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SUMMARY

This report contains a description of a lateral-directional control law designed for the NASA High-
Alpha Research Vehicle (HARV).  The HARV is a modified McDonnell-Douglas F/A-18 that began flight
evaluation in mid-calendar year 1991.  The main modification for the initial phase of this program was the
addition of a research flight computer, spin chute, and thrust-vectored controls in the pitch and yaw axes.
After initial evaluation flights were completed, revised control laws (designated NASA-1A) were installed
on the HARV.  Two separate design tools, CRAFT and Pseudo Controls, were integrated to synthesize the
revised lateral-directional control law.  This report contains a description of this lateral-directional control
law, analyses, and nonlinear simulation (batch and piloted) results.  Linear analysis results include closed-
loop eigenvalues, stability margins, robustness to changes in various plant parameters, and servo-elastic
frequency responses.  Step time responses from nonlinear batch simulation are presented and compared to
design guidelines.  Piloted simulation task scenarios, task guidelines, and pilot subjective ratings for the
various maneuvers are discussed.  Linear analysis shows that the control law meets the stability margin
guidelines and is robust to stability and control parameter changes.  Nonlinear batch simulation analysis
shows the control law exhibits good performance and meets most of the design guidelines over the entire
range of angle of attack.  The control law was extensively exercised in piloted simulation and shown to
possess good flying qualities and to be very departure resistant.  This control law was flight tested during
the Summer of 1994 at NASA Dryden Flight Research Center.

INTRODUCTION

Advances in weapons and aircraft technology are significantly changing air combat.  In the past, air
combat engagements often resulted in tail-chase fights measured in minutes; now they are measured in
seconds with combatants using all-aspect weapons.  Future fighters may have to operate in environments
where enhanced maneuverability and controllability throughout a greatly expanded flight envelope, including
high angle of attack, are requirements.  Studies involving piloted and numerical air combat simulations
(Herbst and Krogull 1972; Herbst 1980; Hamilton and Skow 1984; Ogburn et al. 1988; Doane et al. 1990;
Fears et al. 1997) have shown that fighters with this capability are able to perform combat maneuvers in
shorter time and in less space and thus achieve a tactical advantage.  New control effectors, such as thrust-
vectoring and actuated nose strakes, offer the capability to expand the flight envelope with greater control
than previously obtainable.  Success in the fighter combat arena of the future will demand increased
capability from aircraft technology.  

As part of NASA's High Alpha Technology Program (HATP), key high angle of attack technologies
were demonstrated on the High-Alpha Research Vehicle (HARV).  One such technology is advanced control
concepts including thrust-vectoring and advanced aerodynamic controls.  The HARV is a modified
McDonnell-Douglas F/A-18 that began flight evaluation in mid-calendar year 1991.  The main aircraft
modification for the initial phase of this program was the addition of a research flight computer, spin chute
and thrust-vectoring in the pitch and yaw axes; resulting in an aircraft that is approximately 4Ê100 pounds
heavier than an unmodified F/A-18.  The HARV is designed to operate at angles of attack up to 70 degrees.
The original thrust-vectoring control laws, developed jointly by NASA and McDonnell Aircraft Company,
were used during the initial high angle-of-attack HARV flight evaluations that included flight envelope
expansion and maneuvering capability.  Revised control laws that use advanced control design
methodologies (Davidson et al. 1992; Ostroff et al. 1994) were then installed on the HARV (after the initial
evaluation flights were completed).  Initial versions of these control laws (designated NASA-1A) were flight
tested during the Summer of 1994 at NASA Dryden Flight Research Center.  This report describes the
NASA-1A lateral-directional control law.

This report contains a description of the lateral-directional control law, results of analyses, and
nonlinear simulation (batch and piloted) results.  Linear analysis results include closed-loop eigenvalues,
stability margins, robustness to changes in various plant parameters, and servo-elastic frequency responses.
Batch simulation results include step-input time responses at selected design conditions and a comparison of
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performance with design guidelines (Hoffler et al. 1994).  Task scenarios, task guidelines, and Cooper-
Harper Ratings (Cooper and Harper 1969) for the various maneuvers are presented in the piloted simulation
section.  The final section presents concluding remarks.

NOMENCLATURE

A Plant matrix

As Commanded Accelerations

B Control distribution matrix for states

Bdot Sideslip rate

C State distribution matrix for outputs

D Control distribution matrix for outputs

G Feedback gain matrix

Gfl Pseudo control blending  matrix

Lavail Roll moment available from controls

Lp Roll moment due to roll rate

Lail Roll moment due to aileron

Ldstab Roll moment due to differential stabilator

l Number of measurements

li Eigenvalue for mode i

M State distribution matrix for measurements

m Number of controls

N Control distribution matrix for measurements

Navail Yaw moment available from controls

Nv Yaw moment due to lateral velocity

Nr Yaw moment due to yaw rate

Nrud Yaw moment due to rudder

Nyjet Yaw moment due to thrust-vectoring

Nz Normal acceleration

Ny Lateral acceleration

n Number of states

P Roll rate

Q Pitch rate

R Yaw rate

s Laplace variable, s=jw

tDfw=90 Time to bank through a bank angle change of 90 degrees

Vo Trim velocity

Vroll Lateral Pseudo Control

Vyaw Directional Pseudo Control

Yv Side Force due to lateral velocity

x State vector
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z Measurement vector

a Angle of attack

b Sideslip

D Uncertainty model

d Input vector

f Bank angle

mR
Ð1 Minimum inverse real structured singular value

w Frequency

z Damping ratio

Subscripts:

body body-axis

cmd commanded

dir directional axis

dr dutch roll

lat lateral axis

n structural filtered

os overshoot

pilot pilot

roll roll mode

sprl spiral mode

stab stability-axis

t total ( rigid body plus flexible modes)

z measurement

Abbreviations:

A/B Afterburner

ACM Air Combat Maneuvering

AOA Angle Of Attack

CHR Cooper-Harper Rating

CRAFT Control power, Robustness, Agility, Flying qualities Trade-offs

DEA Direct Eigenspace Assignment

DMS Differential Maneuvering Simulator

HARV High-Alpha Research Vehicle

HATP High-Alpha Technology Program

HUD Head-Up Display

PIO Pilot Induced Oscillation

RFCS Research Flight Control System

TV Thrust-Vectoring
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DESCRIPTION OF FACILITIES

Aircraft Configuration

The configuration used for this design is a F/A-18 modified to have multi-axis thrust-vectoring for
additional pitch and yaw control power.  This modified F/A-18 is referred to as the High-Alpha Research
Vehicle (HARV)  (Figure 1) and is discussed in more detail in Gilbert and Gatlin 1990.  The F/A-18 is a
twin engine, single-place, fighter/attack airplane with (by today's standards) good low-speed, high angle-of-
attack maneuvering capability.  It is powered by two modified General Electric F404-GE-400 afterburning
turbofan engines, each rated at approximately 16Ê000 pounds static thrust at sea level.  The HARV has five
conventional aerodynamic control surfaces - stabilators, rudders, ailerons, leading-edge flaps, and trailing-
edge flaps.  Maximum control surface position and rate limits are presented in Table 1.  Thrust-vectoring
capability has been added to the basic F/A-18 aircraft by removing the divergent flap portion of the engine
nozzles and adding externally mounted engine thrust vanes (three for each engine) for deflection of the
exhaust plume.  Major dimensions and features of the HARV are shown in Figure 2.

