NASA /CR-1998-208434

Flight Guidance System Validation using
SPIN

Dimitri Naydich and John Nowakowski
Odyssey Research Associates, Ithaca, NY

.|
June 1998

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this
important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA'’s scientific and technical information.
The NASA STI Program Office provides
access to the NASA STI Database, the
largest collection of aeronautical and space
science STI in the world. The Program Office
is also NASA'’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA
counter-part of peer reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that help round out the
STI Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing
research results ... even providing videos.

For more information about the NASA STI
Program Office, see the following:

Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

E-mail your question via the Internet to
help@sti.nasa.gov

Fax your question to the NASA Access
Help Desk at (301) 621-0134

Phone the NASA Access Help Desk at
(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA /CR-1998-208434

Flight Guidance System Validation using
SPIN

Dimitri Naydich and John Nowakowski
Odyssey Research Associates, Ithaca, NY

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract NAS1-20335

.|
June 1998

Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171

(301) 621-0390 (703) 487-4650

Abstract

To verify the requirements for the mode control logic of a Flight Guidance System (FGS) we

applied SPIN, awidely used software package that supports the formal verification of distributed

systems. These requirements, collectively called the FGS specification, were developed at

Rockwell Avionics & Communications and expressed in terms of the Consortium Requirements
Engineering (CoRE) method. The propertiesto be verified are the invariants formulated in the

FGS specification, aong with the standard properties of consistency and completeness. The

project had two stages. First, the FGS specification and the properties to be verified were

reformulated in PROMELA, the input language of SPIN. This involved a semanticsissue, as

some constructs of the FGS specification do not have well-defined semanticsin CoRE. Then we
attempted to verify the requirements’ properties using the automatic model checking facilities of
SPIN. Due to the large size of the state space of the FGS specification an exhaustive state space
analysis with SPIN turned out to be impossible. So we used the supertrace model checking
procedure of SPIN that provides for a partial analysis of the state space. During this process, we
found some subtle errors in the FGS specification.

Table of Contents

F N 1 I ¥ AN O TS SRRTRN 1
TABLE OF CONTENTS ...ttt sttt st st sttt e e s e e besbesaeebe e e eneeseestesbesaeeneenseneeseens 2
LIST OF FIGURES. ...ttt sttt ettt bt bt e e s e et e s bt bt e ae et ente st enbesaeeseeneenseeeseentas 4
1 INTRODUCTION ittt bt bttt s e st e s b e sb e s bt eb e e e e s e sseabesbesbeebesseene e e ensenneseennes 6
2 FGSSPECIFICATION: AN OVERVIEW ...oooiiiiiiiiit ettt 7
2.1 STANDARD CORE FEATURES......ccttttiteertieteestessnesnesee s e sneesneenesnsesseesneesne e nesnesnesneesneesneenneeneenns 7
211 TADIES. .ttt bbb e bbbt ne e et nne 7
212 Partial FUNCLIONS........cuiiiiie ettt eenr e e 8
213 FNIVITANES ...ttt b ettt e bbbt s ae e s e e e e b e bese e b e sheeb e e e e e e neenrennes 9

2.2 NON-STANDARD FEATURESceiitiiieiitesieeie st steste st sieestesee s aeesbeseesaeesbeeabesaeesbesbesaessaeeneesaeesaeas 10
221 EVENE CASCATING. ...ttt ettt b e b s bt e saennenes 10
222 CONLINUOUS BEVENLS ...ttt ettt et e eaae s baesbeesbeeneenneenes 12
223 Sustaining ConditioNS FOr MOES...........ccuririiiiirieeer e 12

3 TRANSLATING FGSSPECIFICATION TO PROMELA: TRANSLATION PRIMITIVES..13
3.1 TRANSLATION OUTLINE .eutietieuteeueastiesteesteseesessuessaeessessesasesssesssasseessesssesasssaessaeessesssessesnssssesssenns 13
3.2 SIGNAL DECLARATIONSuviitieiteeisseesreeeesseesse s sseesneesnesse s sseesnesaessneesnessssneesneenssneesneennssnnesneennes 14
321 MONITOred VariallES ..o e e e 15
322 MOOES ANO TEIMNIS.....ceiitiieeeee ettt ettt e e s r e bbb e e e e b e e besaeeneesrennis 15
323 Controlled Variall@S..........coueiie e 16
3.24 Event Identifiers and Event-observable EXPreSSions..........ccvccvveeniesieeseeiese e see e 16
325 DUFBLIONS. ...ttt bbbttt et b e bt bt e e e se e b e sbeeb e et e e e eesrennas 17
3.2.6 GENEIAl SETUCKUIE ...ttt ettt et e e e et e e be e b e e beeabesaaesheesaeesteensesnnesneenseenes 17

3.3 SIGNAL INITIALIZATION .cuttetteuteeueasteesteesteseeseesaeesaeesseesesaseessesseasseebeensesaeesaeesaeesbeeasesasesnsesseanseans 17
331 INPUE SIGNEIS ...ttt bbbttt s a et eb e e et s e e ebesre e 18
332 Initially DefiNed SIgNaIS.....c..ciiiieii e 19
333 Initially UNdefined SIgNalS.........ooeiiiiieiriieereeee ettt ereea 20
334 GENENEL SEIUCIUIE ...ttt bbbttt e b et b e bt bt eae e e et e se e b e e srennis 20

34 EXPRESSION TRANSLATIONceteeiteesteereereessesseesseesseessessesnsssessseesseesseesssnsssssssssessesssesssesssesnnssnnes 21
34.1 EVENE EXPrESSIONS.ciiiiieeieieesie et ste st ettt ste e ste s ee e e sseesse e teesteessesnaessaesseesseenseeneeenseenes 21
34.2 DUralioN EXPIrESSIONS......ceiuieeieesteeieeieetesteesteesteesteesseeesseesseesseenseeseassesssessasssesssesssesssesseenes 22
34.3 GENEIAl EXPIESSIONS.....ceveeiieeiteete et eeeesteeste e e e tessaesaeesseesseeseaseeaseesseenseensenssessansseesaeesseenseenes 22

3.5 TABLE TRANSLATION .eeuttettetieureeseesseesmeessessessessmeesmeesseessessesssesseesseesesssesanssmeesmeesneennesnsesneesseessenns 22

4 TRANSLATING FGSSPECIFICATION TO PROMELA: SIMULATION CYCLE................ 24
N €15 Y SRRSO 24
A €15V SRS 24
421 Updating Complex Event-observable EXPreSSions..........coveeeeriieineneeeneeeseseeeee s 25
4.2.2 Checking on the Changes of Complex Event-observable EXpressions...........c.cooeveeevenennn 25
423 Checking on the Absence of Internal EVENLS..........cccooiienineneeeseeeseeese e 26
424 Calculating New Valuesfor Internal Signals and Event [dentifiers.........cccooveveecvececennns 26
425 Checking on the Changes of Internal SIgnalS........ccoccevceieereccrcce e 28
4.2.6 Updating Input Signals and Internal Signals.........ccccoveieviriee e s 28
4.2.7 General FOrmat Of FGSM _.....o.uiiiecceeee ettt nre e e 28

A3 FGSM T et e b ettt et bt h e e bt e e b et b e Rt ene e e e et e 29

A4 FGSM_IV o e 29

45 FGSM: GENERAL FORMAT L.uttttiiiiiiiiiititiiee e e sestttee e e e s s s esbabaeeeesesesababaesseessesssbasesesssessssrsnesesssesssnres 30

5 FORMALIZING THE REQUIRED PROPERTIES.......cociii ettt 31
51 (000] = I = 1 =N ST 31
52 (000N ISTES1 1/ = LA 2 31
53 TN AY 2 L A 31
54 UNREACHABLE TRANSITIONSciiiiiiiiiiiiteietete ettt ettt aaea e 32
55 Y U 1 = 2 11 LT 32

6 STATE SPACE REDUCTION ...ttt ettt e st e s esaae s s s ba e s esstes s ssnseeassbenesennresssnnes 33
6.1.1 The Supertrace AlQOIthML......cc.ovie e e e 33
6.1.2 U T o= o = T 33
6.1.3 (UL T o Mo SR A=T OIS = 1= 1= £ T 33
6.1.4 INput Variable ADSIFACHION.........ccuiieeieece st re e es eas 34

T VALIDATION RESULTS ... ittt ettt ettt e et e et s s s bt e s s st e e e s enatee s sebaeesssabesesenneesssrnees 36
711 TYPOS e b h e e e e sae e aa e e e 36
7.1.2 UNreachabl@ TranNSItiONSccueieieeie ettt e e et e e s e e e s s ea e e s s e beeessaneessaneeeas 36
7.1.3 10\ = A L0 F= o 0 TR 37

T O O 1N (O 1S O] SRR 40
8.1 PROJECT RESULT S .. ittt 40
8.2 DIRECTIONS FOR FUTURE WORKcoiiiiiiii ittt 40

LR = I O i 42
N =1\ 5 SRR 44

List of Figures

FIGURE 1: A SELECTOR TABLE ..ctttiitteiiteteiteeeiteeeeteeestesesseeeasssesseesasesesssssasssessssssssessssessesessseessesesssesssesessseessens 7
FIGURE 2. A CONDITION TABLEtttieiitttteeitteeeeitteeesetteeeeateeeseasseeesasseeaaataeasaassesesassesasantesasanssssesasseeasansesasanns 8
FIGURE 3. AN EVENT TABLE . .uttiiiettii e i itteee e ettt e e ettt e e e ettt e e e ataeeeeeateeesaaseeaaaataeasassesesassesaeanbaeasasseeesasseeasantenasanes 8
FIGURE 4: A MODE TRANSITION TABLEeieiitiieeeitteeeeetteee e ettt e eeeateeeseaseeaesbaeesesssesesassesasastaeasassseeesasseeassnsenesanns 8
FIGURE 5: INITIAL VALUE AND SUSTAINING CONDITION OF MODE_ACTIVE_LATERALccvevvveiieecireeceeeninns 9
FIGURE 6: DEFAULT INITIAL VALUE AND SUSTAINING CONDITION CONFIGURATIONccccviieeeiuiieeiiireeeeereeeeenns 9
FIGURE 7: INVARIANTS OF THE FGS SPECIFICATIONuutieeitteeeeiteeeesneeeesstreeeesssessssnsessssseesssnsessssnssesssnseness 10
FIGURE 8: ACTIVE LATERAL MODE TRANSITION TABLE ...cciitiieecitieessteeeesstteeeessteeessaneeessnneesssnseesssnnneessnsenenan 11
FIGURE 9: ACTIVE VERTICAL MODE TRANSITION TABLE.......uutteiitieeisteeeesiteeeeesseeessneessssseesssnsessssnssesssnsseess 11

FIGURE 10:
FIGURE 11:
FIGURE 12:
FIGURE 13:
FIGURE 14:
FIGURE 15:
FIGURE 16:
FIGURE 17:
FIGURE 18:
FIGURE 19:
FIGURE 20:
FIGURE 21.:
FIGURE 22:
FIGURE 23:
FIGURE 24:
FIGURE 25:
FIGURE 26:
FIGURE 27:
FIGURE 28:
FIGURE 29:

FIGURE 30

DEFINITION OF AN EVENT IDENTIFIER ...uvuttteieeiiiiiitreeieseseiisrsseeesssessssssssesssessssssssesssssssssssssesssesns 13
DEFINITION OF TERM_OVERSPEED........ciiitttisiteiiteesieesiesessessssessssesssessssessssessssessnsessssesssessssessns 13
EXAMPLE OF AN EVENT-OBSERVABLE EXPRESSIONccoeiietieeisreeeesiteeessssessssssresssssesssssssssssssnes 14
DECLARATIONS OF INPUT SIGNALSccictttiiiieeiieiititeeiiesesessisbssssesssessssbasssesssesssbssssesssesssssssseesssesns 15
DECLARATIONS OF INTERNAL SIGNALS. ..uttiiiiiiiiiiiriiiieseeesistsreiesssesssbssesesssssssssssssesssssssssssssessessns 16
DEFINITION OF CON_VERTICAL_ARM_COLOR ..eiciiiiiiieiieeiiteessieessteeensessteesssesstesssesssesssensns 16
DECLARATIONS OF CONTROLLED VARIABLES......uutiiiiiiiiiiiitrriiee s seesibasiees s s e sssbssseessssssssssseesssesns 16
DECLARATIONS OF EVENT IDENTIFIERS AND EVENT-OBSERVABLE EXPRESSIONS.........vvieeiieeeesnenes 17
AUTOPILOT DISENGAGE SUBMODE TRANSITION TABLE
DECLARATION OF A DURATION VARIABLEvviiiiittieeceteieceteee s seateesssbeeesessessssaeessssbeessssaesssnsnes
GENERAL STRUCTURE OF SIGNAL DECLARATIONSvviieiiteieseieeeeseseeessssresssssseesssseessssssessssssnes
RANDOM NUMBER GENERATIONuuiiiiiteieiiueeesiitteesesstesesassessssssessssssesesssssssssssssssssssesssesssnssssssees
INPUT SIGNAL INITIALIZATION ..uttieieetteieieteeessteeesesssesssessesesssesesasssssssssssssssssssssssssessssssssesssseress
INITIALIZING NON-INPUT SIGNALS
INITIALIZING SIGNALS WITH UNDEFINED VALUE
GENERAL STRUCTURE OF SIGNAL INITIALIZATIONS ..uvttiiiiiieiirireieeesesssirsseessssssssbssssessssssssssssness
TRANSLATING EVENTS. ..otieiitteeeiittieeestesesessesssesesesssstesssassssssasasesssstesssassssssabesesssstesssasssssssssenasas
EQUIV ALENT EVENTS. o1ttt ietteeesitteesesttetesesaaeessbasessastesesasasesssbasassastaeesassesssbanessssbenesasenssssrnes
TRANSLATING CONTEXTSWITH COMPLEX EVENT EXPRESSIONS.....
GENERIC CORE FUNCTION TABLE .1vtiiiiiiitttiiei e e s etttiee s e e s sibastsessessasbasssssssssbasssasssssssbssssssssssssrenes

- TRANSLATION OF THE GENERIC CORE FUNCTION TABLE ..vuvviiiiiiiiiiiiieeeeeeeeiiirereeeseeessnssseeesssenns
FIGURE 31:
FIGURE 32:
FIGURE 33:
FIGURE 34:
FIGURE 35:
FIGURE 36:
FIGURE 37:
FIGURE 38:
FIGURE 39:
FIGURE 40:
FIGURE 41:
FIGURE 42:
FIGURE 43:
FIGURE 44:
FIGURE 45:
FIGURE 46:
FIGURE 47:
FIGURE 48:
FIGURE 49:
FIGURE 50:
FIGURE 51:

GENERAL FORMAT OF FGSIM _| ...ttt sttt sttt s ae e st ae e st neennneas
UPDATING A COMPLEX EVENT-OBSERVABLE EXPRESSIONcciteiuisterieeeeeessestesnessesseeneeseessesseses
CHECKING ON THE CHANGES OF COMPLEX EVENT-OBSERVABLE EXPRESSIONS.....
CHECKING ON THE ABSENCE OF INTERNAL EVENTS ...uvtiiteesitiesireesireesreesieeesseesseeessseesssessssesssnes 26
CALCULATING THE NEW VALUE FOR AN INTERNAL EVENT-OBSERVABLE SIGNALccceeiveriennen. 27
REPRESENTING A SUSTAINING CONDITION ...cuvititesueetereeseeseeseesteseessesseesseseessessessessessesnssssessesseses 27
CALCULATING NEW VALUE FOR AN INTERNAL SIGNAL WITH NO OBSERVABLE EVENTS.............. 28
CHECKING THE STABILITY OF THE INTERNAL SIGNALS..
UPDATING INPUT SIGNALS AND INTERNAL SIGNALS.utitieuteruiasteesrerssessesesssessseessesnsessessessseans
GENERAL FORMAT OF FGSM _ ...ttt s s s
GENERAL FORMAT OF FGSM T .ottt st s
GENERAL FORMAT OF FGSM _IV .ottt sttt sttt st st
GENERAL FORMAT OF FGSMcccccvennee.

REPRESENTATION OF A CONDITION TABLE
CHECKING ON CONSISTENCY OF A CONDITION TABLEcittitiitietesieeieeseessestesresre e sseseeeeseeseesee e
INVARIANT TRANSLATION ..ciutittiueatesueeseesessesessessesseesessessesseseessessessesseessensessessessessesssensensessenses
MODE_OVERSPEED TRANSITION TABLE. .. .eitttttitasteerteeeeeutesseesseessesssessesssssessaesssesnsesnsessesssenns
MODIFIED MODE_OVERSPEED TRANSITION TABLE...
INPUT SIGNAL RANGE MODIFICATIONS.....cutttttestestesseeseeseeseeseessessessessesssessesssssessessessessessessessesses
TYPOS DETECTED. ...t tteueeutetestestestestesseeseaeessassessestesseeseensasessesaessesseeseensansansessessessessesseensensessesses
FLIGHT LEVEL CHANGE SUBMODE TRANSITION TABLE ..ccuetitertirteseieteseeeeseeseesteseesresneeseeneeseeseeses

FIGURE 52: DEFINITION OF TERM_SELECTED _NAV_TYPE ...iiiiiiiiiiiiessiee ettt s 37

FIGURE 53: DEFINITION OF @NAV_SOURCE_CHANGEceiitiiieiteesteesteeteessesseesseesseesseessessesesssessssesssensesnes 38
FIGURE 54: MODIFIED DEFINITION OF @NAV_SOURCE_CHANGEcoitiuietirieeiiereeseesie et sie e eeeeseeseesee s 38
FIGURE 55: ALTITUDE SELECT ENABLED SUBMODE TRANSITION TABLEciutiitieteesieesieeee e seee e see s 38
FIGURE 56: AN ERROR TRACE. ... ucetttettteuteauttaseasseesseassesasesasssessaessaeasseaasesssassessssasesssesssesnsesasesassseessesssesnsesnns 39
FIGURE 57: A PROGRAM TRACE....ccutettteteauttaueasteesteestesasessssessaessaeasseassesseassessssssesssesssesssessesasssuesssesssesssesnns 44

1 Introduction

The mode control logic of the Flight Guidance System (FGS) specified at Rockwell Avionics &
Communications[1] isarealistic example of an industrial problem that is compact enough to be a
test case for formal design methods. The flight modes determine the mechanisms generating the
pitch and roll commands guiding the aircraft. Because of its complexity, an accurate description
of the mode control logic is considered a significant problem [2], and it is interesting to see how it
can benefit from the application of formal methods.

The mode control logic has been specified using the Consortium Requirements Engineering
(CoRE) method [3]. Theresult iscaled the FGS specification. The CoRE method supports
specifying behavioral system requirements using convenient formal notation with simple and
well-defined semantics. A designed system satisfies the CoRE requirements if its variables
behave in accordance with the requirement specification. Aswith any formal theory, the general
important properties of the FGS specification are consistency and completeness. The consistency
of reguirements means the existence of a system satisfying them. The completeness of
requirements means that the systems satisfying them exhibit the same variable behavior. Other
important required properties are expressed asinvariants. Aninvariant isacondition on variable
values that should hold for any system satisfying the requirements at any time. Finally, we search
for unreachable mode transitions, which correspond to code in our executable specification that is
never executed.

Although the CoRE semanticsis well defined, CoRE does not provide atool for verifying the
properties mentioned above. It isinteresting, therefore, to reformulate the FGS specification in
another specification formalism that does have mechanical validation support. We have applied
SPIN [6,8], awidely used software package supporting the formal verification of distributed
systems, to the validation of the mode control logic requirements. To do this, we had to
reformulate the FGS specification and the required propertiesin PROMELA, the input language
of SPIN. The reformulation involved a semantics issue, as some constructs of the FGS
specification do not have well-defined semantics in CoRE. Then we used the automatic model -
checking facility of SPIN, either to validate the required properties or to generate the simulation
traces violating them.

The state space of the FGS specification islarge. The specification contains about 30 input
variables, some of them with thousands of possible values, and about 60 internal state-holding
variables related by complex control dependencies. To make model checking feasible, we
abstracted away certain irrelevant state information.

The report consists of six parts. Chapter 2 presents an overview of the FGS specification.
Chapters 3 and 4 describe the trandation of the FGS specification to PROMELA. We describe
the representation of the FGS specification properties to be verified in Chapter 5. In Chapter 6,
we describe the state space reduction techniques we used to make model checking feasible. We
present the validation results obtained with SPIN in Chapter 7.

2 FGS Specification: An Overview

The FGS specification is written in an informal extension of CoRE. The standard CoRE features
of the FGS specification are presented in Section 2.1. The extension features are presented in
Section 2.2.

2.1 Standard CoRE Features

The CoRE behavioral model of a system specifies system variables as functions of continuous
time. A specified systemis generaly considered as a set of mutually interacting finite state
machines triggered by events; the events in CoRE track changes of expression valuesin time.
The CoRE class model structures the behavior model in an object-oriented way.

The system’s state information is stored in its internal variables. Some variableedéestore

their previous state values as well. In general, any variable defined by an event table (see Section
2.1.1) holds some state information. The FGS is very complex. There are about 30 mode
variables in the FGS specification, representing flight director modes, lateral flight modes, and
vertical flight modes; and there are roughly 30 other internal variables. There are 30 input
variables, including both binary variables and variables, like the flight altitude, with thousands of
possible values. The system variables are related by complicated control logic.

211 Tables

Tables are commonly used to represent variable behavior functions in CoRE. There are three
types of tables: selector tables, condition tables and event t#&bsetector table is a tabular
representation of strictly mode-dependent information. For example, consider variable
con_HDG_Switch_Lamp, controlling an indicator lamp. The selector table defining its value is
shown in Figure 1. According to the table, the valueoof HDG_Switch_Lamp isLit if
mode_Flight_Director is ON, andmode_Active Vertical isHDG,; it is Unlit under all the other
possible combinations of the mode values.

Modes
Mode Flight Director Mode Active Vertical Con_HDG_Switch Lamp
OFF N/A Unlit
ON HDG Lit
ROLL Unlit
NAV
APPR
GA

Figure 1: A sdlector table

A condition table represents a function of the mode variables and a set of mutually exclusive
conditions. For example, consider variatda_AP_Engage Switch_L amp, controlling another
indicator lamp. The condition table defining its value is shown in Figure 2. According to this
table, the value ofon_AP_Engage Switch_Lamp in any mode i®Jnlit if term_AP_Engaged

is False; itis Lit if term_AP_Engaged is True.

