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ABSTRACT
Buckets are an aggregative, intelligent construct for
publishing in digital libraries.  The goal of research projects
is to produce information.  This information is often
instantiated in several forms, differentiated by semantic
types (report, software, video, datasets, etc.).  A given
semantic type can be further differentiated by syntactic
representations as well (PostScript version, PDF version,
Word version, etc.).  Although the information was created
together and subtle relationships can exist between them,
different semantic instantiations are generally segregated
along currently obsolete media boundaries.  Reports are
placed in report archives, software might go into a software
archive, but most of the data and supporting materials are
likely to be kept in informal personal archives or discarded
altogether.  Buckets provide an archive-independent
container construct in which all related semantic and
syntactic data types and objects can be logically grouped
together, archived, and manipulated as a single object.
Furthermore, buckets are active archival objects and can
communicate with each other, people, or arbitrary network
services.

KEYWORDS:  Digital library architectures, agents,
archiving, multi-format, bucket, container, package.

INTRODUCTION
Digital libraries (DLs) are an important research topic in
many scientific communities and have already become an
integral part of the research process.  However, access to
these DLs is not as easy as users would like.  Digital
libraries are partitioned both by the discipline they serve
(computer science, aeronautics, physics, etc.) and by the
format of their holdings (technical reports, video, software,
etc.). There are two significant problems with current DLs.
First, interdisciplinary research is difficult because the
collective knowledge of each discipline is stored in
incompatible DLs that are known only to the specialists in
the subject. The second significant problem is that although
scientific and technical information (STI) consists of
manuscripts, software, datasets, etc., the manuscript
receives the majority of attention, and the other components
are often discarded (Figure 1) [20]. Although non-
manuscript digital libraries such as the software archive
Netlib [2] have been in use for some time, they still place
the burden of STI reintegration on the customer.  A NASA
study found that customers desire to have the entire set of

manuscripts, software, data, etc. available in one place [19].
With the increasing availability of all-digital storage and
transmission, maintaining the tight integration of the
original STI collection is now possible.

Old Dominion University and NASA Langley Research
Center are developing NCSTRL+ to address the multi-
discipline and multi-genre problems.  NCSTRL+ is based
on the Networked Computer Science Technical Report
Library (NCSTRL) [5], which is a highly successful digital
library offering access to over 100 university departments
and laboratories since 1994, and is implemented using the
Dienst protocol [9].   During the development stage,
NCSTRL+ includes selected holdings from the NASA
Technical Report Server (NTRS) [14] and NCSTRL,
providing clusters of collections along the dimension of
disciplines such as aeronautics, space science, mathematics,
computer science, and physics, as well as clusters along the
dimension of publishing organization and genre, such as
project reports, journal articles, theses, etc.  The DL aspects
of NCSTRL+ are discussed in [15, 16].  Although
developed for NCSTRL+ and with our modified version of
the Dienst protocol in mind, buckets are protocol and
archive independent, needing only standard World Wide Web
(WWW) capability to function.   This paper gives an
overview of bucket functionality, examines similar work,
and discusses current implementation and future plans.

OVERVIEW
Buckets are object-oriented container constructs in which
logically grouped items can be collected, stored, and
transported as a single unit.  For example, a typical research
project at NASA Langley Research Center produces
information tuples:  raw data, reduced data, manuscripts,
notes, software, images, video, etc.  Normally, only the
report part of this information tuple is officially published
and tracked.  The report might reference on-line resources, or
even include a CD-ROM, but these items are likely to be
lost or degrade over time.  Some portions such as software,
can go into separate archives (i.e., COSMIC or the Langley
Software Server) but this leaves the researcher to re-integrate
the information tuple by selecting pieces from multiple
archives.  Most often, the software and other items, such as
datasets are simply discarded.  After 10 years, the
manuscript is almost surely the only surviving artifact of
the information tuple.
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Large archives could have buckets with many different
functionalities.  Not all bucket types or applications are
known at this time.  However, we can describe a generalized
bucket as containing many formats of the same data item
(PS, Word, Framemaker, etc.) but more importantly, it can
also contain collections of related non-traditional STI
materials (manuscripts, software, datasets, etc.)   Thus,
buckets allow the digital library to address the long standing
problem of ignoring software and other supportive material
in favor of archiving only the manuscript [20] by providing
a common mechanism to keep related STI products
together.  A single bucket can have multiple packages.
Packages can correspond to the semantics of the information
(manuscript, software, etc.), or can be more abstract entities
such as the metadata for the entire bucket, bucket terms and
conditions, pointers to other buckets or packages, etc.  A
single package can have several elements, which are
typically different file formats of the same information,
such as the manuscript package having both PostScript and
PDF elements.  Elements correspond to the syntax of a
package.  Packages and elements are illustrated in Figure 2.

