adequate [9].

There are some areas where Z/EVES could use signi�cant improvement, in order to deal with

state machine veri�cation. In particular, Z/EVES support for state machine veri�cation would be

improved if Z/EVES support for free (enumerated) types were faster and more automatic.

The heuristics of Z/EVES are designed for general theorem proving and so are not especially

optimized for table-checking type theorems. In particular, we had to expand schemas carefully;

otherwise, we could easily introduce a large number of irrelevant hypotheses into an otherwise

simple table-check, which would drastically slow down the theorem prover. As another example,

there are several points at which we must disable some of the rewrite rules that Z/EVES uses, in

order to keep the Z/EVES from wasting a lot of time; this is particularly true when we are arguing

about membership in a subset. One must have a good idea of the type of heuristics that Z/EVES

uses in order to determine what to enable or disable at a given point in a proof.

Certain kinds of errors (including otherwise minor typos) can cause spuriously true checks. For

example, if the trigger for a transition is supposed to be Mode = A ^ Mode0 6= A but is accidentally

entered Mode = A ^ Mode 6= A, then the trigger is vacuously false. Thus all consistency checks of

the form

Theorem VacuousaTableaCheck:

(LegalState ^ TransitionaTables))

((Mode = A ^Mode 6= A)) : (OtherTrigger))

are true. An interface to a table input tool would be helpful in avoiding such errors.

36

7.4 Acknowledgements

First, we would like to thank Mark Saaltink, for numerous patient and thorough explanations of

Z and Z/EVES. We would also like to thank Dimitri Naydich for many enlightening discussions

and valuable advice. Finally, thanks to John Nowakowski for pointing out the last two examples in

Section 4.6.

37

Bibliography

[1] Stuart R. Faulk, Lisa Finneran, James Kirby, and Assad Moini, Consortium requirements

engineering guidebook, Technical Report SPC-92060-CMC, Software Productivity Consortium,

2214 Rock Hill Road, Herndon, VA 22070, December 1993.

[2] Constance Heitmeyer, Bruce Labaw, and D. Kiskis, Consistency checking of SCR{style require-

ments speci�cations, in IEEE Internation Symposium on Requirements Engineering, March

1995.

[3] Constance Heitmeyer, Ralph Je�ords, and Bruce Labaw, Automated Consistency Checking of

Requirement Speci�cations, ACM Transactions on Software Engineering and Methodology, July

1996, pp. 231{261.

[4] Jonathan Jacky, The way of Z: practical programming with formal methods, Cambridge Univer-

sity Press, Cambridge, UK, 1997.

[5] Steven P. Miller and Karl F. Hoech, Specifying the Mode Logic of a Flight Guidance System

in CoRE, Rockwell-Collins, April 1997.

[6] Dimitri Naydich and John Nowakowski, Flight Guidance System Validation using SPIN, ORA

Technical Memo TM-97-0043, October 1997.

[7] M. Saaltink and I. Meisels, The Z/EVES reference manual (for Version 1.4), ORA Canada

Technical Report TR-97-5493-03c, June 1997.

[8] M. Saaltink, The Z/EVES System, in Bowen, Hinchey, and Till (eds.), \ZUM '97: The Z formal

speci�cation notation", Lec. Notes in Comp. Sci. 121, Springer-Verlag, 1997.

[9] M. Saaltink, The Z/EVES User's Guide, ORA Canada Technical Report TR-97-5493-06,

September 1997.

[10] J. M. Spivey, Understanding Z: a speci�cation language and its formal semantics, Cambridge

Tracts in Theoretical Computer Science 3, Cambridge University Press, Cambridge, UK, 1988.

[11] J. M. Spivey, The Z notation: a reference manual, 2nd. ed., Prentice-Hall, New York, 1992.

38

Appendix A

Formal Speci�cation of the FGS

This is version 1.0 (10/1/97) of the Z speci�cation of a Flight Guidance System for Task 8 of the

NASA Life-Critical Systems contract C071. This is a translation of the CoRE Flight Guidance

System described in Steven P. Miller and Karl F. Hoech's document \Specifying the Mode Logic of

a Flight Guidance System in CoRE," to which the reader is referred for more detailed descriptions

of the variables. The order of this document follows as much as possible the order of the CoRE

document, given the constraint that Z requires all variables to be declared before they are used. A

few annunciations from the CoRE speci�cation have been omitted for space reasons. Their condition

tables can be checked by the methods described in the report.

A.1 Declarations of Variable Types

We enumerate the possible input events in the free type EVENT. Some of these comprise more than

one input event; for instance, when there are two identical buttons that have the same function.

EVENT ::= HDGaSwitchaPressed j NAV aSwitchaPressed j APPRaSwitchaPressed

j GAaPressed j APaEngageaSwitchaPressed j SYNCaOn j SYNCaO�

j ALTaSwitchaPressed j VSaSwitchaPressed j FLCaSwitchaPressed j FDaPressed

j VSaPitchaWheelaChanged j ALTaKnobaChanged

j SpeedaKnobaChanged j HDGaKnobaChanged j APaDisengageaPressed

j APaDisconnectaBaraUp j APaDisconnectaBaraDown

j NavaSourceaChanged j LandaOnaGround

j LateralaNAV aTrackaCondaMet j LateralaAPPRaTrackaCondaMet

j GoneaOverspeed j GoneaNormal j ALTSELaTRACKaCondaMet

j ALTSELaCAPTUREaCondaMet

j VertaAPPRaTrackaCondaMet

j NoaEvent

In the following pieces of Z syntax, we de�ne the other free types that we use in the speci�cation.

Many of these free types consist of the possible modes of various mode machines. We also de�ne the

Boolean free type, consisting of TRU and FALS, here. (This spelling accommodates Z/EVES 1.4's

recognition of TRUE and FALSE as predicates).

39

LATERALaMODE ::= LaGA j LaAPPRaARMED j LaAPPRaTRACK j HDG

j ROLLaROLLaHOLD j ROLLaHDGaHOLD j NAV aARMED

j NAV aTRACK j LATERALaNOTaINaMODE

VERTICALaMODE ::= PITCH j V aAPPR j ALTSEL j ALTHOLD j V aGA j VS

j FLCaTRACK j FLCaOVERSPEED j VERTICALaNOTaIN aMODE

ALTSELaMODE ::= ALTSELaCLEARED j ALTSELaARMED j ALTSELaCAPTURE

j ALTSELaTRACK j ALTSELaNOTaINaMODE

APaMODE ::= DISENGAGEDaNORMAL j DISENGAGEDaWARNING

j ENGAGEDaNORMAL j ENGAGEDaSYNC

VERTaAPPRaMODE ::= VERTaAPPRaCLEARED j VERTaAPPRaARMED

j VERTaAPPRaTRACK j VERTaAPPRaNOTaIN aMODE

LAMPaMODE ::= LIT j UNLIT

SPEEDaMODE ::= SPEEDaOK j TOOaFAST

SWITCH ::= ON j OFF

BOOLEAN ::= TRU j FALS

VALIDITY ::= VALID j INVALID

BAR ::= UP j DOWN

FDaMODE ::= FDaOFF j FDaONaCUES j FDaONaNOaCUES

NAV aTYPE ::= FMS j VOR j LOC

NAV aSOURCES ::= FMS1 j FMS2 j FMS3 j VNR1 j VNR2 j VNR3 j VNR4

APaCOUPLING ::= FGS jMANUAL

ALTSELaCOND ::= ALTSELaCONDaCAPTURE

j ALTSELaCONDaTRACK

j ALTSELaCONDaNONE

In the following Z statement, we de�ne some numerical types. Since there is no built-in support

for real numbers, we choose precisions based on the CoRE document.

AIRSPEED is measured in 1 knot increments.

ALTITUDE is measured in 1 foot increments.

ALTITUDEaRATE is measured in 0.001 kft/min (that is, 1 ft/min) increments.

HEADING is measured in 1 degree increments.

PERIOD is measured in 1 millisecond increments.

PITCHaANGLE is measured in 1 degree increments.

ROLLaANGLE is measured in 1 degree increments.

AIRSPEED == N

ALTITUDE == �8000 : : 56000

ALTITUDEaRATE == �32700 : : 32800

HEADING == 0 : : 359

MACHaNUMBER == N

PERIOD == N

PITCHaANGLE == �90 : : 89

ROLLaANGLE == �180 : : 179

40

A.2 Variable Declarations

In the schema aggraFCPaSwitches, we declare monitored variables for the switches on the Flight

Control Panel. Each switch can assume the value ON or OFF. We also declare variables that record

how many counts, or clicks, away from 0 that certain knobs are twisted. Finally, monaAPaDis-

connectaBar monitors a bar that can be set to UP or DOWN, and acts as a cuto� to engaging

the autopilot when DOWN. A change in one of these variables is associated to an input event, as

described below in the event declarations.

a
a aggraFCPaSwitchesa

a monaHDGaSwitch : SWITCH

a monaNAV aSwitch : SWITCH

a monaAPPRaSwitch : SWITCH

a monaALTaSwitch : SWITCH

a monaVSaSwitch : SWITCH

a monaFLCaSwitch : SWITCH

a monaAPaEngageaSwitch : SWITCH

a monaFDaSwitchaLeft : SWITCH

a monaFDaSwitchaRight : SWITCH

a monaVSaPitchaCount : 0 : : 255

a monaALTaCount : 0 : : 255

a monaSpeedaCount : 0 : : 255

a monaHDGaCount : 0 : : 255

a monaAPaDisconnectaBar : BAR
aa

In the following schema aggraFCPaKnobs, we declare some variables that measure rotations in a

given polling cycle. For instance, termaVSaPitchaWheelaRotation measures the di�erence between

the present value of monaVSaPitchaCount and the previous value, and so forth.

a
a aggraFCPaKnobsa

a termaVSaPitchaWheelaRotation : �128 : : 127

a termaALTaKnobaRotation : �128 : : 127

a termaSpeedaKnobaRotation : �128 : : 127

a termaHDGaKnobaRotation : �128 : : 127
a
a

In the following schema aggraFCPaLamps, we declare lamp variables that annunciate whether

the FGS is in a certain mode. For instance, conaHDGaSwitchaLamp is LIT exactly when the FGS

is using
ight control laws that maintain a selected heading.

a
a aggraFCPaLampsa

a conaHDGaSwitchaLamp : LAMPaMODE

a conaNAV aSwitchaLamp : LAMPaMODE

a conaAPPRaSwitchaLamp : LAMPaMODE

a conaALTaSwitchaLamp : LAMPaMODE

a conaVSaSwitchaLamp : LAMPaMODE

a conaFLCaSwitchaLamp : LAMPaMODE

a conaAPaEngagedaSwitchaLamp : LAMPaMODE
a
a

41

In the following schema SYNC, we declare a Boolean variable SYNC. termaSYNC is TRU ex-

actly when one of monaSYNCaSwitchaLeft and monaSYNCaSwitchaRight is pressed. When TRU,

termaSYNC causes the reference variables to be synchronized with the corresponding monitored

quantities.

a
a SYNCa

a termaSYNC : BOOLEAN
a
a

In the following schema aggraYokesaVars, we declare monitored variables for the controls on

the pilot's and copilot's yokes. monaAPaDisengageaSwitchaLeft, monaAPaDisengageaSwitchaRight,

monaSYNCaSwitchaLeft, monaSYNCaSwitchaRight are all monitored variables for switches.

a
a aggraYokesaVarsa

a monaAPaDisengageaSwitchaLeft : SWITCH

a monaAPaDisengageaSwitchaRight : SWITCH

a monaSYNCaSwitchaLeft : SWITCH

a monaSYNCaSwitchaRight : SWITCH

a SYNC
a
a

In the following schema aggraThrottlesaVars, we declare monitored variables for the controls

on the pilot's and copilot's throttles. monaGAaSwitchaLeft and monaGAaSwitchaRight are both

switches.

a
a aggraThrottlesaVarsa

a monaGAaSwitchaLeft : SWITCH

a monaGAaSwitchaRight : SWITCH
a
a

The following schema aggraReferences declares several term variables that are used as references

to compare with monitored variables. termaVSaPitchaWheelaRotation, termaALTaKnobaRotation,

termaSpeedaKnobaRotation, and termaHDGaKnobaRotation are each set to be half of the monitored

knob count; they each range from -128 to 127 clicks.

termaSelectedaHeading stores the heading, set by the crew, that the FGS uses when modeaActivea-

Lateral is in HDG mode or in the ARMED submodes of NAV or LaAPPR; it is of type

HEADING and is measured from 0 to 359 degrees in 1 degree increments.

termaPreselectedaAltitude stores the altitude, set by the crew, that the FGS uses when modea-

ActiveaVertical is in ALTSEL mode; it is of type ALTITUDE and ranges from -8000 to 56000

feet in 100 foot increments.

termaReferenceaIAS stores the reference indicated airspeed; it is of type AIRSPEED, and it ranges

from 0 to 512 knots in 1 knot increments.

termaReferenceaMach stores the reference indicated Mach number. It is of type zv MACHaNUMBER

and is measured from 0 to 1 Mach in 1/100 Mach increments.

termaReferenceaHeading stores the reference heading. It is of type HEADING and is measured

from 0 to 359 degrees in 1 degree increments.

42

termaReferenceaAltitude stores the reference altitude. It is of type ALTITUDE and ranges from

-800 to 56000 feet, in 100 foot increments.

termaReferenceaPitch stores the reference pitch. It is of type PITCHaANGLE and ranges from -12

to 20 degrees in 1 degree increments.

termaReferenceaRoll stores the reference roll. It is of type ROLLaANGLE and ranges from -180 to

180 degrees in 1 degree increments.

termaReferenceaVerticalaSpeed stores the reference vertical speed. It is of type ALTITUDEaRATE

and ranges from -5 to 5 kft/min in 0.1 kft/min increments; thus it is measured in multiples of

100 of the 0.001 kft/min increments of ALTITUDEaRATE.

a
a aggraReferencesa

a termaPreselectedaAltitude : ALTITUDE

a termaSelectedaHeading : HEADING

a termaReferenceaIAS : AIRSPEED

a termaReferenceaMach :MACHaNUMBER

a termaReferenceaHeading : HEADING

a termaReferenceaAltitude : ALTITUDE

a termaReferenceaPitch : PITCHaANGLE

a termaReferenceaRoll : ROLLaANGLE

a termaReferenceaVerticalaSpeed : ALTITUDEaRATE
a
a

a

a termaPreselectedaAltitude 2 fi : ALTITUDE � 100 � ig

a termaReferenceaIAS 2 0 : : 512

a termaReferenceaMach 2 0 : : 100

a termaReferenceaAltitude 2 fi : ALTITUDE � 100 � ig

a termaReferenceaPitch 2 �12 : : 20

a termaReferenceaRoll 2 �27 : : 27

a termaReferenceaVerticalaSpeed 2 fi : ALTITUDEaRATE � 100 � ig \ (�5000 : : 5000)
a
a

The schema aggraReferenceaAnnunciations declares variables for the console annunciations to

the crew.

a
a aggraReferenceaAnnunciationsa

a conaSelectedaHeadingaAnnunciation : HEADING

a conaPreselectedaAltitudeaAnnunciation : ALTITUDE

a conaReferenceaIASaAnnunciation : AIRSPEED

a conaReferenceaVSaAnnunciation : ALTITUDEaRATE
a
a

a

a conaReferenceaIASaAnnunciation 2 0 : : 512

a conaReferenceaVSaAnnunciation 2 fi : ALTITUDEaRATE � 100 � ig \ (�5000 : : 5000)

a
a
a

The following schema INMODEaBooleans declares some Booleans that indicate whether certain

mode machines have been in a certain mode for longer than a preset amount of time. (gt stands for

\greater than".)

