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Abstract

The Lighthill acoustic analogy, as embodied in the Ffowcs Williams{Hawkings (FW{H) equation, is com-

pared with the Kirchho� formulation for moving surfaces. A comparison of the two governing equations

reveals that the primary advantage of the Kirchho� formulation (namely that nonlinear 
ow e�ects are

included in the surface integration) is also available to the FW{H method if the integration surface used

in the FW{H equation is not assumed to be impenetrable. The FW{H equation is analytically superior

for aeroacoustics because it is based on the conservation laws of 
uid mechanics rather than on the wave

equation. Thus, the FW{H equation is valid even if the integration surface is in the nonlinear region. This

advantage is demonstrated numerically. With the Kirchho� approach, substantial errors can result if the

integration surface is not positioned in the linear region, and these errors may be hard to identify. Finally,

new metrics, based on the Sobolev norm, are introduced that may be used to compare input data for both

quadrupole noise calculations and Kirchho� noise predictions.

Nomenclature

c = sound speed in quiescent medium

dS = element of the integration surface area

f = 0 = function that describes the integration surface

H(f) = Heaviside function, H(f) = 0 for f < 0 and H(f) = 1 for f > 0

LM = LiMi

Li = components of vector de�ned in Eq. (15)

Lr = Lir̂i
_Lr = _Lir̂i
M = local Mach number vector of source, with components Mi

M = jMj

MAT = advancing-tip Mach number

MH = hover tip Mach number

Mn = Mach number of source in direction normal to source surface, Min̂i
Mr = Mach number of source in radiation direction, Mir̂i
_Mr = _Mir̂i
n̂ = unit outward normal vector to surface, with components n̂i
Pij = compressive stress tensor with constant po�ij subtracted

p = pressure

p0 = acoustic pressure, p� po outside source region p0 � c2�0 on the left-hand side

of FW{H and Kirchho� equations

QKIR = symbol for Kirchho� equation source terms de�ned in Eq. (8)

R = rotor radius

r = distance between observer and source, r = jx� yj

r̂ = unit vector in the radiation direction, with components r̂i; r̂ = (x� y)=r

Tij = Lighthill stress tensor, �uiuj + Pij � c2�0�ij
t = observer time

*Presented at the American Helicopter Society 53rd Annual Forum, Virginia Beach, VA, April 29{May 1, 1997. This revision

of the paper is published in the AIAA Journal, Vol. 36, No. 8, August 1998, pp. 1379{1386.
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Ui = components of vector de�ned in Eq. (14)

Un = Uin̂i
_Un = _Uin̂i

U _n = Ui _̂ni
ui = components of local 
uid velocity

un = uin̂i
vn = local normal velocity of source surface

x = observer position vector, with components xi
y = source position vector, with components yi
�(f) = Dirac delta function

�ij = Kronecker delta, �ij = 1 for i = j, otherwise �ij = 0

� = advance ratio

� = density of 
uid

�0 = density perturbation, �� �o
� = source time

2 = wave operator, 2 �
1

c2
@2

@t2
�r2

Subscripts:

L = loading noise component

o = 
uid variable in quiescent medium

Q = quadrupole noise component

ret = quantity evaluated at retarded time, � = t� r=c

T = thickness noise component

Note: Summation convention is used in this paper when vector or tensor components have indices i and j.

A dot over a symbol indicates source-time di�erentiation, @=@� .

Introduction

A great deal of progress has been made in recent years in the prediction of rotating-blade noise through

methods that utilize �rst principles. Several reasons account for this progress. First, a detailed and fun-

damental understanding of how rotor blades generate noise has been gained through several acoustic wind-

tunnel and 
ight tests. Secondly, a rigorous theoretical basis for predicting the noise that is generated by

rotating blades has been developed. In fact, several prediction methodologies with a solid physical and

mathematical basis are currently available: formulations based upon the Lighthill acoustic analogy [1] (in

particular, the Ffowcs Williams and Hawkings (FW{H) equation [2]) and the Kirchho� formulations for both

subsonic and supersonic moving surfaces [3, 4].

In their 1969 paper, Ffowcs Williams and Hawkings [2] utilized the powerful technique of generalized func-

tion theory to develop both the equation that has become associated with their names and the governing

equation of the Kirchho� formulation for moving surfaces. The FW{H equation is an exact rearrangement of

the continuity equation and the Navier{Stokes equations into the form of an inhomogeneous wave equation

with two surface source terms (monopole and dipole) and a volume source term (quadrupole). Although the

quadrupole source contribution is insigni�cant in many subsonic applications, substantially more computa-

tional resources are needed for volume integration when the quadrupole source is required. The expression

of the aeroacoustic noise problem as a Kirchho� problem received little attention for many years because the

method of deriving the FW{H equation is e�cient and physically illuminating. The governing equation of

the Kirchho� formulation for moving surfaces is an inhomogeneous wave equation in which the sources are

distributed on a �ctitious surface (i.e., the Kirchho� surface) which encloses all of the physical sources. The

Kirchho� formulation is attractive because no volume integration is necessary. Until recently, the source

strength information on the Kirchho� surface was not readily available for problems of aeroacoustic signif-

icance because the discipline of computational 
uid dynamics (CFD) was not mature enough. Today, both

the FW{H and Kirchho� methods are viable alternatives for the aeroacoustic noise problem.