The HARV is approximately 4Ê100 pounds heavier than an F/A-18.  The weight of the thrust-
vectoring system (approximately 2Ê200 pounds), spin chute, emergency systems, and ballast is
approximately 3Ê700 pounds.  The remaining weight is due to equipment and wiring not directly associated
with the thrust-vectoring system.  A comparison of the physical characteristics of a F/A-18 and the HARV
is presented in Table 2.  

A Research Flight Control System (RFCS) consisting of a new longitudinal control law (Ostroff and
Profitt 1993; Ostroff et al. 1994) and the lateral-directional control law discussed herein replaced the existing
F/A-18 control system.  The thrust-vectoring commands from the RFCS go to a vane control system
known as the Mixer/Predictor (Bundick et al. 1996).  The Mixer/Predictor converts pitch, yaw, and roll
thrust-vectoring commands into equivalent commands for the six thrust-vectoring vanes to yield the required
jet plume deflection.

Batch Simulation

The HARV nonlinear batch simulation was built from nonlinear aerodynamic, engine, and control
system models of the production F/A-18 obtained from McDonnell-Douglas Aerospace (MDA).  The
original MDA aerodynamic data base covers the angle of attack range from -10 to 90 degrees, the sideslip
range from -20 to 20 degrees, altitudes up to 60Ê000 feet, and speeds up to Mach 2.0.  Aerodynamic
increments were added to the database to account for the addition of thrust-vectoring vanes, actuator
housings, and spin chute.  Jet induced effects were added to account for the change in airflow over the
airframe due to thrust-vectoring (Bowers et al. 1990).

The engine model incorporated thrust-vectoring capability and included the effects of Mach, altitude, and
the dynamic response of engine thrust.  Also included were the effects of angle of attack and vane deflection
on thrust.  Gross thrust and ram drag were tabulated separately allowing thrust-vectoring to act on gross
thrust only.

The simulation nominally used the HARV weight and inertias with 60% internal fuel.  Heavy
(maximum fuel) and light (minimum fuel) conditions were also evaluated; however only results from the
nominal configuration are shown in this report.  Weights, inertias, and center-of-gravity locations for all
three weight conditions are shown in Table 3.  The F/A-18 simulation on which the HARV model is based
is discussed in detail in Buttrill et al. 1992, and the HARV thrust-vectoring capabilities are discussed in
Mason et al. 1992.
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Piloted Simulation Facilities

The piloted portion of the control law design effort was conducted using the NASA Langley
Differential Maneuvering Simulator (DMS).  The DMS is a fixed-base simulator that has the capability of
simulating two airplanes as they maneuver relative to each other and the Earth.  A wide-angle visual display
is provided for each pilot.  The general arrangement of the DMS hardware is shown in Figure 3.  The DMS
consists of two forty-foot diameter projection spheres each enclosing a cockpit, airplane image projection
system, and Computer Generated Image (CGI) sky-Earth-sun projection system.  Each pilot is provided a
projected image of his opponent's airplane, giving range and attitude cues.  A detailed (but not current)
description of the DMS is given in Ashworth and Kahlbaum 1973.

The DMS is driven by a real-time digital simulation system built around a CONVEX 3800 computer.
The dynamics of the airplane and control system were calculated by using six-degree-of-freedom rigid-body
equations of motion with an 80 Hz frame rate.  Data communication between the computers and the
simulation hardware were conducted at a 40 Hz frame rate.  Overall transport delay between the cockpit
controls and the visual scene display is approximately 110 milliseconds.

A photograph of one of the cockpits and target visual display is shown in Figure 4.  Each cockpit
incorporates three Cathode Ray Tube (CRT) head-down displays and a Head-Up Display (HUD) with a
computer-driven gunsight representative of current fighter aircraft equipment.  For this study, a fixed reticle
projected on the HUD was used for tracking.  The displays provided to the pilot are similar to standard F/A-
18 displays with some minor modifications to facilitate some of the test maneuvers and tracking tasks.

A movable center stick was provided for pitch and roll commands from the pilot.  Longitudinal and
lateral stick forces and gradients were configured to model those of the F/A-18.  Longitudinal stick travel
was 2.5 inches forward and 5 inches aft with a force gradient of seven pounds per inch and a two pound
breakout force.  Lateral stick travel was ±3 inches with a force gradient of three pounds per inch and a two
pound breakout force.  The pedal travel was ±1 inch with a force gradient of 100 pounds per inch and no
breakout force.

CONTROL LAW DESIGN

Design Methods

Two separate design tools, CRAFT (Murphy and Davidson 1991) and Pseudo Controls (Lallman
1985), were integrated to synthesize the lateral-directional control law.  This combined CRAFT/Pseudo
Controls design approach is a hybrid technique that combines both linear and nonlinear design methods.  

Pseudo Controls Method

The purpose of Pseudo Controls is to coordinate a number of physical controls in order to provide
independent channels of control of aircraft motions.  The Pseudo Controls method results in algorithms to
organize the aerodynamic and thrust-vectoring control activity so that rolling commands cause body-axis
rolling moments with a minimum of yawing moment and yawing commands cause body-axis yawing
moments with a minimum of body-axis rolling moments (See Figure 5).  A benefit of this technique is
that the feedback controller is required to generate fewer outputs (commands), and thus the number of
feedback gains is reduced.  

For the HARV, the three primary aerodynamic controls used for lateral-directional control are: ailerons
that are deflected differentially, twin rudders that are deflected collectively, and horizontal stabilators that are
deflected differentially.  These controls produce varying amounts of rolling moment, yawing moment, and
sideforce depending on flight condition (especially dynamic pressure and angle of attack).  The thrust-
vectoring apparatus produces control moments that are proportional to the vane deflection angles and the



6

thrust of the engines.  The Pseudo Controls method organizes the aerodynamic and thrust-vectoring control
activity to cause moments about the airplane axes that satisfy the demands of stability augmentation
feedback loops, pilot commands, and inertial decoupling.  

