
February 1998

NASA/TM-1998-206923

A PVS Graph Theory Library

Ricky W. Butler
Langley Research Center, Hampton, Virginia

Jon A. Sjogren
Air Force Office of Scientific Research, Washington, DC

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this
important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASAÕs scientific and technical information.
The NASA STI Program Office provides
access to the NASA STI Database, the
largest collection of aeronautical and space
science STI in the world. The Program Office
is also NASAÕs institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

· TECHNICAL PUBLICATION. Reports of

completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA
counter-part of peer reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

· TECHNICAL MEMORANDUM.

Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

· CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

· CONFERENCE PUBLICATION.

Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

· SPECIAL PUBLICATION. Scientific,

technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

· TECHNICAL TRANSLATION. English-

language translations of foreign scientific
and technical material pertinent to
NASAÕs mission.

Specialized services that help round out the
STI Program OfficeÕs diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing
research results ... even providing videos.

For more information about the NASA STI
Program Office, see the following:

· Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

· E-mail your question via the Internet to

help@sti.nasa.gov

· Fax your question to the NASA Access

Help Desk at (301) 621-0134

· Phone the NASA Access Help Desk at

(301) 621-0390

· Write to:

 NASA Access Help Desk
 NASA Center for AeroSpace Information
 800 Elkridge Landing Road
 Linthicum Heights, MD 21090-2934

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

February 1998

NASA/TM-1998-206923

A PVS Graph Theory Library

Ricky W. Butler
Langley Research Center, Hampton, Virginia

Jon A Sjogren
Air Force Office of Scientific Research, Washington, DC

Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
800 Elkridge Landing Road 5285 Port Royal Road
Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171
(301) 621-0390 (703) 487-4650

Abstract

This paper documents the NASA Langley PVS graph theory library. The library

provides fundamental de�nitions for graphs, subgraphs, walks, paths, subgraphs gener-

ated by walks, trees, cycles, degree, separating sets, and four notions of connectedness.

Theorems provided include Ramsey's and Menger's and the equivalence of all four

notions of connectedness.

Contents

1 Introduction 2

2 De�nition of a Graph 2

3 Graph Operations 5

4 Graph Degree 6

5 Subgraphs 7

6 Walks and Paths 8

7 Connected Graphs 13

8 Circuits 14

9 Trees 15

10 Ramsey's Theorem 15

11 Menger's Theorem 16

12 PVS Theories 18

13 Concluding Remarks 20

A APPENDIX: Other Supporting Theories 20

A.1 Graph Inductions . 20

A.2 Subgraphs Generated From Walks . 21

A.3 Maximum Subgraphs . 21

A.4 Minimum Walks . 22

A.5 Abstract Min and Max Theories . 23

1 Introduction

This paper documents the NASA Langley PVS graph theory library. The library develops

the fundamental concepts and properties of �nite graphs.

2 De�nition of a Graph

The standard mathematical de�nition of a graph is that it is an ordered pair of sets (V,E)

such that E is a subset of the ordered pairs pairs of V. Typically V and E are assumed to be

�nite though sometimes in�nite graphs are treated as well. The NASA library is restricted

to �nite graphs only. The set V is called the vertices of the graph and the set E is called the

edges of the graph.

Although PVS directly supports ordered pairs, we have chosen the PVS record structure

to de�ne a graph. The advantage of the record structure is that it provides names for the

vertex and edge sets rather than proj_1 and proj_2. For e�ciency reasons, it is preferable

to de�ne a graph in PVS in two steps. We begin with the de�nition of a pregraph:

pregraph: TYPE = [# vert : finite_set[T],

edges: finite_set[doubleton[T]] #]

A pregraph is a structured type with two components: vert and edges. The vert component

is a �nite set over an arbitrary type T. This represents the vertices of the graph. The edges

component is a �nite set of doubletons (i.e. sets with exactly two members) of T. Thus, an

edge is de�ned by designating its two end vertices. The type finite_set is de�ned in the

PVS �nite sets library. It is a subtype of the type set which is de�ned in the PVS prelude

as follows:

sets [T: TYPE]: THEORY

BEGIN

set: TYPE = [T -> bool]

x, y: VAR T

a, b, c: VAR set

p: VAR [T -> bool]

member(x, a): bool = a(x)

emptyset: set = x | false

subset?(a, b): bool = (FORALL x: member(x, a) => member(x, b))

union(a, b): set = x | member(x, a) OR member(x, b)

intersection(a, b): set = x | member(x, a) AND member(x, b)

END sets

A set is just a boolean-valued function of the element type. i.e., a function from T into bool.

In PVS this is written as [T -> bool]. If x is a member of a set S, the expression S(x)

evaluates to true, otherwise it evaluates to false.