Although the availability of more than one formulation for predicting noise is useful, no clear consensus

exists on which method to choose for a particular application. Recently, Brentner et al. [5] compared

the helicopter rotor noise prediction code WOPWOP+ [6{8], which uses a FW{H based formulation that
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includes an approximate quadrupole calculation, with a rotating Kirchho� code RKIR [9, 10]; this study

showed that both methods can predict the rotor noise equally well. In that work, however, neither method

was demonstrated to be clearly superior. It was di Francescantonio [11] who �rst to demonstrated that

for far-�eld helicopter rotor noise prediction the FW{H approach can be used on a �ctitious surface that

does not correspond to a physical body|exactly like the Kirchho� approach. Reference 11 demonstrates

that when the FW{H approach is applied on a Kirchho�-type surface that the quadrupole sources enclosed

by the surface are accounted for by the surface sources. Furthermore, di Francescantonio concludes that

a main advantage to using the FW{H approach over the Kirchho� approach is that the FW{H method

does not require a knowledge of @p=@n (which can be troublesome to compute) on the integration surface.

Nevertheless, no clear advantage to using the FW{H method over the Kirchho� method is evident in di

Francescantonio's numerical comparisons. Pilon and Lyrintzis [12] also tried to explain the relationship

between the FW{H and Kirchho� methods and derived a form of the FW{H equation that can be utilized

like a Kirchho� method; however, their results are di�cult to follow and ambiguous.

Dissatisfaction with the previous attempts to explain the relationship between the FW{H and Kirchho�

approaches has lead to the main purpose of this paper: to analytically compare these two acoustic predic-

tion methodologies and to reduce the general confusion that currently exists among potential aeroacoustic

formulation users about the relationship between the two methods. This purpose necessarily includes a

comparison of how the governing equations are derived, with the di�erences in the derivations highlighted.

Both analytical and numerical comparisons are utilized to determine whether one method has a clear advan-

tage over the other in terms of e�ciency, accuracy, and robustness. Finally, a useful metric for comparing

formulations is outlined.

Advantages and Disadvantages

First, the advantages and disadvantages of both the FW{H and Kirchho� formulations must be considered

in order to understand the motivation for a more in-depth analysis.

FW{H

Approach

The FW{H approach has several advantages over the Kirchho� method. First, the three source terms in

the FW{H equation each have physical meaning, which is helpful in understanding the noise generation. The

thickness noise (monopole source) is determined completely by the geometry and kinematics of the body.

The loading noise (dipole source) is generated by the force that acts on the 
uid as a result of the presence of

the body. The classi�cation of thickness and loading noise is related to the thickness and loading problems

of linearized aerodynamics. Thus, this terminology is consistent with that of aerodynamics. The quadrupole

source term accounts for nonlinear e�ects (e.g., nonlinear wave propagation and steepening; variations in

the local sound speed; and noise generated by shocks, vorticity, and turbulence in the 
ow �eld) [13{15].

All three source terms are interdependent, yet their physical basis provides information that can be used

to design quieter rotors. The separation of the source terms also is an advantage numerically because not

all terms must be computed at all times if a particular source does not contribute to the sound �eld (e.g.,

for low-speed 
ow, the quadrupole source term may be neglected; in the rotor plane, thickness noise is

dominant). A �nal advantage of FW{H-based computer codes is that these codes are relatively mature and

have robust numerical algorithms that have been validated for many aeroacoustic problems of industrial

interest. These same numerical algorithms may encounter new di�culties when applied to Kirchho�-type

integration surfaces because the variation in retarded time is substantially greater over a large surface and the

individual panel size can also be signi�cantly larger. The main disadvantage of the traditional application

in the FW{H method is that to predict the noise of bodies moving at transonic speeds the quadrupole

source must be included. Thus, the quadrupole|which is a volume source|ultimately requires a volume

integration of the entire source region. Volume integration is computationally expensive and can be di�cult

to implement. Although the computational e�ort can be reduced by approximating the quadrupole [7,8], it

cannot be avoided completely. This problem is not unique to rotor calculations.

Kirchho� Approach

The Kirchho� approach does not require volume integration because it has only surface source terms.

Hence, the Kirchho� method has been used for the past few years in the prediction of transonic rotor noise.

Unlike the FW{H source terms, however, the Kirchho� source terms are not easily related to thickness,
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loading, nonlinear e�ects, or indeed any physical mechanisms. The Kirchho� source terms provide little

guidance for design. Another disadvantage of the Kirchho� method is that the Kirchho� surface must be

chosen to be in the linear 
ow region, such that the input acoustic pressure p0 � p� po and its derivatives

@p0=@t and @p0=@n are compatible with the wave equation. The location of the linear region is not well

de�ned and is problem dependent. Ideally, the Kirchho� surface should be placed well away from the source

region, but CFD solutions typically are not as well resolved or as accurate away from the body. Hence, the

placement of the Kirchho� surface is usually a compromise.

