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ABSTRACT

A review of the algorithmic features and capabilities of the unstructured-grid flow solver USM3Dns is
sented. This code, along with the tetrahedral grid generator, VGRIDns, is being extensively used through
U.S. for solving the Euler and Navier-Stokes equations on complex aerodynamic problems. Spatial discret
is accomplished by a tetrahedral cell-centered finite-volume formulation using Roe’s upwind flux difference
ting. The fluxes are limited by either a Superbee or MinMod limiter. Solution reconstruction within the tetrah
cells is accomplished with a simple, but novel, multidimensional analytical formula. Time is advanced by a
plicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmara
equation model, which is coupled with a wall function to reduce the number of cells in the near-wall region
boundary layer. The issues of accuracy and robustness of USM3Dns Navier-Stokes capabilities are addres
flat-plate boundary layer, and a full F-16 aircraft with external stores at transonic speed.

INTRODUCTION

This paper is offered in response to an invitation to present to the “finite element” community1 an alternate
approach for solving the Navier-Stokes equations using a tetrahedral-based “finite volume” formulation
focus will be on the features and application of the cell-centered upwind flow solver USM3Dns [5,6,8] whic
component of the NASATetrahedralUnstructuredSoftwareSystem (TetrUSS2) [7].

The primary attractiveness of tetrahedral-based schemes hinges on a demonstrated capability for ra
generation on a wide variety of complex geometries by a broad range of users [9,15,21]. The VGRIDns cod
another component ofTetrUSS,is widely used in the U.S. to generate inviscid and viscous tetrahedral grids on
ometries ranging from aircraft to heart pumps. As with inviscid tetrahedral grids in the past, viscous tetra
grids are generated on complex geometries by a range of users in a matter of days.

The finite-volume approach is based on the physical concept of using macroscopic control volumes
merically solve the conservation laws of fluid motion. Jameson, et. al. [12] reported one of the earliest succ
implementations of this approach for solving the Euler equations on tetrahedral grids. The finite-element m
[e.g. 18] is more mathematically based and uses a weak variational form of the governing equations, alon
polynomial shape functions, for discretization. While there are inherent differences in the two methodol
there are similarities between the Galerkin finite element procedure with piecewise-linear shape functions a
finite-volume approach [12].

Tetrahedral finite-volume Navier-Stokes methodology is maturing along two tracks: node-centere
cell-centered schemes, each with their relative merits. Node-centered schemes exploit an efficient edge-ba
structure and more readily facilitate general polyhedral cell volumes [e.g. 2,4,16], but typically require large
hedral grids. Cell-centered schemes exploit geometric features of tetrahedra for constructing accurate sp
construction schemes and provide comparable accuracy with fewer tetrahedra3, but they are not as easily extend
able to general elements. While the underlying Navier-Stokes methodologies have advanced rapidly in
years, they are still less mature than their more established “structured” grid counterparts. Legitimate qu
still remain regarding the solution accuracy of unstructured Navier-Stokes schemes [3,4], and the user com
does not yet have a sufficient experience base from which to derive full confidence. Thus, there is a stron
for more fundamental analyses and systematic application studies which address the key issues of solutio
racy, robustness, and efficiency on a range of configuration and flow classes.

There is an ongoing discussion among the computational fluid dynamics community regarding the
pure tetrahedra vs. mixed elements for Navier-Stokes computations. While there has been no definitive res
to this issue, the authors are generally pleased with the (cell-centered) tetrahedral approach. Grid gene
rapid and robust with VGRIDns. Grid sizes are manageable, and the number of tetrahedra needed to res
boundary layer is comparable to that for structured or prismatic grid methods. The primary shortcomings
from the large memory requirements of general-indexed schemes using implicit time integration. Work i
rently underway to resolve these problems using zonal decomposition techniques and adaptive gridding.