Bucket Requirements
All buckets have unique ids, handles [7], associated with
them.  Buckets are intended to be either standalone objects
or to be placed in digital libraries.  A standalone bucket can
be accessible through normal WWW means without the aid
of a repository.  Buckets are intended to be useful even in
repositories that are not knowledgeable about buckets in
general, or possibly just not about the specific form of
buckets.  Buckets should not lose functionality when
removed from their repository. The envisioned scenario is
that NCSTRL+ will eventually have moderate numbers of
(10s - 100s of thousands) of intelligent, custom buckets
instead of large numbers (millions) of homogenous buckets.
Figure 3 contrasts a traditional architecture of having the
repository interface contain all the intelligence and
functionality with that of a bucket architecture where the
repository intelligence and functionality can be split

between the repository and individual buckets. This could be
most useful when individual buckets require custom terms
and conditions for access (security, payment, etc.). Figure 3
also illustrates a bucket gaining some repository
intelligence as it is extracted from the archive en route to
becoming a standalone bucket.  A high level list of bucket
requirements include:

•  a bucket is of arbitrary size
•  a bucket has a globally unique identifier
•  a bucket contains 0 or more components, called

packages (no defined limit)
•  a package contains 1 or more components, called

elements (no defined limit)
•  an element can be a file, or a “pointer” to another
•  both packages and elements can be other buckets (i.e.,

buckets can be nested)
•  a package can be a “pointer” to a remote bucket,

package, or element (remote package or element access
requires “going through” the remote hosting bucket)

•  packages and elements can be “pointers” to arbitrary
network services, foreign keys to databases, etc .

•  buckets can keep internal logs of actions performed on
them

•  interactions with packages or elements are made only
through defined methods on a bucket

•  buckets can initiate actions; they do not have to wait to
be acted on

•  buckets can exist inside or out of a repository

Table 1 lists the required bucket methods; other methods can
be custom defined.  Note that Table 1 differs from protocols
such as the Repository Access Protocol (RAP) [10].  RAP
defines what actions the Repository understands, while we
define the actions that buckets understand.  Although the
two are not mutually exclusive, the current plan is to not
implement RAP for NCSTRL+.  Table 2 lists the default
private methods for the bucket.  We expect this list to grow
as the public methods are refined, especially as the current
terms and conditions model moves past its current hostname
and username/password capability.

Project

manuscript

software

raw data

images

library

ftp site

thrown away

filing cabinet

User New
Project

       Figure 1: STI Lost in Project / Archival / Reuse Process

project archival reuse
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Bucket Tools
There are two main tools for bucket use.  One is the author
tool, which allows the author to construct a bucket with no
programming knowledge. Here, the author specifies the
metadata for the entire bucket, adds packages to bucket, adds
elements to the packages, provides metadata for the
packages, and selects applicable clusters.  The author tool
gathers the various packages into a single component and
parses the packages based on rules defined at the author’s
site.  Many of the options of the author tool will be set
locally via the second bucket tool, the management tool.
The management tool provides an interface to allow site
managers to configure the default settings for all authors at
that site.  The management tool also provides an interface to
query and update buckets at a given repository.  Additional
methods can be added to buckets residing in a repository by
invoking add_method  on them and transmitting the new
code. From this interface, the manager can halt the archive
and perform operations on it, including updating or adding
packages to individual buckets, updating or adding methods

to groups of buckets, and performing other archival
management functions.