Analytical Comparison

Now that the general characteristics of both the FW{H and Kirchho� formulations have been described,

a more detailed comparison is presented. First, we consider the development of the governing equations of

both approaches to gain insight into the validity of each formulation. Then, an assessment of an integral

formulation for subsonic source motion is provided.

Governing Equations

FW{H

Equation

The FW{H equation [2] is the most general form of the Lighthill acoustic analogy and is appropriate

for predicting the noise generated by the complex motion of helicopter rotors. The FW{H equation can

be derived by embedding the exterior 
ow problem in unbounded space by using generalized functions to

describe the 
ow �eld. Consider a moving surface f(x; t) = 0 with a stationary 
uid outside. The surface

f = 0 is de�ned such that rf = n̂, where n̂ is a unit normal vector that points into the 
uid. Inside f = 0,

the generalized 
ow variables are de�ned as having their free-stream values; that is

~� =

�
� f > 0

�o f < 0
(1)

f�ui =
�

�ui f > 0

0 f < 0
(2)

and

ePij =
(

Pij f > 0

0 f < 0
(3)

where the tilde indicates that the variable is a generalized function de�ned throughout all space. On the

right side, �, �ui, and Pij are the density, the momentum, and the compressive stress tensor, respectively.

Note that we have absorbed the constant �po�ij into the de�nition of Pij for convenience; hence, for an

inviscid 
uid, Pij = p0�ij . Free-stream quantities are indicated by the subscript o, and �ij is the Kronecker

delta.

By using de�nitions of Eqs. (1){(3), a generalized continuity equation can be written as

�@~�

@t
+

�@f�ui
@xi

= (�0
@f

@t
+ �ui

@f

@xi
)�(f) (4)

where the bar over the derivative operators indicates that generalized di�erentiation (i.e., di�erentiation of

generalized functions) is implied and �0 � � � �o. Also note that @f=@t = �vn, @f=@xi = n̂i, and �(f) is

the Dirac delta function. This generalized continuity equation is valid for the entire space, both inside and

outside the body. The generalized momentum equation can be written as

�@f�ui
@t

+
�@�̂uiuj

@xj
+

�@ ~Pij

@xj
=

�
�ui

@f

@t
+ (�uiuj + Pij)

@f

@xj

�
�(f) : (5)
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Now if we take the time derivative of Eq. (4), subtract the divergence of Eq. (5), and then rearrange terms,

the FW{H equation can be written as the following inhomogeneous wave equation:

2p0(x; t) =
�@2

@xi@xj

�
TijH(f)

	

�
@

@xi

n
[Pij n̂j + �ui(un � vn)]�(f)

o

+
@

@t

n
[�ovn + �(un � vn)]�(f)

o
(6)

where Tij is the Lighthill stress tensor, un is the 
uid velocity in the direction normal to the surface f = 0,

and vn is the surface velocity in the direction normal to the surface. On the left side we use the customary

notation p0 � c2�0 because the observer location is outside the source region. In this derivation, we follow

the mathematical procedure for deriving the FW{H equation given by Farassat [16].

Often in the derivation of the FW{H equation, the surface f = 0 is assumed to be both coincident with

the physical body surface and impenetrable (un = vn). That assumption is not necessary and has not been

made in Eq. (6) so that the equation may be compared more directly with the governing equation of the

Kirchho� formula for moving surfaces. Ffowcs Williams and Hawkings used slightly di�erent mathematical

manipulations [2], but clearly they understood that choosing the integration surface coincident with the

physical body was not necessary (even though Ref. 2 was dealing with physical surfaces). Ffowcs Williams

presented Eq. (6) in various references (e.g., section 9.2 in Ref. 17 and section 11.10 in Ref. 18) and described

several possible implications of a permeable surface f = 0 in section 11.10 of Ref. 18. Recently, di Frances-

cantonio [11]|apparently unaware of Ffowcs Williams work|rederived Eq. (6) with essentially the same

method as presented here calling it the KFWH (Kirchho�|FW{H ) formula to emphasize the fact the he

used a surface f = 0 which was o� the body and permeable. Pilon and Lyrintzis [12] also treated the FW{H

on a permeable surface calling it an improved Kirchho� method. (The results of Pilon and Lyrintzis are

ambiguous because the substitution p0 = c2�0 was made in three source terms without explanation (Eq. (11),

Ref. 12). Although this substitution is correct if p0 is de�ned as c2�0, we believe this ambiguity will lead to

confusion and errors in practice.) We prefer to continue to refer to Eq. (6) as the FW{H equation, rather

than the KFWH or improved Kirchho� method, because Ffowcs Williams published it �rst.

Kirchho� Equation

The development of the Kirchho� formulation utilizes the same mathematical style and rigor as used in

the derivation of the FW{H equation. The di�erence is that the domain is now considered in terms of wave

propagation. The surface f = 0 is de�ned such that the acoustic sources are contained inside the surface.