43

a
a INMODEaBooleansa

a DurationaINMODEaAPaDisengagedaWarningagtatenasec : BOOLEAN

a DurationaINMODEaVertaAppraTrackagtaconstaminaarmedaperiod : BOOLEAN

a DurationaINMODEaNAV aARMEDagtaconstaminaarmedaperiod : BOOLEAN

a DurationaINMODEaAPPRaARMEDagtaconstaminaarmedaperiod : BOOLEAN

a DurationaINMODEaALTSELaARMEDagtaconstaminaarmedaperiod : BOOLEAN

a DurationaINMODEaALTSELaCAPTagtaconstaminaarmedaperiod : BOOLEAN
a
a

The following schema aggraAiraData declares several monitored variables.

monaIndicatedaAirspeed, the indicated airspeed as measured by comparing the ram (pitot) air

pressure with the static air pressure, can range from 0 to 512 knots.

monaIndicatedaMachaNumber, the ratio of true airspeed to the speed of sound, can range from 0 to

1 Mach in 1/100 Mach increments. monaIndicatedaAltitude, computed from static air pressure

and corrected for local ambient pressure conditions can range from -8000 to 56000 feet, in 1

foot increments.

monaPressureaAltitude, the altitude computed from the static air pressure assuming standard pres-

sure conditions, is of type ALTITUDE and can range from -8000 to 56000 feet, in 1 foot

increments.

monaRollaAngle, the roll angle measured in degrees from wings level, with positive value indicating

that the right wing is down, is of type ROLLaANGLE and can range from -180 to 180 degrees

in 1 degree increments.

monaPitchaAngle, the pitch angle measured in degrees nose-up from level, is of type PITCHa-

ANGLE and can range from -90 to 90 degrees in 1 degree increments.

monaVerticalaSpeed, the vertical speed of the aircraft computed by comparing instantaneous air

pressure with that �ltered through a diaphragmwith a calibrated leak, is of type ALTITUDEaRATE

and can range from -32.7 to 32.7 kft/min, in 0.016 kft/min increments; it is thus measured in

multiples of 16 of the 0.001 kft/min increments of the type ALTITUDEaRATE.

monaHeading is the aircraft's heading, measured in degrees clockwise from magnetic North. It is

of type HEADING and ranges from 0 to 359 degrees in 1 degree increments.

monaOnaGround is va Boolean that is TRU exactly when the aircraft is on the ground.

termaAboveaTransitionaAltitude is a Boolean that is TRU exactly when the the aircraft's altitude

is above a certain constant.

termaOverspeed is Boolean that is TRU exactly when a certain mode machine, modeaOverspeed has

the mode TOOaFAST, which occurs when the aircraft exceeds its maximum operating speed.

44

a
a aggraAiraDataa

a monaIndicatedaAirspeed : AIRSPEED

a monaIndicatedaMachaNumber :MACH aNUMBER

a monaIndicatedaAltitude : ALTITUDE

a monaOnaGround : BOOLEAN

a termaAboveaTransitionaAltitude : BOOLEAN

a termaOverspeed : BOOLEAN

a monaPressureaAltitude : ALTITUDE

a monaRollaAngle : ROLLaANGLE

a monaPitchaAngle : PITCHaANGLE

a monaVerticalaSpeed : ALTITUDEaRATE

a monaHeading : HEADING
a
a

a

a monaIndicatedaAirspeed 2 0 : : 512

a monaIndicatedaMachaNumber 2 0 : : 100

a monaVerticalaSpeed 2 fi : ALTITUDEaRATE � 16 � ig
aa

The following axiomatic de�nition declares the maximum safe speed of the aircraft, measured

in knots (termaVmo) and in Mach number (termaMmo). We also declare the constant constaTran-

sitionaAltitude, above which the aircraft uses Mach number to measure airspeed and pressure al-

titude, and below which the aircraft uses indicated airspeed and indicated altitude. This constant

equals 18000 ft.

a termaVmo : N

a termaMmo : N

a constaTransitionaAltitude : N
a
a

a

a constaTransitionaAltitude = 18000

The following schema Overspeed declares themodeaOverspeedmode machine. This mode machine

has two modes: SPEEDaOK when the aircraft is
ying at a safe operating speed, and TOOaFAST

when the aircraft is
ying at too high a speed.

a
aOverspeeda

a modeaOverspeed : SPEEDaMODE
a
a

a
a InitaOf aOverspeeda

a Overspeed
a
a

a

a modeaOverspeed = SPEEDaOK
a
a

The following schema aggraNavaSourceaData declares some navigation variables. termaSel-

ectedaNavaType stores what kind of navigational device is currently selected: FMS if the selected

source is a Flight Management System, VOR if the selected source is a VHF omnirange navigation

beacon, and LOC if the selected navigation source is an ILS localizer beacon. monaSelecteda-

NavaSourceaStatus is VALID precisely when the navigational source is generating valid data, and

INVALID otherwise. Finally, the monitored Boolean monaValidaGlideslope is TRU precisely when

the FGS is receiving a valid ILS glideslope signal, and FALS otherwise.

45

a
a aggraNavaSourceaDataa

a termaSelectedaNavaType : NAV aTYPE

a monaSelectedaNavaSourceaStatus : VALIDITY

a monaValidaGlideslope : BOOLEAN
a
a

The following schema aggraNavaSourceaMons declares the navigational monitored variables. The

monaSelectedaNavaSource can be one of seven values: FMS1, FMS2, FMS3 indicate that the �rst,

second, or third Flight Management system is the selected navigation source, and VNR1, VNR2,

VNR3, VNR4 indicate that the �rst, second, third, or fourth VHF Navigation Receiver is the selected

navigation source.

monaSelectedaNavaSourceaFrequency is a partial function from NAVaSOURCES to the range

[108.0, 136.0] MHz (measured in 0.1 megahertz increments). This function sends a source in VNR1,

: : : , VNR4 to the carrier frequency to which it is tuned.

monaNavaSourceaSignalaType is a partial function from NAVaSOURCES to NAVaTYPE. This

function sends a source in VNR1, : : : , VNR4 to the type of frequency (VOR, LOC) to which the

VHF Navigation Receiver is tuned.

a
a aggraNavaSourceaMonsa

a monaSelectedaNavaSource : NAV aSOURCES

a monaSelectedaNavaSourceaFrequency : NAV aSOURCES 7! 1080 : : 1360

a monaNavaSourceaSignalaType : NAV aSOURCES 7! NAV aTYPE
aa

The following schema Autopilot declares the modeaAutopilot mode machine. This machine can

be in the following two mode (each of which has submodes): ENGAGED, when the autopilot is

engaged and processing the
ight control laws, DISENGAGED, when the autopilot is not engaged.

The APaEngagedaMode machine has two values when modeaAutopilot = ENGAGED: APaEN-

GAGEDaNORMAL when the SYNC switch is not pressed; and APaENGAGEDaSYNC when the

SYNC switch is pressed (and thus the autopilot is temporarily disengaged); when modeaAutopilot

6= ENGAGED then APaEngagedaMode = APaENGAGEDaNOTaINaMODE.

The APaDisengagedaMode machine has two values when modeaAutopilot = DISENGAGED:

APaDISENGAGEDaWARNING, when modeaAutopilot has recently switched from ENGAGED to

DISENGAGED and the autopilot is still functioning; and APaDISENGAGEDaNORMAL, once

modeaAutopilot = DISENGAGED more than 10 seconds, and the autopilot actually disenages.

If modeaAutopilot 6= DISENGAGED then APaDisengagedaMode = APaDISENGAGEDaNOTa-

INaMODE.

The monaAPaDisconnectaBar can be UP (when the crew has not pressed down the autopilot

disconnect bar) or DOWN (when the crew has pressed the bar, which forces the autopilot to to be

disengaged).

The Boolean termaAPaEngaged is TRU exactly when modeaAutopilot is ENGAGED, and FALS

otherwise.

The monitored variable conaAPaCoupling has two values: when set to FGS, the command input

to the control surfaces of the aircraft is generated by the FGS; when set to MANUAL, the command

input to the control surfaces of the aircraft is manually generated by the pilots using the control

yoke and rudder pedals.

The monitored switch conaAPaDisengageaWarning has two values: when set to ON, the disen-

gagement of the autopilot is signaled to the
ight crew by sounding the EICAS autopilot disengage-

46

mant aural warning and by the presence of a visual warning on the EFIS. When set to OFF, then

disengagement of the autpilot is not being signaled to the
ight crew.

The APaDisengagedaWarningaClock is set to 0 whenever APaDisengagedaMode enters APaDIS-

ENGAGEDaWARNINGmode, and is incremented each cycle thatAPaDisengagedaMode = APaDIS-

ENGAGEDaWARNING.

a
aAutopilota

a modeaAutopilot : APaMODE

a monaAPaDisconnectaBar : BAR

a termaAPaEngaged : BOOLEAN

a conaAPaCoupling : APaCOUPLING

a conaAPaDisengageaWarning : SWITCH
a
a

a
a InitaOf aAutopilota

a Autopilot
aa
a

a modeaAutopilot = DISENGAGEDaNORMAL
a
a

The following schema LateralaTerms de�nes some terms associated with the lateral mode. The

Boolean termaWithinaLateralaNAVaCaptureaWindow is TRU exactly when the aircraft has the

appropriate operating conditions (e.g. altitude, speed, position, and heading) to make a safe capture

of the navigation track, and FALS otherwise. The precise de�nition depends on the customer.

The Boolean termaLateralaNAVaTrackaCondaMet is TRU exactly when the aircraft and its

system satisfy all conditions necessary for tracking a lateral navigation source, and FALS otherwise.

The Boolean termaWithinaLateralaAPPRaCaptureaWindow is TRU exactly when the aircraft

has the appropriate operating conditions (e.g. altitude, speed, position, and heading) to make a safe

capture of the approach track, and FALS otherwise. The precise de�nition depends on the customer.

The Boolean termaLateralaNAVaTrackaCondaMet is TRU exactly when the aircraft and its

system satisfy all conditions necessary for tracking a precision lateral approach source, and FALS

otherwise.

The Boolean termaRollaLEaThreshold is TRU exactly when the aircraft's roll angle is less than

or equal to the constant constaRoolaSelectionaThreshold.

The constant constaRollaSelectionaThreshold marks the boundary between the selection of the

ROLLaHOLD and HDGaHOLD modes of the submode RollaMode.

a
aLateralaTermsa

a termaWithinaLateralaNAV aCaptureaWindow : BOOLEAN

a termaLateralaNAV aTrackaCondaMet : BOOLEAN

a termaWithinaLateralaAPPRaCaptureaWindow : BOOLEAN

a termaLateralaAPPRaTrackaCondaMet : BOOLEAN

a termaRollaLEaThreshold : BOOLEAN

a constaRollaSelectionaThreshold : N
aa
a

a constaRollaSelectionaThreshold = 50
aa

The following schema VerticalaTerms declares some term variables relevant to the modeaAct-

iveaVertical mode machine. The Boolean termaWithinaVerticalaAPPRaCaptureaWindow is TRU

47

exactly when the aircraft has the appropriate operating conditions (e.g. altitude, speed, position,

and heading) to make a safe capture of the approach track, and FALS otherwise. The precise

de�nition depends on the customer.

The Boolean termaVerticalaAPPRaTrackaCondaMet is TRU exactly when the aircraft and its

system satisfy all conditions necessary for tracking a precision vertical approach source, and FALS

otherwise.

a
aVerticalaTermsa

a termaWithinaVerticalaAPPRaCaptureaWindow : BOOLEAN

a termaVerticalaAPPRaTrackaCondaMet : BOOLEAN
a
a

The following schema AltselaTerms declares the term variable termaALTSELaCond. This vari-

able has three possible values: ALTSELaCAPTURE, ALTSELaTRACK, ALTSELaNONE. It takes

the values ALTSELaCAPTURE and ALTSELaTRACK exactly when the aircraft has the appro-

priate operating conditions (e.g. altitude, speed, position, and heading) relative to termaPre-

selectedaAltitude to make a safe capture and safe track, respectively. The precise de�nition depends

on the custome

a
aAltselaTermsa

a termaALTSELaCond : ALTSELaCOND
aa

The following axiomatic de�nition declares display constants.

constaannunciationaupdateadeadline stores the maximum amount of time allowed for a reference

annunciation (such as termaReferenceaPitch) to respond to an event; it is of type PERIOD and is

measured in milliseconds.

constablinkatime is the amount of time a mode annunciation blinks upon change; it is of type

PERIOD and is measured in milliseconds.

constadisplayaupdateadeadline stores the maximum amount of time allowed for a
ight display

or indicator lamp to respond to an event; it is of type PERIOD and is measured in milliseconds.

a constaannuncaupdateadeadline : PERIOD

a constablinkatime : PERIOD

a constadisplayaupdateadeadline : PERIOD
a
a

a

a constaannuncaupdateadeadline = 100

a constablinkatime = 5000

a constadisplayaupdateadeadline = 100

A.3 Collections of Events

In the following axiomatic de�nitions, we enumerate some useful subsets of events. For the modes

modeaActiveaVertical and modeaActiveaLateral, we list all of the input events that trigger transitions

in their tables, for use in separating some transitions as discussed in section 4.3. These set de�nitions

are labeled as rewrite rules for Z/EVES so that they can be used in proofs if necessary.

48

a VerticalaEvents : PEVENT
a
a

a

a [rule VerticalaEventsaRule]

a VerticalaEvents = fSYNCaOn;VSaPitchaWheelaChanged ;

a ALTSELaCAPTUREaCondaMet ;ALTaKnobaChanged ;APaEngageaSwitchaPressed ;

a ALTaSwitchaPressed ;VSaSwitchaPressed ;

a FLCaSwitchaPressed ;VertaAPPRaTrackaCondaMet ;

a GAaPressed ; SYNCaOng

a LateralaEvents : PEVENT
aa
a

a [rule LateralaEventsaRule]

a LateralaEvents = fHDGaSwitchaPressed ;NAVaSwitchaPressed ;

a NavaSourceaChanged ;APPRaSwitchaPressed ;APaEngageaSwitchaPressed ; SYNCaOng

The subsets FlightaModeaRequested, LateralaModeaRequested, and VerticalaModeaRequested are

useful in the speci�cation of the mode machine transitions, as discussed in section 6.4. These set

de�nitions are labeled as rewrite rules for Z/EVES so that they can be used in proofs if necessary.

a FlightaModeaRequested : PEVENT
a
a

a

a [rule FlightaModeaRequestedaRule]

a FlightaModeaRequested = fHDGaSwitchaPressed ;NAVaSwitchaPressed ;

a APPRaSwitchaPressed ;VSaSwitchaPressed ;ALTaSwitchaPressed ;

a FLCaSwitchaPressed ;GAaPressedg

a LateralaModeaRequested : PEVENT
a
a

a

a [rule LateralaModeaRequestedaRule]

a LateralaModeaRequested = fHDGaSwitchaPressed ;NAV aSwitchaPressed ;

a APPRaSwitchaPressed ;GAaPressedg

a VerticalaModeaRequested : PEVENT
a
a

a

a [rule VerticalaModeaRequestedaRule]

a VerticalaModeaRequested = fVSaSwitchaPressed ;

a ALTaSwitchaPressed ;FLCaSwitchaPressed ;GAaPressedg

A.4 Collections of modes

In the following axiomatic de�nitions, we de�ne some collections of modes that are used to simulate

the hierarchical mode machines of the CoRE speci�cation, as discussed in 6.6. A CoRE expression

such as modeaFlightaDirector = ON is replaced by a Z expression modeaFlightaDirector 2 FDaON.

a FDaON : PFDaMODE
aa
a

a [rule FDaONaRule]

a FDaON = fFDaONaCUES ;FDaONaNOaCUESg

49

a ENGAGED ;DISENGAGED : PAPaMODE
a
a

a

a [rule ENGAGEDaRule]

a ENGAGED = fENGAGEDaNORMAL;ENGAGEDaSYNCg
a

a [rule DISENGAGEDaRule]

a DISENGAGED = fDISENGAGEDaNORMAL;DISENGAGEDaWARNINGg

a ROLL : PLATERALaMODE
a
a

a

a [rule ROLLaMODEaRule]

a ROLL = fROLLaROLLaHOLD ;ROLLaHDGaHOLDg

a NAV : P LATERALaMODE
aa
a

a [rule NAVaMODEaRule]

a NAV = fNAV aARMED ;NAV aTRACKg

a LaAPPR : P LATERALaMODE
a
a

a

a [rule LaAPPRaMODEaRule]

a LaAPPR = fLaAPPRaARMED ;LaAPPRaTRACKg

a FLC : PVERTICALaMODE
a
a

a

a [rule FLCaRule]

a FLC = fFLCaTRACK ;FLCaOVERSPEEDg

a ALTSELaENABLED ;ALTSELaACTIVE : PALTSELaMODE
a
a

a

a [rule ALTSELaENABLEDaRule]

a ALTSELaENABLED = fALTSELaARMED ;ALTSELaCAPTURE ;ALTSELaTRACKg
a

a [rule ALTSELaACTIVEaRule]

a ALTSELaACTIVE = fALTSELaCAPTURE ;ALTSELaTRACKg

a VERTaAPPRaENABLED : PVERTaAPPRaMODE
aa
a

a [rule VERTaAPPRaENABLEDaRule]

a VERTaAPPRaENABLED = fVERTaAPPRaARMED ;VERTaAPPRaTRACKg

A.5 Flight Mode Declarations

The following schema FlightaDirector declares a mode machine modeaFlightaDirector. It has three

modes: FDaOFF, FDaONaCUES, FDaONaNOaCUES. It is in mode FDaOFF exactly when the

Flight Director is o�. It is in mode FDaONaCUES exactly when the Flight Director is on and

annunciating cues to the crew, and it is in mode FDaONaNOaCUES exactly when the Flight Director

is on but not annunciating to the crew.