Bucket Implementation
Our bucket prototypes are written in Perl 5, and make use of
the fact  that Dienst uses hypertext transfer protocol (HTTP)
as a transport protocol.  Like Dienst, bucket metadata is
stored in RFC-1807 format [12], and package and element
information is stored in newly defined optional and
repeatable fields.  Dienst has all of a document’s files
gathered into a single Unix directory.  A bucket follows the
same model and has all relevant files collected together using
directories from file system semantics.  Thus a Dienst
administrator can cd into the appropriate directory and access
the contents.  However, access for regular users occurs
through the WWW.  The bucket is accessible through a
Common Gateway Interface (CGI) script that enforces terms
and conditions, and negotiates presentation to the WWW
client.

Table 1: Default Public Bucket Methods

Access MethodsCNRI Handle
(unique id)

     Terms and Conditions

Metadata (RFC 1807, Dublin Core)

Manuscript .ps .pdf .tex .doc

Software .tar .c .java

images .gif .jpeg

data sets .xls .tar

. . .

            Figure 2: Bucket Architecture

Packages
inside the
bucket

Elements inside
the package

  Figure 3: Traditional  and Bucket Repository Architectures

Repository Interface

   optional intelligence

User

Repository Interface

Archived Objects

bucket
extraction
procedure

intelligence

Archived Buckets

User
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Method Argument Currently
Implemented

Description

metadata format Yes with no argument, returns the metadata in the default format; with an argument, derives and
returns the desired format

display -- Yes default method; bucket “unveils” itself to requester

id -- Yes returns the bucket’s unique identifier (handle)

list_tc -- No describes the nature of the publicly visible terms and conditions

list_methods -- Yes list all public methods known by a bucket

list_owners -- Yes list all principals that can modify the bucket

add_owner owner No add to the list of owners

delete_owner owner No delete from the list of owners

add_package package Yes adds a package to an existing bucket

delete_package package Yes deletes a package from an existing bucket

add_element element Yes adds an element to an existing package

delete_element element Yes deletes an element from an existing package

get_package package No capability to get an entire package, including all elements

get_element element No get an element from a package in a bucket; currently direct URLs are used for element
extraction

add_method method Yes “teaches” a new method to an existing bucket

delete_method method
name

Yes removes a method from a bucket

copy_bucket destination No export a copy of a bucket, original remains

move_bucket destination No move the original bucket, no version remains

                                               Table 2. Default Private Bucket Methods
Method Argument Currently

Implemented
Description

tc method name Yes all public methods pass through this terms and conditions method

derive_metadata format No converts from the default metadata format to the desired format

The philosophy of Dienst is to minimize the dependency on
HTTP.  Except for the User Interface service, Dienst does
not make specific assumptions about the existence of HTTP
or the Hypertext Markup Language (HTML).  However,
Dienst does make very explicit assumptions about what
constitutes a document and its related data formats.  Built
into the protocol are the definitions of PostScript, ASCII
text, inline images, scanned images, etc.  To add a new file
format, such as the increasingly popular PDF, Dienst
configuration files have to be changed.  If the protocol was
resident only at one site, this would be acceptable.
However, Dienst servers are running at nearly 100 sites --
protocol additions require a coordinated logistical effort to
synchronize versions and provide uniform capability.  

We favor making Dienst less knowledgeable about dynamic
topics such as file format, and making that the
responsibility of buckets (Figure 4).  In NCSTRL+, Dienst
is used as an index, search, and retrieval protocol.  When the
user selects an entry from the search results, Dienst would
normally have the local User Interface service use the
Describe  verb to peer into the contents of the documents
directory (including the metadata file), and Dienst itself
would control how the contents are presented to the user.  In

NCSTRL+, the final step of examining the directories
structure is skipped, and the directory’s index.cgi  file is
invoked.  The default method for an index.cgi  is
generally the display method, so the user should notice little
difference.  However, at that point the bucket, not Dienst,
determines what the user sees.