Finite sets are de�ned as follows:

2

S: VAR set[T]

is_finite(S): bool = (EXISTS (N: nat, f: [(S) -> below[N]]): injective?(f))

finite_set: TYPE = f S | is_finite(S) g CONTAINING emptyset[T]

Thus �nite sets are sets which can be mapped onto 0::N for some N . The cardinality function

card is de�ned as follows:

inj_set(S): (nonempty?[nat]) =

f n | EXISTS (f : [(S)->below[n]]) : injective?(f) g

card(S): nat = min(inj_set(S))

All of the standard properties about card have been proved and are available:

card_union : THEOREM card(union(A,B)) = card(A) + card(B) -

card(intersection(A,B))

card_add : THEOREM card(add(x,S)) = card(S) +

IF S(x) THEN 0 ELSE 1 ENDIF

card_remove : THEOREM card(remove(x,S)) = card(S) -

IF S(x) THEN 1 ELSE 0 ENDIF

card_subset : THEOREM subset?(A,B) IMPLIES card(A) <= card(B)

card_emptyset : THEOREM card(emptyset[T]) = 0

card_singleton: THEOREM card(singleton(x)) = 1

Now we are ready to de�ne a graph as follows:

graph: TYPE = fg: pregraph | (FORALL (e: doubleton[T]): edges(g)(e) IMPLIES

(FORALL (x: T): e(x) IMPLIES vert(g)(x))) g

A graph is a pregraph where the edges set contains doubleton sets with elements restricted

to the vert set. The doubleton type is de�ned as follows:

doubletons[T: TYPE]: THEORY

BEGIN

x,y,z: VAR T

dbl(x,y): set[T] = ft: T | t = x OR t = yg

3

S: VAR set[T]

doubleton?(S): bool = (EXISTS x,y: x /= y AND S = dbl(x,y))

doubleton: TYPE = fS | EXISTS x,y: x /= y AND S = dbl(x,y)g
END doubletons

For example, suppose the base type T is de�ned as follows:

T: TYPE = fa,b,c,d,e,f,gg

Then the following pregraph is also a graph:

(# vert := fa,b,cg,
edges := f fa,bg, fb,cg g #)

whereas

(# vert := fa,b,cg,
edges := f fa,bg, fb,dg, fa,gg g #)

is a pregraph but is not a graph 1.

The size of a graph is de�ned as follows:

size(G): nat = card[T](vert(G))

A singleton graph with one vertex x (i.e. size is 1) can be constructed using the following

function:

singleton_graph(v): graph = (# vert := singleton[T](v),

edges := emptyset[doubleton[T]] #)

For convenience we de�ne a number of predicates:

edge?(G)(x,y): bool = x /= y AND edges(G)(dbl[T](x,y))

empty?(G): bool = empty?(vert(G))

singleton?(G): bool = (size(G) = 1)

isolated?(G): bool = empty?(edges(G))

The net result is that we have the following:

1PVS does not allow f .. g as set constructors. These must be constructed in PVS using LAMBDA

expressions or through use of the functions add, emptyset, etc.

4

vert(G) vertices of graph G (a �nite set of T)

edges(G) edges of a graph G (a �nite set of doubletons taken from

vert(G))

edge?(G)(x,y) true IFF there is an edge between vertices x and y

empty?(G) true IFF the graph G has no vertices

singleton?(G) true IFF graph G has only 1 vertex

isolated?(G) true IFF graph G has no edges

The following useful lemmas are provided:

x,y,v: VAR T

e: VAR doubleton[T]

G: var graph

edge?_comm : LEMMA edge?(G)(y, x) IMPLIES edge?(G)(x, y)

edge_has_2_verts : LEMMA x /= v AND e(x) AND e(v) IMPLIES e = dbl(x,v)

edge_in_card_gt_1 : LEMMA edges(G)(e) IMPLIES card(vert(G)) > 1

not_singleton_2_vert : LEMMA NOT empty?(G) AND NOT singleton?(G)

IMPLIES (EXISTS (x,y: T): x /= y AND

vert(G)(x) AND vert(G)(y))

These de�nitions and lemmas are located in the graphs theory.

3 Graph Operations

The theory graph_ops de�nes the following operations on a graph:

union(G1,G2) creates a graph that is a union of G1 and G2

del_vert(G,v) removes vertex v and all adjacent edges to v from the graph

G

del_edge(e,G) creates subgraph with edge e removed from G

These operations are de�ned as follows:

union(G1,G2): graph[T] = (# vert := union(vert(G1),vert(G2)),

edges := union(edges(G1),edges(G2)) #)

del_vert(G: graph[T], v: T): graph[T] =

(# vert := remove[T](v,vert(G)),

edges := e | edges(G)(e) AND NOT e(v) #)

del_edge(G,e): graph[T] = G WITH [edges := remove(e,edges(G))]

The following is a partial list of the properties that have been proved:

5

del_vert_still_in : LEMMA FORALL (x: (vert(G))):

x /= v IMPLIES vert(del_vert(G, v))(x)

size_del_vert : LEMMA FORALL (v: (vert(G))):

size(del_vert(G,v)) = size(G) - 1

edge_in_del_vert : LEMMA (edges(G)(e) AND NOT e(v)) IMPLIES

edges(del_vert(G,v))(e)

del_vert_comm : LEMMA del_vert(del_vert(G, x), v) =

del_vert(del_vert(G, v), x)

del_edge_lem3 : LEMMA edges(G)(e2) AND e2 /= e IMPLIES

edges(del_edge(G,e))(e2)

vert_del_edge : LEMMA vert(del_edge(G,e)) = vert(G)

del_vert_edge_comm : LEMMA del_vert(del_edge(G, e), v) =

del_edge(del_vert(G, v), e)

4 Graph Degree

The theory graph_deg develops the concept of degree of a vertex. The following functions

are de�ned:

incident_edges(v,G) returns set of edges attached to vertex v in graph G

deg(v,G) number of edges attached to vertex v in graph G

Formally they are speci�ed as follows:

v: VAR T

G,GS: VAR graph[T]

incident_edges(v,G) : finite_set[doubleton[T]]

= fe: doubleton[T] | edges(G)(e) AND e(v) g

deg(v,G): nat = card(incident_edges(v,G))