Then, the acoustic pressure p0(x; t) (or any other variable) is extended such that

ep0 = �
p0 f > 0

0 f < 0
(7)

and the generalized wave equation|which is the governing equation for the Kirchho� formulation|becomes

2p0(x; t) =�
�@p0
@t

Mn

c
+

@p0

@n

�
�(f)

�
@

@t

h
p0
Mn

c
�(f)

i
�

@

@xi

h
p0n̂i�(f)

i
� QKIR (8)

where Mn = vn=c. Ffowcs Williams and Hawkings derived this equation in Ref. 2. In this equation, p0 must

be compatible with the wave equation (i.e., a solution of the wave equation on f = 0); hence, Eq. (8) is

valid only in the region of the 
uid in which the wave equation is the appropriate governing equation. (See

Farassat and Myers [3, 4] for more details.)

Source Term Comparison

It is well known that the wave equation can be derived directly from the conservation laws of 
uid

mechanics; however, our objective in this paper is to show how Eq. (8) is related to the FW{H equation
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(Eq. (6)). To that end, we add and subtract terms to the inviscid form of Eq. (6) to manipulate the source

terms into the form of Eq. (8). This manipulation yields

2p0(x; t) = QKIR +
�@2

@xi@xj
[TijH(f)]

+
�@p0
@t

Mn

c
+

@p0

@n

�
�(f) +

@

@t

�
(p0 � c2�0)

Mn

c
�(f)

�

�
@

@xi

�
�ui(un � vn)�(f)

�
+

@

@t

�
�un�(f)

�
: (9)

If we note that

�@2H(f)

@t@xi
=

@

@t

h
n̂i�(f)

i
= �

@

@xi

h
vn�(f)

i
(10)

and utilize the continuity and momentum equations, then we can rewrite Eq. (9) as

2p0(x; t) = QKIR +
�@2

@xi@xj

�
TijH(f)

�

+
@

@t

�
p0 � c2�0

�Mn

c
�(f) +

@

@t

�
(p0 � c2�0)

Mn

c
�(f)

�

�
@

@xj

�
�uiuj

�
n̂i�(f)�

@

@xi

�
�uiun�(f)

�
: (11)

This form of the FW{H equation is useful because the source terms that are not found in the Kirchho�

governing equation can be easily identi�ed. This form of the FW{H equation is an important new result of

this paper. The additional source terms not included in the Kirchho� governing equation are second order

and may be neglected in the linear 
ow region. This result was precisely Lighthill's original premise|the

wave equation is the appropriate governing equation outside a limited source region. In fact, when p0 = c2�0,

Eq. (11) becomes

2p0(x; t) = QKIR +
�@2�uiuj

@xi@xj
H(f) : (12)

Notice that the Heaviside function has been taken out of the quadrupole source term of Eq. (11) in the

manipulations that lead to Eq. (12). The only remaining source term that is not in Eq. (8) is clearly second

order in the perturbation quantity ui. This term would be neglected in the derivation of the wave equation

from the 
uid conservation laws. Hence, we show that the FW{H and Kirchho� formulations are indeed

equivalent when the integration surface is placed in the linear region of the 
ow (i.e., where the input data

are compatible with the wave equation).

The FW{H equation and the Kirchho� governing equation di�er signi�cantly, however, when the integra-

tion surface is in the source region. The implications of this di�erence are demonstrated later with numerical

examples. If the FW{H equation integration surface is on the body or in the source region, the quadrupole|

a volume source term|must be included to accurately predict the noise. Therefore, we can infer that as

we move the integration surface of the FW{H equation away from the body the contribution of the volume

quadrupole contained within the integration surface must now be accounted for by the surface source terms.

This has been shown by di Francescantonio [11] to be the case for a hovering helicopter rotor. We provide

a numerical demonstration later in the paper.

For completeness, Eq. (11) can be simpli�ed by canceling terms and the rearranging; the result is

2p0(x; t) = �
�@c2�0

@t

Mn

c
+

@�ui

@t
n̂i
�
�(f)

�
@

@t

�
c2�0

Mn

c
�(f)

�
�

@

@xi

�
(p0n̂i + �uiun)�(f)

�

+
@2

@xi@xj

�
TijH(f)

�
: (13)
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Notice that the surface source terms in Eq. (13) are closely related to Eq. (8). In fact, by substituting c2�0

for p0 in the time derivative terms in Eq. (8) and �uiuj+p0�ij for p
0 in the spatial derivative terms we obtain

the surface source terms in Eq. (13). (The momentum equation is used to exchange @(�uiuj + p0�ij)=@xj
with �@�ui=@t in Eq. (13).) Although the relationship between Eq. (13) and Eq. (8) is interesting, Eq. (13)

has two pitfalls: it is not easily recognized as the FW{H equation, and no clear connections can be made

between the form of the source terms and the problem physics.

An Integral Formulation

Now that the relationship between the FW{H equation and the Kirchho� formulation has been established

at the governing equation level, we develop an applicable integral form that is appropriate for subsonic source

motion. This form is needed for the ultimate implementation and numerical comparison of the di�erent

formulations.