50

a
aFlightaDirectora

a modeaFlightaDirector : FDaMODE
a
a

The following four schemas ActiveaLateral,ActiveaVertical,AltitudeaSelect, andVerticalaApproach

declare the principal mode machines of the FGS. The NOTaINaMODE modes are used to simulate

the CoRE sustaining condition imposed on them, which is that modeaFlightaDirector = ON.

The following schema ActiveaLateral declares a mode machine modeaActiveaLateral. This mode

machine has the followingmodes: HDG, ROLLaROLLaHOLD, ROLLaHDGaHOLD, NAVaARMED,

NAVaTRACK, LaGA, LaAPPRaARMED, LaAPPRaTRACK, LATERALaNOTaINaMODE.

When modeaActiveaLateral is in HDG, the FGS generates commands to capture and maintain

the selected heading.

WhenmodeaActiveaLateral is in ROLLaROLLaHOLD, the FGS generates commands to maintain

the reference roll of the aircraft.

WhenmodeaActiveaLateral is inROLLaHDGaHOLD, then FGS generates commands to maintain

the reference heading of the aircraft.

When modeaActiveaLateral is in NAVaARMED, the FGS generates commands to capture and

maintain the selected heading until an external navigation source such as a VOR, LOC, or FMS can

be captured.

When modeaActiveaLateral is in NAVaTRACK, the FGS generates commands to capture and

track and external navigation source such as a VOR, LOC, or FMS.

When modeaActiveaLateral is in LaGA, the FGS generates commands to perform a Go Around

operation.

When modeaActiveaLateral is in LaAPPRaARMED, the aircraft generates commands to capture

and maintain the selected heading until a precision navigation source such as LOC can be detected.

When modeaActiveaLateral is in LaAPPRaTRACK, the FGS generates commands to capture

and track a precision navigation source such as a LOC.

When modeaActiveaLateral is in NOTaINaMODE, the Flight Director is o�.

a
aActiveaLaterala

a modeaActiveaLateral : LATERALaMODE
a
a

The following schema ActiveaVertical declares a mode machine modeaActiveaVertical. This

mode machine has the following modes: PITCH, VaAPPR, ALTSEL, ALTHOLD, VaGA, VS,

FLCaTRACK, FLCaOVERSPEED, VERTICALaNOTaINaMODE.

WhenmodeaActiveaVertical is in PITCH, the FGS generates commands to maintain the reference

pitch.

When modeaActiveaVertical is in VaAPPR, the behavior of the FGS is determined by the

modeaVerticalaApproach mode machine.

When modeaActiveaVertical is in ALTSEL, the behavior of the FGS is determined by the

modeaAltitudeaSelect mode machine.

When modeaActiveaVertical is in ALTHOLD, the FGS generates pitch commands to maintain

the reference altitude.

When modeaActiveaVertical is in VS, the FGS generates pitch commands to maintain the refer-

ence vertical speed.

When modeaActiveaVertical is in FLCaTRACK, the FGS generates commands to acquire and

track the reference airspeed (or reference mach number, depending on the altitude), taking into

51

account the pilot's intent to climb or descend as indicated by the preselected altitude and the

aircraft's ability to accomplish that intent.

When modeaActiveaVertical is in FLCaOVERSPEED the FGS generates pitch commands to

acquire an airspeed or Mach number slightly below the maximum operating airspeed (V
mo

or M
mo
).

When modeaActiveaVertical is in VERTICALaNOTaINaMODE, the Flight Director is o�.

a
aActiveaVerticala

a modeaActiveaVertical : VERTICALaMODE
a
a

The following schema AltitudeaSelect declares a mode machine modeaAltitudeaSelect. This mode

machine has the following modes: ALTSELaCLEARED, ALTSELaARMED, ALTSELaCAPTURE,

ALTSELaTRACK, ALTSELaNOTaINaMODE.

When modeaAltitudeaSelect is in ALTSELaCLEARED, the FGS generates no commands to

monitor, capture, or track the preselected altitude; vertical guidance commands are generated using

the modeaActiveaVertical mode machine.

When modeaAltitudeaSelect is in ALTSELaARMED, the FGS monitors the aircraft closure rate

towards the preselected altitude and determines the optimum capture point; vertical guidance com-

mands are generated using the modeaActiveaVertical mode machine.

When modeaAltitudeaSelect is in ALTSELaCAPTURE, the FGS generated commands for a

smooth, low-acceleration acquisition of the preselected altitude.

When modeaAltitudeaSelect is in ALTSELaTRACK, the FGS generates commands to maintain

the preslected altitude.

When modeaAltitudeaSelect is in ALTSELaNOTaINaMODE, the Flight Director is o�.

a
aAltitudeaSelecta

a modeaAltitudeaSelect : ALTSELaMODE
a
a

The following schema VerticalaApproach declares a mode machine modeaVerticalaApproach.

This mode machine has the following modes: VERTaAPPRaCLEARED, VERTaAPPRaARMED,

VERTaAPPRaTRACK, VERTaAPPRaNOTaINaMODE.

When in VERTaAPPRaCLEARED, the FGS generates no commands to track or monitor a

vertical guidance source; vertical guidance commands are generated using the modeaActiveaVertical

mode machine.

When in VERTaAPPRaARMED, the FGS monitors aircraft closure towards the approach glides-

lope (if ILS) or glide-path (if FMS) and determines the optimum capture point; vertical guidance

commands are generated using the modeaActiveaVertical mode machine.

When in VERTaAPPRaTRACK, the FGS generates pitch commands to capture and track the

glideslope (if ILS) or glide-path (if FMS).

When in VERTaAPPRaNOTaINaMODE, the Flight Director is o�.

a
aVerticalaApproacha

a modeaVerticalaApproach : VERTaAPPRaMODE
aa

The schema aggraFlightaModes collects the
ight modes:

52

a
a aggraFlightaModesa

a FlightaDirector

a ActiveaLateral

a ActiveaVertical

a AltitudeaSelect

a VerticalaApproach
aa

A.6 The FGS State

The schema Variables collects the variables together in a large schema that we will use in our

declaration of State:

a
aVariablesa

a aggraFCPaLamps

a aggraFCPaSwitches

a aggraFCPaKnobs

a aggraYokesaVars

a aggraThrottlesaVars

a aggraReferences

a aggraReferenceaAnnunciations

a aggraAiraData

a Overspeed

a aggraNavaSourceaData

a aggraNavaSourceaMons

a Autopilot

a LateralaTerms

a VerticalaTerms

a AltselaTerms

a INMODEaBooleans

a aggraFlightaModes
aa

The schema TheaEvent de�nes the variable event, which carries the input event of a polling cycle:

a
aTheaEventa

a event : EVENT
a
a

A.7 De�nitions of Some Input Events and Terms

In the following schemas, we de�ne the input events. Each input event corresponds to some moni-

tored variable (or combination of monitored variables) changing its value during a polling cycle. All

changes of monitored variables that trigger transitions are listed here. Since the variable event can

only have one value during a given polling cycle, the One Input Assumption is e�ectively guaranteed

by this construction. Some input event de�nitions are given later, because of the order in which

they appear in the CoRE speci�cation.

53

a
aEventaHDGaSwitchaPresseda

a �aggraFCPaSwitches

a TheaEvent
aa
a

a event = HDGaSwitchaPressed ,

a monaHDGaSwitch = OFF ^ monaHDGaSwitch0 = ON
a
a

a
aEventaNAV aSwitchaPresseda

a �aggraFCPaSwitches

a TheaEvent
a
a

a

a event = NAV aSwitchaPressed ,

a monaNAV aSwitch = OFF ^ monaNAV aSwitch0 = ON
a
a

a
aEventaAPPRaSwitchaPresseda

a �aggraFCPaSwitches

a TheaEvent
a
a

a

a event = APPRaSwitchaPressed ,

a (monaAPPRaSwitch = OFF ^ monaAPPRaSwitch0 = ON)
a
a

a
aEventaALTaSwitchaPresseda

a �aggraFCPaSwitches

a TheaEvent
a
a

a

a event = ALTaSwitchaPressed ,

a (monaALTaSwitch = OFF ^ monaALTaSwitch0 = ON)
aa

a
aEventaFLCaSwitchaPresseda

a �aggraFCPaSwitches

a TheaEvent
aa
a

a event = FLCaSwitchaPressed ,

a (monaFLCaSwitch = OFF ^ monaFLCaSwitch0 = ON)
a
a

a
aEventaVSaSwitchaPresseda

a �aggraFCPaSwitches

a TheaEvent
a
a

a

a event = VSaSwitchaPressed ,

a (monaVSaSwitch = OFF ^ monaVSaSwitch0 = ON)
a
a

a
aDef aOf atermaVSaPitchaWheelaRotationa

a �aggraFCPaKnobs

a �aggraFCPaSwitches
a
a

a

a termaVSaPitchaWheelaRotation0 =

a ((monaVSaPitchaCount 0 �monaVSaPitchaCount + 128) mod 256)� 128
a
a

54

a
aEventaVSaPitchaWheelaChangeda

a TheaEvent

a �aggraFCPaSwitches
aa
a

a event = VSaPitchaWheelaChanged ,

a (monaVSaPitchaCount 6= monaVSaPitchaCount 0)
a
a

a
aDef aOf atermaALTaKnobaRotationa

a �aggraFCPaKnobs

a �aggraFCPaSwitches
a
a

a

a termaALTaKnobaRotation0 =

a ((monaALTaCount 0 �monaALTaCount + 128) mod 256)� 128
a
a

a
aEventaALTaKnobaChangeda

a TheaEvent

a �aggraFCPaSwitches
a
a

a

a event = ALTaKnobaChanged ,

a (monaALTaCount 6= monaALTaCount 0)
a
a

a
aDef aOf atermaSpeedaKnobaRotationa

a �aggraFCPaKnobs

a �aggraFCPaSwitches
a
a

a

a termaSpeedaKnobaRotation0 =

a ((monaSpeedaCount 0 �monaSpeedaCount + 128) mod 256)� 128
aa

a
aEventaSpeedaKnobaChangeda

a TheaEvent

a �aggraFCPaSwitches
aa
a

a event = SpeedaKnobaChanged ,

a (monaSpeedaCount 6= monaSpeedaCount 0)
a
a

a
aDef aOf atermaHDGaKnobaRotationa

a �aggraFCPaKnobs

a �aggraFCPaSwitches
a
a

a

a termaHDGaKnobaRotation0 =

a ((monaHDGaCount 0 �monaHDGaCount + 128) mod 256)� 128
a
a

a
aEventaHDGaKnobaChangeda

a TheaEvent

a �aggraFCPaSwitches
a
a

a

a event = HDGaKnobaChanged ,

a (monaHDGaCount 6= monaHDGaCount 0)
a
a

55

a
aEventaAPaEngageaSwitchaPresseda

a �aggraFCPaSwitches

a �Autopilot

a TheaEvent
a
a

a

a event = APaEngageaSwitchaPressed ,

a (monaAPaEngageaSwitch = OFF ^ monaAPaEngageaSwitch0 = ON)
a
a

a
aEventaFDaPresseda

a TheaEvent

a �aggraFCPaSwitches
a
a

a

a event = FDaPressed ,

a ((monaFDaSwitchaLeft = OFF ^ monaFDaSwitchaLeft 0 = ON)

a _ (monaFDaSwitchaRight = OFF ^ monaFDaSwitchaRight 0 = ON))
aa

a
aEventaAPaDisengageaPresseda

a �Autopilot

a �aggraYokesaVars

a TheaEvent
a
a

a

a event = APaDisengageaPressed ,

a ((monaAPaDisengageaSwitchaLeft = OFF

a ^ monaAPaDisengageaSwitchaLeft 0 = ON) _

a (monaAPaDisengageaSwitchaRight = OFF

a ^ monaAPaDisengageaSwitchaRight 0 = ON))
a
a

a
aDef aOf atermaSYNCa

a SYNC

a aggraYokesaVars
a
a

a

a termaSYNC = TRU ,

a (monaSYNCaSwitchaLeft = ON _ monaSYNCaSwitchaRight = ON)
a
a

a
aEventaGAaPresseda

a �aggraThrottlesaVars

a TheaEvent
aa
a

a event = GAaPressed ,

a ((monaGAaSwitchaLeft = OFF ^ monaGAaSwitchaLeft 0 = ON) _

a (monaGAaSwitchaRight = OFF ^ monaGAaSwitchaRight 0 = ON))
a
a

56

A.8 Event Tables

a
aDef aOf atermaSelectedaHeadinga

a �aggraReferences

a �aggraFCPaKnobs

a TheaEvent
a
a

a

a event = HDGaKnobaChanged ^

a (termaSelectedaHeading 0 =

a (termaSelectedaHeading + termaHDGaKnobaRotation0 mod 360))

a _ ((: event = HDGaKnobaChanged) ^ termaSelectedaHeading 0 =

a termaSelectedaHeading)
a
a

a
a InitaOf atermaSelectedaHeadinga

a aggraAiraData

a aggraReferences
aa
a

a termaSelectedaHeading = monaHeading
a
a

a
aDef aOf atermaPreselectedaAltitudea

a �aggraReferences

a TheaEvent

a �aggraFCPaKnobs
a
a

a

a (event = ALTaKnobaChanged ^ termaPreselectedaAltitude0 =

a min(f36000;max (f0; termaPreselectedaAltitude + 100 � termaALTaKnobaRotation0g)g)) _

a (: (event = ALTaKnobaChanged) ^ termaPreselectedaAltitude0 =

a termaPreselectedaAltitude)
aa

a
a InitaOf atermaPreselectedaAltitudea

a aggraReferences
a
a

a

a termaPreselectedaAltitude = 31000
a
a

57

a
aDef aOf atermaReferenceaIASa

a �aggraReferences

a �aggraFCPaKnobs

a �aggraAiraData

a �SYNC

a TheaEvent

a �aggraFlightaModes
a
a

a

a (modeaFlightaDirector 0 2 FDaON ^ modeaActiveaVertical =2 FLC ^

a modeaActiveaVertical 0 2 FLC ^ termaSYNC 0 = FALS

a ^ termaReferenceaIAS 0 = monaIndicatedaAirspeed 0)

a _ (modeaFlightaDirector 0 2 FDaON ^ modeaActiveaVertical 0 2 FLC ^ termaSYNC 0 = TRU

a ^ termaReferenceaIAS 0 = monaIndicatedaAirspeed 0)

a _ (modeaFlightaDirector 2 FDaON

a ^ modeaActiveaVertical =2 FLC

a ^ event = SpeedaKnobaChanged

a ^ monaIndicatedaAirspeed 0 = termaReferenceaIAS 0 =

a minf512;maxf0; termaReferenceaIAS + termaSpeedaKnobaRotation0gg)