The following useful properties are proved

deg_del_edge : LEMMA e = dbl(x,y) AND edges(G)(e) IMPLIES

deg(y, G) = deg(y, del_edge(G, e)) + 1

deg_edge_exists : LEMMA deg(v,G) > 0 IMPLIES

(EXISTS e: e(v) AND edges(G)(e))

6

deg_to_card : LEMMA deg(v,G) > 0 IMPLIES size(G) >= 2

del_vert_deg_0 : LEMMA deg(v,G) = 0 IMPLIES edges(del_vert(G,v)) = edges(G)

deg_del_vert : LEMMA x /= v AND edges(G)(dbl[T](x, v))

IMPLIES deg(v, del_vert(G, x)) =

deg(v, G) - 1

del_vert_not_incident: LEMMA x /= v AND NOT edges(G)(dbl[T](x, v)) IMPLIES

deg(x, del_vert(G, v)) = deg(x, G)

singleton_deg: LEMMA singleton?(G) IMPLIES deg(v, G) = 0

5 Subgraphs

The subgraph relation is de�ned as a predicate named subgraph?:

G1,G2: VAR graph[T]

subgraph?(G1,G2): bool = subset?(vert(G1),vert(G2)) AND

subset?(edges(G1),edges(G2))

The subgraph type is de�ned using this predicate:

Subgraph(G: graph[T]): TYPE = f S: graph[T] | subgraph?(S,G) g

The subgraph generated by a vertex set is de�ned as follows:

i: VAR T

e: VAR doubleton[T]

subgraph(G, V): Subgraph(G) =

(G WITH [vert := fi | vert(G)(i) AND V(i) g,
edges := fe | edges(G)(e) AND

(FORALL (x: T): e(x) IMPLIES V(x)) g])

The following properties have been proved:

finite_vert_subset : LEMMA is_finite(LAMBDA (i:T): vert(G)(i) AND V(i))

subgraph_vert_sub : LEMMA subset?(V,vert(G)) IMPLIES

vert(subgraph(G,V)) = V

7

subgraph_lem : LEMMA subgraph?(subgraph(G,V),G)

SS: VAR graph[T]

subgraph_smaller : LEMMA subgraph?(SS, G) IMPLIES

size(SS) <= size(G)

These de�nitions and lemmas are located in the subgraphs theory.

6 Walks and Paths

Walks are de�ned using �nite sequences which are de�ned in the seq_def theory:

seq_def[T: TYPE]: THEORY

BEGIN

finite_seq: TYPE = [# l: nat, seq: [below[l] -> T] #]

END

We begin by de�ning a prewalk as follows:

prewalk: TYPE = fw: finite_seq[T] | l(w) > 0g

where, as before, T is the base type of vertices. A prewalk is a �nite sequence of vertices.

Thus, if we make the declaration:

w: VAR prewalk

l(w) is the length of the prewalk and seq(w)(i) is the ith element in the sequence. Prewalks

are contrained to be greater than 1 in length. We have used the PVS conversion mechanism,

so that w(i) can be written instead of seq(w)(i). A walk is then de�ned as follows:

s,ps,ww: VAR prewalk

verts_in?(G,s): bool = (FORALL (i: below(l(s))): vert(G)(seq(s)(i)))

walk?(G,ps): bool = verts_in?(G,ps) AND

(FORALL n: n < l(ps) - 1 IMPLIES

edge?(G)(ps(n),ps(n+1)))

Seq(G) : TYPE = fw: prewalk | verts_in?(G,w)g

Walk(G): TYPE = fw: prewalk | walk?(G,w)g

8

A walk is just a prewalk where all of the vertices are in the graph and there is an edge

between each consecutive element of the sequence. The dependent type Walk(G) de�nes the

domain (or type) of all walks in a graph G. The dependent type Seq(G) de�nes the domain

(or type) of all prewalks in a particular graph G.

The predicates from? and walk_from? identify sequences and walks from one particular

vertex to another.

from?(ps,u,v): bool = seq(ps)(0) = u AND seq(ps)(l(ps) - 1) = v

walk_from?(G,ps,u,v): bool =

seq(ps)(0) = u AND seq(ps)(l(ps) - 1) = v AND walk?(G,ps)

The function verts_of returns the set of vertices that are in a walk:

verts_of(ww: prewalk): finite_set[T] =

ft: T | (EXISTS (i: below(l(ww))): ww(i) = t)g

Similarly, the function edges_of returns the set of edges that are in a walk:

edges_of(ww): finite_set[doubleton[T]] = fe: doubleton[T] |

EXISTS (i: below(l(ww)-1)): e = dbl(ww(i),ww(i+1))g

Below are listed some of the proved properties about walks:

G,GG: VAR graph[T]

x,u,v: VAR T

i,j,n: VAR nat

ps: VAR prewalk

verts_in?_concat: LEMMA FORALL (s1,s2: Seq(G)): verts_in?(G,s1 o s2)

verts_in?_caret : LEMMA FORALL (j: below(l(ps))): i <= j IMPLIES

verts_in?(G,ps) IMPLIES verts_in?(G,ps^(i,j))

vert_seq_lem : LEMMA FORALL (w: Seq(G)): n < l(w) IMPLIES vert(G)(w(n))

verts_of_subset : LEMMA FORALL (w: Seq(G)): subset?(verts_of(w),vert(G))

edges_of_subset : LEMMA walk?(G,ps) IMPLIES subset?(edges_of(ps),edges(G))

walk_verts_in : LEMMA walk?(G,ps) IMPLIES verts_in?(G,ps)

walk_from_vert : LEMMA FORALL (w: prewalk,v1,v2:T):

