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Abstract
A  Finite Element Method (FEM) is presented to determine propagation

characteristics of deformed inflatable rectangular waveguide.  Various deformations that

might be present in an inflatable waveguide are analyzed using the FEM.  The FEM procedure

and the code developed here is so general that it can be used for any other deformations that

are not considered in this report. The code is validated by applying the present code to

rectangular waveguide without any deformations and comparing the numerical results with

earlier published results.  The effect of the deformation in an inflatable waveguide on the

radiation pattern of linear rectangular slot array is also studied.

1.0 Introduction
Recently there has been considerable interest in the development of inflatable  antenna

structures [1-3] for space applications.  In  inflatable antenna technology, the antenna structure is

packaged in a small volume during its launch phase and inflated or stretched to its full length after

reaching desired orbit.  One such structure under development at NASA Langley Research Center

is an inflatable slotted rectangular waveguide antenna to be used in soil moisture measuring

radiometer.  After full deployment of such structure in space,  the waveguide surface may have

wrinkles, curved walls depending upon the pressure used to inflate the structure, and other

unaccounted  forces acting on the structure.  For successful operation of these antennas, it is

desirable to study and estimate adverse effects of these deformations in waveguide walls on the

antenna performance.  Since these deformations cannot be completely eliminated, study of their

effects on antenna performance may lead to determine an allowable level of deformations in these

structures reducing high constraint on mechanical design.

An antenna array performance is usually specified by its radiation pattern, input impedance,

polarization,  etc.  For a linear slot array antenna consisting of the shunt slot  elements on the
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broad wall of a rectangular waveguide,  the main beam direction is given by     [4]

  where  is the physical spacing between the elements,

 and  are the guide and free space wavelengths, and ....  Usually for the broad

side radiation at a given frequency of operation the distance  is selected as , where  is

the guide wave length of undistorted waveguide.  For , the expression for beam direction

becomes  where  and  are the dominant

mode propagation constants of undistorted and distorted rectangular waveguides, respectively,

and  is the free space wave number.  From these above expressions it is clear that if

then main beam is in the broad side direction.  However for , different from , the main beam

shift from the broad side direction as shown in Figure 1.  In order to relate various antenna

deformations to shift in mean beam direction, it is important to estimate the effects of various

deformation in waveguides on the propagation constant .

In the design of shunt  slot array antennas,  one of the most important expression designers

use is the resonant slot conductance [5] .  By selecting

proper slot displacement,  an  amplitude distribution for required radiation pattern  is achieved.

However  for , different from ,  which is the case for deformed waveguide, the resonant slot

conductance will change and hence the amplitude distribution.  Quantitatively the dependance of

 on the propagation constant is shown in Figure 2.  It is therefore essential to know the

propagation constant variation due to deformation in inflatable waveguides.
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The purpose of this report is to present  an analytical  method to determine the

electromagnetic fields and propagation constant in  a rectangular waveguide with deformed cross

sections.  A few examples of deformed cross sections that may be present in an inflatable

waveguide are shown in Figure 3.  The analysis of waveguide with canonical shapes such as

rectangular or elliptical ( including the circular as a special case ) cross section  is usually carried

out by solving the scalar Helmholtz equation subjected to Dirichlet and Neumann conditions.

The electromagnetic field in these cross sections can be written in terms of sine, cosine, or Bessel

functions because of the separability of variables[6,7].  However, for the irregular shapes shown

in Figure 1, the simple separation of variables method given in [6,7] becomes more tedious and

hence not preferred.   In this report a versatile and powerful numerical technique, namely the

Finite Element Method, is used to analyze these distorted structures.