The scope of this paper is to review the underlying Navier-Stokes methodology of the VGRIDns grid
erator and USM3Dns finite-volume flow solver, and to demonstrate this emerging capability on a very com
configuration. An assessment of solution accuracy is presented for the flat-plate boundary layer problem.

1Tenth International Conference on Finite Elements in Fluids, Tucson, Arizona, USA, January 5-8, 1998
2URL: http://ad-www.larc.nasa.gov/tsab/tetruss
3A given tetrahedral grid has between 5 and 5.5 more tetrahedra than nodes. Additional spatial resolution is achieved by the cell-

scheme on a given grid by virtue of resolving the flow solution at >5 times more spatial locations than node-centered scheme.
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sues of accuracy and robustness are examined with a transonic computation on a realistic complex config
using a full F-16 aircraft with external stores.

TETRAHEDRAL GRID GENERATOR, VGRIDns

VGRIDns is based on the Advancing-Front (AFM) [14] and the Advancing-Layers (ALM) [20] metho
The generation of a ‘Navier-Stokes’ grid is accomplished automatically in three main steps: (1) generation
angular surface grid by AFM and ALM, (2) generation of thin-layered tetrahedral grid in the boundary lay
ALM, and (3) generation of regular (inviscid) tetrahedral grid outside the boundary layer by AFM.

Grid clustering is controlled by a prescribed stretching function within the ‘viscous’ layers, and a ‘tran
ent’ Cartesian background grid [19] overlaying the entire domain. Included in the background grid are a num
prescribed ‘point’ and ‘line’ sources for defining local cell spacings. The grid characteristics are smoothly dif
from the sources onto the background grid nodes by solving an elliptic equation. The problem is analogous
transfer heat in a conducting medium.

Two main operations are involved in ALM: 1) computation of surface vectors along which the grid po
are distributed and 2) construction of a pattern for a compatible cell connectivity within the thin layers. Thin l
of tetrahedra are formed by inserting new points along the surface vectors and connecting the points acco
the predetermined connectivity pattern. The individual layers (see Fig. 1) continue advancing independent

other until either the background grid information or an approaching front warrants them to stop. When all
are complete, the ALM process automatically switches to the AFM to generate regular tetrahedra outs
boundary layer. With a common background grid controlling both methods, the transition from thin layers
regular grid becomes gradual and continuous.

Another feature of VGRIDns which is of practical importance for Navier-Stokes is its ability to gene
multi-directional anisotropically stretched grids [22]. This results in at least a factor of three reduction in ov
number of cells. With such a capability, fewer points are distributed in the directions of reduced flow gradien
no loss of grid resolution in other essential direction(s).

FINITE-VOLUME FLOW SOLVER, USM3Dns

The fluid motion is governed by the time-dependent Reynolds-averaged Navier-Stokes equations
ideal gas which express the conservation of mass, momentum, and energy for a compressible Newtonian
the absence of external forces. The equations are prescribed in integral form for a bounded domainΩ with the
boundary∂Ω

(1)

where the state variables are , and the inviscid and viscous fluxes, F(Q) andG(Q),

Fig. 1 Thin-layered tetrahedra formed by ALM; (∆n1 - height of first node,∆nc - height of cell centroid).
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respectively, are defined in Ref. [8].
A finite-volume discretization is applied to Eq. 1 which results in a consistent approximation to the co

vation laws. The spatial domain is divided into a finite number of tetrahedral cell volumes. The discretized
tion to Eq. 1 results in a set of volume-averaged state variables which are in balance with the area-average
(inviscid and viscous) across the cell faces.