9

walk_from?(G,w,v1,v2) IMPLIES

vert(G)(v1) AND vert(G)(v2)

walk_edge_in : LEMMA walk?(G,ps) AND

subset?(edges_of(ps),edges(GG)) AND

subset?(verts_of(ps),vert(GG))

IMPLIES walk?(GG,ps)

The walks theory also proves some useful operators for walks:

gen_seq1(G,u) create a prewalk of length 1 consisting of a single vertex u

gen_seq2(G,u,v) create a prewalk of length 2 from u to v

trunc1(p) return a prewalk equal to p except the last vertex has been removed

add1(p,v) return a prewalk equal to p except the vertex v has been added

rev(p) return a �nite sequence that is the reverse of p

o concatenates two �nite sequences

^(m,n) returns a �nite sequence from the m .. n elements of a se-

quence. For example if p = v0 -> v1 -> v2 -> v3 -> v4, then

p^(1,2) = v1 -> v2.

These are de�ned formally as follows:

gen_seq1(G, (u: (vert(G)))): Seq(G) =

(# l := 1, seq := (LAMBDA (i: below(1)): u) #)

gen_seq2(G, (u,v: (vert(G)))): Seq(G) =

(# l := 2,

seq := (LAMBDA (i: below(2)):

IF i = 0 THEN u ELSE v ENDIF) #)

Longprewalk: TYPE = fps: prewalk | l(ps) >= 2g

trunc1(p: Longprewalk): prewalk = p^(0,l(p)-2)

add1(ww,x): prewalk = (# l := l(ww) + 1,

seq := (LAMBDA (ii: below(l(ww) + 1)):

IF ii < l(ww) THEN seq(ww)(ii) ELSE x ENDIF)

#)

fs, fs1, fs2, fs3: VAR finite_seq

m, n: VAR nat

o(fs1, fs2): finite_seq =

LET l1 = l(fs1),

lsum = l1 + l(fs2)

IN (# l := lsum,

seq := (LAMBDA (n:below[lsum]):

10

IF n < l1

THEN seq(fs1)(n)

ELSE seq(fs2)(n-l1)

ENDIF) #);

emptyarr(x: below[0]): T

emptyseq: fin_seq(0) = (# l := 0, seq := emptyarr #) ;

p: VAR [nat, nat] ;

^(fs: finite_seq, (p: [nat, below(l(fs))])):

fin_seq(IF proj_1(p) > proj_2(p) THEN 0

ELSE proj_2(p)-proj_1(p)+1 ENDIF) =

LET (m, n) = p

IN IF m > n

THEN emptyseq

ELSE (# l := n-m+1,

seq := (LAMBDA (x: below[n-m+1]): seq(fs)(x + m)) #)

ENDIF ;

rev(fs): finite_seq = (# l := l(fs),

seq := (LAMBDA (i: below(l(fs))): seq(fs)(l(fs)-1-i))

#)

The following is a partial list of the proven properties about walks:

gen_seq1_is_walk: LEMMA vert(G)(x) IMPLIES walk?(G,gen_seq1(G,x))

edge_to_walk : LEMMA u /= v AND edges(G)(edg[T](u, v)) IMPLIES

walk?(G,gen_seq2(G,u,v))

walk?_add1 : LEMMA walk?(G,ww) AND vert(G)(x)

AND edge?(G)(seq(ww)(l(ww)-1),x)

IMPLIES walk?(G,add1(ww,x))

walk?_rev : LEMMA walk?(G,ps) IMPLIES walk?(G,rev(ps))

walk?_caret : LEMMA i <= j AND j < l(ps) AND walk?(G,ps)

IMPLIES walk?(G,ps^(i,j))

yt: VAR T

p1,p2: VAR prewalk

11

walk_merge: LEMMA walk_from?(G, p1, v, yt) AND

walk_from?(G, p2, u, yt)

IMPLIES

(EXISTS (p: prewalk): walk_from?(G, p, u, v))

A path is a walk that does not encounter the same vertex more than once. The predicate

path? identi�es paths:

ps: VAR prewalk

path?(G,ps): bool = walk?(G,ps) AND (FORALL (i,j: below(l(ps))):

i /= j IMPLIES ps(i) /= ps(j))

Similarly the predicate path_from? identi�es paths from vertex s to t:

path_from?(G,ps,s,t): bool = path?(G,ps) AND from?(ps,s,t)

Corresponding dependent types are de�ned:

Path(G): TYPE = fp: prewalk | path?(G,p)g

Path_from(G,s,t): TYPE = fp: prewalk | path_from?(G,p,s,t) g

The following is a partial list of proven properties:

G: VAR graph[T]

x,y,s,t: VAR T

i,j: VAR nat

p,ps: VAR prewalk

path?_caret : LEMMA i <= j AND j < l(ps) AND path?(G,ps)

IMPLIES path?(G,ps^(i,j))

path_from?_caret: LEMMA i <= j AND j < l(ps) AND path_from?(G, ps, s, t)

IMPLIES path_from?(G, ps^(i, j),seq(ps)(i),seq(ps)(j))

path?_rev : LEMMA path?(G,ps) IMPLIES path?(G,rev(ps))

path?_gen_seq2 : LEMMA vert(G)(x) AND vert(G)(y) AND

edge?(G)(x,y) IMPLIES path?(G,gen_seq2(G,x,y))

path?_add1 : LEMMA path?(G,p) AND vert(G)(x)

AND edge?(G)(seq(p)(l(p)-1),x)

12

AND NOT verts_of(p)(x)

IMPLIES path?(G,add1(p,x))

path?_trunc1 : LEMMA path?(G,p) AND l(p) > 1 IMPLIES

path_from?(G,trunc1(p),seq(p)(0),seq(p)(l(p)-2))

These de�nitions and lemmas about paths are located in the paths theory.