The problem of finding eigenvalues and propagation constant of a waveguide of an

arbitrarily shaped cross section can be solved by invoking the weak form of vector wave equation

[8,9].   By dividing the waveguide  cross section into triangular subdomains and expressing the

electric field (for E-field formulation) or the magnetic field (for H-field formulation) into

appropriate vector basis function [9],  the weak form of vector wave equation is reduced to a

matrix equation.  The resulting matrix equation is then solved for eigenvalues and propagation

constant using standard mathematical subroutines. The remainder of the report is organized as

follows.  The formulation of the problem in terms of weak form of vector wave equation and its

reduction to a matrix equation  is developed in section 2.  The detail steps involved in casting  the

matrix equation into an eigenvalue problem is also given in  section 2.   The quantitative estimates

of effects of waveguide cross section deformation on propagation constant of a L-band

rectangular waveguide are given in section 3.    The effect of wall distortion on radiation pattern
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of linear slot arrays on  distorted rectangular walls is also numerically studied in section 3.      The

report is concluded in section 4 with recommendations based on the numerical results presented

in section 3 and future work to be completed.

2.0 Theory
 2.1 Finite Element E-Field Formulation :

The waveguide cross sections to be analyzed are shown in Figure 3.  To determine

effects of these irregularities on the cut-off frequency, propagation constant, and characteristic

impedance,  the numerical technique such as Finite Element Method is developed in this section.

The electric field in the cross sections shown in Figure 4 satisfies  the Maxwell’s equations:

(1)

(2)

where  and  are the permeability and permittivity of the medium.  Substituting (1) in (2), the

vector wave equation with electric field is obtained as

(3)

Similar vector wave equation for the magnetic field can be obtained by substituting (2) in (1).

However,  we will restrict here to  the E-field vector wave equation.  Assuming the waveguide to

be infinite in the z-direction, the electric field can be written as

(4)

where ,  being the unit vectors along the x-, y-, and z-directions respec-

tively and  is the propagation constant in the z-direction.  In the equation (4) it is assumed that

the wave is traveling from  to .  Substituting (4) into (3) and carrying out sim-

ple mathematical operations, the following equation is obtained:

E∇× jωµH–=

H∇× jωεE=

µ ε

1
µr
----- E∇× 

 
∇× k0

2
– εrE 0=

E Et ẑEz+ 
 

e
jβz–

=

Et x̂Ex ŷEy+= x̂ ŷ ẑ, ,

β

z ∞–= z ∞+=
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                                                            + (5)

Substituting the gradient operator in equation (5)  as  and performing simple

mathematical manipulation,  equation (5) can be written as

                                                 - (6)

The equation (6) can be written in component form as

(7)

(8)

In order to make coefficients of field components real, equations (7) and (8) after the substitution

 are written as

(9)

(10)

The expressions  (9) and (10) are required equations to be solved  either for the propagation con-

stant  for a given frequency or for the cut-off wave number  for .  In either case

to solve equations (9) and (10) using the Galerkin’s procedure, we select a testing function

.  Multiply equations (9) and (10) with  and , respectively, and integrating over

the cross section we get
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∇× k0
2

– εrEte
jβz–

1
µr
----- ẑEze
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(11)

(12)

Using the vector identities

where  is the outward drawn unit normal vector to the curve  enclosing the cross section.

equations (11) and (12) can be written as

                                      + (13)

and

                                              = (14)

where  is the outward drawn unit normal vector to the curve  enclosing the cross section.  To

solve the weak forms of differential equations given in (13) and (14) numerically, the cross

section shown in Figure 4(a) is discretized into triangular domain as shown in figure 4(b).  The

xt∇ 1
µr
----- xEtt∇ 

  β2

µr
----- Ezt∇ Et+ 

 
+ k0

2
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1
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 •t∇ + k0
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  Tz xd yd∫
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∫ 0=

A xt∇ B• xt∇ At B• A B× 
 

•t∇–=
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 

•t∇ 
 

xd yd∫
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n̂• ld
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 
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transverse and longitudinal components over a triangle (shown in  5) are then expressed as

(15)

(16)

where m =1,2,3 are the three edges of the triangle and n = 1,2,3 are the three nodes of the triangle.