Inviscid Fluxes
The primary challenge in designing a tetrahedral cell-centered finite-volume scheme is the accurate

struction of cell-averaged data within non-isotropic tetrahedra to the perimeter triangular faces for flux com
tion as illustrated in Fig. 2. A novel cell reconstruction process was derived in Ref. [6], which is based on a

lytical formulation for computing the gradient term of a Taylor series expansion within tetrahedral cells.
scheme consists of simple, universal formula for tetrahedral cells

(2)

whereq=[ρ,u,v,w,p]T are the primitive variables of density, velocity, and pressure. Its derivation is based o
ploiting several invariant features of tetrahedra in combination with the mid-point trapezoidal rule for num
integration. This gives rise to the analytical expression of the Taylor series expansion of the cell-averaged s
to the cell face in Eq. 2. With an accurate reconstruction of data at the cell faces, the inviscid flux quantiti
computed in a straightforward manner across each face using the Roe [23] flux-difference splitting (FD
proach. Limiting of the reconstructed solution is generally necessary for FDS to eliminate overshoots of t
pansion in high-gradient regions, such as shocks. The well known Superbee or MinMod limiters have been
mented in USM3Dns.

A key component of the scheme is the secondary reconstruction of surrounding cell-averaged da
common vertex or node by a weighted averaging procedure. The current averaging scheme, originally prop
Ref. [5], is based on an inverse-distance weighting of the primitive variables from the cell centroid to the ce
tices:

(3)

where .

Reconstruction at boundary nodes is accomplished through ghost-cells as described in Ref. [6].

Until recently, the sole approach for secondary reconstruction was a pseudo-Laplacian averaging s
presented in Ref. [6]. This scheme offers the advantage of second-order accuracy in reconstructing data fr
rounding cells to a node. However, there is a need to artificially “clip” the weighting factors between 0 and 2
[10]) to avert a violation of the positivity principle which is necessary for solution stability. This artificial “cl
ping” process does, unfortunately, compromise the formal second-order accuracy of the scheme to some
Recent experiences with applying the pseudo-Laplacian scheme to Navier-Stokes computations have s
some anomalous behavior which needs further investigation. Meanwhile, for the present work, we are temp

Fig. 2 Reconstruction stencil for tetrahedral cell-centered scheme.
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reverting to the inverse-distance averaging of Eq. 3 which is less accurate, but will never violate the princ
positivity.

Viscous Fluxes
The viscous fluxesG(Q) are approximated at the cell-face centroids by linear reconstruction which

vides a continuous representation of the solution variables across the cell faces. A modified version of the
presented by Mitchell [17], sketched in Fig. 3, utilizes the averaged solution quantities at the three vertice
cell face,qn1, qn2, and qn3, and the cell-centered values of the two cells sharing the face,qc1 and qc2, where
q≡(ρ,u,v,w,p). The required derivativesux, uy, etc. forG(Q) are derived from a Cramer’s rule solution to

. (4)

Time Integration
The computations are advanced to steady state by the implicit time advancement strategy of Anders

The scheme uses the linearized, backward Euler time differencing approach to update the solution at ea
step. The linear system of equations are solved at each time step with a point-Jacobi subiteration on group
rahedral cells which are separated into ‘colors’ (different from face-coloring) such that no two cells share a
mon face. While the point-Jacobi method is in itself not very efficient, convergence rate is accelerated by us
latest values of the updated solution variables as soon as they are available after subiteration of prior ‘color
produces a Gauss-Seidel-like effect, and the method has the advantage of being completely vectorizabl
cally, 10 subiterations are used for Navier-Stokes computations, and 20 subiterations for Euler.

Because of the number of operations required to invert a matrix depends on the matrix bandwidth, th
hand side of the system of linear equations is evaluated with first-order differencing to reduce both require
age and computer time. Convergence of the subiterations is further accelerated by using Van Leer's Flux
Splitting (FVS) [25] on the left-hand side. Thus in the present study, first-order differencing and FVS are ap
to the left-hand side, and higher order differencing and FDS to the right-hand side. The viscous Jacobian te
included in the left-hand side of the equation.

USM3Dns requires 175 words/cell of core memory, and runs at a speed of 27µs/cell/cycle on a CRAY C-
90 with higher-order differencing. Multitasking on the CRAY is utilized for reducing the wall-clock time o
computation. Multitask efficiencies of 6 out of 10 processors on a 16-processor machine are typically achiev
most applications.