In the HARV design, the Pseudo Controls method converts stability-axis angular acceleration
commands into coordinated control deflections.  The acceleration commands are distributed to the physical
control effectors in proportions that are scheduled according to flight condition.  Automatic engagement of
the thrust-vectoring controls is based on calculations of their control moment producing capabilities relative
to that of the aerodynamic controls.  When engaged, the thrust-vectoring controls are driven in proportion to
the aerodynamic controls with the magnitudes of the conventional control deflections adjusted to account for
the increased control power.  Because of concern about possible over-heating of the thrust turning vanes,
steady-state thrust-vectoring commands are replaced by increased deflections of aerodynamic controls where
possible.

An early development of the Pseudo Controls methodology can be found in Lallman 1985, and its
application to the lateral-directional control of the HARV can be found in Lallman et al. 1998.  

CRAFT Design Method

The design method used to synthesize feedback gains is referred to as CRAFT which stands for the
design objectives addressed, namely,    C   ontrol power,    R   obustness,    A   gility, and    F   lying Qualities    T   radeoffs
(Figure 6).  This method provides the designer with a graphical tool to simultaneously assess metrics from
the four design objective areas.  The strength of this approach comes from the use of eigenspace assignment
(Srinathkumar 1978), which allows direct specification of eigenvalues and eigenvectors in the design, in
combination with graphical overlays of metric surfaces which capture the design goals in a composite
illustration on the design space.  In this approach, design tradeoffs are made by interpreting graphical
overlays of metric surfaces that quantitatively characterize each design goal.  Numerous metrics can be
applied simultaneously from each of the four design objective areas or any area for which metrics can be
expressed in engineering terms.  Graphical overlays of the metric surfaces show the best design compromise
for all the design criteria and display the "cost" of changing from that design point.  This can greatly
enhance the designer's ability to make informed design tradeoffs.

CRAFT is summarized in block diagram form in Figure 7.  The design process begins by selecting, as
the design space, a reasonable range of frequency and damping for the closed-loop dynamics of interest.
Within this range, a grid of design points is chosen to systematically  cover the design space.  Some
metrics may be known before the closed-loop design, such as flying qualities specifications.  However, the
control power, robustness, and agility metrics require determination of the closed-loop system.  Using
Direct Eigenspace Assignment (DEA) (Davidson and Schmidt 1986) as the control design algorithm,
feedback gains are computed to achieve the desired placement of the eigenvalues for the closed-loop system
at each design point.  With eigenspace assignment, the designer also must define eigenvectors; eigenvectors
are chosen to shape the system response or provide modal decoupling.  

Once the desired closed-loop systems are determined for a desired set of frequency (w) and damping (z)
pairs, each control design metric can be evaluated and plotted producing a surface over the z-w design
space.  Viewing the metric surface in a 2-dimensional contour plot highlights the most desirable region to
locate the closed-loop pole with respect to the particular metric studied.  The individual metric surfaces are
an indication of the sensitivity of that metric to closed-loop pole location.  A final overlay plot of desirable
regions from each metric surface can then be obtained.  This is represented by the second block from the
right in Figure 7.  The intersection of desirable regions provide the best design compromise for all the
design criteria considered.  Often desirable regions may not overlap and some compromise will be required.  

Further details of the method and control design metrics can be found in Murphy and Davidson 1991,
and its application to the HARV can be found in Murphy and Davidson 1998.
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CRAFT Design Metrics

The flying qualities criteria used to design the lateral-directional control law are drawn from several
sources.  For low angle of attack, the Mil-STD 1797A (Aeronautical Systems Division 1990) and the
fighter-specific study of Moorhouse and Moran 1985 were used.  For high angle of attack, virtually no
information was available to define flying qualities specifications at the beginning of this effort.
Consequently, NASA sponsored McDonnell Douglas Aerospace (MDA) to develop longitudinal and lateral
flying qualities criteria (Wilson et al. 1993b) using fixed-based simulation at 30, 45, and 60 degrees angle
of attack.  A generic fighter aircraft model was used during the simulations, and a wide range of closed-loop
responses were evaluated.  These criteria, presented in both low-order equivalent system modal parameter and
Bode envelope formats, are summarized in Wilson and Citurs 1996.  

The metric chosen to characterize control power is based on a Euclidean norm of feedback gains and
indirectly represents a measure of control power required to achieve each desired pole location.  The
assumption is made that larger gains generally correspond to a demand for greater control deflection or
deflection rate and this, in turn, reflects a demand for greater control power.  For this metric smaller values
are more desirable since small gains reflect reduced control power demands.

A third design objective area of interest is agility.  Agility in this study is restricted to airframe agility;
the agility metrics, unlike many in the literature, do not reflect pilot compensation effects.  This was done
intentionally to allow separation of flying qualities and agility metrics.  Some controversy exists on the
exact definition of agility and which parameters best describe it.  Even without the precise definition, many
agree that accelerations characterize an important aspect of transient agility.  For this reason a roll
acceleration metric was the agility metric used for the HARV design.

A variety of metrics can be used to indicate the regions in z-w space with the greatest tolerance to
model error.  For the HARV design, structured uncertainties, in the form of diagonal multiplicative error
models at the input and output, were used.  Structured uncertainties take advantage of user knowledge of the
uncertainties and provide a less conservative measure for robustness.

Design and Evaluation Flight Conditions

The Pseudo Controls design was based on the available aerodynamic and thrust vectoring control
coefficient data.  This design was based on the nominal HARV weights and moments of inertia for altitudes
between 10Ê000 and 50Ê000 feet, angles of attack between -10 and 90 degrees, and airspeeds between 0.2
and 0.8 Mach.  