Equation (6) is the appropriate form of the FW{H equation from which to develop an integral represen-

tation the the same form as the traditional application of the FW{H equation. A great simpli�cation comes

if we, following di Francescantonio [11], now de�ne new variables Ui and Li as

Ui = (1�
�

�o
)vi +

�ui

�o
(14)

and

Li = Pij n̂j + �ui(un � vn) : (15)

We have chosen slightly di�erent but equivalent de�nitions from those in Ref. 11 because � and �ui are

conservation variables that are often utilized in CFD codes. With these de�nitions, the FW{H equation may

be written in its standard di�erential form as

2p0(x; t) =
@2

@xi@xj
[TijH(f)]

�
@

@xi
[Li�(f)] +

@

@t
[(�oUn)�(f)] : (16)

This equation is particularly useful because formulation 1A (due to Farassat [6,19]) can be utilized directly

to write an integral representation of the solution as

p0(x; t) = p0T (x; t) + p0L(x; t) + p0Q(x; t) (17)

where

4�p0T (x; t) =

Z
f=0

��o( _Un + U _n)

r(1�Mr)2

�
ret

dS

+

Z
f=0

��oUn(r _Mr + c(Mr �M2))

r2(1�Mr)3

�
ret

dS ; (17a)

4�p0L(x; t) =
1

c

Z
f=0

� _Lr

r(1�Mr)2

�
ret

dS

+

Z
f=0

� Lr � LM

r2(1�Mr)2

�
ret

dS (17b)

+
1

c

Z
f=0

�Lr(r _Mr + c(Mr �M2))

r2(1�Mr)3

�
ret

dS ;

and p0Q(x; t) can be determined by any method that is currently available. (Ref. 8 gives an approximate

quadrupole formulation; Refs. 19 and 6 give the derivation of Eqs. (17a) and (17b).) In Eq. (17), the
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dot over a variable implies source-time di�erentiation of that variable, LM = LiMi, and a subscript r or n

indicates a dot product of the vector with the unit vector in the radiation direction r̂ or the unit vector in

the surface normal direction n̂, respectively.

Current rotor noise prediction codes can easily be modi�ed to accommodate this new implementation of

the FW{H equation. The major di�erence is that the integration surface is no longer restricted to the rotor

blade surface, and in addition to p0 the values of � and �ui are needed as input. When the integration

surface does correspond to the blade surface, the separation of source terms into thickness, loading, and

quadrupole noise still has physical meaning; otherwise, the separation of the source terms into p0T , p
0
L, and

p0Q is only mathematical. Hence, the ability to give physical interpretation to the source terms continues to

be a distinct and unique advantage of the FW{H equation.

Numerical Comparison of Formulations

Although we have shown analytically that the FW{H formulation has advantages over the Kirchho�

formulation, the deciding factor is how these methods compare in practice. Some comparisons have already

been made (e.g., Refs. 5, 11, and 20). In Ref. 11, di Francescantonio concludes that a main advantage to

applying the FW{H equation on a Kirchho�-type integration surface is that interaction with CFD codes is

easier because the normal derivative of pressure is no longer required. If this were the only advantage (indeed

we recognize that the normal derivative calculation can be cumbersome), then a simple solution would be

to make the substitution

@p

@n
= �n̂i

@�ui

@t
(18)

in Eq. (8). This result is simply the linear normal momentum equation, which is applicable in the linear


ow region. Nevertheless, we have identi�ed other advantages that we now demonstrate numerically.

For this work, the RKIR code (rotating Kirchho� formulation) originally developed by Lyrintzis et al. [10]

has been extensively modi�ed to test the numerical implementation of Eq. (17) without the quadrupole

source term. We refer to the modi�ed code as FW{H/RKIR here. The RKIR code was chosen as the

platform to test the new FW{H implementation primarily because it already performs integration on a

surface that is positioned some distance from the rotor blade and has been coupled to the full-potential


ow solver FPRBVI [21, 22]. The numerical accuracy of both the RKIR and FW{H/RKIR codes will be

very similar because the quadrature is based upon the the CFD grid|i.e., all retarded time computations

and quadrature points are identical for these two codes. A third code, WOPWOP+ [8], which utilizes the

traditional FW{H implementation (surface integration on the blade surface together with an approximate

quadrupole implementation) is also used in the comparison. The approximation of the quadrupole integration

utilized in WOPWOP+ consists of integrating the Lighthill stress tensor in the direction normal to the rotor

plane without regard to retarded time or observer direction. This approximation is essentially exact for a

far-�eld, in-plane observer. The integration volume in the WOPWOP+ calculations is roughly the same as

the volume enclosed by the Kirchho� surface that is utilized in the other codes. (See Refs. 7 and 8 for more

details.)