Turbulence Model
Spalart-Allmaras.Closure of the Reynolds stress is provided by the one-equation Spalart-Allmaras (

turbulence model. This model is derived “using empiricism and arguments of dimensional analysis, Galile
variance, and selective dependence on the molecular viscosity” [24]. The model solves a partial differentia
tion (PDE) over the entire field for a transformed working variable from which the eddy viscosity,µt, can be
extracted. The PDE is solved separately from the flow equations using the same backward Euler time inte

Fig. 3 Modified tetrahedral viscous stencil.
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scheme, which results in a loosely coupled system. The production and destruction terms have been mod
recommended in Ref. [24] to ensure positive eddy viscosity throughout the computation.

On ‘no-slip’ surfaces, the dependent variable, , is set to zero. For tangent-flow surfaces, a zero gr
of the variable is applied. Far field boundary conditions are applied by extrapolating from the interior for
flow boundaries, and taken from the free stream for the inflow.

The S-A model requires that the distance of each cell to the nearest wall be provided for the nea
damping terms for cells which are in proximity to ‘viscous’ surfaces. These distances are determined prior t
execution for cells in the “viscous” layers. A very efficient preprocessing code is developed which exploits th
dering of the nodes in these layers (see Fig. 1) to complete the distance computation within a few seconds

Wall Function.The S-A model has been coupled with a wall function formulation to eliminate the need
resolving the flow in the sublayer portion of a turbulent boundary layer. Details are presented in Ref. [8]. Wit
approach, the inner region of the boundary layer is modeled by an analytical function which is matched w
numerical solution in the outer region. This has the advantage of 1) significantly reducing memory requirem
eliminating a large portion of cells normally required to resolve the sublayer, and 2) improving overall co
gence by removing the thinner, more highly stretched cells which add stiffness to the solution process.

The selected wall function is a law-of-the-wall expression [26] derived by Spalding in 1961. The pre
implementation considers no adjustment to adiabatic wall density, which is important to high speed flows.

RESULTS AND DISCUSSION
Results are presented in this section for the flat-plate boundary layer problem, and a complete F-16

with external stores at transonic speeds. Only a cursory summary of the flat-plate problem is included from
work [8] to review the accuracy of a relatively new wall-function approach. The F-16 computation was chos
demonstrate the emerging unstructured finite-volume Navier-Stokes capability on a realistic complex aircra
figuration which exhibits strong viscous effects during store separation.

Grid Spacing
The normal grid spacing across the boundary layer is prescribed by the exponential function

(5)

such that the distance from the jth layer to the surface is given by nj = nj-1 + ∆nj-1.

The parameter∆n1 is the spacing of the first node above the surface (Fig. 1), whilea andb are parameters
which govern the growth. A small utility program is used to determine an initial estimate of∆n1, a, andb on an as-
sumed 1/7th law velocity profile for prescribed values of Reynolds number, n+, and number of points across the
boundary layer.

Flat-Plate Boundary Layer
The flat-plate boundary layer solution is used to assess the accuracy of the wall function in predicti

flat-plate turbulent skin friction. The computations were made on quasi-2D tetrahedral ‘channel’ grids for M∞=0.5
and ReL=2×106 where “L” is the length of the plate.

Grid 1 was generated by constructing a 49X12 H-topology structured grid with a normal spacing de
by ∆n1=0.001L,a=0.3, andb=0.07 in Eq. 5, which yields roughly 5 nodes across the boundary layer at x/L=
and an approximate n+ of 80 at the first node. The resulting upper domain boundary (k=12) is located at 0.
The 2D grid was stacked spanwise in 0.02L increments to form three planes resulting in a 3D structured
channel grid (49X3X12) of H-H topology. Each hexahedral cell was subdivided into 2 prismatic cells, which
further subdivided into 3 tetrahedra each to form the 3D tetrahedral grid with 6,336 cells. The “flat plate” wa
cretized by a cosine clustering between the “structured” indices along thek=1 boundary with inviscid
flow prescribed on thek=1 boundary ahead of the plate. Boundary conditions of constant entropy and con
total pressure were prescribed on the inflow plane, while an extrapolation condition was applied to the upp
exit domain boundaries. A constant freestream pressure was also imposed on the exit plane.