a _ (modeaFlightaDirector 2 FDaON ^ modeaActiveaVertical 2 FLC

a ^ termaSYNC 0 = FALS ^ event = SpeedaKnobaChanged

a ^ monaIndicatedaAirspeed 0 = termaReferenceaIAS 0 =

a minf512;maxf0; termaReferenceaIAS + termaSpeedaKnobaRotation0gg)

a _ (: ((modeaFlightaDirector 0 2 FDaON ^ modeaActiveaVertical =2 FLC ^

a modeaActiveaVertical 0 2 FLC ^ termaSYNC 0 = FALS)

a _ (modeaFlightaDirector 0 2 FDaON ^ modeaActiveaVertical 0 2 FLC ^ termaSYNC 0 = TRU)

a _ (modeaFlightaDirector 2 FDaON

a ^ modeaActiveaVertical =2 FLC

a ^ event = SpeedaKnobaChanged)

a _ (modeaFlightaDirector 2 FDaON ^ modeaActiveaVertical 2 FLC

a ^ termaSYNC 0 = FALS ^ event = SpeedaKnobaChanged))

a ^ termaReferenceaIAS 0 = termaReferenceaIAS)
a
a

58

a
aDef aOf atermaReferenceaHeadinga

a �aggraReferences

a �aggraFCPaKnobs

a �aggraAiraData

a �SYNC

a TheaEvent

a �aggraFlightaModes
a
a

a

a ((: modeaActiveaLateral = ROLLaHDGaHOLD) ^

a modeaActiveaLateral 0 = ROLLaHDGaHOLD ^ termaSYNC 0 = FALS

a ^ termaReferenceaHeading 0 = monaHeading 0)

a _ (modeaActiveaLateral 0 = ROLLaHDGaHOLD ^ termaSYNC 0 = TRU

a ^ termaReferenceaHeading 0 = monaHeading 0)

a _ (: (((: modeaActiveaLateral = ROLLaHDGaHOLD) ^

a modeaActiveaLateral 0 = ROLLaHDGaHOLD ^ termaSYNC 0 = FALS)

a _ (modeaActiveaLateral 0 = ROLLaHDGaHOLD ^ termaSYNC 0 = TRU))

a ^ termaReferenceaHeading 0 = termaReferenceaHeading)
a
a

a
aDef aOf atermaReferenceaAltitudea

a �aggraReferences

a �aggraFCPaKnobs

a �aggraAiraData

a �SYNC

a TheaEvent

a �aggraFlightaModes
aa
a

a ((: modeaActiveaVertical = ALTHOLD) ^ modeaActiveaVertical 0 = ALTHOLD ^

a termaAboveaTransitionaAltitude0 = TRU ^ termaSYNC 0 = FALS

a ^ termaReferenceaAltitude0 = monaPressureaAltitude0)

a _ (modeaActiveaVertical 0 = ALTHOLD ^ termaAboveaTransitionaAltitude0 = TRU ^

a termaSYNC 0 = TRU

a ^ termaReferenceaAltitude0 = monaPressureaAltitude0)

a _ ((: modeaActiveaVertical = ALTHOLD) ^ modeaActiveaVertical 0 = ALTHOLD ^

a termaAboveaTransitionaAltitude0 = FALS ^ termaSYNC 0 = FALS

a ^ termaReferenceaAltitude0 = monaIndicatedaAltitude0)

a _ (modeaActiveaVertical 0 = ALTHOLD ^ termaAboveaTransitionaAltitude0 = FALS

a ^ termaSYNC 0 = TRU

a ^ termaReferenceaAltitude0 = monaIndicatedaAltitude0)

a _ (: (((: modeaActiveaVertical = ALTHOLD) ^ modeaActiveaVertical 0 = ALTHOLD ^

a termaAboveaTransitionaAltitude0 = TRU ^ termaSYNC 0 = FALS)

a _ (modeaActiveaVertical 0 = ALTHOLD ^ termaAboveaTransitionaAltitude0 = TRU ^

a termaSYNC 0 = TRU)

a _ ((: modeaActiveaVertical = ALTHOLD) ^ modeaActiveaVertical 0 = ALTHOLD ^

a termaAboveaTransitionaAltitude0 = FALS ^ termaSYNC 0 = FALS)

a _ (modeaActiveaVertical 0 = ALTHOLD ^ termaAboveaTransitionaAltitude0 = FALS

a ^ termaSYNC 0 = TRU))

a ^ termaReferenceaAltitude0 = termaReferenceaAltitude)
a
a

59

a
aDef aOf atermaReferenceaPitcha

a �aggraReferences

a �aggraFCPaKnobs

a �aggraAiraData

a �SYNC

a TheaEvent

a �aggraFlightaModes
a
a

a

a (modeaActiveaVertical 6= PITCH ^ modeaActiveaVertical 0 = PITCH

a ^ termaSYNC 0 = FALS

a ^ termaReferenceaPitch0 = monaPitchaAngle0)

a _ (modeaActiveaVertical 0 = PITCH ^ termaSYNC 0 = TRU

a ^ termaReferenceaPitch0 = monaPitchaAngle0)

a _ (modeaActiveaVertical = PITCH ^ modeaActiveaVertical 0 = PITCH ^

a event = VSaPitchaWheelaChanged

a ^ termaReferenceaPitch0 = max (f�12;min(f20;

a termaReferenceaPitch + (termaVSaPitchaWheelaRotation0 div 2)g)g))

a _ (: ((modeaActiveaVertical 6= PITCH ^ modeaActiveaVertical 0 = PITCH

a ^ termaSYNC 0 = FALS)

a _ (modeaActiveaVertical 0 = PITCH ^ termaSYNC 0 = TRU)

a _ (modeaActiveaVertical = PITCH ^ modeaActiveaVertical 0 = PITCH ^

a event = VSaPitchaWheelaChanged))

a ^ termaReferenceaPitch0 = termaReferenceaPitch)
aa

a
aDef aOf atermaReferenceaRolla

a �aggraReferences

a �aggraFCPaKnobs

a �aggraAiraData

a �SYNC

a TheaEvent

a �aggraFlightaModes
a
a

a

a (modeaActiveaLateral 6= ROLLaROLLaHOLD ^

a modeaActiveaLateral 0 = ROLLaROLLaHOLD ^ termaSYNC 0 = FALS

a ^ termaReferenceaRoll 0 = max (f�27;min(f27;monaRollaAngle0g)g))

a _ (modeaActiveaLateral 0 = ROLLaROLLaHOLD ^ termaSYNC 0 = TRU

a ^ termaReferenceaRoll 0 = max (f�27;min(f27;monaRollaAngle0g)g))

a _ (: ((modeaActiveaLateral 6= ROLLaROLLaHOLD ^

a modeaActiveaLateral 0 = ROLLaROLLaHOLD ^ termaSYNC 0 = FALS)

a _ (modeaActiveaLateral 0 = ROLLaROLLaHOLD ^ termaSYNC 0 = TRU))

a ^ termaReferenceaRoll 0 = termaReferenceaRoll)
a
a

60

a
aDef aOf atermaReferenceaVerticalaSpeeda

a �aggraReferences

a �aggraFCPaKnobs

a �aggraAiraData

a �SYNC

a TheaEvent

a �aggraFlightaModes
a
a

a

a ((: (modeaFlightaDirector 2 FDaON ^ modeaActiveaVertical = VS))

a ^ (modeaFlightaDirector 0 2 FDaON ^ modeaActiveaVertical 0 = VS)

a ^ termaSYNC 0 = FALS

a ^ termaReferenceaVerticalaSpeed 0 = monaVerticalaSpeed 0)

a _ (modeaFlightaDirector 0 2 FDaON ^ modeaActiveaVertical 0 = VS

a ^ termaSYNC 0 = TRU

a ^ termaReferenceaVerticalaSpeed 0 = monaVerticalaSpeed 0)

a _ (modeaFlightaDirector 2 FDaON ^ modeaActiveaVertical = VS ^

a termaSYNC 0 = FALS ^ event = VSaPitchaWheelaChanged

a ^ termaReferenceaVerticalaSpeed 0 = max (f�50;min(f50;

a termaReferenceaVerticalaSpeed + termaVSaPitchaWheelaRotationg)g))

a _ (: (((: (modeaFlightaDirector 2 FDaON ^ modeaActiveaVertical = VS))

a ^ (modeaFlightaDirector 0 2 FDaON ^ modeaActiveaVertical 0 = VS)

a ^ termaSYNC 0 = FALS)

a _ (modeaFlightaDirector 0 2 FDaON ^ modeaActiveaVertical 0 = VS

a ^ termaSYNC 0 = TRU)

a _ (modeaFlightaDirector 2 FDaON ^ modeaActiveaVertical = VS ^

a termaSYNC 0 = FALS ^ event = VSaPitchaWheelaChanged))

a ^ termaReferenceaVerticalaSpeed 0 = termaReferenceaVerticalaSpeed)
aa

a
a InitaOf atermaReferenceaIASa

a aggraReferences
aa
a

a termaReferenceaIAS = 90
aa

In the following schema, we multiply by 100 to get the desired precision.

a
aDef aOf atermaReferenceaMacha

a aggraReferences

a SpeedaOf aSound : N
a
a

a

a termaReferenceaMach = (100 � termaReferenceaIAS) div SpeedaOf aSound
a
a

a
a InitaOf atermaReferenceaVerticalaSpeeda

a aggraReferences
aa
a

a termaReferenceaVerticalaSpeed = 0
aa

61

A.9 REQ Relations for Some Annunciations

We have implemented the tolerances for some annunciations here.

This tolerance is 0.5 degrees; so we multiply by 10 to use integers.

a
aREQaRelaforaconaSelectedaHeadingaAnnunciationa

a Variables
a
a

a

a �5 � 10 � conaSelectedaHeadingaAnnunciation � 10 � termaSelectedaHeading � 5
aa

This tolerance is for 20 feet.

a
aREQaRelaforaconaPreselaAltaAnnunca

a Variables
a
a

a

a �20 � conaPreselectedaAltitudeaAnnunciation � termaPreselectedaAltitude � 20
aa

This tolerance is for 1 knot.

a
aREQaRelaforaconaReferenceaIASaAnnunciationa

a Variables
a
a

a

a �1 � conaReferenceaIASaAnnunciation � termaReferenceaIAS � 1
aa

This tolerance is for 0.05 kft/min. Since the ALTITUDEaRATE type is measured in 0.001

kft/min increments, we multiply by 1000 to get integers.

a
aREQaRelaforaconaReferenceaVSaAnnunciationa

a Variables
a
a

a

a �50 � conaReferenceaVSaAnnunciation � termaReferenceaVerticalaSpeed � 50
a
a

A.10 More Term and Input Event De�nitions

a
aDef aOf atermaOverspeeda

a Overspeed

a aggraAiraData
a
a

a

a termaOverspeed = TRU , modeaOverspeed = TOOaFAST
aa

a
aDef aOf atermaAboveaTransitionaAltitudea

a Variables
a
a

a

a termaAboveaTransitionaAltitude = TRU

a , (monaPressureaAltitude � constaTransitionaAltitude)
aa

62

a
aEventaNavaSourceaChangeda

a �aggraNavaSourceaMons

a �aggraNavaSourceaData

a TheaEvent
a
a

a

a event = NavaSourceaChanged ,

a (monaSelectedaNavaSource 6= monaSelectedaNavaSource0 _

a ((monaSelectedaNavaSourceaFrequency(monaSelectedaNavaSource)

a 6= monaSelectedaNavaSourceaFrequency(monaSelectedaNavaSource0) ^

a termaSelectedaNavaType 2 fVOR;LOCg)))
a
a

a
aDef aOf atermaSelectedaNavaTypea

a aggraNavaSourceaMons

a aggraNavaSourceaData
a
a

a

a (monaSelectedaNavaSource 2 fFMS1;FMS2;FMS3g

a ^ termaSelectedaNavaType = FMS)

a _ (monaSelectedaNavaSource 2 fVNR1;VNR2;VNR3;VNR4g^

a monaNavaSourceaSignalaType(monaSelectedaNavaSource) = VOR ^

a termaSelectedaNavaType = VOR)

a _ (monaSelectedaNavaSource 2 fVNR1;VNR2;VNR3;VNR4g^

a monaNavaSourceaSignalaType(monaSelectedaNavaSource) = LOC ^

a termaSelectedaNavaType = LOC)
a
a

We can use termaSYNC in the two de�nitions of input events below because of the de�nition of

termaSYNC. These two de�nitions are a bit more convenient for use in Z/EVES.

a
aEventaSYNCaOna

a TheaEvent

a �SYNC
a
a

a

a event = SYNCaOn

a , (termaSYNC = FALS ^ termaSYNC 0 = TRU)
a
a

a
aEventaSYNCaO�a

a TheaEvent

a �SYNC
aa
a

a event = SYNCaO�

a , (termaSYNC = TRU ^ termaSYNC 0 = FALS)
aa

a
aEventaAPaDisconnectaBaraUpa

a �aggraFCPaSwitches

a TheaEvent
a
a

a

a (event = APaDisconnectaBaraUp),

a (monaAPaDisconnectaBar = DOWN ^ monaAPaDisconnectaBar 0 = UP)
a
a

63

a
aEventaAPaDisconnectaBaraDowna

a �aggraFCPaSwitches

a TheaEvent
aa
a

a (event = APaDisconnectaBaraDown)

a , (monaAPaDisconnectaBar = UP ^ monaAPaDisconnectaBar 0 = DOWN)
a
a

a
aEventaLateralaNAV aTrackaCondaMeta

a �LateralaTerms

a TheaEvent
a
a

a

a (event = LateralaNAV aTrackaCondaMet)

a , (termaLateralaNAV aTrackaCondaMet = FALS ^

a termaLateralaNAV aTrackaCondaMet 0 = TRU)
a
a

a
aEventaLateralaAPPRaTrackaCondaMeta

a �LateralaTerms

a TheaEvent
aa
a

a event = LateralaAPPRaTrackaCondaMet

a , (termaLateralaAPPRaTrackaCondaMet = FALS ^

a termaLateralaAPPRaTrackaCondaMet 0 = TRU)
a
a

a
aEventaVertaAPPRaTrackaCondaMeta

a �VerticalaTerms

a TheaEvent
a
a

a

a event = VertaAPPRaTrackaCondaMet ,

a termaVerticalaAPPRaTrackaCondaMet 6= TRU ^

a termaVerticalaAPPRaTrackaCondaMet 0 = TRU
aa

a
aEventaGoneaOverspeeda

a �aggraAiraData

a TheaEvent
aa
a

a event = GoneaOverspeed

a , ((: (termaAboveaTransitionaAltitude = FALS

a ^ monaIndicatedaAirspeed > termaVmo + 10) ^

a (termaAboveaTransitionaAltitude0 = FALS

a ^ monaIndicatedaAirspeed 0 > termaVmo + 10)) _

a (: (termaAboveaTransitionaAltitude = TRU

a ^ monaIndicatedaMachaNumber 0 > termaMmo + 3)

a ^ termaAboveaTransitionaAltitude0 = TRU

a ^ monaIndicatedaMachaNumber 0 > termaMmo + 3))
a
a

64

a
aEventaGoneaNormala

a �aggraAiraData

a TheaEvent
aa
a

a event = GoneaNormal

a , ((: (termaAboveaTransitionaAltitude = FALS ^

a monaIndicatedaAirspeed � termaVmo) ^

a termaAboveaTransitionaAltitude0 = FALS ^

a monaIndicatedaAirspeed 0 � termaVmo) _

a (: (termaAboveaTransitionaAltitude = TRU ^

a monaIndicatedaMachaNumber � termaMmo) ^

a termaAboveaTransitionaAltitude0 = TRU ^

a monaIndicatedaMachaNumber 0 � termaMmo))
a
a

a
aEventaALTSELaTRACKaCondaMeta

a TheaEvent

a �AltselaTerms
a
a

a

a event = ALTSELaTRACKaCondaMet

a , (termaALTSELaCond 6= ALTSELaCONDaTRACK ^

a termaALTSELaCond 0 = ALTSELaCONDaTRACK)
a
a

a
aEventaALTSELaCAPTUREaCondaMeta

a TheaEvent

a �AltselaTerms
aa
a

a event = ALTSELaCAPTUREaCondaMet ,

a (termaALTSELaCond 6= ALTSELaCONDaCAPTURE ^

a termaALTSELaCond 0 = ALTSELaCONDaCAPTURE)
a
a

a
aDef aOf atermaAPaEngageda

a Autopilot
a
a

a

a termaAPaEngaged = TRU , modeaAutopilot 2 ENGAGED
aa

a
aREQaRelaforaconaAPaCouplinga

a Autopilot
aa
a

a (((modeaAutopilot = DISENGAGEDaWARNING)