The CRAFT feedback gain design conditions were chosen based on the HARV flight test envelope
which was limited to altitudes from 15Ê000 to 35Ê000 feet and Mach number less than 0.7.  The feedback
gains were designed at twelve design flight conditions ranging from 5 to 60 degrees angle of attack (every 5
degrees), all at 1g and 25Ê000 feet (See Table 4).  These design points were found to be sufficient for the
flight test envelope.  Linear models at these design flight conditions are given in the Appendix.  The
nominal design weight (35Ê765 pounds) represents the HARV with 60% fuel load.  A plot of the trim
values of angle of attack versus dynamic pressure for these design conditions is given in Figure 8.  Open-
loop eigenvalues for these flight conditions are given in Table 5.  An additional 110 flight conditions were
used for control law evaluation via linear analyses.  These conditions ranged from 2.5 to 65 degrees angle of
attack, 15Ê000 to 40Ê000 feet altitude, 1g to 4g loading, and three weights.  These evaluation conditions
are listed in Table 6.  
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Design Eigenvalues and Eigenvectors

At low angle of attack there are three classical rigid-body lateral-directional eigenvalues: a lightly
damped oscillatory pole referred to as the dutch roll pole (ldr), a first order pole with a long time constant
referred to as the spiral pole (lsprl), and a first order pole with a relatively short time constant referred to as
the roll pole (lroll).  Although with increasing angle of attack the systemÕs eigenvalues tend to lose their
classical characteristics, these terms will still be used to refer to the eigenvalues at high angle of attack that
originated as classical modes at low angle of attack.  

Values for desired closed-loop roll eigenvalue at the design flight conditions were chosen using the
CRAFT method.  Since high angle-of-attack specifications do not exist for the spiral and dutch roll modes,
it was assumed that these modes should satisfy the low angle-of-attack Mil-Std 1797A specification for
Level One dynamics throughout the alpha range.  At each design angle of attack, the dutch roll eigenvalue
was chosen to have a damping ratio of 0.7, while maintaining the open-loop natural frequency.  The desired
spiral eigenvalue was chosen to be stable and close to the origin.  Desired closed-loop eigenvalues are listed
in Table 7.

The desired roll and dutch roll eigenvectors were chosen to decouple the roll and dutch roll modes in the
roll rate and sideslip responses.  The desired spiral eigenvector was chosen to eliminate spiral mode
contributions to sideslip.  The approach used to specify eigenvectors was to set each element of the
eigenvector to be 0 or 1 as appropriate to achieve the desired decoupling of the aircraft rigid-body modes.
Initial choices for eigenvectors were chosen as shown in Table 8.  In this table, the "x" indicates elements
not weighted in the cost function and therefore are free to be determined by the eigenspace assignment
algorithm.  At each design condition, the phi-to-beta ratio in the dutch roll eigenvector was chosen to
minimize gain magnitudes.  A detailed description of the optimization approach used is given in Murphy
and Davidson 1998.

Design Process

An iterative design process was used to obtain the final control law reflecting the difficult nature of
flight control design for piloted nonlinear systems.  Linear designs were completed by using CRAFT in
combination with a linear form of Pseudo Controls.  In the design process for HARV, due to the frequency
separation between the rigid-body and higher-order modes, the feedback design was performed on 4th-order
rigid-body lateral-directional models without actuator models, sensor models, or any higher order elements
such as aero-elastic models and corresponding structural filters.  This allowed extensive computations over
the flight envelope and over the CRAFT design space to be performed rapidly.  Gain and phase margins
were analyzed with a 26th-order linear system model of the plant and control law.  The 26th-order model
included 4 rigid-body states, 6 actuator states, 10 measurement structural filter states, and 6 command filter
states.  After linear analyses were completed, a full nonlinear simulation analysis of the HARV was
performed.  Nonlinear simulation allowed designers to uncover any limitations inherent in the linear
analysis and allowed tuning of critical elements such as pilot command gains.  This portion of the
development was followed by extensive piloted simulation where pilot-in-the-loop requirements were
satisfied.  Before going to flight with the control law a series of hardware-in-the-loop tests were performed
to further increase the likelihood of success in flight.  At each stage of design, revisiting a previous step
was performed as required.

The control law was designed in the continuous domain.  Continuous domain dynamics were discretized
using a Tustin transformation at 80 Hz.  This control law was primarily implemented using Matrix-X
SYSTEMBUILD  .  Code was generated for nonlinear and piloted simulation by using the FORTRAN
Autocode Generator.  The control law was translated into Ada for implementation on the HARV.  A
complete description of the control law specification is given in HARV Control Law Design Team 1996.

                                                
  Integrated Systems Inc.
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CONTROL LAW DESCRIPTION

Figure 9 shows a functional overview of the lateral-directional control law. The control law can be
thought of as consisting of three main elements : a pilot command path, a feedback path, and a feedforward
path (Pseudo Controls blending).  The control law accepts pilot commands for stability-axis roll rate
through lateral stick deflections and for sideslip angle commands through pedal deflections.  Pilot inputs are
limited and shaped before being multiplied by input gains and summed with feedback signals which have
been passed through structural filters and multiplied by feedback gains.  The feedback measurements are
body-axis roll rate, body-axis yaw rate, lateral acceleration, and estimated sideslip rate.  The sum of pilot
inputs and feedback commands produce stability-axis roll and yaw acceleration commands.  These lateral and
directional commands are distributed by the feedforward (Pseudo Controls) portion of the control law into
the optimum blend of control deflections.  The controls being used are aileron, rudder, differential stabilator,
and yaw thrust-vectoring.  The control law does not use differential leading-edge and trailing-edge flaps.
Roll thrust-vectoring is not used, but a capability exists to use this control if desired.

Within the feedforward portion of the control law, measured body-axis angular rates and nominal
inertial values are used to provide inertial coupling compensation.  Thrust-vectoring is engaged based on its
control moment producing capabilities relative to that of the aerodynamic controls.  As the available
aerodynamic moment decreases the thrust-vectoring increases to "fully on" at the point that the available
aerodynamic moment is equal to the available thrust-vectoring moment.  When the available aerodynamic
moment is twice the available thrust-vectoring moment, the thrust-vectoring is turned off.  To reduce
potential problems due to thrust-vectoring vane heating, whenever sufficient aerodynamic control moment
is available to replace yaw thrust-vectoring control, the yaw thrust-vectoring is faded out.

The three main elements of the control law (pilot command path, feedback path, and feedforward path)
are discussed in more detail in the following sections.

Pilot Command Path

The function of the pilot command path is to map pilot input commands into pilot lateral and
directional commands.  A block diagram representation of the pilot command path is given in Figure 10a.  

The lateral stick input (-3 to +3 inches) is first passed through a deadband and shaping function chosen
to provide appropriate stick characteristics to the pilot.  The deadband is set to ±0.025 inches.  The
parabolic shape function, given in Table 9, normalizes the stick input.  The output is bounded to ±1.0.