7 Connected Graphs

The library provides four di�erent de�nitions for connectedness of a graph and provides

proofs that they are are equivalent. These are named connected, path_connected,

piece_connected, and complected:

G,G1,G2,H1,H2: VAR graph[T]

connected?(G): RECURSIVE bool = singleton?(G) OR

(EXISTS (v: (vert(G))): deg(v,G) > 0

AND connected?(del_vert(G,v)))

MEASURE size(G)

path_connected?(G): bool = NOT empty?(G) AND

(FORALL (x,y: (vert(G))):

(EXISTS (w: Walk(G)): seq(w)(0) = x AND

seq(w)(l(w)-1) = y))

piece_connected?(G): bool = NOT empty?(G) AND

(FORALL H1,H2: G = union(H1,H2) AND

NOT empty?(H1) AND NOT empty?(H2)

IMPLIES NOT empty?(intersection(vert(H1),

vert(H2))))

complected?(G): bool = IF isolated?(G) THEN singleton?(G)

ELSIF (EXISTS (v: (vert(G))): deg(v,G) = 1) THEN

(EXISTS (x: (vert(G))): deg(x,G) = 1 AND

connected?(del_vert(G,x)))

ELSE

(EXISTS (e: (edges(G))):

connected?(del_edge(G,e)))

ENDIF

These de�nitions are located in the graph_conn_defs theory. The following lemmas about

equivalence are located in the theory graph_connected:

graph_connected[T: TYPE]: THEORY

13

BEGIN

G: VAR graph[T]

conn_eq_path : THEOREM connected?(G) = path_connected?(G)

path_eq_piece: THEOREM path_connected?(G) = piece_connected?(G)

piece_eq_conn: THEOREM piece_connected?(G) = connected?(G)

conn_eq_complected: THEOREM connected?(G) = complected?(G)

END graph_connected

8 Circuits

A slightly non-traditional de�nition of circuit is used. A circuit is a walk that starts and ends

in the same place (i.e. a pre_circuit) and is cyclically reduced (i.e. cyclically_reduced?).

reducible?(G: graph[T], w: Seq(G)): bool = (EXISTS (k: posnat): k <

l(w) - 1 AND w(k-1) = w(k+1))

reduced?(G: graph[T], w: Seq(G)): bool = NOT reducible?(G,w)

cyclically_reduced?(G: graph[T], w: Seq(G)): bool = l(w) > 2 AND

reduced?(G,w) AND w(1) /= w(l(w)-2)

pre_circuit?(G: graph[T], w: prewalk): bool = walk?(G,w) AND

w(0) = w(l(w)-1)

circuit?(G: graph[T], w: Seq(G)): bool = walk?(G,w) AND

cyclically_reduced?(G,w) AND

pre_circuit?(G,w)

The following properties are proved in the circuit_deg theory:

cir_deg_G : LEMMA (EXISTS (a,b: (vert(G))): vert(G)(z) AND

a /= b AND edge?(G)(a,z) AND edge?(G)(b,z)) IMPLIES

deg(z,G) >= 2

circuit_deg : LEMMA FORALL (w: Walk(G),i: below(l(w))): circuit?(G,w)

IMPLIES deg(w(i),G_from(G,w)) >= 2

14

9 Trees

Trees are de�ned recursively as follows:

G: VAR graph[T]

tree?(G): RECURSIVE bool = card[T](vert(G)) = 1 OR

(EXISTS (v: (vert(G))): deg(v,G) = 1 AND

tree?(del_vert[T](G,v)))

MEASURE size(G)

and the Tree type is de�ned as follows:

Tree: TYPE = fG: graph[T] | tree?(G)g

The fundamental property that trees have no circuits is proved in tree_circ theory.

tree_no_circuits: THEOREM (FORALL (w: Walk(G)): tree?(G) =>

NOT circuit?(G,w))

10 Ramsey's Theorem

This work builds upon a veri�cation of this theorem by Natarajan Shankar and the paper

entitled \The Boyer-Moore Prover and Nuprl: An Experimental Comparison" by David

Basin and Matt Kaufmann2.

i, j: VAR T

n, p, q, ii: VAR nat

g: VAR graph[T]

G: VAR Graph[T] % nonempty

V: VAR finite_set[T]

contains_clique(g, n): bool =

(EXISTS (C: finite_set[T]):

subset?(C,vert(g)) AND card(C) >= n AND

(FORALL i,j: i/=j AND C(i) AND C(j) IMPLIES edge?(g)(i,j)))

contains_indep(g, n): bool =

(EXISTS (D: finite_set[T]):

2CLI Technical Report 58, July 17, 1990.