A second grid was generated in a similar manner as the first to explore the lower limits of grid coars
on solution accuracy. Grid 2 was constructed from a 49X6 H-topology with the Eq. 5 parameters of∆n1=0.001L,

ν̃
ν̃

∆nj ∆n1 1 a 1 b+( ) j 1–
+( )

j 1–
=

15 i 49≤ ≤
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a=2.0, andb=0.07. This resulted in a 3D channel grid (49X3X6) with 2,880 cells, and an upper domain boun
(k=6) also at 0.22L.

Fig. 4 portrays the effect of normal grid density on skin-friction coefficient and the law-of-the-wall beh
ior at x/L=0.5, Rex=1×106, for the two grids. The plotted nodal solutions were reconstructed from the surroun

tetrahedral cells using the weighted averaging procedure of Ref. [6].The plotted nodal data points effectively hav
three layers of tetrahedra between each pair, as sketched in Fig. 1.Note that the first nodal value is matched wit
the log layer at approximately n+=80 for both grids. Grid 1 has 5 nodes (15 tetrahedra) across the boundary l
while Grid 2 has 3 nodes (9 tetrahedra). Grid 1 displays excellent agreement over 0.2<x/L≤1.0 with the theoretical
coefficient for fully turbulent flow, , which is based on the 1/7th power law assum
tion. Grid 2 does not exhibit the same level of agreement, but is remarkably close considering its extrem
coarseness across the boundary layer.

These results highlight a common misconception about tetrahedral grid resolution. For acell-centered
scheme, it is important to think in terms ofcell-resolution rather thannode-resolution. It is the number of cells
across the boundary layer that are important to solution accuracy for the present method.

On a side note, the spurious behavior of the computed skin friction near the plate leading
in Fig. 4 is not fully understood at this time and is presently under investigation. However

principal interest for the present study is in the fully developed turbulent flow over the remaining region o
plate.

F-16 with Generic Finned Store

Unstructured transonic Navier-Stokes computations are presented for the complete F-16 aircraft con
tion as a demonstration and assessment of the present finite-volume methodology for a very complex ge
and flow field. In addition to the base aircraft, the configuration includes a flowing inlet, external fuel
mounted on the inner wing pylon, and a generic finned-store suspended below the outer wing pylon. S
stings are also attached to the fuselage and the generic finned-store to simulate the wing-tunnel config
tested in Ref. [11]. The horizontal and vertical tails were not present during the wind-tunnel test, but are inc
on the computational geometry as additional geometric complexities for demonstration purposes. Their inf
on the store pressures is expected to be small.

An inviscid Euler study on this configuration is reported by Kern and Bruner [13] where the primary in
est was the accurate and efficient prediction of initial loads on the finned-store to drive a separation traj
analysis. The format of the following results is replicated from Ref. [13] to better complement the existing kn
edge base.

Fig. 4 Effect of normal grid density on skin friction (left), and law-of-the-wall at x/L=0.5 (right), for flat-plate boundary
layer flow; Mach=0.5 and ReL=2 million.
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Grid Generation. Tetrahedral viscous and inviscid grids were generated for the F-16 aircraft u
VGRIDns. The ‘viscous’ grid, shown in Fig. 5, has 1,428,779 tetrahedra, 255,959 nodes, whereas the ‘in
grid (not shown) contained 1,111,762 cells and 202,378 nodes.The farfield boundaries were prescribed as
and 3.6 body lengths ahead, aft, and spanwise of the aircraft, respectively. These boundary locations resp
correspond to 25, 29, and 17 wing mean-aerodynamic-chord (mac) lengths.