The �rst comparison is for an untwisted UH-1H model-scale rotor that is operating in hover with a hover

tip Mach number MH = 0:88 [23]. Figure 1 shows a comparison of acoustic pressure time history for both

the Kirchho� and FW{H methods on an integration surface that is located approximately 1.37 chordlengths

from the rotor in the direction normal to the blade surface and extends 1.25 chordlengths beyond the blade

tip. The full-potential computation is performed on an 80 � 36� 24 grid. Both the full-potential solution

and the Kirchho� computation, along with a description of numerical accuracy, were previously presented by

Brentner et al. [5] The grid used here is the coarse grid discussed in Ref. 5. The two acoustic computations

are almost indistinguishable in this case|an indication that the integration surface is indeed in the linear


ow region. The computer time needed to perform the predictions in Fig. 1 is essentially the same for both

the FW{H and Kirchho� codes. The underprediction of the negative peak is attributable to the coarseness

of the CFD grid. Brentner et al. [5] found that the agreement improves with a �ner grid. Small oscillations

in the signal near the two positive peaks are evident in both the Kirchho� and FW{H solutions. These

oscillations are attributable to inaccurate quadrature over panels that are moving at near-sonic speeds. The

wide variation in retarded time over a single panel moving at near-sonic speeds violates the assumption that
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Figure 1. Predicted and measured acoustic pressure at in-plane observer location, 3:09R from rotor hub of

untwisted UH-1H model rotor in hover at MH = 0:88. (Experimental data are from Ref. 23.)

the integrand is nearly constant over the panel area. The oscillations disappear as the integration surface

extent is reduced.

We now examine the sensitivity of each formulation to the placement of the integration surface. Brentner

et al. [5] found that the Kirchho� solution varied depending on the location of the integration surface. Figure

2 shows a cross section of �ve di�erent integration (Kirchho�) surface locations that range from 1 grid line

o� the blade surface to 1.37 chordlengths o� the blade surface. The Kirchho� acoustic pressure predictions

from the RKIR code for each of these surface locations are shown in Fig. 3. As the integration surface is

brought nearer to the blade surface and the input data are no longer compatible with the wave equation, the

predicted acoustic pressure becomes meaningless. Although expected, this aspect of the Kirchho� method is

troublesome. If the integration surface is not positioned properly, the error can be substantial. Furthermore,

if the integration surface is positioned even slightly in the nonlinear region, the solution may be signi�cantly

in error but not enough so as to be easily recognized.

Figure 4 shows the noise prediction using the FW{H formulation given in Eq. (17) for the same set of

integration surfaces and CFD input data as shown in Fig. 3. The volume quadrupole source, which exists

only outside the integration surface, has been neglected in this calculation. The advantage of the FW{H

formulation is clear: for an integration surface near or on the physical body, the predicted acoustic signal is

essentially that of thickness and loading noise alone. As the integration surface is moved farther and farther

away, more and more of the quadrupole source contribution is accounted for by the surface integrals. Hence,

we would say that the principal advantage of the FW{H formulation for aeroacoustics is the relaxation of

integration-surface placement restrictions. In fact, when the volume quadrupole source is included in the

noise computation, the location of the integration surface is only a matter of choice and convenience.

Another traditional advantage of the FW{H method is the physical basis and identi�cation of the source

terms. If Eq. (17) is used on an integration surface away from the body, then this feature is not retained;

however, a second computation can be made by integrating over the body surface to determine thickness

and loading noise. The results of this second computation are shown in Fig. 5, which presents FW{H/RKIR

predictions for comparison with a WOPWOP+ prediction. Two FW{H/RKIR computations are shown in

Fig. 5: an integration surface coincident with the rotor blade surface to predict thickness and loading noise

and an integration surface located approximately 1.5 chordlengths away from the blade to predict the total

noise. Note that the thickness noise predictions from WOPWOP+ and FW{H/RKIR are identical and that

only a small di�erence is evident in the predicted loading noise. The di�erence in the predicted loading

9



Figure 2. Cross section that shows location of integration surfaces with respect to rotor blade. Vertical

distances from blade chord, in units of chord length, are labeled z=c. Value of grid index normal to blade

are labeled k.
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Figure 3. Predicted acoustic pressure using Kirchho� formulation with varying integration surface loca-

tions. Predictions are for in-plane observer located 3:09R from UH-1H model rotor in hover at MH = 0:88.

(Experimental data are from Ref. 23.)

10



0.0 0.5 1.0 1.5 2.0
-400

-300

-200

-100

0

100

p′, Pa

   t, ms   

Data

0.0 0.5 1.0 1.5 2.0

k= 2

k= 7

k=12

k=18

k=21

Figure 4. Predicted acoustic pressure using FW{H formulation with varying integration surface locations.

Predictions are for in-plane observer located 3:09R from UH-1H model rotor in hover at MH = 0:88. (Ex-

perimental data are from Ref. 23.)
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Figure 5. Noise components predicted by FW{H/RKIR and WOPWOP+ codes. Predictions are for in-plane

observer located 3:09R from UH-1H model rotor in hover at MH = 0:88. (Experimental data are from Ref.

23.)
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Figure 6. Schematic that shows three in-plane microphone locations used in the measurement of noise from

model-scale OLS rotor [24].

noise is attributable to a di�erence in how the integration over the blade-tip face is handled. The total

noise, which includes the e�ect of the quadrupole, is also in close agreement even though the volume used in

WOPWOP+ is not identical to the region enclosed in the FW{H/RKIR surface integration. (The volume

integration in the WOPWOP+ calculation is a box shape rather than a cylinder shape.) The negative peak

is also in better agreement than in the earlier �gures because an Euler solution from Baeder et al. [20] was

used as input rather than the FPRBVI solution that was used for Figs. 1, 3, and 4.