15

subset?(D, vert(g)) AND card(D) >= n AND

(FORALL i, j: i/=j AND D(i) AND D(j) IMPLIES NOT edge?(g)(i, j)))

subgraph_clique: LEMMA (FORALL (V: set[T]):

contains_clique(subgraph(g, V), p)

IMPLIES contains_clique(g, p))

subgraph_indep : LEMMA (FORALL (V: set[T]):

contains_indep(subgraph(g, V), p)

IMPLIES contains_indep(g, p))

ramseys_theorem: THEOREM (EXISTS (n: posnat):

(FORALL (G: Graph[T]): size(G) >= n

IMPLIES (contains_clique(G, l1) OR

contains_indep(G, l2))))

11 Menger's Theorem

To state menger's theorem one must �rst de�ne minimum separating sets. This is fairly

complicated in a formal system. We begin with the concept of a separating set:

G: VAR graph[T]

v,s,t: VAR T

e: VAR doubleton[T]

V: VAR finite_set[T]

del_verts(G,V): graph[T] =

(# vert := difference[T](vert(G),V),

edges := {e | edges(G)(e) AND

(FORALL v: V(v) IMPLIES NOT e(v))} #)

separates(G,V,s,t): bool = NOT V(s) AND NOT V(t) AND

NOT (EXISTS (w: prewalk): walk_from?(del_verts(G,V),w,s,t))

In other words V separates s and t when its removal disconnects s and t. To de�ne the

minimum separating set, we use an abstract minimum function de�ned in the abstract_min

theory. The net result is that we end up with a function min_sep_set with all of the following

desired properties

min_sep_set(G,s,t): finite_set[T] = min[seps(G,s,t),

(LAMBDA (v: seps(G,s,t)): card(v)),

(LAMBDA (v: seps(G,s,t)): true)]

16

separable?(G,s,t): bool = (s /= t AND NOT edge?(G)(s,t))

min_sep_set_edge: LEMMA NOT separable?(G,s,t) IMPLIES

min_sep_set(G,s,t) = vert(G)

min_sep_set_card: LEMMA FORALL (s,t: (vert(G))): separates(G,V,s,t)

IMPLIES card(min_sep_set(G,s,t)) <= card(V)

min_sep_set_seps: LEMMA separable?(G,s,t) IMPLIES

separates(G,min_sep_set(G,s,t),s,t)

min_sep_set_vert: LEMMA separable?(G,s,t) AND min_sep_set(G,s,t)(v)

IMPLIES vert(G)(v)

ends_not_in_min_sep_set: LEMMA separable?(G,s,t) AND min_sep_set(G, s, t)(v)

IMPLIES v /= s AND v /= t

We then de�ne sep_num as follows:

sep_num(G,s,t): nat = card(min_sep_set(G,s,t))

Next, we de�ne a predicate independent? that de�nes when two paths are independent:

independent?(w1,w2: prewalk): bool =

(FORALL (i,j: nat): i > 0 AND i < l(w1) - 1 AND

j > 0 AND j < l(w2) - 1 IMPLIES

seq(w1)(i) /= seq(w2)(j))

The concept of a set of independent paths is de�ned as follows:

set_of_paths(G,s,t): TYPE = finite_set[Path_from(G,s,t)]

ind_path_set?(G,s,t,(pset: set_of_paths(G,s,t))): bool =

(FORALL (p1,p2: Path_from(G,s,t)):

pset(p1) AND pset(p2) AND p1 /= p2

IMPLIES independent?(p1,p2))

In other words, a set of paths is an ind_path_set? if all pairs of paths in the set are

independent. We can now state Menger's theorem in both directions:

easy_menger: LEMMA FORALL (ips: set_of_paths(G,s,t)):

separable?(G,s,t) AND

ind_path_set?(G,s,t,ips) IMPLIES

card(ips) <= sep_num(G,s,t)

17

hard_menger: AXIOM separable?(G,s,t) AND sep_num(G,s,t) = K AND

vert(G)(s) AND vert(G)(t)

IMPLIES

(EXISTS (ips: set_of_paths(G,s,t)):

card(ips) = K AND ind_path_set?(G,s,t,ips))

The hard direction of menger has only been formally proved for the K = 2 case.

hard_menger: LEMMA separable?(G,s,t) AND sep_num(G,s,t) = 2 AND

vert(G)(s) AND vert(G)(t)

IMPLIES

(EXISTS (ips: set_of_paths(G,s,t)):

card(ips) = 2 AND ind_path_set?(G,s,t,ips))

12 PVS Theories

The following is a list of the PVS theories and description:

18

abstract_min abstract de�nition of min

abstract_max abstract de�nition of max

circuit_deg degree of circuits

circuits theory of circuits

cycle_deg degree of cycle

doubletons theory of doubletons used for de�nition of edge

graphs fundamental de�nitiion of a graph

graph_complected unusual de�nition of connected graph

graph_conn_defs defs of piece, path, and structural connectedness

graph_conn_piece structural connected supset piece connected

graph_connected all connected defs are equivalent

graph_path_conn path connected supset structural connected

graph_piece_path piece connected supset path connected

graph_deg de�nition of degree

graph_deg_sum theorem relating vertex degree and number of edges

graph_inductions vertex and edge inductions for graphs

graph_ops delete vertex and delete edge operations

h_menger hard menger

ind_paths de�nition of independent paths

max_subgraphs maximal subgraphs with speci�ed property

max_subtrees maximal subtrees with speci�ed property

meng_scaff sca�olding for hard menger proof

meng_scaff_defs sca�olding for hard menger proof

meng_scaff_prelude sca�olding for hard menger proof

menger menger's theorem

min_walk_reduced theorem that minimum walk is reduced

min_walks minimum walk satisfying a property

path_lems some useful lemmas about paths

path_ops deleting vertex and edge operations

paths fundamental de�nition and properties about paths

ramsey_new Ramsey's theorem

reduce_walks operation to reduce a walk

sep_set_lems properties of separating sets

sep_sets de�nition of separating sets

subgraphs generation of subgraphs from vertex sets

subgraphs_from_walk generation of subgraphs from walks

subtrees subtrees of a graph

tree_circ theorem that tree has no circuits

tree_paths theorem that tree has only one path between vertices

trees fundamental de�nition of trees

walk_inductions induction on length of a walk

walks fundamental de�nition and properties of walks

The PVS speci�cations are available at:

http://atb-www.larc.nasa.gov/ftp/larc/PVS-library/.