The F-16 surface definition is defined in full-scale inches. The normal grid spacing for the Navier-S
computation is sized for a wind-tunnel Reynolds number of 2 million, based onmac, assuming a 1/7th law bound-
ary layer profile at the mid-mac location on the wing. The spacing is prescribed for computation with the w
function to yield 18 tetrahedral layers (6 nodes) across the mid-chord boundary layer with an n+=30 for the first
node. The corresponding parameters for Eq. 5 are∆n1=0.046 inches,a=0.745, andb=0.07. The thin-layered tetra-
hedra are evident on the symmetry plane in Fig. 5 and on a plane cutting through the wing, pylon, and
While the grid was generated over an extended period of time, it is estimated that the cumulative manual lab
in the range of 40 to 60 hours.

The ‘inviscid’ grid was generated from the same ‘viscous’ grid input file with an initial grid spacing
∆n1=0.2 which produced a near identical match between the two surface triangulations. Inviscid grids are ty
generated entirely by the AFM approach. However, to gain more control of the cells generated within the
gap between the finned-store and its pylon, it was necessary to conduct the inviscid grid generation with th
option using an appropriate initial spacing which yielded five layers of tetrahedra within the gap.

Flow Solution. Navier-Stokes (N-S) and Euler flow solutions were obtained for angles of attack (AOA
0, 2, 4, and 8 degrees at Mach 0.95. The Navier-Stokes cases were run for 1000 iterations starting from fre
conditions with an initial Courant-Friedrichs-Lewy (CFL) number of 0.01 that was ramped up to 100 over 50
cles. The Euler solutions were run for 800 cycles starting from freestream with an initial CFL=10 with rampin
to 50 over 50 cycles. Convergence was accelerated to steady state with local time stepping. The inviscid
were limited with the Superbee limiter.

The USM3Dns solver was executed with multitasking over 10 processors on a 16-processor CRAY
The Navier-Stokes and Euler solutions required 254 and 197 megawords of core memory, respectively.
multitasking efficiency of 6 out of 10 processors, each N-S solution required from 10.5 to 11 hours of CPU
which was turned around in 2 wallclock hours. One N-S solution required 14.8 CPU hours and 2.75 wal
hours due to the particular scheduling load of the multitasking queue when the run was submitted. The Eule
tions each utilized approximately 6.6 CPU hours and 45 wallclock minutes of CRAY time, with a multitaskin
ficiency of 8.7 out of 10 processors.

The history of normalized residual error and lift coefficient for the Navier-Stokes solutions in Fig. 6 s
a consistent convergence for each case. The leveling off of residual error is common for solutions on comple
figurations at transonic speeds which also occurred for the Euler solutions. The oscillatory behavior above
erations is most likely due to local recirculatory flow oscillations. Convergence is usually assessed from the
and moment coefficients.

Fig. 5 Viscous tetrahedral grid on complete F-16 aircraft with external stores, 1,428,779 cells. (Left - triangulation of
surface and symmetry plane,Right - tetrahedra on plane intersecting wing/pylon/finned-store.)
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Figure 7 depicts the surface pressure contours and store/pylon flow patterns for the N-S solut
AOA=4 degree. The global pressure field is characterized by strong shock systems and interactions, both b

store components and in the farfield. The surface flow patterns reveal shock-induced separations on the sto
body and aft-pylon region.

Force and Moments. Fig. 8 presents a comparison of the experimental force and moments of the store
N-S and Euler results from USM3Dns. The plots depict the variation of store normal and side force coeffi
(CN and CY, respectively) and the pitch (Cm) and yaw (Cn) moments, in the store body axis system, with an
attack. Forces are positive upward or inboard from a cockpit perspective. Moments are positive for nose p
upward or yawing inboard relative to the aircraft. The N-S results are generally in better agreement with the
imental data [11] than the Euler solutions, with the exception of the yawing moment, Cn. The largest benefit
N-S approach occurs at AOA of0 degrees. Reference [13] reported difficulties at this AOA with the Euler mode
ing. Very strong shock interactions were produced by the inviscid equations between the store’s aft upper f
the support pylon which may not be present in real flow. The present N-S solutions produce a more physica
rect result by modeling the aft-store-body shock-induced flow separation, as will be shown in the next sect