The stick command limit is composed of two limiters - a rate limit and a dynamic limiter.  The stick
rate limit is provided to compensate for the lack of turn coordination occurring due to different actuation
rates available on the ailerons and rudders.  The rate limit is 12 inches/second (0 to maximum lateral stick
in 0.25 seconds).  The stick dynamic limiter is designed to reduce sideslip excursions that can occur during
aggressive recoveries from maximum performance rolls where a large stick deflection is used.  Functionally,
this element allows stick deflections up to 70 percent of full throw to be passed directly, with larger
deflections having the signal passed through a first-order lag.  Roll Trim is added to the signal after the stick
dynamic limiter.  

The roll override function is designed to compensate against inertial pitch-out during rapid rolls.
Commanded symmetric stabilator deflection is monitored and compared against a threshold which is a
function of angle of attack.  When the symmetric stabilator exceeds a preset threshold, the lateral stick
command is reduced.

Yaw rates beyond that required for coordinated rolling, may be produced with yaw thrust-vectoring.  To
prevent excessive rates a yaw rate limiter is incorporated into the stick command path.  This element
monitors body-axis yaw rate (sensed yaw rate) and begins reducing lateral stick commands when yaw rate
exceeds 35 degrees/second.  This reduction is increased to a maximum when yaw rate reaches 60
degrees/second.  The yaw rate limiting is not applied when angle of attack is negative.
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Lateral stick command gains adjust the pilot commands for changes in control power with flight
condition.  A block diagram of this element of the pilot command path is given in Figure 10b.  The lateral
stick-to-lateral command gain is a function of available body roll and yaw control moments.  The command
gain (pds_max) is calculated in the Pseudo Controls portion of the control law.  Two functions (AFUNC
and GFUNC) adjust the command gain for changes in angle of attack and load factor.  The angle-of-attack
adjustment gains (AFUNC) were designed at the twelve linear design flight conditions (every 5 degrees from
5 to 60 degrees angle of attack).  These values were chosen based upon desired roll rate and sideslip
guidelines.  Values between design points are determined by linear interpolation.  The load factor adjustment
gains (GFUNC) prevent excessive roll rates at elevated load factors.  This adjustment begins at load factor
of 1.5g and reaches a maximum command reduction of 35 percent at a load factor of 3.5g.  These values
were chosen based upon piloted simulation.

The lateral stick-to-directional command cross gains were determined to minimize steady-state sideslip
due to lateral stick commands.  These gains are functions of angle of attack and were designed at the twelve
linear design flight conditions.  Values between design points are determined by linear interpolation.  

The pedal input (-100 to +100 pounds) is first passed through a deadband and shaping function chosen
to provide desirable pedal characteristics to the pilot.  The deadband is set to ±1.0 pounds.  The parabolic
shape function, the same as that in the standard F/A-18, is given in Table 9.  The Yaw Trim signal is added
after the pedal shaping function.  After addition of the yaw trim, the signal is limited to ±1.0.  The pedal-
to-directional command gains and pedal-to-lateral command cross gains are functions of angle of attack.
These gains were designed at the twelve linear design flight conditions.  Values between design points are
determined by linear interpolation.  

Feedback Path

A block diagram representation of the feedback path is given in Figure 11.  Sensed body-axis roll and
yaw rates are first passed through second-order structural notch filters (Table 10).  After filtering, these rates
are transformed to stability-axis rates.  Gravity compensation terms are calculated and added to stability-axis
yaw rate.  The sensed lateral acceleration is passed through two notch filters to attenuate structural modes.
A correction term is added to the filtered acceleration signal to compensate for the sensor being located off-
axis.  Sideslip rate is passed through a second-order structural notch filter.  

The filtered feedback signals are multiplied by feedback gains and summed to yield feedback commands.
The lateral and directional feedback gains are functions of angle of attack.  Values between design points are
determined by linear interpolation.  Feedback gain values are given in Table 11.

The lateral and directional feedback commands are passed through second-order structural filters (Table
12) and first-order roll-off filters (25 radians/second).  After filtering, the lateral feedback command is
summed with the lateral pilot command to yield the lateral acceleration command.  The directional feedback
command is summed with the directional pilot command to yield the directional acceleration command.

Feedforward Path

The feedforward path (the Pseudo Controls portion of the control law) translates the lateral and
directional acceleration commands into an optimum combination of control surface and yaw thrust-vectoring
deflections to provide stability-axis roll and yaw accelerations.  The control blending and distribution is a
function of flight condition.  

A block diagram representation of the feedforward path is given in Figure 12.  The feedforward path can
be divided into two main parts: an Interconnect and a Distributor.  Functional block diagrams of these are
shown in Figures 13 and 14, respectively.  The Interconnect converts the stability-axis roll and yaw angular
acceleration commands into body-axis roll and yaw angular acceleration commands, provides compensation
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for inertial coupling, provides compensation for the roll moment produced by yaw thrust-vectoring due to
the engine nozzle displacement in the z-direction, and outputs roll and yaw commands in the form of pseudo
control variables.  These pseudo control variables (Vroll and Vyaw) are the commanded, normalized body-
axis roll and yaw moments.  These variables are a fraction of the available roll and yaw moments.  The
available moments are calculated in the Interconnect as functions of angle of attack, airspeed, altitude, Mach
number, and symmetric stabilator deflection.  The Interconnect also provides logic to engage the thrust-
vectoring controls as a function of engine power and flight condition.  The yaw thrust-vectoring can be
disabled by an external input signal.

The Distributor apportions the roll and yaw pseudo control commands to the aerodynamic surfaces
(aileron, rudder, and differential stabilator) and to the thrust-vectoring system (Mixer/Predictor) according to
the effectiveness of the controls scheduled as functions of angle of attack and symmetric stabilator deflection
and according to the yaw thrust-vectoring engage signal from the Interconnect.  To prevent over-heating of
the thrust-vectoring vanes, the Distributor provides Òvane reliefÓ logic to transfer slowly-varying and steady-
state thrust-vectoring commands to the aerodynamic control surfaces.  Thrust-vectoring is always used for
transient maneuvers when permitted by the yaw thrust-vectoring engagement logic, and thrust-vectoring is
used in steady-state when the aerodynamic surfaces cannot supply the required moments.  

The aerodynamic surface deflection commands generated by the feedforward path are position limited.
The aileron is limited to ±25.0 degrees.  The rudder is limited to ±30.0 degrees.  The differential stabilator
is limited to ±10.0 degrees.  The yaw thrust-vectoring signal to the Mixer/Predictor is not limited.

LINEAR ANALYSIS OF CONTROL LAW

Closed-loop Eigenvalues and Eigenvectors

Closed-loop eigenvalues for the twelve design flight conditions are given in Table 7.  The closed-loop
roll, spiral, and dutch roll eigenvalues have been placed at the desired locations for all design conditions.  