A model-scale test of the Operational Loads Survey (OLS) rotor was selected for the �nal comparison.

The predicted noise from the FW{H/RKIR, RKIR, and WOPWOP+ codes is compared with experimental

data [24] at three in-plane microphone positions (shown schematically in Fig. 6). The rotor is operating in

a forward 
ight condition with an advancing-tip Mach number MAT = 0:84 and an advance ratio � = 0:27.

An FPRBVI full-potential solution is used as input data for the three noise predictions shown in Fig. 7.

(The FPRBVI, WOPWOP+, and RKIR predictions were previously described by Brentner et al. [5].) These

predictions agree quite well with the data|both in directivity and amplitude. In particular, the codes all

predict the correct phase and pulse shape for the three microphone locations. All of the codes underpredict

the negative peak pressure for microphone 6, but this result is more likely attributed to the FPRBVI solution

rather than the noise prediction codes. The di�erences between the predictions are most noticeable in the

positive peaks, but even in this area the predictions vary by no more than 10 Pa. The FW-H/RKIR and

RKIR codes use approximately 20 percent more computational time than WOPWOP+; however, this timing

does not include the preprocessing time needed to compute quadrupole source strength.

A New Metric for Comparison

Current CFD convergence criteria are based on the uniform, L1, or L2 norms. We propose here that the

Sobolev norm is more appropriate as a convergence criterion for high-resolution CFD calculations for both

the FW{H and Kirchho� methods. We hope to stimulate discussion among CFD experts on this point.

Although we do not present any numerical results in this paper based on the Sobolev norm, we address

the following three questions of interest to aeroacousticians. i) When can a CFD calculation be considered

suitably converged so that the data can be used in the acoustic analogy approach? ii) How far from the

rotor blade should the permeable surface in the FW{H method be placed to include most of the quadrupole

sources? iii) How do we compare two sets of data from converged CFD calculations on a Kirchho� surface?

We attempt to answer these questions in order.

We assume that the CFD code used to supply 
uid mechanic data for acoustic calculations is based on

a consistent and stable scheme [25, 26]. We also assume that a grid size study has been performed and a
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Figure 7. Predicted and measured acoustic pressure at three microphone locations for model-scale OLS rotor

(MAT = 0:84; � = 0:27). (Experimental data are from Ref. 24.)

satisfactory spatial and temporal grid sizes have been selected. Below the Sobolev norms that we propose

are written for a smooth function. In practice, however, the integrals and the derivatives must be written in

�nite di�erence form based on the values of the functions involved in the de�nition of the norm on the grid

points. Since we are always dealing with time-dependent CFD calculations, we use the term iteration when

we mean subiteration for convergence of the scheme at a given time.

i) CFD Convergence

We note that the solution of the FW{H equation with the quadrupole source term invariably involves the

Lighthill stress tensor Tij and its �rst and second derivatives. Therefore, it is imperative that not only Tij
is calculated accurately but also its �rst and second derivatives in the source region. This suggests that

the error analysis in high-resolution CFD computations must be based on the Sobolev norm. This norm is

used quite often in �nite-element analysis [27], and we propose such a norm in aeroacoustics. We de�ne two

Sobolev norms of Tij as follows;



Tij

(1)V
=

� TZ
0

Z
V

�X
i;j

jTij j
2 +

X
j

��@Tij
@xi

��2

+
�� @2Tij
@xi@xj

��2�dx dt

�1=2
; (19a)



Tij

(2)V
= max

t�[0;T ]

�Z
V

�X
i;j

jTij j
2 +

X
j

��@Tij
@xi

��2

+
�� @2Tij
@xi@xj

��2�dx�1=2 (19b)

where Tij and its derivatives are given in nondimensional form and T is a convenient time period. We

propose that T be taken as the inverse of the blade passage frequency. Here, V is the volume of the CFD

calculation. Thus, we have a metric for a convergence criterion for evaluating CFD calculations. We de�ne

the distance between two CFD results as

d(T 1
ij ; T

2
ij)

(i) =


T 1

ij � T 2
ij



(i)
V

(i = 1 or 2): (20)

The convergence criterion in an iterative CFD code should be based on

d(Tn+1
ij ; Tn

ij)
(i) =



Tn+1
ij � Tn

ij



(i)
V
! 0 (i = 1 or 2): (21)
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where the superscripts n and n+ 1 stand for the CFD results at the nth and (n+ 1)th iteration.

ii) Integration Surface Placement

An alternate use of the norm de�ned in Eq. (19) is to determine the volume of quadrupole sources to

be included in the noise calculation. We assume that the CFD results have converged based on one of the

Sobolev norms de�ned in Eq. (19). Let V1 and V2 be two volumes, with boundaries @V1 and @V2, such that

V1 � V2. Then, assume that T
1
ij = 0 outside V1. By using the Sobolev norm with volume integration over

V2, we can say that V2 includes all quadrupoles needed for the noise calculation if