a _ (modeaAutopilot = DISENGAGEDaNORMAL) _

a (modeaAutopilot = ENGAGEDaSYNC))

a ^ conaAPaCoupling = MANUAL) _

a (modeaAutopilot = ENGAGEDaNORMAL

a ^ conaAPaCoupling = FGS)
a
a

65

a
aEventaLandaOnaGrounda

a �aggraAiraData

a TheaEvent
aa
a

a event = LandaOnaGround , monaOnaGround = FALS ^ monaOnaGround 0 = TRU
aa

a
aREQaRelaforaconaAPaDisengageaWarninga

a Autopilot
a
a

a

a (((modeaAutopilot = DISENGAGEDaNORMAL)

a _ (modeaAutopilot = ENGAGEDaNORMAL) _

a (modeaAutopilot = ENGAGEDaSYNC))

a ^ conaAPaDisengageaWarning = OFF) _

a (modeaAutopilot = DISENGAGEDaWARNING

a ^ conaAPaDisengageaWarning = ON)
aa

a
aDef aOf atermaLateralaNAV aTrackaCondaMeta

a aggraNavaSourceaData

a aggraNavaSourceaMons

a LateralaTerms
a
a

a

a termaLateralaNAV aTrackaCondaMet = TRU

a , (termaSelectedaNavaType 2 fVOR;LOC ;FMSg

a ^ monaSelectedaNavaSourceaStatus = VALID

a ^ termaWithinaLateralaNAV aCaptureaWindow = TRU)
a
a

a
aDef aOf atermaLateralaAPPRaTrackaCondaMeta

a aggraNavaSourceaData

a aggraNavaSourceaMons

a LateralaTerms
a
a

a

a termaLateralaAPPRaTrackaCondaMet = TRU

a , (termaSelectedaNavaType 2 fLOC ;FMSg

a ^ monaSelectedaNavaSourceaStatus = VALID

a ^ termaWithinaLateralaAPPRaCaptureaWindow = TRU)
a
a

a
aDef aOf atermaRollaLEaThresholda

a aggraAiraData

a LateralaTerms
a
a

a

a termaRollaLEaThreshold = TRU ,

a (monaRollaAngle � constaRollaSelectionaThreshold

a ^ (�monaRollaAngle � constaRollaSelectionaThreshold))
aa

66

a
aDef aOf atermaVerticalaAPPRaTrackaCondaMeta

a VerticalaTerms

a aggraNavaSourceaData

a aggraNavaSourceaMons
a
a

a

a termaVerticalaAPPRaTrackaCondaMet = TRU

a , (termaSelectedaNavaType = LOC ^

a monaSelectedaNavaSourceaStatus = VALID ^ monaValidaGlideslope = TRU

a ^ termaWithinaVerticalaAPPRaCaptureaWindow = TRU)
aa

In TransitionaINMODEaRequirement, we require that if an INMODE Boolean is TRU in a new

state, then the corresponding mode machine was in the speci�ed mode in the old state.

a
aTransitionaINMODEaRequirementa

a �INMODEaBooleans

a �Variables
a
a

a

a DurationaINMODEaAPaDisengagedaWarningagtatenasec0 = TRU

a) (modeaAutopilot = DISENGAGEDaWARNING)

a DurationaINMODEaVertaAppraTrackagtaconstaminaarmedaperiod 0 = TRU

a) (modeaVerticalaApproach = VERTaAPPRaTRACK)

a DurationaINMODEaNAV aARMEDagtaconstaminaarmedaperiod 0 = TRU

a) modeaActiveaLateral = NAV aARMED

a DurationaINMODEaAPPRaARMEDagtaconstaminaarmedaperiod 0 = TRU

a) modeaActiveaLateral = LaAPPRaARMED

a DurationaINMODEaALTSELaARMEDagtaconstaminaarmedaperiod 0 = TRU

a) modeaAltitudeaSelect = ALTSELaARMED

a DurationaINMODEaALTSELaCAPTagtaconstaminaarmedaperiod 0 = TRU

a) modeaAltitudeaSelect = ALTSELaCAPTURE
a
a

A.11 Lamp Annunciations

The following schemas describe the conditions under which these lamps are lit:

conaHDGaSwitchaLamp, conaNAVaSwitchaLamp,

conaAPPRaSwitchaLamp, conaALTaSwitchaLamp,

conaVSaSwitchaLamp, conaFLCaSwitchaLamp, and

conaAPaEngagedaSwitchaLamp.

a
aREQaRelaforaconaHDGaSwitchaLampa

a aggraFlightaModes

a aggraFCPaLamps
aa
a

a (modeaFlightaDirector = FDaOFF ^ conaHDGaSwitchaLamp = UNLIT) _

a (modeaFlightaDirector 2 FDaON ^ (modeaActiveaLateral 6= HDG

a ^ conaHDGaSwitchaLamp = UNLIT) _

a modeaActiveaLateral = HDG ^ conaHDGaSwitchaLamp = LIT)
a
a

67

a
aREQaRelaforaconaNAV aSwitchaLampa

a aggraFlightaModes

a aggraFCPaLamps
aa
a

a (modeaFlightaDirector = FDaOFF ^ conaNAV aSwitchaLamp = UNLIT) _

a (modeaFlightaDirector 2 FDaON ^ (modeaActiveaLateral =2 NAV

a ^ conaNAV aSwitchaLamp = UNLIT) _

a modeaActiveaLateral 2 NAV ^ conaNAV aSwitchaLamp = LIT)
a
a

a
aREQaRelaforaconaAPPRaSwitchaLampa

a aggraFlightaModes

a aggraFCPaLamps
aa
a

a (modeaFlightaDirector = FDaOFF ^ conaAPPRaSwitchaLamp = UNLIT) _

a (modeaFlightaDirector 2 FDaON ^ (modeaActiveaLateral =2 LaAPPR

a ^ conaAPPRaSwitchaLamp = UNLIT) _

a modeaActiveaLateral 2 LaAPPR ^ conaAPPRaSwitchaLamp = LIT)
a
a

a
aREQaRelaforaconaALTaSwitchaLampa

a aggraFlightaModes

a aggraFCPaLamps
a
a

a

a (modeaFlightaDirector = FDaOFF ^ conaALTaSwitchaLamp = UNLIT) _

a (modeaFlightaDirector 2 FDaON ^ (modeaActiveaVertical 6= ALTHOLD

a ^ conaALTaSwitchaLamp = UNLIT) _

a modeaActiveaVertical = ALTHOLD ^ conaALTaSwitchaLamp = LIT)
a
a

a
aREQaRelaforaconaVSaSwitchaLampa

a aggraFlightaModes

a aggraFCPaLamps
a
a

a

a (modeaFlightaDirector = FDaOFF ^ conaVSaSwitchaLamp = UNLIT) _

a (modeaFlightaDirector 2 FDaON ^ (modeaActiveaVertical 6= VS

a ^ conaVSaSwitchaLamp = UNLIT) _

a modeaActiveaVertical = VS ^ conaVSaSwitchaLamp = LIT)
a
a

a
aREQaRelaforaconaFLCaSwitchaLampa

a aggraFlightaModes

a aggraFCPaLamps
a
a

a

a (modeaFlightaDirector = FDaOFF ^ conaFLCaSwitchaLamp = UNLIT) _

a (modeaFlightaDirector 2 FDaON ^ (modeaActiveaVertical =2 FLC

a ^ conaFLCaSwitchaLamp = UNLIT) _

a modeaActiveaVertical 2 FLC ^ conaFLCaSwitchaLamp = LIT)
a
a

68

a
aREQaRelaforaconaAPaEngagedaSwitchaLampa

a aggraFlightaModes

a aggraFCPaLamps

a Autopilot
a
a

a

a (modeaAutopilot 2 DISENGAGED ^ conaAPaEngagedaSwitchaLamp = UNLIT) _

a (modeaAutopilot 2 ENGAGED ^ conaAPaEngagedaSwitchaLamp = LIT)
a
a

A.12 Collections of Terms and Events

In the schema ConditionedaTerms, we collect the de�nitions of the term variables that are de�ned

by formulas or condition tables. These can be included as invariants in the de�nition of State.

a
aConditionedaTermsa

a Def aOf atermaSYNC

a Def aOf atermaReferenceaMach

a Def aOf atermaOverspeed

a Def aOf atermaAboveaTransitionaAltitude

a Def aOf atermaSelectedaNavaType

a Def aOf atermaAPaEngaged

a Def aOf atermaLateralaNAV aTrackaCondaMet

a Def aOf atermaLateralaAPPRaTrackaCondaMet

a Def aOf atermaRollaLEaThreshold

a Def aOf atermaVerticalaAPPRaTrackaCondaMet
a
a

In the schema REQaRelations, we collect the REQ relations imposed on controlled variables.

a
aREQaRelationsa

a REQaRelaforaconaSelectedaHeadingaAnnunciation

a REQaRelaforaconaPreselaAltaAnnunc

a REQaRelaforaconaReferenceaIASaAnnunciation

a REQaRelaforaconaReferenceaVSaAnnunciation

a REQaRelaforaconaAPaCoupling

a REQaRelaforaconaAPaDisengageaWarning

a REQaRelaforaconaHDGaSwitchaLamp

a REQaRelaforaconaNAV aSwitchaLamp

a REQaRelaforaconaAPPRaSwitchaLamp

a REQaRelaforaconaALTaSwitchaLamp

a REQaRelaforaconaVSaSwitchaLamp

a REQaRelaforaconaFLCaSwitchaLamp

a REQaRelaforaconaAPaEngagedaSwitchaLamp
a
a

In the schema EventsaAndaEventaTerms, we collect term variables that are de�ned by event

tables, as well as the event de�nitions.

69

a
aEventsaAndaEventaTermsa

a EventaHDGaSwitchaPressed

a EventaNAV aSwitchaPressed

a EventaAPPRaSwitchaPressed

a EventaALTaSwitchaPressed

a EventaFLCaSwitchaPressed

a Def aOf atermaVSaPitchaWheelaRotation

a EventaVSaPitchaWheelaChanged

a Def aOf atermaALTaKnobaRotation

a EventaALTaKnobaChanged

a Def aOf atermaSpeedaKnobaRotation

a EventaSpeedaKnobaChanged

a Def aOf atermaHDGaKnobaRotation

a EventaHDGaKnobaChanged

a EventaAPaEngageaSwitchaPressed

a EventaFDaPressed

a EventaAPaDisengageaPressed

a EventaGAaPressed

a Def aOf atermaSelectedaHeading

a Def aOf atermaPreselectedaAltitude

a Def aOf atermaReferenceaHeading

a Def aOf atermaReferenceaPitch

a Def aOf atermaReferenceaRoll

a Def aOf atermaReferenceaVerticalaSpeed

a EventaNavaSourceaChanged

a TransitionaINMODEaRequirement

a EventaVSaSwitchaPressed

a Def aOf atermaReferenceaIAS

a Def aOf atermaReferenceaAltitude

a EventaSYNCaOn

a EventaSYNCaO�

a EventaAPaDisconnectaBaraUp

a EventaAPaDisconnectaBaraDown

a EventaLandaOnaGround

a EventaLateralaNAV aTrackaCondaMet

a EventaLateralaAPPRaTrackaCondaMet

a EventaVertaAPPRaTrackaCondaMet

a EventaGoneaOverspeed

a EventaGoneaNormal

a EventaALTSELaTRACKaCondaMet

a EventaALTSELaCAPTUREaCondaMet
aa

Here we declare the state of the system, which consists of the values of the variables, as well as

invariants that de�ne some of the term variables and controlled variables.

70

a
a Statea

a Variables

a ConditionedaTerms

a REQaRelations
a
a

Here we declare the transition of the system, which consists of an old state, a new state, an input

event, and invariants that de�ne some of the term variables.

a
aTransitiona

a �State

a TheaEvent

a EventsaAndaEventaTerms
a
a

The following schema is the mode machine initialization for modeaFlightaDirector.

a
a InitaOf amodeaFlightaDirectora

a State
a
a

a

a modeaFlightaDirector = FDaOFF
aa

The following mode machine initializations for

modeaActiveaLateral,

modeaActiveaVertical,

modeaAltitudeaSelect, and

modeaVerticalaApproach

are di�erent from the CoRE initializations because we have simulated the sustaining conditions

of these mode machines using NOTaINaMODE modes. The CoRE initializations now appear as

transitions in the respective tables.

a
a InitaOf amodeaActiveaLaterala

a State
a
a

a

a modeaActiveaLateral = LATERALaNOTaINaMODE
a
a

a
a InitaOf amodeaActiveaVerticala

a State
a
a

a

a modeaActiveaVertical = VERTICALaNOTaINaMODE
a
a

a
a InitaOf amodeaAltitudeaSelecta

a State
a
a

a

a modeaAltitudeaSelect = ALTSELaNOTaIN aMODE
a
a

a
a InitaOf amodeaVerticalaApproacha

a State
a
a

a

a modeaVerticalaApproach = VERTaAPPRaNOTaIN aMODE
a
a

71

a
a InitStatea

a State

a InitaOf aOverspeed

a InitaOf aAutopilot

a InitaOf amodeaFlightaDirector

a InitaOf atermaSelectedaHeading

a InitaOf atermaPreselectedaAltitude

a InitaOf atermaReferenceaIAS

a InitaOf atermaReferenceaVerticalaSpeed

a InitaOf amodeaActiveaLateral

a InitaOf amodeaActiveaVertical

a InitaOf amodeaAltitudeaSelect

a InitaOf amodeaVerticalaApproach
aa

A.13 Invariants

This invariant arises from the CoRE sustaining condition imposed on four of the mode machines.