M ode Conditions

All Modes NOT term_AP_Engaged term_AP_Engaged

con_AP_Engage Switch_Lamp | Unlit Lit

Figure 2: A condition table

An event table represents a function that is updated only when an event occurs. Event tables are

used to specify variables whose values depend on the system'’s history. For example, consider
variableterm_Selected Heading, representing the heading set by rotation of the heading knob.
The event table defining its value is shown in Figure 3. According to this table,

term_Selected Heading assumes a new value, which depends on its current value, whenever the
event@HDG_Knob_Changed occurs.

M ode Events

All Modes @HDG_Knob_Changed

term_Selected Heading | MOD(term_Selected_Heading’ + 1 degree *
term_HDG_Knob_Rotation, 360 degrees)

Figure 3: An event table

A mode transition table is a special form of an event table that specifies the behavior of a mode
variable having a finite value range. For example, consider subENGAGED of mode
mode_Autopilot. The mode transition table defining its value is shown in Figure 4. It specifies
that the submode’s value changes fildanmal to Sync only whenterm_SYNC becomes true; it
changes back whderm_SYNC becomes false.

Id From Events To
9 Normal @T(term_SYNC) Sync
10 Sync @F(term_SYNC) Normal

Figure 4: A mode transition table

2.1.2 Partial functions

Tables in CoRE represent total functions. To represent a partial function in CoRE, the
specification uses a total “value” function, along witkustaining condition that specifies the

domain of the partial function. The value of a partial function is undefined when the sustaining
condition does not hold. When the sustaining condition holds, the partial function is equal to the
value function, except for the moments when the sustaining condition becomes true. Sustaining
condition are provided withnitial values. At the moment the sustaining condition becomes true,
the value of the partial function is set to the initial value. For example, the initial value and
sustaining condition ahode Active Lateral is shown in Figure 5.

Initial Value ROLL

Sustaining Condition: mode_Flight_Director = ON

Figure 5: Initial value and sustaining condition of mode_Active Lateral

Figure 6 shows the initia value and sustaining condition of con_HDG_Switch_Lamp. “None”
means that the sustaining condition is tautologically truaue function” means the function
specified by the selector table, Figure 1.

Initial Value: see value function

Sustaining Condition: none

Figure 6: Default initial value and sustaining condition configuration

2.1.3 Invariants

The invariants imposed on the FGS specification are listed in Figure 7. For example, invariant
INV-1 is as follows Mode_Active Lateral = GA 0 mode Autopilot = DISENGAGED.

Thus, the FGS specification asserts thatdltepilot must always be disengaged whenAhgve
Lateral mode machine is i®o Around mode.

INV-1 | mode Active Lateral = GA O mode_ Autopilot = DISENGAGED

INV-2 | mode Active Vertical = GA O mode Autopilot = DISENGAGED

INV-3 | term AP_Engaged O mode Flight Director = ON

INV-4 | (mode_Active Lateral = ROLL Omon_On_Ground) [mode_Active_Lateral =
ROLL/Hdg_Hold

INV-5 | mode Active Vertical = GA O mode Active Latera = GA

INV-6 | mode Active Lateral = NAV/Track O term Selected Nav_Type 0 {VOR, LOC,
FMS}

INV-7 | mode Active Lateral = APPR/Track O term Selected Nav_Type O {LOC, FMS}

INV-8 | mode Altitude Select = CLEARED < mode Active Vertica O {APPR, GA,
ALTHOLD}

INV-9 | mode_Altitude_Select = ACTIVE = mode_Active Vertical = ALTSEL

INV-10 | mode Vertical_Approach = TRACK = mode Active Vertica = APPR

INV-11 | term_Overspeed 0 mode Active Vertical O {ALTSEL, ALTHOLD, APPR,
FL C/Overspeed}

INV-12 | mode_Active Lateral = GA [0 mode_Active Vertical = GA

Figure 7: Invariants of the FGS Specification

2.2 Non-Standard Features

To model flight mode logic, the developers of the FGS specification relied on three concepts that
have no analogues in the CORE framework: event cascading, continuous events, and partially
defined internal variables. The developers of the FGS specification extended the CORE notation
to express these concepts, and described the intended semantics informally.

2.2.1 Event Cascading
Event cascading defines a conceptual sequencing of events that are simultaneousin real time.
Consider the lateral and vertical mode transition tables shown in Figure 8 and Figure 9.

Id From Events To
20 | HDG @HDG_Switch Pressed ROLL
21 | NAV @NAV_Switch_Pressed ROLL
22 | NAV @Nav_Source_Change ROLL
23 | APPR @APPR_Switch_Pressed ROLL
24 | APPR @Nav_Source_Change ROLL
25 | GA @T (term_AP_Engaged) ROLL
26 | GA @T(term_SYNC) ROLL
27 | GA @F(mode_Active Vertical = GA) ROLL

10

28 | HDG @HDG_Switch Pressed HDG
29 | NAV @NAYV_Switch_Pressed NAV
30 | APPR @APPR_Switch_Pressed APPR
31 | GA @GA_Pressed GA
Figure 8: Active lateral mode transition table
Id From Events To
41 | GA @T(term_SYNC) PITCH
42 | VSOR @V S _Pitch Wheel_Changed PITCH
APPR OR
ALTSEL OR
PITCH
43 | ALTSEL @T(mode_Altitude_Select = ACTIVE) ALTSEL
44 | ALTSEL @CHANGED(term_Preselected_Altitude) PITCH
WHEN mode_Altitude_Select = ACTIVE/Capture
45 | ALTSEL @CHANGED(term_Preselected Altitude) ALTHOLD
WHEN mode_Altitude Select = ACTIVE/Track
46 | APPROR @ALT_Switch Pressed ALTHOLD
ALTHOLD
47 | ALTHOLD @ALT_Switch_Pressed PITCH
48 | APPR OR @VS_Switch_Pressed VS
VS
49 | VS @VS_Switch_Pressed PITCH
50 | APPR OR @FLC_Switch_Pressed FLC
FLC
51 | FLC @FLC_Switch_Pressed PITCH
52 | ALTSEL OR CONTINUOUSLY WHEN term_Overspeed FLC
ALTHOLD OR
APPRORFLC
53 | APPR @T(mode_Vertical_Approach = TRACK) APPR
54 | APPR @F(mode Vertical_Approach = TRACK) PITCH
AND NOT @GA_Pressed
55 | GA @GA_Pressed GA
56 | GA @T (term_AP_Engaged) PITCH
57 | GA @F(mode_Active Latera = GA) PITCH

Figure 9: Active vertical mode transition table

Suppose the values of mode_Active L ateral and mode_Active Vertical at timet are equal to
GA. Let externa event @HDG_Switch_Pressed happen at thistime. Then transition 28, Figure
8, instantly changes the value of mode_Active Lateral to HDG. Thistransition invokesinterna
event @F(mode_Active L ateral = GA) that triggers transition 57, Figure 9, to change the value
of mode_Active Vertical to PITCH. Anaogoudly, let externa event
@VS_Pitch_Wheel Changed happen at timet. Then transition 42, Figure 9, changes the value

of mode_Active Vertical from GA to PITCH. Thisinvokesinterna event

@F(mode_Active Vertical = GA) that triggers transition 27, Figure 8, to change the value of
mode Active Lateral to ROLL. Transitions 27 and 57 are introduced to comply with the
invariants INV-5 and INV-12, Figure 7.

11

Within the transition cascading model it isimportant to distinguish the causal relations between
simultaneous events. This gives us a criterion to disambiguate mode transition tables with respect
to simultaneous events in a causal sequence. CoRE has no such mechanism, and, as aresult, the
Active Lateral and Vertical Mode Transition Tables are inconsistent in CoRE. To show the
inconsistency, we proceed with the sequence of internal events caused by
@HDG_Switch_Pressed. mode Active Vertical goingto PITCH further invokes internal
event @F(mode_Active Vertical = GA) to happen simultaneously with
@HDG_Switch_Pressed. Taking into consideration that mode_Active L ateral is GA at that
time, we get transition 27 triggered simultaneoudly with transition 28. Thus we get inconsistency
within the CoRE interpretation. However, within the transition cascading model, transition 27
cannot happen because @F(mode_Active Vertical = GA) occurs causally later than
@HDG_Switch_Pressed , and mode Active Lateral isalready HDG by then.

The devel opers of the FGS specification are aware that CORE semantics does not permit
transition cascading. However, they do not formalize their transition cascading semantics, which
makes our problem of formal analysis not completely defined. We define atransition cascading
mechanism for CoRE event tablesin Section 4.2, similar to the one used in RSML [9], VHDL
[10], or Verilog [11] formalisms. A reasonable alternative would be to specify the flight mode
logic in one of these formalisms, as they are in some ways more adequate to the problem domain,
and are equipped with advanced analysistools, e.g., [4, 7, 5, 12].

2.2.2 Continuous Events

Transition 52, Figure 9, is triggered by a continuous event, another non-standard feature of the
FGS specification. It means that the transition from the source to the target takes place whenever
condition term_Over speed istrue. The semantics of continuous eventsis very straightforward in
our event cascading model (see Section 3.4.1)

2.2.3 Sustaining Conditions For Modes

In CoRE, sustaining conditions are considered just for controlled, output variables. The purpose
of such conditionsisto detect when the values of output variables are trustworthy. Sustaining
conditions for internal variables like mode_Active Lateral presented in Figure 5 are not lega in
CoRE. In general, considering undefined values of interna variables raises the problem of
evaluating expressions over such variables. For example, given an integer variablex, what isthe
value of expressionx >0 /7 x <0 when x isundefined? Fortunately, the potentially undefined
internal variablesin the FGS specification are evaluated in domains that make a simple semantics
of undefined values possible (see Section 3.3).

12

3 Translating FGS specification to PROMELA:
Translation Primitives

3.1 Translation Outline

PROMELA istheinput language of SPIN. Since our god isto apply SPIN to the analysis of the
FGS specification, we have to reformulate the specification in PROMELA. PROMELA is meant
for specifying protocols, which are communication rules for entities exchanging messages over
point-to-point channels. A basic event in the PROMELA model is sending/receiving a message.

The problem domain of PROMELA is very different from the FGS (and CoRE) problem domain,

so we have to model al the conceptsinvolved from scratch. We use the term signals for CoRE
monitored variables, controlled variables, modes, and termsin order to distinguish them from
PROMELA variables. We represent the concept of event—the change of a signal value in
continuous time—yby introducing two variables, to hold its current and previous values. For
example Figure 10 shows a CoRE definition of an event identifier. We represent the identified
event@T (mon_HDG_Switch = ON) as the PROMELA expression

mon_HDG_ Switch[current] && (! mon_HDG_ Switch[previous]),

wheremon_HDG_Switch is a two-element array indexed by the constanisnt andprevious.