Surface Pressures. The computed longitudinal distributions of surface pressure coefficient for the finn
store body are compared with experimental data from Ref. [11] in Fig. 9 for 4 degrees AOA. The top, botto
board, and outboard longitudinal stations correspond to radial locations of 5, 185, 275, and 95 degrees,
tively, measured from the top of the store body and rotating outward away from the fuselage. Values forx/Lstoreof
0.0 correspond to the store nose, and1.0 to an aft-body station slightly behind the store fins. The correlation
pressure coefficient is generally good for the bottom, outboard, and inboard longitudinal stations. The poor

Fig. 6 History of L2-norm residual error and lift coefficient of Navier-Stokes flow solutions.

Fig. 7 Navier-Stokes flow solution on complete F-16 aircraft with stores for Mach 0.95, angle of attack 4 degrees, and
Remac=2 million. (Left - isobars of pressure,Right - surface flow patterns on aft finned-store and pylon.)
8
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lation along the top station is caused by the interference of sway braces used in the wind tunnel test, but n
eled in the computation, which induce a local suction at store body stations of 43- and 59-percent. Consiste
results from Ref. [13], the Euler solutions predict a rapid expansion followed by a strong shock at the boat-
the body. As expected from the N-S solution, the boat-tail separation, evident in the surface flows in Fig. 7,
in a softened expansion in Fig. 9 and brings the aft-shock into better agreement. There is also a generall
agreement of the mid-body compressions for the Navier-Stokes solutions.

A similar, but more dramatic effect can be observed in the fin pressure coefficient distributions in Fig
These longitudinal distributions are plotted along the 50-percent exposed-fin span station for the inboard
and outboard-upper fin components. The N-S methodology yields a significant improvement in predictin
shock strength and location on the aft 60-percent of the fin. A further assessment of the effect of grid refin
on the pressure distributions of Figs. 9 and 10 is warranted in future work. However, level of agreement
present Navier-Stokes comparisons is good considering the relatively small number of tetrahedra (1,428,77
used to resolve this complex full aircraft configuration.

CONCLUDING REMARKS

A review has been presented of the algorithmic features and capabilities of the tetrahedral-based fin
ume Euler and Navier-Stokes flow solver USM3Dns. This code, along with the tetrahedral grid gene
VGRIDns, are primary components of the NASATetrUSSpackage which is being used extensively througho

Fig. 8 Variation of store forces and moments with angle of attack, Mach=0.95.

Fig. 9 Longitudinal distribution of surface pressure coefficient on generic finned-store body at Mach 0.95 and angle of
attack 4 degrees. (Left - top and bottom, Right - outboard and inboard)
9
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the U.S. for solving complex aerodynamic problems. The Navier-Stokes capability is maturing rapidly as a
of many focused customer applications on a range of configurations.

The present work has addressed the issues of accuracy and robustness of the USM3Dns Navier-Sto
ture using the flat-plate turbulent boundary layer problem, and a full F-16 aircraft with external stores. The
achieves excellent accuracy in predicting the turbulent skin friction coefficient on the flat plate with as few
tetrahedral layers (5 nodes) across the boundary layer using the Spalart-Allmaras one-equation turbulenc
with a wall function. The F-16 calculation serves as a good test case for demonstrating robustness and accu
a very complex geometry with transonic flow. A reasonably good prediction of force-moments and surface
sures on the generic finned-store body and fins was achieved with as few as 1.4 million tetrahedral cel
within 2 wallclock hours per solution on a CRAY C90. While many more application studies are needed
crease user confidence in this capability, these results serve to demonstrate the strong potential for tetr
based finite-volume Navier-Stokes methodologies to become a practical computational aerodynamic tool.
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