We have augmented the transition tables of these machines to preserve the invariant.

a
aFDaInvarianta

a State
a
a

a

a modeaFlightaDirector = FDaOFF)

a (modeaActiveaLateral = LATERALaNOTaINaMODE ^

a modeaActiveaVertical = VERTICALaNOTaINaMODE ^

a modeaAltitudeaSelect = ALTSELaNOTaIN aMODE ^

a modeaVerticalaApproach = VERTaAPPRaNOTaIN aMODE)
a
a

The following twelve invariants are translated from the CoRE speci�cation.

a
a InvariantaOnea

a State
a
a

a

a modeaActiveaLateral = LaGA) modeaAutopilot 2 DISENGAGED
a
a

a
a InvariantaTwoa

a State
a
a

a

a modeaActiveaVertical = V aGA) modeaAutopilot 2 DISENGAGED
a
a

a
a InvariantaThreea

a State
aa
a

a termaAPaEngaged = TRU) modeaFlightaDirector 2 FDaON
aa

72

a
a InvariantaFoura

a State
a
a

a

a (modeaFlightaDirector 2 FDaON ^

a modeaActiveaLateral 2 ROLL ^

a monaOnaGround = TRU)) modeaActiveaLateral = ROLLaHDGaHOLD
a
a

a
a InvariantaFivea

a State
aa
a

a (modeaFlightaDirector 2 FDaON ^ modeaActiveaVertical = V aGA)

a) modeaActiveaLateral = LaGA
a
a

a
a InvariantaSixa

a State
aa
a

a (modeaFlightaDirector 2 FDaON ^

a modeaActiveaLateral = NAV aTRACK)

a) termaSelectedaNavaType 2 fVOR;LOC ;FMSg
a
a

a
a InvariantaSevena

a State
a
a

a

a modeaFlightaDirector 2 FDaON)

a (modeaAltitudeaSelect = ALTSELaCLEARED

a , modeaActiveaVertical 2 fV aAPPR;V aGA;ALTHOLDg)
aa

a
a InvariantaEighta

a State
aa
a

a modeaFlightaDirector 2 FDaON)

a (modeaAltitudeaSelect 2 ALTSELaACTIVE

a , modeaActiveaVertical 2 fV aAPPR;V aGA;ALTHOLDg)
a
a

a
a InvariantaNinea

a State
a
a

a

a modeaFlightaDirector 2 FDaON) (modeaAltitudeaSelect 2 ALTSELaACTIVE

a , modeaActiveaVertical = ALTSEL)
a
a

a
a InvariantaTena

a State
a
a

a

a modeaFlightaDirector 2 FDaON)

a (modeaVerticalaApproach = VERTaAPPRaTRACK

a , modeaActiveaVertical = V aAPPR)
a
a

73

a
a InvariantaElevena

a State
a
a

a

a modeaFlightaDirector 2 FDaON

a) (termaOverspeed = TRU

a , modeaActiveaVertical 2 fALTSEL;ALTHOLD ;VaAPPR;FLCaOVERSPEEDg)
a
a

a
a InvariantaTwelvea

a State
aa
a

a modeaFlightaDirector 2 FDaON

a) (modeaActiveaLateral = LaGA) modeaActiveaVertical = V aGA)
aa

a
aLegalaStatea

a State

a FDaInvariant

a InvariantaOne

a InvariantaTwo

a InvariantaThree

a InvariantaFour

a InvariantaFive

a InvariantaSix

a InvariantaSeven

a InvariantaEight

a InvariantaNine

a InvariantaTen

a InvariantaEleven

a InvariantaTwelve
a
a

A.14 Transition Tables

a
amodeaOverspeedaTransitionaOnea

a Transition
a
a

a

a (modeaOverspeed = SPEEDaOK ^

a (: (termaAboveaTransitionaAltitude = FALS ^ monaIndicatedaAirspeed > termaVmo + 10)

a ^ (termaAboveaTransitionaAltitude0 = FALS ^ monaIndicatedaAirspeed 0 > termaVmo + 10))

a ^ modeaOverspeed 0 = TOOaFAST)
a
a

a
amodeaOverspeedaTransitionaTwoa

a Transition
aa
a

a (modeaOverspeed = SPEEDaOK ^

a (: (termaAboveaTransitionaAltitude = TRU ^ monaIndicatedaMachaNumber 0 > termaMmo + 3)

a ^ termaAboveaTransitionaAltitude0 = TRU ^ monaIndicatedaMachaNumber 0 > termaMmo + 3)

a ^ modeaOverspeed 0 = TOOaFAST)
a
a

74

a
amodeaOverspeedaTransitionaThreea

a Transition
a
a

a

a (modeaOverspeed = TOOaFAST ^

a (: (termaAboveaTransitionaAltitude = FALS ^ monaIndicatedaAirspeed � termaVmo)

a ^ termaAboveaTransitionaAltitude0 = FALS ^ monaIndicatedaAirspeed 0 � termaVmo)

a ^ modeaOverspeed 0 = SPEEDaOK)
a
a

a
amodeaOverspeedaTransitionaFoura

a Transition
a
a

a

a (modeaOverspeed = TOOaFAST

a ^ (: (termaAboveaTransitionaAltitude = TRU ^ monaIndicatedaMachaNumber � termaMmo)

a ^ termaAboveaTransitionaAltitude0 = TRU ^ monaIndicatedaMachaNumber 0 � termaMmo)

a ^ modeaOverspeed 0 = SPEEDaOK)
a
a

a
amodeaOverspeedaTransitionaFivea

a Transition
a
a

a

a (: ((modeaOverspeed = SPEEDaOK ^

a (: (termaAboveaTransitionaAltitude = FALS ^ monaIndicatedaAirspeed > termaVmo + 10)

a ^ (termaAboveaTransitionaAltitude0 = FALS ^ monaIndicatedaAirspeed 0 > termaVmo + 10)))

a _ (modeaOverspeed = SPEEDaOK ^

a (: (termaAboveaTransitionaAltitude = TRU ^ monaIndicatedaMachaNumber 0 > termaMmo + 3)

a ^ termaAboveaTransitionaAltitude0 = TRU ^ monaIndicatedaMachaNumber 0 > termaMmo + 3))

a _ (modeaOverspeed = TOOaFAST ^

a (: (termaAboveaTransitionaAltitude = FALS ^ monaIndicatedaAirspeed � termaVmo)

a ^ termaAboveaTransitionaAltitude0 = FALS ^ monaIndicatedaAirspeed 0 � termaVmo))

a _ (modeaOverspeed = TOOaFAST

a ^ (: (termaAboveaTransitionaAltitude = TRU ^ monaIndicatedaMachaNumber � termaMmo)

a ^ termaAboveaTransitionaAltitude0 = TRU ^ monaIndicatedaMachaNumber 0 � termaMmo)))

a ^ modeaOverspeed 0 = modeaOverspeed)
aa

modeaOverspeedaTransitionaTable b=

modeaOverspeedaTransitionaOne _

modeaOverspeedaTransitionaTwo _

modeaOverspeedaTransitionaThree _

modeaOverspeedaTransitionaFour _

modeaOverspeedaTransitionaFive

a
amodeaAutopilotaTransitionaOnea

a Transition
a
a

a

a ((event = APaEngageaSwitchaPressed ^ monaAPaDisconnectaBar = UP

a ^ modeaAutopilot 2 DISENGAGED)

a ^ modeaAutopilot 0 = ENGAGEDaNORMAL)
a
a

75

a
amodeaAutopilotaTransitionaTwoa

a Transition
a
a

a

a ((event = APaDisengageaPressed ^ modeaAutopilot 2 ENGAGED)

a ^ modeaAutopilot 0 = DISENGAGEDaNORMAL)
aa

a
amodeaAutopilotaTransitionaThreea

a Transition
a
a

a

a ((modeaAutopilot 2 ENGAGED ^ monaAPaDisconnectaBar 6= DOWN

a ^ monaAPaDisconnectaBar 0 = DOWN)

a ^ modeaAutopilot = DISENGAGEDaNORMAL)
a
a

a
amodeaAutopilotaTransitionaFoura

a Transition
aa
a

a ((modeaAutopilot 2 ENGAGED ^

a ((modeaActiveaLateral 6= LaGA ^ modeaActiveaLateral 0 = LaGA) _

a (modeaActiveaVertical 6= V aGA ^ modeaActiveaVertical 0 = V aGA)))

a ^ modeaAutopilot 0 = DISENGAGEDaWARNING)
a
a

a
amodeaAutopilotaTransitionaFivea

a Transition
a
a

a

a ((modeaAutopilot = ENGAGEDaNORMAL ^

a termaSYNC = FALS ^ termaSYNC 0 = TRU)

a ^ modeaAutopilot 0 = ENGAGEDaSYNC)
aa

a
amodeaAutopilotaTransitionaSixa

a Transition
aa
a

a ((modeaAutopilot = ENGAGEDaSYNC ^

a termaSYNC 0 = FALS ^ termaSYNC = TRU)

a ^ modeaAutopilot 0 = ENGAGEDaNORMAL)
a
a

a
amodeaAutopilotaTransitionaSevena

a Transition
a
a

a

a ((modeaAutopilot = DISENGAGEDaWARNING ^

a DurationaINMODEaAPaDisengagedaWarningagtatenasec = FALS ^

a DurationaINMODEaAPaDisengagedaWarningagtatenasec0 = TRU)

a ^ modeaAutopilot 0 = DISENGAGEDaNORMAL)
a
a

76

a
amodeaAutopilotaTransitionaEighta

a Transition
a
a

a

a (: (((event = APaEngageaSwitchaPressed ^ monaAPaDisconnectaBar = UP

a ^ modeaAutopilot 2 DISENGAGED))

a _ ((event = APaDisengageaPressed ^ modeaAutopilot 2 ENGAGED))

a _ ((modeaAutopilot 2 ENGAGED ^ monaAPaDisconnectaBar 6= DOWN

a ^ monaAPaDisconnectaBar 0 = DOWN))

a _ ((modeaAutopilot 2 ENGAGED ^

a ((modeaActiveaLateral 6= LaGA ^ modeaActiveaLateral 0 = LaGA) _

a (modeaActiveaVertical 6= V aGA ^ modeaActiveaVertical 0 = V aGA))))

a _ ((modeaAutopilot = ENGAGEDaNORMAL ^

a termaSYNC = FALS ^ termaSYNC 0 = TRU))

a _ ((modeaAutopilot = ENGAGEDaSYNC ^

a termaSYNC 0 = FALS ^ termaSYNC = TRU))

a _ ((modeaAutopilot = DISENGAGEDaWARNING ^

a DurationaINMODEaAPaDisengagedaWarningagtatenasec = FALS ^

a DurationaINMODEaAPaDisengagedaWarningagtatenasec0 = TRU)))

a ^ modeaAutopilot 0 = modeaAutopilot)
aa

modeaAutopilotaTransitionaTable b=

modeaAutopilotaTransitionaOne _

modeaAutopilotaTransitionaTwo _

modeaAutopilotaTransitionaThree _

modeaAutopilotaTransitionaFour _

modeaAutopilotaTransitionaFive _

modeaAutopilotaTransitionaSix _

modeaAutopilotaTransitionaSeven _

modeaAutopilotaTransitionaEight

a
amodeaFlightaDirectoraTransitionaOnea

a Transition
a
a

a

a ((event 2 FlightaModeaRequested ^ modeaFlightaDirector = FDaOFF)

a ^ modeaFlightaDirector 0 = FDaON aCUES)
a
a

a
amodeaFlightaDirectoraTransitionaTwoa

a Transition
a
a

a

a ((event = GoneaOverspeed ^ modeaFlightaDirector = FDaOFF)

a ^ modeaFlightaDirector 0 = FDaON aCUES)
a
a

77

a
amodeaFlightaDirectoraTransitionaThreea

a Transition
a
a

a

a ((event = APaEngageaSwitchaPressed ^

a (modeaAutopilot =2 ENGAGED ^ modeaAutopilot 0 2 ENGAGED)

a ^ modeaFlightaDirector = FDaOFF)

a ^ modeaFlightaDirector 0 = FDaON aCUES)
a
a

a
amodeaFlightaDirectoraTransitionaFoura

a Transition
a
a

a

a ((event = FDaPressed ^ modeaFlightaDirector = FDaOFF)

a ^ modeaFlightaDirector 0 = FDaON aCUES)
a
a

a
amodeaFlightaDirectoraTransitionaFivea

a Transition
a
a

a

a ((event = FDaPressed ^

a modeaFlightaDirector 2 FDaON ^ termaOverspeed = FALS

a ^ termaAPaEngaged = FALS)

a ^ modeaFlightaDirector 0 = FDaOFF)
aa

a
amodeaFlightaDirectoraTransitionaSixa

a Transition
aa
a

a (modeaFlightaDirector = FDaON aNOaCUES ^

a event = FDaPressed ^

a (termaAPaEngaged = TRU _ termaOverspeed = TRU)

a ^ modeaFlightaDirector = FDaONaCUES)
a
a

a
amodeaFlightaDirectoraTransitionaSevena

a Transition
a
a

a

a ((modeaFlightaDirector = FDaONaNOaCUES ^ event = GoneaOverspeed)

a ^ modeaFlightaDirector = FDaONaCUES)
a
a

a
amodeaFlightaDirectoraTransitionaEighta

a Transition
a
a

a

a (modeaFlightaDirector = FDaON aCUES ^

a event = FDaPressed ^

a (termaAPaEngaged = TRU _ termaOverspeed = TRU)

a ^ modeaFlightaDirector = FDaONaNOaCUES)
a
a

78

a
amodeaFlightaDirectoraTransitionaNinea

a Transition
a
a

a

a (: (((event 2 FlightaModeaRequested ^ modeaFlightaDirector = FDaOFF))

a _ ((event = GoneaOverspeed ^ modeaFlightaDirector = FDaOFF))

a _ ((event = APaEngageaSwitchaPressed ^

a (modeaAutopilot =2 ENGAGED ^ modeaAutopilot 0 2 ENGAGED)

a ^ modeaFlightaDirector = FDaOFF))

a _ ((event = FDaPressed ^ modeaFlightaDirector = FDaOFF))

a _ ((event = FDaPressed ^

a modeaFlightaDirector 2 FDaON ^ termaOverspeed = FALS

a ^ termaAPaEngaged = FALS))

a _ (modeaFlightaDirector = FDaONaNOaCUES ^

a event = FDaPressed ^

a (termaAPaEngaged = TRU _ termaOverspeed = TRU))

a _ ((modeaFlightaDirector = FDaONaNOaCUES ^ event = GoneaOverspeed))

a _ (modeaFlightaDirector = FDaONaCUES ^

a event = FDaPressed ^

a (termaAPaEngaged = TRU _ termaOverspeed = TRU)))

a ^ modeaFlightaDirector 0 = modeaFlightaDirector)
a
a

modeaFlightaDirectoraTransitionaTable b=

modeaFlightaDirectoraTransitionaOne _

modeaFlightaDirectoraTransitionaTwo _

modeaFlightaDirectoraTransitionaThree _

modeaFlightaDirectoraTransitionaFour _

modeaFlightaDirectoraTransitionaFive _

modeaFlightaDirectoraTransitionaSix _

modeaFlightaDirectoraTransitionaSeven _

modeaFlightaDirectoraTransitionaEight _

modeaFlightaDirectoraTransitionaNine

a
amodeaActiveaLateralaTransitionaOnea

a Transition
aa
a

a (modeaFlightaDirector 6= FDaOFF ^ modeaFlightaDirector 0 = FDaOFF

a ^ modeaActiveaLateral 0 = LATERALaNOTaIN aMODE)
aa

a
amodeaActiveaLateralaTransitionaTwoa

a Transition
aa
a

a (modeaFlightaDirector = FDaOFF ^ modeaFlightaDirector 0 6= FDaOFF ^

a event =2 LateralaModeaRequested ^ event 6= GAaPressed

a ^ modeaActiveaLateral 0 2 ROLL)
a
a

79

a
amodeaActiveaLateralaTransitionaThreea

a Transition
a
a

a

a ((event = HDGaSwitchaPressed ^ modeaActiveaLateral = HDG)

a ^ modeaActiveaLateral 0 2 ROLL)
aa

a
amodeaActiveaLateralaTransitionaFoura

a Transition
a
a

a

a ((event = NAV aSwitchaPressed ^ modeaActiveaLateral 2 NAV)

a ^ modeaActiveaLateral 0 2 ROLL)
aa

a
amodeaActiveaLateralaTransitionaFivea

a Transition
a
a

a

a ((event = NavaSourceaChanged ^ modeaActiveaLateral 2 NAV)

a ^ modeaActiveaLateral 0 2 ROLL)
aa

a
amodeaActiveaLateralaTransitionaSixa

a Transition
aa
a

a ((event = APPRaSwitchaPressed ^ modeaActiveaLateral 2 LaAPPR)

a ^ modeaActiveaLateral 0 2 ROLL)
aa

a
amodeaActiveaLateralaTransitionaSevena

a Transition
aa
a

a ((event = NavaSourceaChanged ^ modeaActiveaLateral 2 LaAPPR)

a ^ modeaActiveaLateral 0 2 ROLL)
aa

a
amodeaActiveaLateralaTransitionaEighta

a Transition
aa
a

a ((termaAPaEngaged 6= TRU ^ termaAPaEngaged 0 = TRU

a ^ modeaActiveaLateral = LaGA)

a ^ modeaActiveaLateral 0 2 ROLL)
a
a

a
amodeaActiveaLateralaTransitionaNinea

a Transition
a
a

a

a ((termaSYNC = FALS ^ termaSYNC 0 = TRU ^ modeaActiveaLateral = LaGA)

a ^ modeaActiveaLateral 0 2 ROLL)
a
a

80

a
amodeaActiveaLateralaTransitionaTena

a Transition
a
a

a

a ((modeaActiveaVertical = V aGA ^ modeaActiveaVertical 0 6= V aGA ^

a modeaActiveaLateral = LaGA ^ event 2 VerticalaEvents n LateralaEvents)