@HDG_Switch_Pressed: event@T(mon_HDG_ Switch = ON)

Figure 10: Definition of an event identifier

Event broadcasting is the mechanism for triggering the flight mode transitions in the distributed
CoRE specification. Formalizing event broadcasting in PROMELA requires a complicated
system of process synchronization (see the Appendix). Such an explicit synchronization would
have to be modified whenever the CoRE specification was modified, and could become a source
of additional errors. To avoid this problem, we translated the distributed CoRE specification into
a single initial PROMELA process.

The signals in the FGS specification are supposed to be concurrently updated, and they are
mutually dependent in general. To simulate concurrent updating of mutually dependent signals by
sequential PROMELA code, we introduce an extra variable for each signal to hold its new value.
The new value of such a signal depends at most on the current and previous values of other
signals. When all the new values for mutually dependent signals are calculated, these signals are
updated. Thus, the sequential order of calculating new values and updating mutually dependent
signals becomes irrelevant, which adequately simulates the desired concurrency. For example,
consider the following CoRE definition of an internal signal, shown in Figure 11.

term_Overspeed: booleeamode_Overspeed = TOO_FAST

Figure 11: Definition of term_Overspeed
The PROMELA code that computes the new value for this signal is as follows:

term_Overspeed[new] = mode_Overspeed[current]== TOO_FAST.

13

The resulting target code quite resembles a C program, as PROMELA has adopted a C-like
syntax. Our trandation makes no use of the PROMELA constructs that model communicating
processes. The only construct used in the trandation that has no semanticsin C is the non-
determinigtic if-statement. The restricted form of non-deterministic if-statement that we use has
the following syntax:

if
:: condition_1 -> statement_1

:: condition_n -> statement_n
;o else -> statement
fi

To execute this statement, the conditions are evaluated first, and then some statement following a
valid condition is non-deterministically chosen and executed. The statement corresponding to the
else branch is executed if none of the conditionsisvalid. We omit acondition if it istrivially
true. We omit the else branch if we believe that one of the conditionsis true each time the if-
statement is executed.

3.2 Signal Declarations

Regarding the signal representation in PROMELA, we distinguish event-observable signals and
expressions from the other signals and expressions used in the FGS specification. An event-
observable expression is a CoRE expression expr that either occursin an event expression

@T (expr), @F(expr), or CHANGED (expr), or is a sustaining condition expression used in the
specification. For example, consider the definition of @FD_Pressed, shown in Figure 12.

@FD_Pressed: event = @T(mon_FD_Switch<left>= ON or mon_FD_Switch<right> = ON)

Figure 12: Example of an event-observable expression

The expression mon_FD_Switch<left> = ON or mon_FD_Switch<right> = ON is event-
observable. Expression mode Flight_Director = ON is a sustaining condition of
mode Active Lateral (see Figure 5) and other modes, and, therefore, it is event-observable too.

An event-observable signal isasignal occurring in an event-observabl e expression depending just
onthissignal. For example, signal term_SY NC is event-observabl e because event

@T (term_SYNC) triggers transition 26 (see Figure 8). On the other hand, input signal
mon_Indicated_Airspeed, has no event-observable in the specification.

We also distinguish between input, output and interna signals. Input signals are those not
assigned to in the specification; output signals are those not used in computing signal values; and
al the other signalsare internal. All the monitored variables of the FGS specification are input
signals; ailmost all the controlled variables are output signals (see Section 3.2.3); the mode and
term variables are internal signals. Signals within each of these groups are updated concurrently.
Theupdating of input or output signalsis easily represented by sequential code since neither
class of signals contains mutual dependencies. Internal signals are mutually dependent in
general. To simulate concurrent updating of mutually dependent signals by sequential code, we
introduce an extra variable for each signal to hold its new value, as discussed in Section 3.1.

Signal declarationsin PROMELA are defined according to the signal classification above:

14

1. Wedeclare an input event-observable signal as atwo-element array that holds its previous
and current values.

2. Wedeclare the other external signalsasplain (i.e., non-array) variables.

3. Wedeclare an interna event-observable signal as athree-element array that holdsits
previous, current, and new value.

4. We declare the other internal signals as two-element arrays that hold their current and new
values. We declare an output signal as aregular variable.

We introduce a new two-element array identifier for every non-primitive event-observable
expression, to hold its previous and current values. Such an identifier does not correspond to a
physical signal, but rather is a shorthand notation making the calculation of complex expression
events easier. We consider event identifiers of the FGS specification as shorthand too, and we
declare them as plain binary variables. We aso introduce auxiliary variables for counting the
duration of staying in aparticular state. The rest of this section provides examples of signal
declarations.

3.2.1 Monitored Variables

Consider binary input signal mon_HDG_Switch, which describes the position of aflight control
panel button. Thisisan event-observable signal (see Figure 10). The PROMELA declaration of
thissignal is presented in Figure 13. PROMELA variable mon_HDG_Switch[current] holds the
current value of mon_HDG_Switch, and mon_HDG_Switch[previous] holds the previous value of
mon_HDG_Switch. Figure 13 aso shows the declaration of input signal

mon_Indicated Altitude. Becauseit has no events observable in the specification, it is declared
asaplain variable holding its current val ue.

#define current 0
#define previous 1

bit mon_HDG_ Switch [2];

short mon_Indicated_Altitude ;

Figure 13: Declarations of input signals

3.2.2 Modes and Terms

Consider the flight mode signal mode_Flight_Director. It isan internal event-observable signal
(seeFigure 5). The PROMELA declaration of thissignal is presented in Figure 14.
mode_Flight_Director[current] holds the current value of mode Active Lateral,
mode_Flight_Director[previous] holds the previous value of mode_Active | ateral, and
mode_Flight_Director[new] holds the new value of mode Active Lateral.

Next, consider mode mode Active Lateral. Itisaninterna event-observable signal because
event @F(mode_Active L ateral=GA) triggerstransition 57, Figure 9. The PROMELA
declaration of thissignal is presented in Figure 14.

Figure 14 also showsthe declaration of term_Selected Heading. Since no event on thissignal is
observed in the FGS specification, we declare it as a two-element array.

15

term_Selected_Heading[current] holds the current value of term_Selected_Heading;
term_Selected_Heading [new] holds the new value of term_Selected Heading.!

#define new 2

bit mode_Flight_Director [3];
byte mode_Active_Lateral [3];
#define new’ 0

short term_Selected_Heading [2];

Figure 14: Declarations of internal signals

3.2.3 Controlled Variables

Figure 16 shows the declaration of controlled variable con_Vertical_Arm_Text. Thiscontrolled
variable is actually an internal event-observable signal becauseit isused in asustaining
condition, as shown in Figure 15. Figure 16 shows the declaration of controlled variable
con_AP_Engage Switch_Lamp. This controlled variable is an output signal, because it is not
used elsewhere, so we declareit asaplain variable.

Initial Value: see value function
Sustaining Condition: con_Vertical_Arm_Text #*”

Mode con_Vertical Arm_Color
All Modes White

Figure 15: Definition of con_Vertical_Arm_Color

byte con_Vertical_Arm_Text [3];

short con_AP_Engage_Switch_Lamp;

Figure 16: Declarations of controlled variables

3.2.4 Event Identifiers and Event-observable Expressions

Consider the definition of event identifi@FD_Pressed, shown inFigure 12. We consider it to
be an abbreviation rather than a real signal. We de@&i® Pressed, as shown in Figure 17.
We also introduce a new two-element array identifier for the event-observable expressdiam
the definition of@FD_Pressed. The expressioaxpr_FD_Pressed[current] holds the current value
of this expression, angpr_FD_Pressed[previous] holds its previous value.

1 Weintroduce new’ in addition to new because an array array[n] in PROMELA isindexed from O to n-1.

16

bool @FD_Pressed;
bool expr FD_Pressed [2];

Figure 17: Declarations of event identifiers and event-observable expressions

3.2.5 Durations

Consider the Autopilot DI SENGAGE submode transition table, shown in Figure 18. It saysthat
the submode value changes from War ning to Nor mal as soon as War ning has been
continuously true for 10 seconds. We count the duration in terms of simulation cycles. To get the
real-time duration, one needs to define the duration of one ssimulation cycle. To measure the
duration, we introduce an auxiliary variable to hold the duration of a particular state. For
example, we introduce variable duration_Autopilot DISENGAGE_Warning, as shown in Figure 19.
Initially, we set it to 0. We increment it each simulation cycle, provided the value of Autopilot
DISENGAGE submode isWarning. Wereset it to 0 as soon as Autopilot DISENGAGE
submode |eaves this value.

Id From Events To

11 | Warning @T (Duration(INMODE(Warning)) > 10 sec) Normal

Figure 18: Autopilot DISENGAGE submode transition table

int duration_Autopilot DISENGAGE_Warning;

Figure 19: Declaration of a duration variable

3.2.6 General Structure
The general structure of signal declarationsis shown in Figure 20.

[* Monitored variables (see Section 3.2.1) */
... < Contents of Figure 13 >; ...
.. < Contents of Figure 22 >; ...

/* Modes and terms (see Section 3.2.2) */

.. < Contents of Figure 14 >; ...

/* Controlled variables (see Section 3.2.3) */
.. < Contents of Figure 16 >; ...

/* Event identifiers and event-observable expressions (see Section 3.2.4) */
.. < Contents of Figure 17>; ...
/* Durations (see Section 3.2.5) */

.. < Contents of Figure 19>; ...

Figure 20: General structure of signal declarations

3.3 Signal Initialization

We assume that there are no mutual dependencies between the initial values of different internal
signals. CoRE'’s signal initialization procedure first assigns random initial values to input signals.
Then it iteratively initializes those internal signals whose initial value expressions have become
defined as a result of the previous initializations. In the absence of mutual dependencies between

the initial values of different internal signals, this iteration terminates so that all the internal

17

signals are initiaized.? After that, output signals are initialized depending on their sustaining
conditions.

Although there are no mutual dependencies between the initial values of different internal signals
in the FGS specification, the initialization procedure described above does not directly work. The
problem is that sustaining conditions are imposed on some internal signals, and such signals can
therefore be undefined. Notethat in CoRE internal signals are always defined (once they are
initialized). Thuswe have to consider the semantics of an undefined value of an internal signal,
and how to calculate CoRE expressions over undefined values. In CoRE thisis not a problem,
because only output variables can be undefined, and output variables are not used in expressions.

To represent the undefined value of a signal we use a value out of the signal’s range. This very
simple interpretation of undefined values works for the FGS specification. The main technical
problem with undefined values is the evaluation of expressions over partially defined signals.
The only initially undefined signals we found (by applying the procedure above) were some
output signals and flight modes. The output signals are not used in expressions elsewhere in the
specification. An out-of-the-range value of an output signal can be easily recognized as an
exception value. The FGS modes are signals over finite domains. The only atomic expressions
in which modes occur are of the fomede = const or mode # const, wheremode is a mode, and

const is a constant in the mode’s range. In this context, considering the undefined vabdge of

as a value out of the signal’s range is appropriate. However, if other atomic expressions over
mode were allowed, it would be problematic to evaluate the expressions over undefined values.
For example, if the domain afode is ordered, what is the value of the expressimue > const

or mode < const whenmode is undefined?