RELATED WORK
There has been a lot of research in the area of redefining the
concept of “document.” In this section we examine some of
these projects and technologies that are similar to buckets.  

Digital Objects
Buckets are most similar to the digital objects first described
in the Kahn/Wilensky Framework [8], and its derivatives
such as the Warwick Framework containers [11] and the
more recent Flexible and Extensible Digital Object
Repository Architecture (FEDORA) [4].  In FEDORA,
DigitalObjects are containers, which aggregate one or more
DataStreams.  DataStreams are accessed through an
Interface, and an Interface may in turn be protected by an
Enforcer.  Table 3 is a continuation of Table 1 from [4],
with the fourth column added to show the bucket
equivalents of concepts from the Kahn/Wilensky
Framework, the Warwick Framework, and FEDORA.
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Table 3: Bucket Concepts Added to Table 1 from [4]

The Kahn/Wilensky
Framework Concepts...

map to the FEDORA
classes...

which are implemented using the
Extended Warwick Framework

concepts...

and the Bucket equivalent is...

Data and Metadata DataStream Package Packages, Elements

Digital Object DigitalObject Container Bucket

Dissemination Interface Distributed Active Relationship get_package, get_element

Terms and Conditions Enforcer Distributed Active Relationship tc

Repository Repository Container Repository, or standalone (URL)

FEDORA has not been completely implemented at this
point, and it is unknown what repository or digital library
protocol limitations will be present.  Also, it is unknown if
FEDORA plans to allow DigitalObjects to be intelligent
agents, similar to the Bucket Matching System described
below.

Multivalent Documents
Multivalent documents [17] appear similar to buckets at
first glance.  However, the focus of multivalent documents
is more on expressing and managing the relationships of
differing “semantic layers” of a document, including
language translations, derived metadata, annotations, etc.
There is not an explicit focus on the aggregation of several
existing data types into a single container.

Open Doc and OLE
OpenDoc [13] and OLE [1] are two similar technologies
that provide the capability for compound documents.  Both
technologies can be summarized as viewing the document as
a loose confederation of different embedded data types.  The
focus on embedded documents is less applicable to our
digital library requirements than that of a generic container
mechanism with separate facilities for document storage and

intelligence.  OpenDoc and OLE documents are more
suitable to be elements within a bucket, rather than a
possible bucket implementation.

Digibox
The DigiBox [18] technology is a container construct
designed for electronic commerce.  The goal of DigiBox is
“to permit proprietors of digital information to have the
same type and degree of control present in the paper world
[18].  As such, the focus of the DigiBox capabilities are
heavily oriented toward cryptographic integrity of the
contents, and not so much on the less stringent demands of
the current average digital library.  There also appear to be
no hooks to make a DigiBox an intelligent agent. DigiBox
is a commercial endeavor and is thus less suitable for the for
our NCSTRL+ prototype.  

CURRENT AND FUTURE WORK
We are using the author tool to populate NCSTRL+ to gain
insight on how to improve its operation.  We are starting
with buckets authored at Old Dominion University and
NASA Langley Research Center and are choosing the initial
entries to be “full” buckets, with special emphasis on
buckets relating to NSF projects for ODU and for

user
index holdings
search / retrieve holdings
display holdings

Dienst Archive

user
index holdings
search / retrieve holdings

display holdings

Dienst Archive

Bucket

Dienst Operation in NCSTRL

Dienst / Bucket Operation in NCSTRL+

          Figure 4: Buckets, Not Dienst, Control Display in NCSTRL+
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windtunnel and other experimental data for NASA.  Until
NCSTRL+ becomes a full production system, we are
primarily seeking rich functionality buckets that contain
diverse sets of packages.

Alternate Implementations
We are planning to also implement buckets using Lotus
Domino, a Web server integrated with a Lotus Notes
database server, in addition to the current CGI and Perl
implementation.  The bucket API as defined in Tables 1 &
2 will remain unchanged.  In experimenting with Domino,
we also plan to investigate implementing NCSTRL+
components without using Dienst.  We plan to evolve
NCSTRL+ to support a generalized publishing and
searching model that can be implemented using Dienst or
other DL protocols.