19

13 Concluding Remarks

This paper gives a brief overview of the NASA Langley PVS Graph Theory Library. The

library provides de�nitions and lemmas for graph operations such as deleting a vertex or

edge, provides de�nitions for vertex degree, subgraphs, minimal subgraphs, walks and paths,

notions of connectedness, circuit and trees. Both Ramsey's Theorem and Menger's Theorem

are provided.

A APPENDIX: Other Supporting Theories

A.1 Graph Inductions

The graph theory library provides two basic means of performing induction on a graph:

induction on the number of vertices and induction on the number of edges.

G,GG: VAR graph[T]

P: VAR pred[graph[T]]

graph_induction_vert : THEOREM (FORALL G:

(FORALL GG: size(GG) < size(G) IMPLIES P(GG))

IMPLIES P(G))

IMPLIES (FORALL G: P(G))

graph_induction_edge : THEOREM (FORALL G:

(FORALL GG: num_edges(GG) < num_edges(G) IMPLIES P(GG))

IMPLIES P(G))

IMPLIES (FORALL G: P(G))

These theorems can be invoked using the PVS strategy INDUCT. For example

(INDUCT "G" 1 "graph_induction_vert")

invokes vertex induction on formula 1. They are available in theory graph_inductions.

These induction theorems were proved by rewriting with the following lemmas

size_prep : LEMMA (FORALL G : P(G)) IFF

(FORALL n, G : size(G) = n IMPLIES P(G))

num_edges_prep : LEMMA (FORALL G : P(G)) IFF

(FORALL n, G : num_edges(G) = n IMPLIES P(G))

which converts the theorem into formulas that are universally quanti�ed over the naturals.

The resulting formulas were then easily proved using PVS's built-in theorem for strong

induction:

20

NAT_induction: LEMMA

(FORALL j: (FORALL k: k < j IMPLIES p(k)) IMPLIES p(j))

IMPLIES (FORALL i: p(i))

A.2 Subgraphs Generated From Walks

The graph theory library provides a function G_from that constructs a subgraph of a graph

G that contains the vertices and edges of a walk w:

G_from(Ggraph[T], w: Walk(G)): Subgraph(G) = (# vert := verts_of(w),

edges := edges_of(w) #)

The following properties of G_from have been proved:

vert_G_from : LEMMA FORALL (w: Walk(G), i: below(l(w))):

vert(G_from(G, w))(w(i))

edge?_G_from : LEMMA FORALL (w: Walk(G), i: below(l(w)-1)):

edge?(G_from(G, w))(w(i), w(i+1))

vert_G_from_not : LEMMA FORALL (w: Walk(G)):

subset?(vert(G_from(G, w)), vert(GG)) AND

NOT verts_of(w)(v)

IMPLIES

subset?(vert(G_from(G, w)), remove[T](v, vert(GG)))

del_vert_subgraph: LEMMA FORALL (w: Walk(G), v: (vert(GG))):

subgraph?(G_from(G, w), GG) AND

NOT verts_of(w)(v) IMPLIES

subgraph?(G_from(G, w), del_vert(GG, v))

This lemmas are available in the theory subgraphs_from_walk.

A.3 Maximum Subgraphs

Given a graph G we say that a subgraph S is maximal with respect to a particular property

P if it is the largest subgraph that satis�es the property. Formally we write:

maximal?(G: graph[T], S: Subgraph(G),P: Gpred(G)): bool = P(S) AND

(FORALL (SS: Subgraph(G)): P(SS) IMPLIES

size(SS) <= size(S))

21

We can de�ne a function that returns the maximum subgraph under the assumption that

there exists at least one subgraph that satis�es the predicate. Therefore this function is only

de�ned on a subtype of P, namely Gpred:

G: VAR graph[T]

Gpred(G): TYPE = P: pred[graph[T]] | (EXISTS (S: graph[T]):

subgraph?(S,G) AND P(S))

We now de�ne max_subgraph as follows:

max_subgraph(G: graph[T], P: Gpred(G)): S: Subgraph(G) | maximal?(G,S,P)

The following useful properties of max_subgraph have been proved:

max_subgraph_def : LEMMA FORALL (P: Gpred(G)):

maximal?(G,max_subgraph(G,P),P)

max_subgraph_in : LEMMA FORALL (P: Gpred(G)): P(max_subgraph(G,P))

max_subgraph_is_max : LEMMA FORALL (P: Gpred(G)):

(FORALL (SS: Subgraph(G)): P(SS) IMPLIES

size(SS) <= size(max_subgraph(G,P)))

These de�nitions and lemmas are located in the theory max_subgraphs.

A similar theory for subtrees is available in the theory max_subtrees.