The initial values of the internal and output signals in the PROMELA code are assigned
according to the FGS specification at the beginning of the target PROMELA process. The signals
with constant initial values and with sustaining conditions set to “none” are initialized first. Next,
we assign random initial values to input sigrialBhen we initialize the signals whose sustaining
conditions become definédnd valid, and whose initial value expressions become defined as a
result of the previous initializations. We repeat this step until no more signals can be initialized.
In the FGS specification, no initial values of the sustaining conditions depend on the initial values
of the input variables. This results in simple detection of the initially undefined signals, and
simple analytical dependence of the initial values of the “initializable” signals on the initial values
of input signals. The signals that are not initialized at the beginning of the simulation are assigned
undefined values. The rest of this section provides examples of signal initialization.

3.3.1 Input Signals

We initialize input signals with random values that are within their range. Since PROMELA does
not have such a random number construct, we define maadosi1 andrandom2, Figure 21,

based on the binary representation of natural numbers. Given axsgyealan integer range

[A..B], expressionandom1(x,A,B) assignx randomly so thaf\< x<B.

2 Note that in CORE no sustaining conditions are imposed on internal signals.
3 For the signals represented by arrays, we initiaize all the array elements to be the same value.
4 We consider an expression defined aslong as al its arguments are defined.

18

int range;
bit digit;
#define random1(x,A,B) \
range = 1;
x=0;
do
cif
i range > B — A -> break;
;else > if
»digit = 0;
2 digit = 1;
fi;
X = 2*x + digit;
range = 2*range,
od;
if
DX<=B-A->x=A+X;
relse ->x=A+x—(B-A),
fi

e e —

#define random2(x,A,B) \
randoml1(x[current],A,B); \
X[previous] = x[current]

Figure 21: Random number generation

For example, the range of mon_Indicated_Altitude is[-8000..56000]. Thissignal hasno
observable events. Therefore, weinitialize it with arandom value within its range, as shownin
Figure 22. Now consider binary input signal mon_HDG_Switch. Thisis an event-observable
signal. Weinitialize it using macro random2, as also shown in Figure 22.

random1(mon_Indicated_Altitude,-8000,56000);
random2(mon_HDG_ Switch, 0, 1)

Figure 22: Input signal initialization

3.3.2 Initially Defined Signals

Consider the definition of con_AP_Engage Switch_L amp, shown in Figure 2.
con_AP_Engage Switch_Lamp isinitialized by default as shown in Figure 6. According to
these figures, theinitia value of con_ AP_Engage Switch_Lamp depends on theinitial value of
term_AP_Engaged, which is defined as follows:

term_AP_Engaged: boolean = mode_Autopilot = ENGAGED.

Theinitial value of mode_Autopilot is DISENGAGED with no sustaining condition. Thusthe
initial value of term_AP_Engaged is FAL SE, and, according to Figure 2, the initial value of
con_AP_Engage Switch_Lamp isUnlit. According to the declaration of

con_AP_Engage Switch_Lamp, shownin Figure 16, weinitialize it using macro init1 as shown
in Figure 23.

19

Consider signal term_Selected_Heading. Itsinitial value is mon_Heading with no sustaining
condition, and therefore, is afunction of aninput signal. According to the declaration of
term_Selected_Heading, Figure 14, we initialize it using macro init2’ as shown in Figure 23.°

#define init1(x,y) X=y
#define init2'(x,y) x[current] = y; x[new'] =y
#define init3(x,y) X[previous] = y; x[current] = y; x[new] =y

initl(con_AP_Engage_Switch_Lamp, Unlit);

init2'(term_Selected_Heading, mon_Heading);

Figure 23: Initializing non-input signals

3.3.3 Initially Undefined Signals

Consider mode_Active Lateral. According to Figure 5, itsinitia value is undefined, since the
initial value of mode_Flight_Director is OFF with no sustaining condition. The possible values
of mode_Active Lateral are ROLL, HDG, NAV, APPR, and GA. In PROMELA, we define
the corresponding constants along with “undefined” congtert_UNDEF as shown in Figure
24°% According to the declaration ofode Active Lateral, Figure 14, we initialize it using
macroinit3 as shown in Figure 24.

#define ROLL 0
#define HDG 1
#define NAV 2
#define APPR 3
#define GA 4

#define BYTE_UNDEF 255

init3(mode_Active Lateral, BYTE_UNDEF);

Figure 24: Initializing signals with undefined value

3.3.4 General Structure
The general structure of signal initializations is shown in Figure 25.

% Sincean array identifier x is equivalent to X[0] in a PROMELA value expression, we use mon_Heading rather than
mon_Heading[current] to improve readability.

Considering an “undefined” value may result in increasing the size of the signal declaration type and, consequently, sketesystem
size. However, the effectiveness of tapertrace model checking algorithm [6] that we use does not depend on the system state size
itself, but rather on the number of reachable states.

20

/* Input signals (see Section 3.3.1) */

... < Contents of Figure 22 >; ...

* Initially defined signals (see Section 3.3.2) */
... < Contents of Figure 23>; ...

/* Initially undefined signals (see Section 3.3.3) */
... < Contents of Figure 24>; ...

Figure 25: General structure of signal initializations

3.4 Expression Translation

3.4.1 Event Expressions
The translation of CORE events over a binary signsipresented in Figure 26. We use macros
to facilitate the translation.

CoRE Event PROMELA Trandation

@CHANGED(x) | #define current 0
#define previous 1
#define at CHANGED(x) x[current]!= x[previous]

@T(x) #define at_T(x) (Ix[previous]) && x[current]

@F(x) #define at_F(x) x[previous] && (!x[current])

Figure 26: Trandating events

To translate events over non-variable CoRE expressions, we first translate them into the
equivalent events over binary signals. The translation of the events over expressions with one
binary argument is presented in Figure 27.

CoRE Event CoRE Equivalent
@CHANGED(x = ON) @CHANGED(x)
@CHANGED(x = OFF) @CHANGED(x)

@T(x = ON) Q@T(x)
@F(x = ON) Q@F(x)
@T(x = OFF) @F(x)
@F(x = OFF) @T(x)

Figure 27: Equivalent events

To translate CORE event expressions other than above, we introduce auxiliary PROMELA
variables, as discussed in Section 3.2. Consider an event definition or transition table, which we
denote a€ONTEXT, containing an event expressi@X(expr). We declare a new PROMELA
variablecomp_expr as a binary two-element array, as illustrated in Section 3.2.4. We translate the
event expressio@X(expr) as though it were an event express@X(comp_expr) over binary

21

signal comp_expr. We also precede the trandation of CONTEXT with updating comp_expr with
the tranglation of expr (see Section 4.2.1).

For example, consider the definition of @FD_Pressed, shown in Figure 12. Itstranglation is
shown in Figure 28, where expr_FD_Pressed and at_FD_Pressed are declared as discussed in
Section 3.2.4.

at FD_Pressed = @T(expr_FD_Pressed);

Figure 28: Translating contexts with complex event expressions

We translate the CORE event construct event WHEN expr as event && expr, where event and expr
are the trandations of event and expr respectively.

We tranglate the CONTINUOUSLY expr construct used by the FGS specification designers,
which has no semantics in CoRE, as expr, where expr is the trandlation of expr.

3.4.2 Duration Expressions

We replace DURATION expressions with auxiliary duration variables (see Section 3.2.5). For
example, we translate the expression Dur ation(INM ODE(War ning)) > 10 sec (shown in Figure
18) as duration_Autopilot_DISENGAGE_Warning > 10. (Here we assume that the duration of one
simulation cycleis 1 second.)

3.4.3 General Expressions

The translation of non-event, “value” expressions to PROMELA is straightforward. We replace a
signal identifierx with xicurrent].” We replace CoRE built-in operators with their PROMELA
analogues, e.gAND with &&, andOR with ||. We translate event sub-expressions as described

in Section 3.4.1.

3.5 Table Translation
We translate CoRE function tables using PROMELA non-deterministic if-statements. Consider a
generic function table presented in Figure 29.

mode; mode, condition/event result
valy; - val, cond exphr
valy - val cond expl

Figure 29: Generic CoRE function table

For a selector table, tlwendition/event column is omitted. For a condition table, all expressions
in thecondition/event column are non-event, “value” expressions. For an event table, all
expressions in theondition/event column are event expressions. For a mode transition table,
n=1, andresult= mode_1.

7 Since an array identifier x is equivalent to x[0] in aPROMELA value expression, we actually replace x with x rather than x{current]
to improve readability.

22

The trand ation of the generic table shown in Figure 30 is built from the translations of the table’s
expressions as discussed in Section 3.4. The variable part of the trarrgsuigrmepends on
the nature of the signatésult.” We substitute result{new] for result if result is an internal signal,
and we substitute result otherwise.

If
mmode_l1==val 1 1&&...&& mode n==val n_ 1
&& cond_1 -> result = expr_1

mode_1==val_1 Kk && ... & mode_n ==val_n_k
&& cond_k -> result = expr_k

fi

Figure 30: Trandlation of the generic CoRE function table

23

4 Translating FGS Specification to PROMELA:
Simulation Cycle

Asdiscussed in Section 3.1, we trand ate the distributed FGS specification into asingle initia
PROMELA process, caled the Flight Guidance System Machine (FGSM). FGSM is aloop that
tracks the signal values, where each iteration of the loop correspondsto atick of real time.
FGSM consists of macro definitions, signal declarations, signal initialization and a simulation
loop. A pass of the FGSM simulation loop consists of four consecutive parts. Thefirst part,
FGSM _I, generates new values for input signals. The second part, FGSM_11, updates the internal
signals according to the input events generated by FGSM _II. FGSM_I1 isan internal loop that
implements event cascading in the same way as RSML and VHDL. Theinterna iteration
terminates when all internal eventsinvoked by one-time input events have been processed; but
termination is not guaranteed. The third part, FGSM_III, counts the duration the system staysin
particular states. The fourth part, FGSM_1V, calculates the values of output signals
corresponding to the current values of input and internal signals.

41 FGSM_|

In this section, we describe the general format of FGSM _|, the first part of the FGSM loop.
FGSM_| updates the current values of the input signals® which generates external events that
trigger the iterative computation of new valuesfor internal signals. (According to [1], we may
assume that different inputs do not change at the sametime.) Thisis accomplished by making
FGSM _| anon-determinigtic if-statement that either changesa signal or leaves all signals
unchanged. For example, consider input signal mon_Indicated_Altitude, described in Section
3.3.1. Thebranches of the if-statement generating a new value for mon_Indicated_Altitude are
shown in Figure 31. This method simulates the continuity of the original physical signal.
FGSM_ aso resets the value of the event cascading flag stable2, as explained in Section 4.2.3.
The general format of FGSM _| is shown in Figure 31.

if

. skip;

...<Branchesfor other input signals>; ...

:» mon_Indicated_Altitude[current] > -8000 -> mon_Indicated_Altitude[current]--;
:: mon_Indicated_Altitude[current] < 56000 -> mon_Indicated_Altitude[current]++;
...<Branchesfor other input signals>; ...

fi;
/* Initializing stable2 */
stable2 = FALSE;

Figure 31: General format of FGSM_|

4.2 FGSM_II

In this section, we describe the general format of FGSM _I1, the most complex part of the FGSM
loop. FGSM_1I simulates event cascading. FGSM _Il isan interna cycle consisting of six
consecutive parts with the following functionality:

8 The previous values of input signal are updated by FGSM_|I.

24

1. Update auxiliary variables corresponding to complex event-observable expressions (see
Section 3.4.1).

2. Check whether any auxiliary variable changesits value.

3. Check whether any internal event has been generated in the previous iteration (see Items 2,
5); and quit the cycle if no such events are observed.