Bucket Matching System
The premise of the Bucket Matching System (BMS) is that
the archived objects (buckets) should handle as many tasks
as possible, not humans.  Toward this end, we are designing
the BMS as a communication mechanism for buckets to
exchange information among themselves. The "tuple-space"
communication of the Linda programming language [3] is
the model for BMS.

The following example illustrates a usage of the BMS.
Consider a technical report published by the CS department
which is also submitted to a conference. The report appears
under the server maintained by the department and
publishing authority which is: ncstrl.odu.cs. If the
conference paper is accepted, it will eventually be published
by the conference sponsor, say the ACM. The publishing
authority would be ncstrl.acm. Although the conference
paper will surely appear in a modified format, the tech
report and the conference paper are clearly related, despite
being separated by publishing authority, date of publication,
and revisions. Two separate but related objects now exist,
and are likely to continue to exist. How best to create the
desired linkage between the objects? “ncstrl.acm” may have
neither the resources nor the interest to spend the time
searching out previous versions of a manuscript.
“ncstrl.odu.cs” cannot link to the conference bucket at the
creation time of the ODU bucket, since the conference
bucket did not exist at the time. It is unrealistic to suggest
that the relevant parties will go back to the ncstrl.odu.cs
collection and create the linkage correctly after several
months have passed.

The solution is to have both buckets publish their metadata,
or some subset of it, in the BMS. When a match, or near
match, is found, the buckets can either 1) automatically link
to each other; or more likely 2) bring the possible linkage
to the attention of a person, who will provide the final
approval for the linkage. There are a number of ways that a
"match" can be found, but most likely it will be similar
metadata within some definable threshold (e.g., 90%
similar). Other uses for the BMS could include:

Find similar works by different authors. The exact values
would have to be determined by experimentation, but it is
possible to envision a similarity ranking that is slightly
lower being an indication of a similar work by different
authors. For example, a similar work by a different author
would be: 70% < similarity < 90%.

Arbitrary selective dissemination of information (SDI)
services. When a user's profile is matched, a notification
can be sent immediately or a digest sent at every defined
time interval  (i.e., weekly).  This method can be used to
track different versions of a report, not just inter-genre
(technical report vs. conference paper) or inter-institution
(the author moves to a different university) issues. If
version 2.0 of a bucket comes out, it can "find" all previous
versions, and the appropriate actions can be taken  (i.e.,
create a fully connected graph between the buckets, delete
previous buckets, etc.)

Metadata scrubbing. The issues of maintaining consistency
and quality of metadata information is an increasingly
important concern in digital libraries [6]. Part of the BMS
coud also include a metadata scrubber that, based on rules
and  heuristics defined at the scrubber, could automatically
make or suggest updates to metadata. For example, the
scrubber could have all references to "Hampton Institute"
indicate the name change to "Hampton University", or
handle an author’s name change (for example, if someone
changes their name upon marriage), or correct errors that
may have been introduced, etc.

The BMS could be implemented on multiple workstations,
and would be primarily batch processing.  Given that some
of the operations would be computationally expensive, it
can be done with loose time guarantees, perhaps even done
on stolen idle cycles (from "hallway clusters" of
workstations).

CONCLUSIONS
Buckets provide a mechanism for logically grouping the
various semantic data objects (manuscript, software,
datasets, etc.) and the various syntactic representations
(PostScript, PDF, etc.).  The ability to keep all the data
objects together with their relationships intact relieves the
user from having to reintegrate the original information
tuple from many separate archives.  Buckets also provide a
more convenient method for describing the output of
research projects, and provide a finer granularity for
controlling terms and conditions within an archive.  The
aggregative aspects of buckets have already been
implemented.  The tools to make buckets easy to use and
manage are being created.  The Bucket Matching System
will allow buckets to be intelligent agents, and allow inter-
bucket communication as well as communication and action
with arbitrary network resources.  
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