a ^ modeaActiveaLateral 0 2 ROLL)
a
a

a
amodeaActiveaLateralaTransitionaElevena

a Transition
a
a

a

a ((event = HDGaSwitchaPressed ^ modeaActiveaLateral 6= HDG)

a ^ modeaActiveaLateral 0 = HDG)
a
a

a
amodeaActiveaLateralaTransitionaTwelvea

a Transition
a
a

a

a ((event = NAV aSwitchaPressed ^ modeaActiveaLateral 0 =2 NAV)

a ^ modeaActiveaLateral 0 = NAV aARMED)
a
a

a
amodeaActiveaLateralaTransitionaThirteena

a Transition
aa
a

a ((event = APPRaSwitchaPressed ^ modeaActiveaLateral =2 LaAPPR)

a ^ modeaActiveaLateral 0 = LaAPPRaARMED)
aa

a
amodeaActiveaLateralaTransitionaFourteena

a Transition
a
a

a

a ((event = GAaPressed ^ modeaActiveaLateral 6= LaGA)

a ^ modeaActiveaLateral 0 = LaGA)
a
a

a
amodeaActiveaLateralaTransitionaFifteena

a Transition
aa
a

a (modeaActiveaLateral =2 ROLL ^ modeaActiveaLateral 0 2 ROLL

a ^ (termaRollaLEaThreshold = TRU _ monaOnaGround = TRU)

a ^ modeaActiveaLateral 0 = ROLLaHDGaHOLD)
a
a

a
amodeaActiveaLateralaTransitionaSixteena

a Transition
aa
a

a (: (termaSYNC = TRU ^ termaRollaLEaThreshold = TRU)

a ^ (termaSYNC 0 = TRU ^ termaRollaLEaThreshold 0 = TRU)

a ^ modeaActiveaLateral = ROLLaROLLaHOLD

a ^ modeaActiveaLateral 0 = ROLLaHDGaHOLD)
a
a

81

a
amodeaActiveaLateralaTransitionaSeventeena

a Transition
a
a

a

a (termaAPaEngaged = FALS ^ termaAPaEngaged 0 = TRU ^

a termaRollaLEaThreshold = TRU ^ modeaActiveaLateral = ROLLaROLLaHOLD

a ^ modeaActiveaLateral 0 = ROLLaHDGaHOLD)
a
a

a
amodeaActiveaLateralaTransitionaEighteena

a Transition
a
a

a

a (monaOnaGround = FALS ^ monaOnaGround 0 = TRU

a ^ modeaActiveaLateral = ROLLaROLLaHOLD

a ^ modeaActiveaLateral 0 = ROLLaHDGaHOLD)
a
a

a
amodeaActiveaLateralaTransitionaNineteena

a Transition
a
a

a

a ((modeaActiveaLateral =2 ROLL ^ modeaActiveaLateral 0 2 ROLL

a ^ termaRollaLEaThreshold = FALS ^ monaOnaGround = FALS)

a ^ modeaActiveaLateral = ROLLaROLLaHOLD)
a
a

a
amodeaActiveaLateralaTransitionaTwentya

a Transition
a
a

a

a ((modeaActiveaLateral = ROLLaHDGaHOLD ^

a : (termaSYNC = TRU ^ termaRollaLEaThreshold = FALS ^ monaOnaGround = FALS)

a ^ termaSYNC 0 = TRU ^ termaRollaLEaThreshold 0 = FALS ^

a monaOnaGround 0 = FALS)

a ^ modeaActiveaLateral 0 = ROLLaHDGaHOLD)
a
a

a
amodeaActiveaLateralaTransitionaTwentyOnea

a Transition
a
a

a

a ((modeaActiveaLateral = ROLLaHDGaHOLD ^ termaAPaEngaged = FALS ^

a termaAPaEngaged 0 = TRU ^ termaRollaLEaThreshold = TRU)

a ^ modeaActiveaLateral 0 = ROLLaROLLaHOLD)
a
a

a
amodeaActiveaLateralaTransitionaTwentyTwoa

a Transition
a
a

a

a (modeaActiveaLateral = NAV aARMED ^

a : (DurationaINMODEaNAV aARMEDagtaconstaminaarmedaperiod = TRU

a ^ termaLateralaNAV aTrackaCondaMet = TRU) ^

a DurationaINMODEaNAV aARMEDagtaconstaminaarmedaperiod 0 = TRU ^

a termaLateralaNAV aTrackaCondaMet 0 = TRU

a ^ modeaActiveaLateral 0 = NAV aTRACK)
a
a

82

a
amodeaActiveaLateralaTransitionaTwentyThreea

a Transition
a
a

a

a (((modeaActiveaLateral = LaAPPRaARMED ^

a (DurationaINMODEaAPPRaARMEDagtaconstaminaarmedaperiod = FALS ^

a DurationaINMODEaAPPRaARMEDagtaconstaminaarmedaperiod 0 = TRU)))

a ^ modeaActiveaLateral 0 = LaAPPRaTRACK)
a
a

83

a
amodeaActiveaLateralaTransitionaTwentyFoura

a Transition
a
a

a

a (: ((modeaFlightaDirector 6= FDaOFF ^ modeaFlightaDirector 0 = FDaOFF)

a _ (modeaFlightaDirector = FDaOFF ^ modeaFlightaDirector 0 6= FDaOFF ^

a event =2 LateralaModeaRequested ^ event 6= GAaPressed)

a _ ((event = HDGaSwitchaPressed ^ modeaActiveaLateral = HDG))

a _ ((event = NAV aSwitchaPressed ^ modeaActiveaLateral 2 NAV))

a _ ((event = NavaSourceaChanged ^ modeaActiveaLateral 2 NAV))

a _ ((event = APPRaSwitchaPressed ^ modeaActiveaLateral 2 LaAPPR))

a _ ((event = NavaSourceaChanged ^ modeaActiveaLateral 2 LaAPPR))

a _ ((termaAPaEngaged 6= TRU ^ termaAPaEngaged 0 = TRU

a ^ modeaActiveaLateral = LaGA))

a _ ((termaSYNC = FALS ^ termaSYNC 0 = TRU ^ modeaActiveaLateral = LaGA))

a _ ((modeaActiveaVertical = V aGA ^ modeaActiveaVertical 0 6= V aGA ^

a modeaActiveaLateral = LaGA ^ event 2 VerticalaEvents n LateralaEvents))

a _ ((event = HDGaSwitchaPressed ^ modeaActiveaLateral 6= HDG))

a _ ((event = NAV aSwitchaPressed ^ modeaActiveaLateral 0 =2 NAV))

a _ ((event = APPRaSwitchaPressed ^ modeaActiveaLateral =2 LaAPPR))

a _ ((event = GAaPressed ^ modeaActiveaLateral 6= LaGA))

a _ (modeaActiveaLateral =2 ROLL ^ modeaActiveaLateral 0 2 ROLL

a ^ (termaRollaLEaThreshold = TRU _ monaOnaGround = TRU))

a _ (: (termaSYNC = TRU ^ termaRollaLEaThreshold = TRU)

a ^ (termaSYNC 0 = TRU ^ termaRollaLEaThreshold 0 = TRU)

a ^ modeaActiveaLateral = ROLLaROLLaHOLD)

a _ (termaAPaEngaged = FALS ^ termaAPaEngaged 0 = TRU ^

a termaRollaLEaThreshold = TRU ^ modeaActiveaLateral = ROLLaROLLaHOLD)

a _ (monaOnaGround = FALS ^ monaOnaGround 0 = TRU

a ^ modeaActiveaLateral = ROLLaROLLaHOLD)

a _ ((modeaActiveaLateral =2 ROLL ^ modeaActiveaLateral 0 2 ROLL

a ^ termaRollaLEaThreshold = FALS ^ monaOnaGround = FALS))

a _ ((modeaActiveaLateral = ROLLaHDGaHOLD ^

a : (termaSYNC = TRU ^ termaRollaLEaThreshold = FALS ^ monaOnaGround = FALS)

a ^ termaSYNC 0 = TRU ^ termaRollaLEaThreshold 0 = FALS ^

a monaOnaGround 0 = FALS))

a _ ((modeaActiveaLateral = ROLLaHDGaHOLD ^ termaAPaEngaged = FALS ^

a termaAPaEngaged 0 = TRU ^ termaRollaLEaThreshold = TRU))

a _ (modeaActiveaLateral = NAV aARMED ^

a : (DurationaINMODEaNAV aARMEDagtaconstaminaarmedaperiod = TRU

a ^ termaLateralaNAV aTrackaCondaMet = TRU) ^

a DurationaINMODEaNAV aARMEDagtaconstaminaarmedaperiod 0 = TRU ^

a termaLateralaNAV aTrackaCondaMet 0 = TRU)

a _ (((modeaActiveaLateral = LaAPPRaARMED ^

a (DurationaINMODEaAPPRaARMEDagtaconstaminaarmedaperiod = FALS ^

a DurationaINMODEaAPPRaARMEDagtaconstaminaarmedaperiod 0 = TRU)))))

a ^ modeaActiveaLateral 0 = modeaActiveaLateral)
a
a

84

modeaActiveaLateralaTransitionaTable b=

modeaActiveaLateralaTransitionaOne _

modeaActiveaLateralaTransitionaTwo _

modeaActiveaLateralaTransitionaThree _

modeaActiveaLateralaTransitionaFour _

modeaActiveaLateralaTransitionaFive _

modeaActiveaLateralaTransitionaSix _

modeaActiveaLateralaTransitionaSeven _

modeaActiveaLateralaTransitionaEight _

modeaActiveaLateralaTransitionaNine _

modeaActiveaLateralaTransitionaTen _

modeaActiveaLateralaTransitionaEleven _

modeaActiveaLateralaTransitionaTwelve _

modeaActiveaLateralaTransitionaThirteen _

modeaActiveaLateralaTransitionaFourteen _

modeaActiveaLateralaTransitionaFifteen _

modeaActiveaLateralaTransitionaSixteen _

modeaActiveaLateralaTransitionaSeventeen _

modeaActiveaLateralaTransitionaEighteen _

modeaActiveaLateralaTransitionaNineteen _

modeaActiveaLateralaTransitionaTwenty _

modeaActiveaLateralaTransitionaTwentyOne _

modeaActiveaLateralaTransitionaTwentyTwo _

modeaActiveaLateralaTransitionaTwentyThree _

modeaActiveaLateralaTransitionaTwentyFour

a
amodeaActiveaVerticalaTransitionaOnea

a Transition
aa
a

a (modeaFlightaDirector 6= FDaOFF ^ modeaFlightaDirector 0 = FDaOFF

a ^ modeaActiveaVertical 0 = VERTICALaNOTaINaMODE)
aa

a
amodeaActiveaVerticalaTransitionaTwoa

a Transition
aa
a

a (modeaFlightaDirector = FDaOFF ^ modeaFlightaDirector 0 6= FDaOFF ^

a event =2 VerticalaModeaRequested

a ^ modeaActiveaVertical 0 = PITCH)
a
a

a
amodeaActiveaVerticalaTransitionaThreea

a Transition
a
a

a

a (event = SYNCaOn ^ modeaActiveaVertical = V aGA

a ^ modeaActiveaVertical 0 = PITCH)
a
a

85

a
amodeaActiveaVerticalaTransitionaFoura

a Transition
a
a

a

a ((event = VSaPitchaWheelaChanged

a ^ (modeaActiveaVertical 2 VERTICALaMODE n fVS ;V aAPPR;ALTSEL;PITCH g))

a ^ modeaActiveaVertical 0 = PITCH)
a
a

a
amodeaActiveaVerticalaTransitionaFivea

a Transition
aa
a

a ((: (modeaAltitudeaSelect 2 ALTSELaACTIVE) ^

a modeaAltitudeaSelect 0 2 ALTSELaACTIVE ^ modeaActiveaVertical 6= ALTSEL)

a ^ modeaActiveaVertical 0 = ALTSEL)
a
a

a
amodeaActiveaVerticalaTransitionaSixa

a Transition
a
a

a

a (termaPreselectedaAltitude0 6= termaPreselectedaAltitude ^

a modeaAltitudeaSelect = ALTSELaCAPTURE ^ modeaActiveaVertical = ALTSEL

a ^ modeaActiveaVertical 0 = PITCH)
aa

a
amodeaActiveaVerticalaTransitionaSevena

a Transition
a
a

a

a ((termaPreselectedaAltitude0 6= termaPreselectedaAltitude ^

a modeaAltitudeaSelect = ALTSELaTRACK ^ modeaActiveaVertical = ALTSEL)

a ^ modeaActiveaVertical 0 = ALTHOLD)
a
a

a
amodeaActiveaVerticalaTransitionaEighta

a Transition
aa
a

a (event = ALTaSwitchaPressed ^ modeaActiveaVertical =2 fV aAPPR;ALTHOLDg

a ^ modeaActiveaVertical 0 = ALTHOLD)
a
a

a
amodeaActiveaVerticalaTransitionaNinea

a Transition
a
a

a

a (event = ALTaSwitchaPressed ^ modeaActiveaVertical = ALTHOLD

a ^ modeaActiveaVertical 0 = PITCH)
a
a

a
amodeaActiveaVerticalaTransitionaTena

a Transition
a
a

a

a (event = VSaSwitchaPressed ^

a modeaActiveaVertical =2 fV aAPPR;VSg

a ^ modeaActiveaVertical 0 = VS)
a
a

86

a
amodeaActiveaVerticalaTransitionaElevena

a Transition
a
a

a

a ((event = VSaSwitchaPressed ^ modeaActiveaVertical = VS)

a ^ modeaActiveaVertical 0 = PITCH)
aa

a
amodeaActiveaVerticalaTransitionaTwelvea

a Transition
a
a

a

a ((event = FLCaSwitchaPressed ^

a modeaActiveaVertical =2 fV aAPPR;FLCaTRACK ;FLCaOVERSPEEDg)

a ^ modeaActiveaVertical 0 2 FLC)
a
a

a
amodeaActiveaVerticalaTransitionaThirteena

a Transition
aa
a

a (event = FLCaSwitchaPressed ^ modeaActiveaVertical 2 FLC

a ^ modeaActiveaVertical 0 = PITCH)
a
a

a
amodeaActiveaVerticalaTransitionaFourteena

a Transition
a
a

a

a (modeaActiveaVertical =2 (FLC [fALTSEL;ALTHOLD ;VaAPPRg) ^

a termaOverspeed = FALS ^ termaOverspeed 0 = TRU

a ^ modeaActiveaVertical 0 2 FLC)
a
a

a
amodeaActiveaVerticalaTransitionaFifteena

a Transition
a
a

a

a (modeaVerticalaApproach 6= VERTaAPPRaTRACK

a ^ modeaVerticalaApproach0 = VERTaAPPRaTRACK

a ^ modeaActiveaVertical 6= V aAPPR

a ^ modeaActiveaVertical 0 = V aAPPR)
a
a

a
amodeaActiveaVerticalaTransitionaSixteena

a Transition
a
a

a

a (: (event = GAaPressed) ^ modeaVerticalaApproach = VERTaAPPRaTRACK ^

a modeaVerticalaApproach0 6= VERTaAPPRaTRACK ^ modeaActiveaVertical = V aAPPR

a ^ modeaActiveaVertical 0 = PITCH)
a
a

a
amodeaActiveaVerticalaTransitionaSeventeena

a Transition
a
a

a

a ((event = GAaPressed ^ modeaActiveaVertical 6= V aGA)

a ^ modeaActiveaVertical 0 = V aGA)
a
a

87

a
amodeaActiveaVerticalaTransitionaEighteena

a Transition
a
a

a

a ((modeaActiveaLateral = LaGA ^ modeaActiveaLateral 0 6= LaGA ^

a modeaActiveaVertical = V aGA ^ event 2 LateralaEvents nVerticalaEvents)