The detail derivation of the vector edge basis function   and the scalar basis function

 are given in Appendix A.  Substituting (15) and (16) in (13) and (14)  we get

              +

(17)

(18)

For the waveguide cross section enclosed by  metallic boundaries, the line integrals appearing on

right hand sides of  equations (17) and (18) are always zero. This is true because of the tangential

electric field being zero on the perfectly conducting boundaries.  With these considerations, the

equations (17) and (18) can be written in a matrix form

(19)

suitable for calculations of propagation constant for a given frequency.

Et etmWtm x y,( )
m 1=

3

∑=

Ez gznαn x y,( )
n 1=

3

∑=

Wtm

αn x y,( )

etm xt∇ Wtm'
1
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----- xt∇ Wtm• k0

2εr Wtm Wtm'• 
 

– 
 ∫ xd yd

triangle
∫

m 1=

3

∑

β2

µr
----- gzn αnt∇ Wtm'•∫ xd yd

triangle
∫

n 1=

3

∑ etm Wtm Wtm'•∫ xd yd
triangle

∫
m 1=

3

∑+
 
 
 

Tt n̂
1
µr
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Γ
∫–=

etm αn't∇ Wtm•∫ xd yd
triangle

∫
m 1=

3

∑ gzn αn't∇ 1
µr
----- αnt∇• k0

2εr αnαn'( )– 
 ∫ xd yd
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∫

n 1=

3

∑+

gzn
1
µr
-----αn' αnt∇ n̂• ΓdΓ∫

n 1=

3

∑ etm
1
µr
-----αn'Wtm n̂• Γd

Γ
∫

m 1=

3

∑+ +=

Sel m' m,( ) 0

0 0

etm

gzn

β2
–

Rel m' m,( ) Qel m' n,( )
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etm
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For calculation of cut-off wave number when  the equation (17) and (18) can be written in

a matrix form

(20)

suitable for calculation of cut-off wave number.  The elements of various submatrices appearing

in equations (19) and (20) are given by

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

The double integrations over the triangle appearing in (21)-(28) are numerically evaluated.

Details of the numerical integration are given in Appendix B.

3.0 Numerical Results
A FORTRAN code is written to solve the eigenvalue problems described in equations (19)

and (20).  The matrix elements appearing in (19) and (20) are evaluated numerically (see

Appendix B ).  To validate the code, the cutoff wave numbers for various modes in a rectangular

waveguide without wall distortion are first  determined and compared with analytical results [7].

β 0=

Uel m' m,( ) 0

0 Vel n' n,( )

etm

gzn

kc
2 Xel m' m,( ) 0

0 Yel n' n,( )

etm
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=
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1
µr
----- xt∇ Wtm• k0
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 
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 ∫ xd yd

triangle
∫=
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1
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∫=

Yel n' n,( ) εrαnαn'∫ xd yd
triangle

∫=



                                                                                15

3.1 Rectangular Waveguide Without Wall Distortion:

The eigenvalues are then determined using standard mathematical subroutines.  For

validation of the code,  a rectangular waveguide with   and without wall distortion is

selected as a first example.  The cut-off wave numbers calculated using the present code are given

in Table 1 along with the results reported earlier [7]. It is found that the percentage error in the

calculated wave numbers using the present code is very small (less than 3 percent).  From the

results shown in Table 1,  it is also observed that the percentage error increases with the  mode

order.

Table 1: Cut-off wave number of rectangular waveguide a/b =2

Modes
kca

Reference [1] Present Method %Error

                                    TE Modes

TE10 3.142 3.1397 0.007

TE20 6.285 6.276 0.143

TE01 6.285 6.267 0.286

TE11 7.027 7.139 1.59

TE30 9.428 9.376 0.552

TE21 8.889 9.115 2.54

                                                             TM Modes

TM11 7.027 7.026 0.001

TM21 8.889 8.9012 0.137

TM31 11.331 11.337 0.052

a
b
--- 2=
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For the second example, an inhomogenuos rectangular waveguide without any wall

distortion as shown in Figure 6 is considered.    For this geometry, using the  present code   the

propagation constant as a function of frequency is calculated and given in Table 2 along with

earlier published data.  The numerical results obtained by the present code are within 5 percent  of

the analytical results [7,9].