4. Cdculate the new valuesfor theinterna signals and event identifiers.
5. Check whether any internal signal changesits value.
6. Updateinternal signals and input signals.

The iterative updating of internal signals by FGSM _1I corresponds to the causal sequencing of
simultaneous events. An event cascading mechanism depends on the order of internal signal
updating. In our implementation, we first consider the internal events immediately generated by
an external event; we then consider theinternal eventsimmediately generated by these events;
and so on. Thiskind of signal cascading is also implemented in CSML, VHDL, and Verilog.
One may consider adifferent order of event cascading asin, e.g., Statecharts, [13] to get, in
general, different semantics.

We discuss the parts of FGSM _I1 in the rest of the section.

4.2.1 Updating Complex Event-observable Expressions

As noted, we consider the identifiers of complex event-observable expressions as shorthands.

Their values are based on the current values of “real” signals and should be computed before
being used elsewhere. These values are used first to check for the absence of internal events (see
Sections 4.2.2, 4.2.3). Figure 32 shows the updating of the expression idexqifien_Pressed

(see Section 3.2.4, 3.4.1). The order of updating different complex expressions is irrelevant.

#update2(x) x[previous] = x[current]
update2(expr_FD_Pressed);
expr_FD_Pressed[current] = (mon_FD_Switch_left = ON || mon_FD_Switch_right = ON);

Figure 32: Updating a complex event-observable expression

4.2.2 Checking on the Changes of Complex Event-observable Expressions

A change of a value of a complex event-observable expression reflects changes of values of
“real” signals that occurred in the previous cycle. We introduce boolean vasiaide to check

for the stability of complex event-observable expressions. We calculate its value as shown in
Figure 33.

25

#define stable1?(x) x[current] == x[previous]

stable1 = < conjuncts for the other complex event observable expressions >
&& stable1?(expr_FD_Pressed)
&& < conjuncts for the other complex event-observable expressions >;

Figure 33: Checking on the changes of complex event-observable expressions

4.2.3 Checking on the Absence of Internal Events

Internal events consist of those generated by complex event-observable expressions and those
generated by internal signals. To check for the absence of the events generated by internal
signals, we introduce a Boolean variable stable2. The variable stable2 is assigned FALSE before
entering FGSM _1I. It isreassigned after computing the new values of internal signals (see
Section 4.2.5). We exit the cycle when both stable1 and stable2 become TRUE, as shown in Figure
34.

if

.. stablel == TRUE && stable2 == TRUE -> break;
:: else -> skip;

fi

Figure 34: Checking on the absence of internal events

4.2.4 Calculating New Values for Internal Signals and Event Identifiers

4241 Eventldentifiers

Asdiscussed in Sections 3.2.4 and 3.4.1, we consider event identifiers as abbreviations. The
values of event identifiers should be computed before they are used elsewhere. An example of
updating an event identifier is shown in Figure 28.

4242 Internal Event-observable Signals

Consider signal mode_Active Lateral. Figure 8 represents its mode transition table, and Figure
5 showsitsinitial value with its sustaining condition. The part of FGSM_11 corresponding to the
mode transition table is an if-statement presented in Figure 35. Thetrandation is performed as
discussed in Section 3.5. We define some additional macrosto facilitate the tranglation. Note
that if none of the transitions takes place, skip is executed. The complete functionality of
mode_Active Lateral, including the sustaining condition, is shown in Figure 36.

26

#define at_T(x,y) X[previous] !=y && x[current] ==
#define at_F(x,y) X[previous] ==y && x[current] =y
if
[¥20*/ :: mode_Active_Lateral == HDG &&
at_HDG_Switch_Pressed->
mode_Active_Lateral[new] = ROLL;
[*21*/ :: mode_Active_Lateral == NAV &&
at_ NAV_Switch_Pressed ->
mode_Active Lateral[new] = ROLL;
[¥22*/ :: mode_Active_Lateral == NAV &&
at_NAV_Source_Change ->
mode_Active_Lateral[new] = ROLL;
[*23*/ :: mode_Active_Lateral == APPR &&
at APPR_Switch_Pressed ->
mode_Active Lateral[new] = ROLL;
[¥24*| :: mode_Active_Lateral == APPR &&
at_NAV_Source_Change ->
mode_Active_Lateral[new] = ROLL;
[*25* :: mode_Active_Lateral == GA &&
at_T(term_AP_Engaged) ->
mode_Active Lateral[new] = ROLL;
[*26*/ :: mode_Active_Lateral == GA &&
at_T(term_SYNC) ->
mode_Active_Lateral[new] = ROLL;
[*27* :: mode_Active_Lateral == GA &&
at_F(mode_Active_Vertical,GA) ->
mode_Active_Lateral[new] = ROLL;
[*28*/ :: mode_Active_Lateral I= HDG &&
at_HDG_Switch_Pressed ->
mode_Active_Lateral[new] = HDG;
[*29*/ :: mode_Active_Lateral 1= NAV &&
at NAV_Switch_Pressed ->
mode_Active_Lateral[new] = NAV;
/*30*/ :: mode_Active_Lateral I= APPR &&
at_APPR_Switch_Pressed ->
mode_Active_Lateral[new] = APPR;
[*31*/ :: mode_Active_Lateral[current] |= GA &&
at GA_Switch_Pressed ->
mode_Active_Lateral[new] = GA;
. else -> skip;
fi

Figure 35: Calculating the new value for an internal event-observable signal

if

i mode_Flight_Director == OFF -> mode_Active_Lateral[new] = BYTE_UNDEF;
:r at_T(mode_Flight_Director) -> mode_Active_Lateral[new] = ROLL;

;s else -> <contents of Figure 35>

fi

Figure 36: Representing a sustaining condition

4243 Internal Signals with No Observable Events

Consider theterm_Selected Heading (see Section 3.2.2). Its new value, corresponding to the
CoRE definition in Figure 3, is calcul ated as shown in Figure 37. We represent the previous
value of the expression term_Selected_Heading by the current value term_Selected_Heading,
because the notion of “previous” is relative.

27

If

- @HDG_Knob_Changed -> term_Selected_Heading[new'] =
MOD(term_Selected_Heading+term_HDG_Knob_Rotation,360)

:: else -> skip

fi

Figure 37: Calculating new value for an internal signal with no observable events

4.2.5 Checking on the Changes of Internal Signals

To check for the absence of the changesto internal signals, we use variable stable2. FGSM_1I
assigns stable2, as shown in Figure 38. Unlike the case of complex event-observable expressions
(cf. Section 4.2.2), here we monitor the “real” signal events that happen in the current event
cascading cycle. Hence the difference between the definiticshieb? andstable2'?, Figure 38,

and stable1?, Figure 33,

#define stable2?(x) X[new] == x[current]

#define stable2'?(x) x[new’] == x[current]

stable2 = < conjuncts for the other internal signals >
&& stable2(mode_Active_Lateral)
&& stable2'?(term_Selected_Heading)
&& < conjunctsfor the other internal signals >;

Figure 38: Checking the stability of theinternal signals

4.2.6 Updating Input Signals and Internal Signals

Figure 39 shows examples of updating signals of different types. Because no new values for
input signals are generated by FGSM _1, it is sufficient to update the previous values of input
signalsjust at thefirst iteration. Thus, no external events are observed for the rest of the
FGSM 11 iterations.

#update3(x) x[previous] = x[current]; x[current] = x[new]
#update2’'(x) X[current] = x[new’]

/* Updating input event-observable signals */
update2(mon_HDG_Switch);

/* Updating internal event-observable signals */
update3(mode_Active_Lateral);

/* Updating internal signals with no observable events */
update?'(term_Selected_Heading);

Figure 39: Updating input signals and internal signals

4.2.7 General Format of FGSM_II
The general format of FGSM _|1 iteration is presented in Figure 40.

28

[* Updating complex event-observable expressions (see Section 4.2.1) */
.. < Contents of Figure 32 >; ...
/* Checking on the changes of complex event-observable expressions (see Section 4.2.2) */

.. < Contents of Figure 33 >; ...

/* Checking on the absence of internal events (see Section 4.2.3) */
.. < Contents of Figure 34 >; ...

/* Computing new values for internal signals and event identifiers (see Section 4.2.4) */
... < Contents of Figure 35 >,.
.. < Contents of Figure 37 >,.
/* Checking the stability of internal signals (see Section 4.2.5) */

.. < Contents of Figure 38 >;.

[* Updating input signals and internal signals (see Section 4.2.6) */
.. < Contents of Figure 39 >,.

Figure 40: General format of FGSM_1I

4.3 FGSM Il

In this section, we describe the third part of FGSM simulation cycle, FGSM_lI, which updates

the duration variables that store how long the system has stayed in particular states. For example,
consider Figure 18, representing the AutoddbSENGAGE submode transition table. The
corresponding duration variahderation_Autopilot_ DISENGAGE_Warning is updated as shown in

Figure 41. Figure 41 also represents the general format of FGSM_III.

...<if-statements for other duration variables>;...

if

:: mode_Autopilot DISENGAGE == Warning -> duration_Autopilot DISENGAGE_Warning++
.. else -> duration_Autopilot DISENGAGE_Warning =0

fi;

...<if-statements for other duration variables>;...

Figure 41: General format of FGSM_lII

4.4 FGSM_ IV

In this section, we describe the general format of FGSM_IV, the fourth part of the FGSM loop. It
updates the output signals. Consicer_Vertical Arm_Color, shown inFigure 15. The part

of FGSM_IV generating a new value for this variable is shown in Figure 42, where

SHORT_UNDEF is defined outside the color rangecoh_Vertical Arm_Color. FGSM_IV is

the sequence of such statements for all the output signals. The order of the statements is
irrelevant.

29

...<if-statements for other output signals>;...

if

;2 con_Vertical Arm_Text[current] == EMPTY_STRING ->
con_Vertical_Arm_Color = SHORT_UNDEF,

:else -> con_Vertical_Arm_Color = White;
fi
...<if-statements for other output signals>;...

Figure 42;: General format of FGSM_1V

4.5 FGSM: General Format

The general format of FGSM is shown in Figure 43. The d-step statements are inserted to
facilitate model checking, as explained in Chapter 7. Figure 43 also includes some code related
to the validation of the system properties as explained in Chapter 5.

Init
{
d_step{

/* Signal declaration (see Section 3.2) */
< Contents of Figure 20>;

[* Signal initialization (see Section 3.3) */
< Contents of Figure 25>;
3
/* end d_step */
do :

/* Checking on the absence of stuttering (see Section 5.5) */
skip; progress:
/* Updating input signals (see Section 4.1) */

< Contents of Figure 31>;

d_step{
/* Updating internal signals (see Section 4.2) */
do :
< Contents of Figure 40>;
od;

/* Updating durations (see Section 4.3) */

< Contents of Figure 41>;
/* Updating output signals (see Section 4.4) */

< Contents of Figure 42 >;

/* Checking invariants (see Section 5.3) */
...< Contents of Figure 46>; ...
3
/* end d_step */
od
}
Figure 43: General format of FGSM

30

5 Formalizing the Required Properties

5.1 Completeness

The completeness of a CoRE specification is determined by the completeness of its selector and
condition tables. Weimplement selector and condition tables as PROMELA if-statements, so
that the completeness of a selector/condition table corresponds to the absence of deadlock. For
example, con_AP_Engage Switch_Lamp isdefined as shown in Figure 44. If this definition
were incomplete, a deadlock would occur because there is no el se branch in the if-statement.