a ^ modeaActiveaVertical 0 = PITCH)
a
a

a
amodeaActiveaVerticalaTransitionaNineteena

a Transition
aa
a

a ((modeaActiveaVertical =2 FLC ^

a modeaActiveaVertical 0 2 FLC ^ : (termaOverspeed = FALS ^ termaOverspeed 0 = TRU))

a ^ modeaActiveaVertical 0 = FLCaTRACK)
a
a

a
amodeaActiveaVerticalaTransitionaTwentya

a Transition
a
a

a

a (termaOverspeed = TRU ^ termaOverspeed 0 = FALS ^

a modeaActiveaVertical = FLCaOVERSPEED

a ^ modeaActiveaVertical 0 = FLCaTRACK)
a
a

a
amodeaActiveaVerticalaTransitionaTwentyOnea

a Transition
a
a

a

a (modeaActiveaVertical =2 FLC ^

a modeaActiveaVertical 0 2 FLC ^ termaOverspeed = FALS ^ termaOverspeed 0 = TRU

a ^ modeaActiveaVertical 0 = FLCaOVERSPEED)
aa

a
amodeaActiveaVerticalaTransitionaTwentyTwoa

a Transition
aa
a

a (termaOverspeed = FALS ^ termaOverspeed 0 = TRU

a ^ modeaActiveaVertical = FLCaTRACK

a ^ modeaActiveaVertical 0 = FLCaOVERSPEED)
a
a

88

a
amodeaActiveaVerticalaTransitionaTwentyThreea

a Transition
a
a

a

a (: ((modeaFlightaDirector 6= FDaOFF ^ modeaFlightaDirector 0 = FDaOFF)

a _ (modeaFlightaDirector = FDaOFF ^ modeaFlightaDirector 0 6= FDaOFF ^

a event =2 VerticalaModeaRequested)

a _ (event = SYNCaOn ^ modeaActiveaVertical = V aGA)

a _ ((event = VSaPitchaWheelaChanged

a ^ (modeaActiveaVertical 2 VERTICALaMODE n fVS ;V aAPPR;ALTSEL;PITCH g)))

a _ ((: (modeaAltitudeaSelect 2 ALTSELaACTIVE) ^

a modeaAltitudeaSelect 0 2 ALTSELaACTIVE ^ modeaActiveaVertical 6= ALTSEL))

a _ (termaPreselectedaAltitude0 6= termaPreselectedaAltitude ^

a modeaAltitudeaSelect = ALTSELaCAPTURE ^ modeaActiveaVertical = ALTSEL)

a _ ((termaPreselectedaAltitude0 6= termaPreselectedaAltitude ^

a modeaAltitudeaSelect = ALTSELaTRACK ^ modeaActiveaVertical = ALTSEL))

a _ (event = ALTaSwitchaPressed ^ modeaActiveaVertical =2 fV aAPPR;ALTHOLDg)

a _ (event = ALTaSwitchaPressed ^ modeaActiveaVertical = ALTHOLD)

a _ (event = VSaSwitchaPressed ^

a modeaActiveaVertical =2 fV aAPPR;VSg)

a _ ((event = VSaSwitchaPressed ^ modeaActiveaVertical = VS))

a _ ((event = FLCaSwitchaPressed ^

a modeaActiveaVertical =2 fV aAPPR;FLCaTRACK ;FLCaOVERSPEEDg))

a _ (event = FLCaSwitchaPressed ^ modeaActiveaVertical 2 FLC)

a _ (modeaActiveaVertical =2 (FLC [fALTSEL;ALTHOLD ;VaAPPRg) ^

a termaOverspeed = FALS ^ termaOverspeed 0 = TRU)

a _ (modeaVerticalaApproach 6= VERTaAPPRaTRACK

a ^ modeaVerticalaApproach0 = VERTaAPPRaTRACK

a ^ modeaActiveaVertical 6= V aAPPR)

a _ (: (event = GAaPressed) ^ modeaVerticalaApproach = VERTaAPPRaTRACK ^

a modeaVerticalaApproach0 6= VERTaAPPRaTRACK ^ modeaActiveaVertical = V aAPPR)

a _ ((event = GAaPressed ^ modeaActiveaVertical 6= V aGA))

a _ ((modeaActiveaLateral = LaGA ^ modeaActiveaLateral 0 6= LaGA ^

a modeaActiveaVertical = V aGA ^ event 2 LateralaEvents nVerticalaEvents))

a _ ((modeaActiveaVertical =2 FLC ^

a modeaActiveaVertical 0 2 FLC ^ : (termaOverspeed = FALS ^ termaOverspeed 0 = TRU)))

a _ (termaOverspeed = TRU ^ termaOverspeed 0 = FALS ^

a modeaActiveaVertical = FLCaOVERSPEED)

a _ (modeaActiveaVertical =2 FLC ^

a modeaActiveaVertical 0 2 FLC ^ termaOverspeed = FALS ^ termaOverspeed 0 = TRU)

a _ (termaOverspeed = FALS ^ termaOverspeed 0 = TRU

a ^ modeaActiveaVertical = FLCaTRACK))

a ^ modeaActiveaVertical 0 = modeaActiveaVertical)
a
a

89

modeaActiveaVerticalaTransitionaTable b=

modeaActiveaVerticalaTransitionaOne _

modeaActiveaVerticalaTransitionaTwo _

modeaActiveaVerticalaTransitionaThree _

modeaActiveaVerticalaTransitionaFour _

modeaActiveaVerticalaTransitionaFive _

modeaActiveaVerticalaTransitionaSix _

modeaActiveaVerticalaTransitionaSeven _

modeaActiveaVerticalaTransitionaEight _

modeaActiveaVerticalaTransitionaNine _

modeaActiveaVerticalaTransitionaTen _

modeaActiveaVerticalaTransitionaEleven _

modeaActiveaVerticalaTransitionaTwelve _

modeaActiveaVerticalaTransitionaThirteen _

modeaActiveaVerticalaTransitionaFourteen _

modeaActiveaVerticalaTransitionaFifteen _

modeaActiveaVerticalaTransitionaSixteen _

modeaActiveaVerticalaTransitionaSeventeen _

modeaActiveaVerticalaTransitionaEighteen _

modeaActiveaVerticalaTransitionaNineteen _

modeaActiveaVerticalaTransitionaTwenty _

modeaActiveaVerticalaTransitionaTwentyOne _

modeaActiveaVerticalaTransitionaTwentyTwo _

modeaActiveaVerticalaTransitionaTwentyThree

a
amodeaAltitudeaSelectaTransitionaOnea

a Transition
a
a

a

a (modeaFlightaDirector 6= FDaOFF ^ modeaFlightaDirector 0 = FDaOFF

a ^ modeaAltitudeaSelect 0 = ALTSELaNOTaINaMODE)
a
a

a
amodeaAltitudeaSelectaTransitionaTwoa

a Transition
a
a

a

a (modeaFlightaDirector = FDaOFF ^ modeaFlightaDirector 0 6= FDaOFF

a ^ modeaAltitudeaSelect 0 = ALTSELaARMED)
a
a

a
amodeaAltitudeaSelectaTransitionaThreea

a Transition
a
a

a

a ((modeaActiveaVertical 2 fV aAPPR;V aGA;ALTHOLDg ^

a : (modeaActiveaVertical 0 2 fV aAPPR;V aGA;ALTHOLDg)

a ^ modeaAltitudeaSelect = ALTSELaCLEARED)

a ^ modeaAltitudeaSelect 0 = ALTSELaARMED)
a
a

90

a
amodeaAltitudeaSelectaTransitionaFoura

a Transition
a
a

a

a ((modeaActiveaVertical 0 2 fV aAPPR;V aGA;ALTHOLDg ^

a : (modeaActiveaVertical 2 fV aAPPR;V aGA;ALTHOLDg) ^

a modeaAltitudeaSelect 2 ALTSELaENABLED)

a ^ modeaAltitudeaSelect 0 = ALTSELaCLEARED)
a
a

a
amodeaAltitudeaSelectaTransitionaFivea

a Transition
a
a

a

a (modeaAltitudeaSelect = ALTSELaARMED ^

a : (termaALTSELaCond = ALTSELaCONDaCAPTURE ^

a DurationaINMODEaALTSELaARMEDagtaconstaminaarmedaperiod = TRU) ^

a (termaALTSELaCond 0 = ALTSELaCONDaCAPTURE ^

a DurationaINMODEaALTSELaARMEDagtaconstaminaarmedaperiod 0 = TRU)

a ^ modeaAltitudeaSelect = ALTSELaCAPTURE)
a
a

a
amodeaAltitudeaSelectaTransitionaSixa

a Transition
a
a

a

a ((modeaActiveaVertical 2 fV aAPPR;V aGA;ALTHOLD ;ALTSELg ^

a : (modeaActiveaVertical 0 2 fV aAPPR;V aGA;ALTHOLD ;ALTSELg) ^

a modeaAltitudeaSelect 2 ALTSELaACTIVE)

a ^ modeaAltitudeaSelect 0 = ALTSELaARMED)
a
a

a
amodeaAltitudeaSelectaTransitionaSevena

a Transition
aa
a

a (modeaAltitudeaSelect = ALTSELaCAPTURE ^

a : (termaALTSELaCond = ALTSELaCONDaTRACK ^

a DurationaINMODEaALTSELaCAPTagtaconstaminaarmedaperiod = TRU) ^

a (termaALTSELaCond 0 = ALTSELaCONDaTRACK ^

a DurationaINMODEaALTSELaCAPTagtaconstaminaarmedaperiod 0 = TRU)

a ^ modeaAltitudeaSelect 0 = ALTSELaTRACK)
a
a

91

a
amodeaAltitudeaSelectaTransitionaEighta

a Transition
a
a

a

a (: ((modeaFlightaDirector 6= FDaOFF ^ modeaFlightaDirector 0 = FDaOFF)

a _ (modeaFlightaDirector = FDaOFF ^ modeaFlightaDirector 0 6= FDaOFF)

a _ ((modeaActiveaVertical 2 fV aAPPR;V aGA;ALTHOLDg ^

a : (modeaActiveaVertical 0 2 fV aAPPR;V aGA;ALTHOLDg)

a ^ modeaAltitudeaSelect = ALTSELaCLEARED))

a _ ((modeaActiveaVertical 0 2 fV aAPPR;V aGA;ALTHOLDg ^

a : (modeaActiveaVertical 2 fV aAPPR;V aGA;ALTHOLDg) ^

a modeaAltitudeaSelect 2 ALTSELaENABLED))

a _ (modeaAltitudeaSelect = ALTSELaARMED ^

a : (termaALTSELaCond = ALTSELaCONDaCAPTURE ^

a DurationaINMODEaALTSELaARMEDagtaconstaminaarmedaperiod = TRU) ^

a (termaALTSELaCond 0 = ALTSELaCONDaCAPTURE ^

a DurationaINMODEaALTSELaARMEDagtaconstaminaarmedaperiod 0 = TRU))

a _ ((modeaActiveaVertical 2 fV aAPPR;V aGA;ALTHOLD ;ALTSELg ^

a : (modeaActiveaVertical 0 2 fV aAPPR;V aGA;ALTHOLD ;ALTSELg) ^

a modeaAltitudeaSelect 2 ALTSELaACTIVE))

a _ (modeaAltitudeaSelect = ALTSELaCAPTURE ^

a : (termaALTSELaCond = ALTSELaCONDaTRACK ^

a DurationaINMODEaALTSELaCAPTagtaconstaminaarmedaperiod = TRU) ^

a (termaALTSELaCond 0 = ALTSELaCONDaTRACK ^

a DurationaINMODEaALTSELaCAPTagtaconstaminaarmedaperiod 0 = TRU)))

a ^ modeaAltitudeaSelect 0 = modeaAltitudeaSelect)
a
a

modeaAltitudeaSelectaTransitionaTable b=

modeaAltitudeaSelectaTransitionaOne _

modeaAltitudeaSelectaTransitionaTwo _

modeaAltitudeaSelectaTransitionaThree _

modeaAltitudeaSelectaTransitionaFour _

modeaAltitudeaSelectaTransitionaFive _

modeaAltitudeaSelectaTransitionaSix _

modeaAltitudeaSelectaTransitionaSeven _

modeaAltitudeaSelectaTransitionaEight

a
amodeaVerticalaApproachaTransitionaOnea

a Transition
aa
a

a (modeaFlightaDirector 6= FDaOFF ^ modeaFlightaDirector 0 = FDaOFF

a ^ modeaVerticalaApproach0 = VERTaAPPRaNOTaIN aMODE)
aa

a
amodeaVerticalaApproachaTransitionaTwoa

a Transition
a
a

a

a (modeaFlightaDirector = FDaOFF ^ modeaFlightaDirector 0 6= FDaOFF

a ^ modeaVerticalaApproach0 = VERTaAPPRaCLEARED)
a
a

92

a
amodeaVerticalaApproachaTransitionaThreea

a Transition
a
a

a

a ((modeaActiveaLateral 6= LaAPPRaTRACK ^

a modeaActiveaLateral 0 = LaAPPRaTRACK ^

a modeaVerticalaApproach = VERTaAPPRaCLEARED)

a ^ modeaVerticalaApproach0 = VERTaAPPRaARMED)
a
a

a
amodeaVerticalaApproachaTransitionaFoura

a Transition
a
a

a

a ((modeaActiveaLateral = LaAPPRaTRACK ^ modeaActiveaLateral 0 6= LaAPPRaTRACK

a ^ modeaVerticalaApproach 2 VERTaAPPRaENABLED)

a ^ modeaVerticalaApproach0 = VERTaAPPRaCLEARED)
a
a

a
amodeaVerticalaApproachaTransitionaFivea

a Transition
a
a

a

a (modeaVerticalaApproach = VERTaAPPRaARMED ^

a : (termaVerticalaAPPRaTrackaCondaMet = TRU ^

a DurationaINMODEaVertaAppraTrackagtaconstaminaarmedaperiod = TRU) ^

a (termaVerticalaAPPRaTrackaCondaMet 0 = TRU ^

a DurationaINMODEaVertaAppraTrackagtaconstaminaarmedaperiod 0 = TRU)

a ^ modeaVerticalaApproach0 = VERTaAPPRaTRACK)
aa

a
amodeaVerticalaApproachaTransitionaSixa

a Transition
aa
a

a (: ((modeaFlightaDirector 6= FDaOFF ^ modeaFlightaDirector 0 = FDaOFF)

a _ (modeaFlightaDirector = FDaOFF ^ modeaFlightaDirector 0 6= FDaOFF)

a _ ((modeaActiveaLateral 6= LaAPPRaTRACK ^

a modeaActiveaLateral 0 = LaAPPRaTRACK ^

a modeaVerticalaApproach = VERTaAPPRaCLEARED))

a _ ((modeaActiveaLateral = LaAPPRaTRACK ^ modeaActiveaLateral 0 6= LaAPPRaTRACK

a ^ modeaVerticalaApproach 2 VERTaAPPRaENABLED))

a _ (modeaVerticalaApproach = VERTaAPPRaARMED ^

a : (termaVerticalaAPPRaTrackaCondaMet = TRU ^

a DurationaINMODEaVertaAppraTrackagtaconstaminaarmedaperiod = TRU) ^

a (termaVerticalaAPPRaTrackaCondaMet 0 = TRU ^

a DurationaINMODEaVertaAppraTrackagtaconstaminaarmedaperiod 0 = TRU)))

a ^ modeaVerticalaApproach0 = modeaVerticalaApproach)
aa

93

modeaVerticalaApproachaTransitionaTable b=

modeaVerticalaApproachaTransitionaOne _

modeaVerticalaApproachaTransitionaTwo _

modeaVerticalaApproachaTransitionaThree _

modeaVerticalaApproachaTransitionaFour _

modeaVerticalaApproachaTransitionaFive _

modeaVerticalaApproachaTransitionaSix

a
aTransitionaTablesa

a modeaOverspeedaTransitionaTable

a modeaAutopilotaTransitionaTable

a modeaFlightaDirectoraTransitionaTable

a modeaActiveaLateralaTransitionaTable

a modeaActiveaVerticalaTransitionaTable

a modeaAltitudeaSelectaTransitionaTable

a modeaVerticalaApproachaTransitionaTable
a
a

94