The desired roll and dutch roll eigenvectors were chosen to decouple the roll and dutch roll modes in the
roll rate and sideslip responses.  One method of measuring the amount of decoupling achieved is to assess
the cancellation of the dutch roll pole in the roll rate-to-lateral stick transfer function.  The equivalent low
order roll rate-to-lateral stick transfer function is given by
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When the dutch roll pole is canceled ( wdr = wf ,  zdr = zf ), the roll response is not contaminated by the
dutch roll mode.  A measure of cancellation is therefore given by the ratios ( wf  / wdr ) and
(zfÊwfÊ)Ê/Ê(zdrÊwdr).  The closer the ratios are to unity, the better the dutch roll pole cancellation.

The values of these ratios for the closed-loop system, at each design condition are given in Table 13.
As can be seen, there is an almost complete cancellation of the dutch roll pole in the roll rate response at
most of the design flight conditions.

Stability Margins

Single-loop stability analysis was done at both the aircraft inputs and outputs.  The gain and phase
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margins were obtained by breaking an individual loop while leaving the remaining loops closed.  The input
analysis was done by breaking the individual physical control input commands to the actuators (aileron,
rudder, differential stabilator, yaw thrust-vectoring) (See Figure 15).  The output analysis was done by
breaking the physical measurements used for feedback (body-axis roll rate, body-axis yaw rate, lateral
acceleration, and estimated sideslip rate).  Gain and phase margins for 5 to 60 degrees angle of attack for
15Ê000, 25Ê000, and 35Ê000 feet altitude at 1g are given in Figure 16.  Gain and phase margins for 5 to 60
degrees angle of attack for 25Ê000 feet altitude at 1g, 2g, and 4g loading are given in Figure 17.  As these
figures show, the gain and phase margins are much better than the design guidelines of ± 6 dB and ± 45
degrees, respectively.  These margins exclude the very low frequency range of the spiral mode.  The gain and
phase margins for the evaluation conditions (Table 6) were also within the guidelines for all cases.

Robustness Analysis

A real structured singular value analysis was used to assess the sensitivity of closed-loop stability to
simultaneous variations of selected aircraft stability and control derivatives (Figure 18).  The uncertainty
model D associated with each derivative is the standard multiplicative one, where the inverse real structured
singular value, (mR)Ð1, evaluated at some complex frequency is indicative of the smallest percentage
derivative change required to move a pole of the closed-loop system to that complex frequency.  The
stability analysis generally arises from evaluating the inverse of the real structured singular value along the
jw-axis in the complex plane.  The minimum value along this path is the upper bound on the allowable
percentage derivative change such that the system remains stable.

The general stability robustness test assumes that the nominal closed-loop system is stable.  One
caveat of the present stability robustness analysis, however, was the fact that the nominal closed-loop
system was technically unstable due to a low frequency right-half plane spiral pole at some flight
conditions.  To accommodate this pole, the path along the jw-axis was initially indented into the right-half
plane about the unstable pole position (Figure 19).  The analysis determined the allowable percentage
derivative change such that the closed-loop spiral pole did not make an excessive (greater than s=0.2
radians/second) further migration into the right-half plane and the other closed-loop poles remained stable.
Due to the short duration of high alpha maneuvering, however, lack of robustness at low frequencies was
later not considered important.  The analysis considered only closed-loop pole excursions into the right-half
plane for frequencies beyond 0.5 radians/second, which includes dutch roll frequencies.

The stability robustness analysis was performed at eight angles of attack (5, 10, 20, 35, 40, 45, 50,
and 60 degrees), at three altitudes (15Ê000, 25Ê000, and 35Ê000 feet) at 1g, and at 25Ê000 feet for 2g and
4g.  To consolidate the results, the lowest values of  (mR)Ð1 from the ensemble of flight conditions
corresponding to each altitude/normal acceleration pair (i.e. worst case across 5 to 60 degrees angle of
attack) were plotted verses frequency.  To identify key flight conditions, the angle of attack corresponding to
minimum values are denoted on the plot.  Figure 20 depicts the stability robustness with respect to four
uncertain stability derivatives (Yv, Nv, Lp, and Nr) and Figure 21 depicts the stability robustness with
respect to four uncertain control derivatives (Lail, Nrud, Ldstab, and Nyjet).  The minimum margin across
all flight conditions and parameter variations considered (the minimum inverse real structured singular
value) occurred for uncertain control derivatives at 40 degrees angle of attack at 25Ê000 feet and a loading of
4g.  The value for this case is 0.83 at a frequency of 2.95 radians/second.  This indicates the system will
remain stable in the face of up to 83% simultaneous change in the four control derivatives.  This result is
considered quite good.  Tables 14 and 15 summarize the margins and critical frequencies for all flight
conditions considered.

Servo-Elastic Analysis

A servo-elastic analysis was conducted to assess the effect of structural modes on closed-loop stability.
For this analysis, a 50th-order servo-elastic model was placed in parallel with the series combination of
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rigid-body plant and actuator dynamics.  Margins were obtained by breaking an individual loop while
leaving the remaining loops closed.  The input analysis was done by breaking the individual input
commands (commanded stability-axis roll and yaw accelerations).  The output analysis was done by
breaking the physical measurements used for feedback (body-axis roll rate, body-axis yaw rate, lateral
acceleration, and sideslip rate) (See Figure 22).  

This analysis revealed that the system failed to meet the -10 dB structural margin requirement.  Worst
case was found to be at 40 degrees angle of attack.  Structural filters were designed to notch-out high
frequency structural modes and achieve the required structural margin at this flight condition (Tables 10 and
12).  The analysis was then repeated with the structural filters.  The output servo-elastic frequency responses
with and without filters for 5, 20, 40, and 60 degrees angle of attack are given in Figures 23-26.  The input
servo-elastic frequency responses with and without filters for 5, 20, 40, and 60 degrees angle of attack are
given in Figures 27 and 28.

NONLINEAR BATCH SIMULATION RESULTS

Evaluations were conducted by using the nonlinear batch simulation described earlier to assess roll
performance, bank angle overshoot, and angle-of-attack and sideslip excursions.  These evaluations were
conducted using the longitudinal control law described in Ostroff et al. 1994.