If

. 'term_AP_Engaged -> con_AP_Engage_Switch_Lamp = Unlit
:: term_AP_Engaged -> con_AP_Engage_Switch_Lamp = Lit

fi

Figure 44: Representation of a condition table

To check for deadlocks we use the additional run-time option —q in SPIN verification.

5.2 Consistency

Consistency of a CoRE specification is determined by the consistency of its event and condition
tables. Consider the event table shown in Figure 44. To check its consistency, we introduce
COUNtercOUNT_term_AP_Engaged, Set too before control is passed to the table. We also precede
the table with the sequence of if-statements incremeQt®IT_ term_AP_Engaged if a transition

of the table can be triggered as shown in Figure 45. Then the consistency of the table is
expressed by the statement that COUNTive_Lateral <= 1.

COUNT _term_AP_Engaged = 0;

if

:: 'term_AP_Engaged -> COUNT _term_AP_Engaged ++;
:: else -> skip;

fi;

if

.. term_AP_Engaged -> COUNT_term_AP_Engaged ++;
:: else -> skip;

fi;

assert(COUNT_term_AP_Engages <= 1);

Figure 45: Checking on consistency of a condition table

We add such counters for each event or condition table.

5.3 Invariants
Invariants are translated into assert statements at the end of the FGSM cycle (see Figure 43). For
example, invariant INV-1, shown in Figure 7, is translated as shown in Figure 46.

31

assert(mode_Active_Lateral != GA || mode_Autopilot = DISENGAGED)

Figure 46: Invariant trandation

5.4 Unreachable Transitions
The SPIN model checker reports unreachable transitions as unreachable lines of code.

5.5 Stuttering

Stuttering prevents real -time system implementation. In our PROMELA model, stuttering
corresponds to infinite iteration of the internal FGSM_II cycle. To check for the absence of
stuttering, we put a progress label at the beginning of the external FGSM cycle (see Figure 43).
A progress label indicates that this control point should be reached infinitely often. Aninfinite
iteration of the internal FGSM _I1 cycle would contradict this requirement.

32

6 State Space Reduction

The huge state space of the FGS specification makes a direct validation by model checking
impossible. State explosion is acommon model -checking problem [6,14]. The state space
reduction techniques that we used to make the model checking feasible are

1. The supertrace algorithm for state exploration,
2. Multiple hashing,

3. Introducing d_step statements, and

4. Input signal abstractions.

Our trandation is already optimal because it isa single PROMELA process, which makes
reduction techniques related to processinterleaving, such as partial order reduction, unnecessary
[6]. The state reduction techniques for eliminating irrelevant entries [14] do not work for the
FGS specification, because the flight modes are mutually dependent. In the rest of this section we
describe the techniques we did use.

6.1.1 The Supertrace Algorithm

The model-checking strategy of SPIN requires it to generate the set of all reachable states. The

states are accumulated in accordance with the control flow of the analyzed program. The main

problem is to determine whether a current state has been already reached. The supertrace

agorithm [6] uses random number coding of states. The generated numbers are stored in a hash

table. When a state is analyzed, its number isfirst compared to those aready stored in the hash

table. If the number is new, so isthe state; and the state’s properties are analyzed. Otherwise, the
state is considered already analyzed and another search branch is chosen by backtracking. As two
different states may have the same encoding, there is a chance that some states may be not
analyzed. Thus, the supertrace method is not exhaustive—it can find errors, but not guarantee
correctness. Leébe the number of the analyzed states,dube the number of possible state
encodings determined by the size of the hash tabl&sMs. 0 the supertrace method

approaches fully exhaustive search.

6.1.2 Multiple Hashing

A hash function that generates state numbers is a parameter of the supertrace algorithm. In the
partial supertrace search, different hash functions will result in coverage of different parts of the
state space. Therefore, running the supertrace algorithm with different hash functions increases
the state space coverage. We ran the supertrace algorithm with 32 built-in hash functions.

6.1.3 Using d_st ep Statements

Thed_step statement introduces a deterministic sequence of code that is executed indivisibly [8].
No states are saved, restored, or checked withiaté sequence. Therefore, the spurious state
explosion due to control flow over deterministic code is eliminated. The only non-deterministic

33

part of FGSM is supposed to be the FGSM_|, which updates the values of input signals.’ We
insert the d_step statements accordingly (see Figure 43).

6.1.4 Input Variable Abstraction

We reduce the number of reachabl e states by decreasing the ranges of inputs while preserving the
validity of the verified properties. Consider, for example, input signal mon_VS Pitch_Count.
Itsrangeis[0..255]. However, only the event @CHANGED(mon_VS Pitch_Count) isused to
control flight modes; the actual value of mon_V S _Pitch_Count is used just to control output
variables. Since we are not interested in the properties of the output variables, we can treat
mon_VS Pitch_Count asabinary input signal. Some of theinput signals, like
mon_Indicated_Altitude, areirrelevant to the mode logic, and can be removed from the
specification atogether. Proceeding in thisway, we modified 12 out of 30 input signals as shown
in Figure 49.

Abstracting mon_Indicated_Airspeed (shown in Figure 49, Item 2) isabit different. The only
place that mon_Indicated_Airspeed influences the flight mode valuesisin the

mode_Over speed transition table, shown in Figure 47. The expression term_Vmo isactualy an
aircraft specific constant. Assuming that O < term_Vmo < 512, the range of

mon_Indicated Airspeed breaksinto threeintervals: [0.. term_Vmo], [term_Vmo.. term_Vmo
+ 10], and [term_Vmo +10..512]. Within each interval, the actual value of
mon_Indicated_Airspeed isirrelevant. Therefore, we reduce the range of
mon_Indicated_Airspeed to [0..2], avalue for each interval, and modify the mode_Over speed
transition table, as shown in Figure 48

Id From Events To

1 | SPEED_OK | @T(mon_Indicated Airspeed > (term_Vmo +10) AND TOO_FAST
NOT term_Above_Transition_Altitude)

2 | SPEED OK | @T(mon_Indicated Mach Number > (term_Mmo + 0.03) | TOO _FAST
AND term_Above Transition_Altitude)

3 | TOO_FAST | @T(mon_Indicated Airspeed <term_Vmo AND NOT SPEED_OK
term_Above Transition_Altitude)

4 | TOO_FAST | @T(mon_Indicated Mach Number < term_Mmo AND SPEED_OK
term_Above_Transition_Altitude)
Figure 47: mode_Overspeed transition table

Id From Events To

1 | SPEED_OK | @T(mon_Indicated Airspeed =2 AND NOT TOO_FAST
term_Above Transition_Altitude)

2 | SPEED_OK | @T(mon_Indicated Mach Number > (term_Mmo + 0.03) | TOO_FAST
AND term_Above Transition Altitude)

® We check on the determinism of the other code, as discussed in Section 5.2.

34

3 | TOO FAST | @T(mon_Indicated Airspeed =0 AND NOT SPEED OK
term_Above Transition_Altitude)

4 | TOO_FAST | @T(mon_Indicated Mach Number < term_Mmo AND SPEED_OK
term_Above_Transition_Altitude)

Figure 48: Modified mode_Overspeed transition table

Removing the irrelevant input signals from the specification is considered in [14]. However,
reducing input signal rangesis not considered there.

Signa Original range Modified range
1 | mon_VS Pitch_Count [0..255] [0.1]
2 | mon_Indicated_Airspeed [0..512] [0..2]
3 | mon_Indicated Altitude [-8000..56000] Removed
4 | mon_Pressure Altitude [-8000..56000] [0..1]
5 | mon_Roll_Angle [-180..180] [0..1]
6 | mon_Pitch_Angle [-90..90] Removed
7 | mon_Vertica Speed [-32.8..32.7] Removed
8 | mon_Heading [0..359] Removed
9 | mon_Nav_Source Frequency VNR [108..136] [0..1]
10 | mon_HDG_Count [0..255] Removed
11 | mon_Speed_Count [0..255] Removed

Figure 49: Input signal range modifications

35

7 Validation Results

Since the supertrace algorithm is a partial search algorithm, the absence of errorsin the supertrace
validation does not necessarily indicate the absence of errorsin the system. On the other hand,
errors found with the supertrace algorithm are definitely present. Our analysis found
specification errors of different severity: typos, unreachable transitions, and invariant violations.

7.1.1 Typos
Two Otypos detected by the PROMELA syntactic analyzer were undeclared variables (Figure
50)."

Item Typo Correction
Section A.9.2.2.1 @NAV_Source Changed @Nav_Source_Changed
INV-4 term_On_Ground mon_On_Ground

Figure 50: Typos detected

7.1.2 Unreachable Transitions

Consider the mode_Active Vertical/FL C transition table, shown in Figure 51. Transition 60 was
reported as unreachable code for the following reason. According to the definition of

term_Over speed, Figure 11, term_Over speed changes just one event-cascading microcycle
after mode_Over speed changes. The mode_Over speed transitions are triggered just by input
events. Thus, @T (term_Overspeed) can be truejust at the third microcycle. On the other hand,
according to Figure 9, mode Active Vertical can goto FL C either by transition 50 at the first
microcycle, or by transition 52 at a microcycle just after one with true term_Overspeed. Thus,
@T(mode_Active Vertical = FLC) can betrue either at the second microcycle, or after the third
microcycle. Therefore, condition @T(mode_Active Vertical = FLC) AND

@T (term_Over speed) is never true.

Id From Events To

58 | Entered @T(mode_Active Vertical = FLC) AND Track
NOT @T (term_Overspeed)

59 | Overspeed | @F(term_Overspeed) Track

60 | Entered @T(mode_Active Vertical = FLC) AND @T(term_Overspeed) | Overspeed

61 | Track @T (term_Overspeed) Overspeed

Figure 51: Flight level change submode transition table

A possible solution isto return to the previous version of the FGS specification [15] where
term_Over speed isused in Figure 51 instead of @T (term_Over speed).

10 The specification has undergone several manual inspections by its developers.

36

7.1.3 Invariant Violations

7131 INV-7
We detected aviolation of INV-7:

mode_Active Lateral = APPR/Track [term_Selected Nav_Type 0 {LOC, FMS}

term_Selected Nav_Type is defined by the following condition table:

Conditions term_Selected_Nav_Type
mon_Selected Nav_Source = FSM<N> FMS
mon_Selected Nav_Source = VNR<N> AND VOR

mon_Nav_Source Signal_Type<VNR<N>>=VOR

mon_Selected Nav_Source = VNR<N> AND LOC
mon_Nav_Source_Signal_Type<VNR<N>>=LOC

Figure 52: Definition of term_Selected Nav_Type
The error trace starts from a state where
1. mode Active Lateral = APPR/Track
2. mon_Selected_Nav_Source=VNR<N>
3. mon_Nav_Source Signal_Type<VNR<N>>=LOC.
According to Figure 52, term_Selected_Nav_Type I= LOC inthe state, so INV-7 initially holds.
At the next simulation cycle, let mon_Nav_Source _Signal_Type<VNR<N>> changesto VOR.
According to Figure 52, term_Selected_Nav_Type change from LOC to VOR. However,
mode_Active L ateral remains the same, while it should not. The error ispossibly because the
change of term_Selected_Nav_Type does not invoke event @NAYV_Source_Change triggering
transition 24, shown in Figure 8.