 3.2 Rectangular waveguide with wall distortion:

In an inflatable rectangular waveguide,  distortion in the walls may be of type shown in

Figure 3.  In this section, effect of each type of distortion on the propagation constant is

numerically studied.  It should be noted that while analyzing the effects of distortion,  the

perimeter of distorted waveguide remains the same as that of undistorted waveguide.  This is due

to inelastic characteristics of the material used for the inflatable waveguide.  In the present code,

under the constant perimeter constrain  effect of each type of distortion,  the propagation constant

is numerically studied.

3.2.1 Inclined walls in  y-direction:

A rectangular waveguide with inclined walls in y-direction is shown in Figure 7.  The

Table 2: Dispersion characteristic of lowest order in a rectangular waveguide

b/λ
β/k0  For lowest order mode

Reference [1} Present Method % Error

0.2 0.48 0.462 3.75

0.3 1.00 1.01 1.00

0.4 1.18 1.18 0.00

0.5 1.26 1.28 1.59

0.6 1.30 1.36 4.62
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dispersion characteristics  of an L-band rectangular waveguide with dimension

  and walls in the y-direction inclined at  are calculated using the present code.

If  is the dispersion characteristics of undistorted L band rectangular waveguide, the

percentage change in the dispersion characteristics of distorted waveguide is given by

(29)

The percentage change  in the dispersion characteristics  using (29)  is then calculated and

presented in Figure 8 for various values of . From Figure 8 it may be concluded that  there is not

a significant effect of the distortion shown in Figure 7 on the propagation characteristics.  Figure 9

shows the electric field pattern in the cross section of the rectangular waveguide.  The arrow

direction gives the direction of electric field and the length of arrows show the magnitude of the

electric field.

3.2.2 Inclined walls in x-direction:

A rectangular waveguide with inclined walls in the x-direction is shown in Figure 10.  The

dispersion characteristics  of an L-band rectangular waveguide with dimension

  and walls in the x-direction inclined at  are calculated using the present code.

The percentage change  in the dispersion characteristics  using (29)  is then calculated and pre-

sented in Figure 11 for various values of .   Figure 12 shows the electric field pattern in the cross

section of the rectangular waveguide.  The arrow direction gives the direction of electric field and

the length of arrows shows the magnitude of the electric field.

3.2.3 Rectangular waveguide with curved walls:

Rectangular waveguides with curved walls may take shapes as shown in Figures 13, 16,

19, 22, 25, and 28.  These waveguide shapes are modelled using GEOSTAR, and the percentage

βdistorted

16.5x 8.26 cm θ

βundistorted

percentage Change inβ
βdistorted βundistorted–

βundistorted
------------------------------------------------------100=

θ

βdistorted

16.5x 8.26 cm θ

θ
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change in the dispersion characteristics calculated using equation (29) is presented in Figures 14,

17, 20, 23, 26, and 29.  Corresponding electric field plots for these geometries are shown in

Figures 15, 18, 21, 24, 27, and 30.  From Figures 14, 17, and 20 it may be concluded that

distortions of forms given in Figures 16 and 19 cause more changes in propagation constant than

the distortion shown in Figure 13.  Similar conclusion may be drawn from Figures 23, 26, and 29.

The distortion of forms given in Figures 25 and 28 cause more changes in the propagation

constant than the distortion shown in Figure 23.