Step Input Time Responses

System time responses for a full lateral stick deflection to command maximum roll rate are given in
Figures 29-31 for 5, 35, and 60 degrees angle of attack to illustrate system performance.  The input is
maximum lateral stick, input at one second and removed at 9 seconds.  The time responses plotted are
lateral stick input, stability-axis roll rate (degrees/second), and sideslip angle (degrees).  Time responses are
shown for altitudes of 15 000, 25 000, and 35 000 feet.  The following summarizes performance results for
25Ê000 feet.  At 5 degrees angle of attack the maximum stability-axis roll rate at fw  of 90 degrees is
approximately 165 degrees/second.  The time to roll through 90 degrees fw  is 0.99 seconds.  At 35 degrees
angle of attack the maximum stability-axis roll rate at fw of 90 degrees is approximately 45
degrees/second. The time to roll through 90 degrees fw is 3.25 seconds.  At 60 degrees angle of attack the
maximum stability-axis roll rate at fw = 90 degrees is approximately 35 degrees/second.  The time to roll
through 90 degrees fw  is 4.6 seconds.

Comparison with Nonlinear Design Guidelines

Nonlinear guidelines, used as performance metrics for large amplitude maneuvers, were developed using
previous experience from simulations at NASA Langley combined with knowledge of HARV characteristics
(Hoffler et al. 1994).  These guidelines are therefore a blend of HARV control law design goals and what are
currently considered (by the authors) good preliminary roll and pitch agility requirements for an aircraft
capable of post-stall maneuvering.  In the following discussion some of the nonlinear guidelines are
summarized, and some direction on making trade-offs between them is given.  HARV and F/A-18 (A
Model) simulation performance are also shown relative to selected guidelines.

Nonlinear guidelines used for the roll axis included maximum wind-axis roll rate (pw-max) during a roll
through Dfw Ê=Ê90û, time to bank through Dfw Ê=Ê90û (tDfw Ê=Ê90û), wind-axis bank angle overshoot
fos, and maximum a and b  excursions.  Values for these guidelines for 1g trim throughout the a  range
were defined as well as values for Mach 0.6 from low a  to a = 35 degrees.

The lateral-directional coupling guidelines for full-lateral stick with longitudinal stick fixed are shown
in Table 16.  These guidelines were met with the control law throughout the flight envelope.
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The tDfwÊ=Ê90û and pw-max guidelines and performance achieved for the F/A-18 and the HARV are
shown in Figures 32 and 33.  The HARV met both of these guidelines through 35û a , and the pw-max
guideline was nearly met throughout the angle-of-attack range.  The F/A-18 failed to meet both guidelines
above approximately 15û a ..  It falls short of the guideline due to insufficient directional control power
required to coordinate rolls above aÊ»Ê10û.  The HARV tDfwÊ=Ê90û performance fell outside the guideline
above 35û a primarily due to lack of available control power.  However, time to bank could be improved
for a  > 20û if all available performance was used without regard to another guideline addressing
controllability and predictability.

Wind-axis bank angle overshoot is a guideline developed during the HARV control law design effort
that directly addresses lateral-directional predictability at moderate to high angles of attack.  Wind-axis bank
angle overshoot is defined here as the amount of wind-axis bank angle used to stop a maximum performance
roll with a full stick reversal applied when passing through 90 degrees wind-axis bank angle change.  If the
overshoot is excessive, pilots will have difficulty judging the lead required to capture the desired bank or
heading angle.  The result would be poor predictability and a tendency to overshoot or undershoot the target
bank angle.

Figure 34 shows the wind-axis bank angle overshoot criteria and the achieved values.  Because the
available control power is fixed there is a direct trade-off between bank angle overshoot and maximum roll
rate.  The bank angle overshoot as defined herein equates to pilot lead requirement necessary to make a
capture within desired tolerances.  Maximum lead of around 40 to 45 degrees was considered acceptable by
the pilots in this design effort.  Although the pilots could learn to consistently predict different lead
requirements (² 45û) at each a , in air combat maneuvering (ACM), angle-of-attack may not always be
known by the pilot and constantly changes.  Therefore, it was considered important to have fairly consistent
overshoots throughout the moderate to high angle-of-attack range making predictability consistent anytime
lateral stick inputs produced significant amounts of yaw rate.  High body yaw rates as opposed to body roll
rates serve as a visual cue to the pilot that angle of attack is high without having to refer to the a  display.
As can be seen from Figure 34, the HARV meets the guideline with fairly consistent overshoots
throughout the moderate to high angle-of-attack range.

Complete descriptions of the high alpha nonlinear design guidelines can be found in Foster 1991.

NONLINEAR PILOTED SIMULATION RESULTS

Pilot-in-the-loop evaluations were conducted using NASA Langley's Differential Maneuvering
Simulator and the nonlinear HARV model described earlier.  The evaluations used a series of piloted tasks
designed to test the longitudinal and lateral-directional control systems throughout the HARV flight
envelope.  The tasks were designed for this effort with the intent of having broad applicability because no
concise set of maneuvers previously existed to evaluate configurations in the moderate to high angle-of-
attack regions.  The lateral-directional piloted evaluation maneuvers included heading captures, large
amplitude rolls with bank angle captures, and target gross acquisition and tracking tasks.

The piloted maneuver set was developed with goals of allowing evaluation of each axis of the control
law individually where possible, using consistent maneuvers and task guidelines across the flight envelope
when possible, and obtaining piloted evaluations in a short time.  A brief discussion of the maneuvers and
associated Cooper-Harper task tolerances (Cooper and Harper 1969) include piloting technique, associated
task criteria, and pros and cons of the maneuvers.  The task tolerances were intentionally restrictive to make
pilot gains high, thus aggravating any Pilot Induced Oscillation (PIO) tendencies that might exist.  The
very tight criterion also tends to produce less favorable pilot subjective ratings (Cooper-Harper rating's).
The maneuvers were conducted at altitudes from 15Ê000 to 40Ê000 feet, but only results from 25Ê000 feet
are presented.  Cooper-Harper ratings from simulation are shown for the control law design flown on the
HARV in the Spring of 1994.  Preliminary flight test results are described in Murphy et al. 1994.

Five NASA test pilots were involved in this study.  Two have extensive air combat training and
experience, and all have high performance aircraft experience.  One pilot has many years of experience with
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simulated high-a airplanes, and one has extensive experience in simulated as well as actual high-a capable
airplanes.  Two of the other pilots have at least three years of experience with simulated high-a airplanes.
These evaluations were the first experience performing some of these tasks with an airplane capable of agile
and precise maneuvering at high-a for one pilot.  Four of the five pilots have experience with the use of
simulated within-visual-range air-combat scenarios of high-a airplanes against one or two conventional
airplanes.