@NAYV_Source Changeisdefined as shown in Figure 53. The error is easy to fix by redefining
@NAYV_Source Change as shown in Figure 54.

37

@Nav_Source Change: event = @CHANGED(mon_Selected Nav_Source) OR
(@CHANGED(mon_Nav_Source Frequency<mon_Selected Nav_Source>)

WHEN term_Selected Nav_Type [0 {VOR, LOC})

Figure 53: Definition of @Nav_Source_Change

@Nav_Source_Change: event = @CHANGED(mon_Selected Nav_Source) OR
((@CHANGED(mon_Nav_Source_Frequency<mon_Selected Nav_Source>)
OR @CHANGED(mon_Nav_Source Signal_Type<VNR>))

WHEN term_Selected Nav_Type [({ VOR, LOC})

Figure 54: Modified definition of @Nav_Source_Change

7132 INV9
We dso detected a violation of INV-9:

mode_Altitude Select = ACTIVE = mode Active Vertical=ALTSEL

The altitude select ENABLED submode transition table is shown in Figure 55.

Id | From Events To

64 | ARMED | @T(term_ALTSEL_Cond = Capture AND ACTIVE
Duration(INMODE) > const_ min_armed_period)

65 | ACTIVE | @F(mode_Active Vertical J{ APPR, GA, ALTHOLD, ALTSEL}) | ARMED

Figure 55: Altitude select ENABLED submode transition table
The error trace starts from a state where
1. mode Altitude Select = ARMED,
2. mode Active Vertical =FLC,
3. Theeventstriggering transition 46, in Figure 9, and transition 64, in Figure 55, occur.

Theerror trace is shown in Figure 56. The event triggering transition 46 isinput event
@ALT_Switch_Pressed. The event triggering transition 64 isinternal event

@T (term_ALTSEL_Cond = Capture AND Duration(INMODE) >
const_min_armed_period). Therefore, the error trace does not violate the FGS assumption
about admissible simultaneous events (see Section 4.1). This assumption isreally an assumption
of determinism. In the situation above, determinism is maintained, but an invariant is viol ated.
We do not see an obvious way to correct the problem. Several ways to handle simultaneous
events are discussed in [1]. In any case, the discussed violation is an inherent feature of the
system functionality and should be resolved by the specification designers. We have reported all
of the detected errors to the devel opers of the FGS specification.

38

mode_Altitude Select

mode Active Vertical

ARMED
Transition 64
ACTIVE/Capture
Transition 63
CLEARED
Transition 62
ARMED

None

FLC
Transition 46
ALTHOLD
Transition 43
ALTSEL
None
ALTSEL

None

Figure 56: An error trace

39

8

Conclusion

8.1 Project Results
The project has achieved the following results:

1)

2)

3)

4)

We devel oped atechnigue for trand ating the extended CoRE formalism (including event
cascading, continuous events and partialy defined internal signals) into PROMELA, the
input language of SPIN. The trandation is optimal for model checking because

a) Theresulting specification consists of asingle PROMELA process, which consequently
has no interleaving,

b) Thedeterministic part of the target code (all but the generation of the input signal values)
can betreated as a d-step, eliminating the state explosion due to the internal control flow.
This assumes that the CoRE specification is consistent.

Within the PROMELA model we represented certain basic CoRE requirements:
a) Completeness,

b) Consistency,

¢) Invariants,

d) The absence of unreachable transitions, and

€) The absence of stuttering.

We applied the advanced state-space reduction techniques in handling the large state space of
the FGS specification, in order to make the model checking feasible:

a) The supertrace agorithm,

b) Multiple hashing, and

¢) Input variable abstraction.

As aresult, we detected several specification errors of different degrees of importance:
a) Typos,

b) Unreachable transitions, and

¢) Invariant violations, including an intricate one due to unexpected simultaneous events.

8.2 Directions For Future Work
We propose the following directions for future work:

40

1) Implement atransator from CoRE to PROMELA, based on the trangl ation techniques we
have devel oped,

2) Develop new methods of state space reduction, and

3) Trandatethe FGS specification into RSML, Verilog, or VHDL, and validate it using related
state exploration methods. An especially interesting possibility isto use symbolic model
checking procedures based on binary decision diagrams[16]. In many cases these procedures
can exhaustively analyze models with state spaces much bigger than those analyzed by
traditional methods.

41

References

1. Steven P. Miller and Karl F. Hoech. Specifying the Mode Logic of a Flight Guidance System
in CoRE, Version 1.1. Technica Report, pp. 109. Collins Commercial Avionics, Rockwell
International, June 17, 1997.

2. David Hughes and Michael Dornheim. Automatic Cockpits: Who's in Charge? : Parts | & 1l
Aviation Week & Space Technology, January 30 — February 6, 1995.

3. Stuart R. Faulk, Lisa Finneran, James Kirby, and Assad M@aonsortium Requirements
Engineering Guidebook. Technical Report SPC-920600-CMC, Software Productivity
Consortium, Herndon, VA, December, 1993.

4. The VIS Group. VIS: A system for Verification and Synthesis. InPtfaeeedings of the 8th
International Conference on Computer Aided Verification, pp. 428-432, Springer, Lecture
Notes in Computer Science 1102. Edited by R. Alur and T. Henzinger, New Brunswick, NJ,
July 1996

5. FormalCheckl Home. http://www.bell-labs.com/project/formalcheck/index.html

6. Gerard J. Holzmanmesign and Validation of Computer Protocols. Prentice Hall, 1991.

7. CV: A Model Checker for VHDL.http://www.cs.cmu.edu/~modelcheck/cv/project.html

8. On-The-Fly, LTL Model Checking With SPIN.
http://www.netlib.no/netlib/spin/whatispin.html

9. Nancy G. Levenson, Mats P.E. Heimdahl, Holly Hildreth, Jon D. Reese. Requirements
Specification for Process-Control SystemsIHRE Transactions on Software Engineering,
vol. 20, no. 9, pp. 684—107, 1984.

10. IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-1993, IEEE Standards,
1994.

11. Donald E. Thomas and Philip R. Moorbyhe Verilog Hardware Description Language.
Kluwer Academic Publishers, 1991.

12. Mats P.E. Heimdahl and Nancy Leveson. Completeness and Consistency Analysis of State-
Based Requirements. IREE Transactions on Software Engineering, May 1996.

13. D. Harel. Statecharts: A visual formalism for complex systefusence of Computer
Programming, 8, pp. 231—274, 1987.

14. Ramewsh Bharadwaj, Constance Heitmeyer. Verifying SCR requirements specifications
using state explorations. Rroceedings of the First ACM SIGPLAN Workshop on Automatic
Analysis of Software, January 1997.

15. Steven P. Miller and Karl F. Hoech. Specifying the mode logic of a flight guidance system in
CoRE. Technical Report, pp. 107. Collins Commercial Avionics, Rockwell International,
April 4, 1997.

42

16. Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. McMillan, David L. Dill.
Symbolic model checking for sequentia circuit verification. In IEEE Transactions on
Computer-aided Design of Integrated Circuits and Systems, vol. 13(4), 1994.

43

Appendix
A Implementing Event Broadcasting in PROMELA

In this section, we discuss how to formalize triggering-processes-by-event-broadcasting in
PROMELA. The discussion suggests that afeasible formalization would regquire N global
variables, where N is the sum of the lengths of the sensitivity lists of the running processes.

Consider a CoRE specification consisting of three classes, A, B, and C, tracking integer signals x,
y and z respectively. Let x be arandomly generated input signal, y=x+1, and z= z-1. A naive
formalization of classes A, B and C as concurrent PROMELA processes would look as follows:

bit x, y;
proctype A ()
{

do

2x=0
nx=1

od

}

proctype B ()
{

do
ny=x-1
od

proctype C ()
{

do

nz=x+1

od

}
init {run A();run B(); run C()}

However, this program is not adequate to the given specification because of the following
program trace:

x |0 2 3 1.
y|l0o o 2 2.

z |0 3 3 3.

Figure57: A programtrace

This trace shows that procesged andC run asynchronously, and sharing domain variable
does not enforce their synchronization. One possible way to enforce the synchronization is to
introduce a flow control flags in_B andx_in_C corresponding to the sensitivity list of the
running copies oB andC as follows:

44

bit x, y;

bool x_in_B, x_in_C;
proctype A ()

{

do
nx_in_ B&&x in_ C->
if

X X
I n
= O

fi
x_in_B=0;
x_in_C=0;

od

}

proctype B ()

{
do

Dxin_B->y=x1;xin_B=0
od

}
proctype C ()

{
do

nx in C->z=x+1;xin_ C=0
od

}
init {run A(); run B(); run C()}

In general, weintroduce one control flag for each signal in the sensitivity list of a process, for
each running copy of the process. (This means that we would aso have to distinguish the
declarations of the running copies of a process.) Using channels for process synchronization
seems even less efficient since it would also require additional variablesto read from the
channels. Even assuming that afinal implementation of the CoRE specification has explicit flow
control, it isreasonable to avoid it on the early stages of design as a source of additional errors.

45

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regardingthis burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1998 Contractor ReEort

4. TITLE AND SUBTITLE
Flight Guidance System Validation using SPIN

5. FUNDING NUMBERS

522-33-31-01
NAS1-20335

6. AUTHOR(S)
Dimitri Naydich and John Nowakowski

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Odyssey Research Associates
Cornell Business & Research Park
33 Thornwood Drive
Ithaca, NY 14850-1250

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-2199

NASA/CR-1998-208434

11. SUPPLEMENTARY NOTES
Langley Technical Monitor: Ricky W. Butler
Final Report, Task 7

[T12a. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited

Subject Category 59 Distribution: Standard
Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13, ABSTRACT (Maximum 200 words)

To verify the requirements for the mode control logic of a Flight Guidance System (FGS) we applied SPIN, a
widely used sofware package that supports the formal verification of distributed systems. These requirements,
collectively called the FGS specification, were developed at Rockwell Avionics & Communications and
expressed in terms of the Consortium Requirements Engineering (CoRE) method. The properties to be verified
are the invariants formulated in the FGS specification, along with the standard properties of consistency and
completeness. The project had two stages. First, the FGS specification and the properties to be verified were
reformulated in PROMELA, the input language of SPIN. This involved a semantics issue, as some constructs
of the FGS specification do not have well-defined semantics in CoRE. Then we attempted to verify the
requirements’ properties using the automatic model checking facilities of SPIN. Due to the large size of the state
space of the FGS specification an exhaustive state analysis with SPIN turned out to be impossible. So we used
the supertrace model checking procedure of SPIN that provides for a partial analysis of the state space. During
this process, we found some subtle errors in the FGS specification.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Formal Methods, Software Verification, Flight Guidance, Model Checking 50
16. PRICE CODE
A03
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION
OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z-39-18
298-102