3.2.4 Rectangular waveguide with randomly distorted walls:

A rectangular waveguide with distorted walls is shown in Figure 31.  The randomly

distorted rectangular cross section shown in Figure 31 is obtained using the following procedure.

Random distortion in the walls is obtained by using  a random number satisfying Gaussian

distribution with varience  and zero mean value.   Using the tolerance of  and

variance , random numbers satisfying the Gaussian distribution are generated.  A

randomly distorted cross section of L-band rectangular waveguide as shown in Figure 31  is then

obtained by  displacing the boundary nodes of undistorted L-band rectangular waveguide using

these random numbers.    The percentage change  in the dispersion characteristics  using (29)  is

then calculated  for   for the tolerance  of .  In order to determine the true statistical

nature, 50 runs were performed for  and tolerance equal to  and the percentage

change in the dispersion characteristics for each case are presented in Figure 32.  From these

results, mean and standard deviation values for the  are calculated and presented in Figure 33.

Figures 34 and 35 show results of similar run for  and the tolerance equal to .

σ2
0.2= 0.2±

σ2
0.2=

σ2
0.2= 0.2

σ2
0.2= 0.2

β

σ2
0.2= 0.1±
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4.0 Conclusion
Simple formulas are developed to show dependence of slot array performance on the

dominant mode propagation constant of the rectangular waveguide feeding the slot array.  Using

the Finite Element Method it has been shown how various types of mechanical deformation can

alter the propagation constant and hence the array performance.  The variety of deformation/

distortions that might be present in an inflatable rectangular waveguide are analyzed and their

effects on the dominant mode propagation constant are numerically studied.  The study will help

in determining allowable  dimensional  tolerances in an inflatable rectangular waveguide to be

used in the space antennas.

Appendix A

A.1 Derivation of Nodal Basis Function:

Consider a triangle as shown in Figure 5 where  are the amplitudes of z-com-

ponent of electric field at the three nodes reduplicative.  Assuming linear variation   over the trian-

gle,  can be written as

(30)

The constants  can be determined from

(31)

Substituting (31) into (30)  and rearranging the terms,  (30) can be written as

(32)

where

ez1 ez2 ez3, ,

Ez x y,( )

Ez x y,( ) aa bbx ccy+ +=

aa bb cc, ,

aa

bb

cc

1 x1 y1

1 x2 y2

1 x3 y3

1–
ez1

ez2

e

=

Ez x y,( ) eziαi x y,( )
i 1=

3

∑=
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 with (33)

(34)

(35)

(36)

(37)

 given in (33) is the required nodal basis function.

A.2 Derivation of Vector Edge Basis Function:

From the current basis functions given in [10] the vector edge function for the edge

between nodes 2 and 3 (see 5) can be written as

(38)

The vector edge function defined in (38) satisfies the condition ; and if  is the unit

vector along the #1 edge, then . The edge vector functions in general can be written

as

(39)

 given in (39) is the required vector edge basis function.

Appendix B

B.1 Expressions for Matrix Elements:

Using the basis function given in (33) and (39) and using expressions (21)-(28), the matrix

elements of matrix equations (19) and (20) can be written as

αi x y,( ) 1
2A
------- ai bix ciy+ +( )= i 1 2 3, ,=

ai xjyk xkyj–=

bi yj yk–=

ci xk xj–=

A
1
2
---

1 x1 y1

1 x2 y2

1 x3 y3

=

αi x y,( )

W1
L1

2A
------- ẑ x̂ x x1–( ) ŷ y y1–( )+( )×=

∇t W1• 0= t̂1

t̂1 W1• 1=

Wi
Li

2A
------- ẑ x̂ x xi–( ) ŷ y yi–( )+( )×=

Wi
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(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

Using 13 point integration formulas given in [11], the integration over triangle appearing in

(40)-(47) are evaluated.
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Figure 3 Geometry of few cross sections of deformed rectangular waveguide.
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(a) Rectangular cross-section with distorted walls

Figure 4 Geometry of cross section of a rectangular waveguide with distorted
               walls.