T 1
ij � T 2

ij



(i)
V2

T 1

ij




V1

� 1 (i = 1 or 2) : (22)

Thus,



T 2
ij



(i)
V2nV1

�


T 1

ij



(i)
V1

(i = 1 or 2) (23)

where V2 n V1 is the volume enclosed between @V1 and @V2. This answers the question of how far from the

blade surface we must include the quadrupole sources.

iii) Comparison of Kirchho� Data

Similarly, the Kirchho� formula tells us that, on the Kirchho� surface, p0, _p0, and @p0=@n � p0n must

be computed accurately in the CFD solution. Assume that S is the Kirchho� surface over which the

nondimensional p0, _p0, and p0n are speci�ed. We de�ne two Sobolev norms of p0 and the distance between

two CFD solutions p01 and p02 as follows:



p0

(1)
S

=

� TZ
0

Z
S

�
jp0j2 + j _p0j2 + jp0nj

2

�
dSdt

�1=2

; (24a)



p0

(2)
S

= max
t�[0;T ]

�Z
S

�
jp0j2 + j _p0j2 + jp0nj

2

�
dS

�1=2

; (24b)

and

d(p01; p02)(i) =


p01 � p02



(i)
S

(25)

where p01 and p02 are two sets of acoustic pressure data on S. Now we assume that we have two sets of CFD

results from converged solutions based on any norm used for the CFD convergence criterion. We want to

know whether these solutions will yield similar acoustic results when used with the Kirchho� formula. The

answer lies in the following inequality:



p01 � p02


(i)
S

p01

(i)

S

� 1 (26)

Note that this inequality can only be used to evaluate how \close" two sets of data on a Kirchho� surface are

(i.e., in terms of the resulting acoustic prediction); the accuracy of either set of data cannot be evaluated.

This latter question can only be answered by the convergence of the CFD based on either of the Sobolev

norms de�ned in Eq. (19). We believe that the calculation of the Sobolev norm in current CFD codes is

feasible without undue di�culty.

Conclusions

In this paper, we have compared two useful aeroacoustic tools: the Lighthill acoustic analogy as embodied

in the Ffowcs Williams{Hawkings (FW{H) equation and the Kirchho� formulation for moving surfaces.

Both methodologies have proven their usefulness in rotor noise prediction. Because both methods work

well, deciding which method to use for a particular application can be di�cult. In a comparison of the
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governing equations, we have shown that the FW{H approach can include nonlinear 
ow e�ects in the

surface integration if the usual assumption of an impenetrable surface is relaxed. In fact, we have shown

that the FW{H equation is equivalent to the Kirchho� governing equation when the integration surface is

located in the linear 
ow region.

The FW{H equation is based on the conservation laws of 
uid mechanics rather than on the wave equation,

which is the case for the Kirchho� formula. Consequently, the FW{H equation is not appropriate for all

types of wave propagation. (For example, the FW{H equation is not appropriate for electromagnetic wave

propagation, but the Kirchho� formula could be utilized.) However, the superiority of the FW{H approach

for the aeroacoustics of rotating blades has been demonstrated in several numerical examples in this paper.

The placement of the integration surface for the FW{H method is a matter of convenience as long as

the quadrupole source is utilized. The FW{H method also has an advantage in that the predicted noise

is explicitly separated into physical components (i.e., thickness, loading, and quadrupole). The Kirchho�

method does not o�er this insight into the acoustic �eld. These advantages of the FW{H approach can be

realized with essentially no increase in computational e�ort.

It is well known that the quadrupole sources are responsible for noise generation as well as distortion of

the acoustic waveform. The calculations in this paper and those of di Francescantonio [11] demonstrate that

the surface source terms of the FW{H equation account for the nonlinear quadrupole sources surrounded

by a permeable integration surface. The most intense quadrupole sources are in the vicinity of the blades.

Therefore, if we use a surface that encloses the blade and the volume of intense quadrupoles in the FW{H

method, then we can accurately calculate the level of acoustic pressure. The role of the weaker quadrupoles,

which are farther away from the physical body, is primarily to provide a small distortion to the acoustic

waveform. Hence, even when the integration surface is fairly close to the noise generating surface, the

external quadrupoles may be neglected. In comparison, with the Kirchho� formula the predicted acoustic

pressures can be substantially in error if the Kirchho� surface is positioned inside the nonlinear region; the

nature and order of magnitude of this error may be hard to estimate or even recognize.

In summary, the results presented in this paper lead us to conclude that the FW{H approach is unques-

tionably superior to the Kirchho� method for aeroacoustic problems because 1) the governing equations for

the FW{H approach contain full knowledge of the conservation of mass and momentum for the 
uid yet

are equivalent to the Kirchho� formulation the linear region; 2) the FW{H approach is more robust| the

integration surface can be placed anywhere if the quadrupole source is included, and the FW{H solution is

less sensitive to placement of the integration surface if the quadrupole is neglected; 3) the FW{H approach

o�ers physical insight into the sound-generation process; and 4) essentially no increase in computational

e�ort is associated with the FW{H method as compared with the Kirchho� method when the quadrupole

source is neglected.
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