A.4 Minimum Walks

Given that a walk w from vertex x to vertex y exists, we sometimes need to �nd the shortest

walk from x to y. The theory min_walks provides a function min_walk_from that returns a

walk that is minimal. It is de�ned formally as follows:

v1,v2,x,y: VAR T

G: VAR graph[T]

gr_walk(v1,v2): TYPE = G: graph[T] | vert(G)(v1) AND vert(G)(v2) AND

(EXISTS (w: Seq(G)):

walk_from?(G,w,v1,v2))

min_walk_from(x,y,(Gw:gr_walk(x,y))): Walk(Gw) =

min[Seq(Gw),(LAMBDA (w: Seq(Gw)): l(w)),

(LAMBDA (w: Seq(Gw)): walk_from?(Gw,w,x,y))]

The following properties of min_walk_from have been established:

22

is_min(G,(w: Seq(G)),x,y): bool = walk?(G,w) AND

(FORALL (ww: Seq(G)): walk_from?(G,ww,x,y) IMPLIES

l(w) <= l(ww))

min_walk_def: LEMMA FORALL (Gw: gr_walk(x,y)):

walk_from?(Gw,min_walk_from(x,y,Gw),x,y) AND

is_min(Gw, min_walk_from(x,y,Gw),x,y)

min_walk_in : LEMMA FORALL (Gw: gr_walk(x,y)):

walk_from?(Gw,min_walk_from(x,y,Gw),x,y)

min_walk_is_min: LEMMA FORALL (Gw: gr_walk(x,y), ww: Seq(Gw)):

walk_from?(Gw,ww,x,y) IMPLIES

l(min_walk_from(x,y,Gw)) <= l(ww)

reduced?(G: graph[T], w: Seq(G)): bool =

(FORALL (k: nat): k > 0 AND k < l(w) - 1 IMPLIES w(k-1) /= w(k+1))

x,y: VAR T

min_walk_is_reduced: LEMMA FORALL (Gw: gr_walk(x,y)):

reduced?(Gw,min_walk_from(x,y,Gw))

These lemmas are available in the theories min_walks and min_walk_reduced.

A.5 Abstract Min and Max Theories

The need for a function that returns the smallest or largest object that satis�es a particular

predicate arises in many contexts. For example, one may need a minimal walk from s to t

or the maximal subgraph that contains a tree. Thus, it is useful to develop abstract min and

max theories that can be instantiated in multiple ways to provide di�erent min and max

functions. Such a theory must be parameterized by

T: TYPE the type of the object for which a min function is needed

size:[T -> nat] the \size" function by which objects are compared

P: pred[T] the property that the min function must satisfy

Formally we have

abstract_min[T: TYPE, size: [T -> nat], P: pred[T]]: THEORY

and

abstract_max[T: TYPE, size: [T -> nat], P: pred[T]]: THEORY

23

To simplify the following discussion, only the abstract_min theory will be elaborated in

detail. The abstract_max theory is conceptually identical.

In order for a minimum function to be de�ned, it is necessary that at least one object

exists that satis�es the property. Thus, the theory contains the following assuming clause

ASSUMING

T_ne: ASSUMPTION EXISTS (t: T): P(t)

ENDASSUMING

User's of this theory are required to prove that this assumption holds for their type T (via

PVS's TCC generation mechanism).

A function minimal?(S: T) is then de�ned as follows:

minimal?(S): bool = P(S) AND

(FORALL (SS: T): P(SS) IMPLIES size(S) <= size(SS))

Using PVS's dependent type mechanism, min is speci�ed by constraining it's return type to

be the subset of T that satis�es minimal?:

min: fS: T | minimal?(S)g

If there are multiple instances of objects that are minimal, the theory does not specify which

object is selected by min. It just states that min will return one of the minimal ones. This

de�nition causes PVS to generate the following proof obligation (i.e. TCC):

min_TCC1: OBLIGATION (EXISTS (x: S: T | minimal?(S)): TRUE);

This was proved using a function min_f, de�ned as follows:

is_one(n): bool = (EXISTS (S: T): P(S) AND size(S) = n)

min_f: nat = min[nat](n: nat | is_one(n))

to construct the required min function. The T_ne assumption is su�cient to guarantee that

min_f is well-de�ned.

The following properties have been proved about min:

min_def: LEMMA minimal?(min)

min_in : LEMMA P(min)

min_is_min: LEMMA P(SS) IMPLIES size(min) <= size(SS)

These properties are su�cient for most applications.

24

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500
Prescribed by ANSI Std. Z39-18
298-102

Standard Form 298 (Rev. 2-89)

REPORT DOCUMENTATION PAGE

February 1998 Technical Memorandum

A PVS Graph Theory Library WU 519-50-11-01

Ricky W. Butler and Jon A. Sjogren

NASA Langley Research Center
Hampton, VA 23681-2199 L-17692

National Aeronautics and Space Administration
Washington, DC 20546-0001 NASA/TM-1998-206923

Butler, Ricky W.: NASA Langley Research Ctr.
Sjogren, Jon A.: Air Force Office of Scientific Research; Washington, DC

Unclassified-Unlimited
Subject Category: 59
Distribution: Nonstandard
Availability: NASA CASI (301) 621-0390

This paper documents the NASA Langley PVS graph theory library. The library provides fundamental definitions
for graphs, subgraphs, walks, paths, subgraphs generated by walks, trees, cycles, degree, separating sets, and
four notions of connectedness. Theorems provided include Ramsey's and Menger's and the equivalence of all
four notions of connectedness.

Graphs, Formal Methods, PVS Libraries, Formal Proof 29

A03

Unclassified Unclassified