(b) Rectangular cross-section with triangular mesh
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Figure 5  Geometry of a triangular element.
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Figure 7 Geometry of L-band rectangular waveguide with inclined walls in y-direction.
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Figure 8   Plot of percentage change in dispersion characteristics  of  L-band rectangular

               waveguide for various inclination,θ
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Figure 9  Electric field in the cross section of distorted L-band rectangular waveguide
               shown in Figure 7.
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Figure 10  Geometry of L-band rectangular waveguide with inclined walls in x-direction.
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Figure 11  Plot of percentage change in dispersion characteristics of L-band rectangular
                      waveguide for various inclination with respect to x-axis.
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Figure 12  Electric field in the cross section of distorted L-band rectangular waveguide
                  shown in  Figure 8 (frequency = 1.4 GHz).
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Figure 13  Geometry of L-band rectangular waveguide with distortion in x-walls.
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Figure 14 Plot of percentage change in dispersion characteristics of L-band rectangular
                 waveguide with distortion as shown in Figure 13.
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Figure 15  Electric field in the cross section of distorted L-band rectangular waveguide
                   shown in Figure 13  (frequency = 1.4 GHz).
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Figure 16  Geometry of L-band rectangular waveguide with distortion in x-walls.
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Figure 17  Plot of percentage change in dispersion characteristics of L-band rectangular
                     waveguide with distortion as shown in Figure 16.
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Figure 18   Electric field in the cross section of distorted L-band rectangular waveguide
                   shown in Figure 16 (frequency = 1.4 GHz).
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Figure 19  Geometry of L-band rectangular waveguide with distortion in x-walls.
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Figure 20   Plot of percentage change in dispersion characteristics of L-band rectangular
                  waveguide with distortion as shown in Figure 19.
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Figure 21   Electric field in the cross section of distorted L-band rectangular waveguide
                   shown in Figure 19 (frequency = 1.4 GHz).
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Figure 22  Geometry of L-band rectangular waveguide with distortion in y-walls.
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Figure 23   Plot of percentage change in dispersion characteristics of L-band rectangular
                  waveguide with distortion as shown in Figure 22.
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Figure 24   Electric field in the cross section of distorted L-band rectangular waveguide
                   shown in Figure 22 (frequency = 1.4 GHz).
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Figure 25  Geometry of L-band rectangular waveguide with distortion in y-walls.
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Figure 26   Plot of percentage change in dispersion characteristics of L-band rectangular
                  waveguide with distortion as shown in Figure 25.
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Figure 27   Electric field in the cross section of distorted L-band rectangular waveguide
                   shown in Figure 25 (frequency = 1.4 GHz).
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Figure 28  Geometry of L-band rectangular waveguide with distortion in y-walls.
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Figure 29   Plot of percentage change in dispersion characteristics of L-band rectangular
                  waveguide with distortion as shown in Figure 28.
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Figure 30   Electric field in the cross section of distorted L-band rectangular waveguide
                   shown in Figure 28 (frequency = 1.4 GHz).



                                                                                52

Figure 31 Geometries of rectangular waveguides with random distortion in wall

                 boundaries (σ2
0.2= and tolerance = +/-0.2 )(cont.).
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Figure 31 Geometries of rectangular waveguides with random distortion in wall

                 boundaries (σ2
0.2= and tolerance = +/-0.2 ) (completed).
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Figure 32  Plot of percentage change in dispersion characteristics of L-band rectangular
                 waveguide for                       and tolerance =σ2
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Figure 33  Plot of percentage change in dispersion characteristics of L-band rectangular
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P
er

ce
nt

ag
e 

C
ha

ng
e 

 in β

                Figure 31.



                                                                                56

0.24 0.26 0.28 0.30 0.32 0.34
-8

-7

-6

-5

-4

-3

-2

-1

0

1

k0
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