The evaluations were conducted as follows:  Initially the task was flown repeatedly for familiarity with
the required piloting techniques, flight condition, and configuration.  Once the pilots felt they were
proficient, the task was repeated a few times to rate it.  After the evaluations were completed with all pilots,
limited one-versus-one simulated engagements were flown against a basic F/A-18.  The control law was
extensively exercised during the one-versus-one engagements and found to be very departure resistant.  The
one-versus-one results are not presented herein, but control system related pilot comments and observations
from the one-versus-one are discussed in Hoffler et al. 1994.

Results from piloted simulation maneuvers are presented in terms of Cooper-Harper Ratings (CHR) and
pilot comments.  The CHR scale is a numerical scale from one to ten with one being the best rating and 10
the worst (Figure 35).  In practice CHR's from 1 through 3 are referred to as ÒLevel OneÓ, ratings from 4
through 6 are labeled ÒLevel TwoÓ, and ratings from 7 to 9 are considered ÒLevel ThreeÓ.  CHR's less than
or equal to 4 indicate desired performance was achieved.  For space considerations, only bar charts showing
the average rating from the five pilots involved are shown.  All ratings are shown in tabular form in Table
17.

The Cooper-Harper rating variation between pilots is shown in Table 18.  For all five pilots the span
between the maximum and minimum rating was less than or equal to three (±1.5 from mean value) 92% of
the time.  On four of the maneuvers the pilot with no prior experience flying high-a airplanes gave ratings
significantly different from the other four.  Neglecting those four ratings, differences greater than 3 were not
seen and 84% of the maneuvers yielded differences less than or equal to 2 (±1 from the mean value).
Overall the rating spread was small implying the tasks are well defined (Cooper and Harper 1969).

Seven single airplane maneuvers (maneuvers where no target was involved) were developed.  Early in
the design process these maneuvers were used almost exclusively because they could be done very quickly
and there was only one dynamic system (the airplane) affecting the result.  This made assessment and
correction of any problems more straight-forward than if a target airplane were involved.  The tasks fell into
two categories: 1) Maneuvers that primarily isolated the longitudinal axis; and 2) Maneuvers that
concentrated on the lateral-directional axis but addressed inertial and kinematic coupling.  Only the lateral-
directional axis maneuvers are discussed in this report.

Single Aircraft Lateral-Directional Evaluation Maneuvers

The lateral-directional evaluation maneuvers consisted of rolls to capture target bank angles at various
flight conditions.  Angle-of-attack control was required during the rolls because a  changes during the rolls
can significantly alter aircraft roll performance and energy state as well as lead to departures.  Also during
gross acquisition tasks (pointing) at moderate and high angle of attack, both the lateral-directional and
longitudinal axes directly affect the capture due to the coning motion (Figure 36).  Therefore during the roll
tasks the pilots were required to give CHR's on two sub-tasks, a regulation and the wings-level f   capture.
The pilots were required to maintain the target a   within ±2û for desired and ±6û for adequate performance
during all roll tasks.  They were also required to capture the desired f within ±10û for desired and ± 20û for
adequate performance, with no overshoots or undershoots.  These task tolerances were intentionally tight to
keep the pilot's gain high.

1g 360û  Roll Tasks

A complete 360û roll was used because it gave the pilots a convenient bank angle to capture, wings
level with the horizon, thus simplifying the task both from a piloting and data analysis point of view.  It is
recognized that this is an extreme maneuver, beyond what would normally be done in air combat
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maneuvering (ACM) (rolls beyond 180¡ are not expected in ACM).  The 1g 360û roll maneuvers started
from 1g trim at the desired a.  If not already at maximum thrust, maximum thrust was applied, time was
allowed for the engine to reach maximum thrust, then maximum lateral stick was applied.

This task exposed roll coordination and predictability problems and lateral-directional PIO sensitivities
in the control system.  Average CHR's for the 1g rolls from the simulation are shown in Figure 37.  The
majority of the ratings were in the Level One region with a few results edging into the Level Two handling
qualities region.  The roll rating at a = 5û was Level Two primarily because of the task itself.  Maximum
stick rolls here produce very high roll rates making f captures difficult.   The high rates made predictability
difficult, and given the simulation transport delay the results at this a  may be unreliable.  With less than
maximum lateral stick input the maneuver could be done within the desired parameters by all pilots.  The
pilots pointed out that maximum roll rate at low angles of attack would only be used defensively, that is,
for offensive maneuvers maximum roll rate would not likely be achieved at this flight condition.  At 15û a ,
desired criterion was met by most pilots in both axes.  But, f  capture difficulty was still seen due to high
roll rates.  Average ratings were Level One, and desired criterion was met by all pilots from 25û through 65û
a  with the exception of the roll rating at 65û.  Here the yaw vectoring control power is limited, and
predictability became a problem.

Loaded Roll Tasks

Loaded rolls were conducted at Mach 0.4 and 0.6 and various angles of attack.  These maneuvers started
with the airplane trimmed at 1g and typically faster than the desired Mach.  The pilot rolled to a f  of
around 60û (varied with target a) and pulled to the desired a , then waited to decelerate to the desired Mach
number.  At the desired Mach, maximum lateral stick input was applied to roll back through wings level
and capture f = 90û.  This gave a Df  of approximately 150û for the task.  The Cooper-Harper criteria for
the two sub-tasks was the same as the 1g 360û rolls.

Average ratings from the five pilots are shown in Figure 38.  The ratings are similar to the 1g roll
ratings and generally on the Level One/Level Two boundary.  These tasks were significantly more difficult
to carry out than the 1g roll tasks because of the set up required to get to the initial condition.  The desired
a had to be captured quickly due to the high Mach bleed rate seen at the higher a 's required for these loaded
evaluations.

Target Tracking and Acquisition Tasks

With the single airplane maneuvers completed, simulated target acquisition and tracking tasks were
conducted.

Moderate Angle-of-Attack / Elevated-g Tracking Tasks

These tasks were developed to look at tracking in the 15û to 25û angle-of-attack range.  Two tasks were
used, both tracking a target maneuvering at 3g, one with a Mach range from 0.55 to 0.65 (Mach 0.6 task)
and one from Mach 0.4 to 0.5 (Mach 0.45 task).  Initial range to the target was 600 feet and a maximum
range of 1800 feet was allowed during the task.  During these tasks the target rolled into a left 3g turn and
held it for 30 seconds; at 30, 40, and 50 seconds elapsed time the turn direction was reversed with a smooth
moderate rate reversal.  The total task time was 70 seconds.  The pilots gave both a longitudinal and lateral-
directional rating for each maneuver.

The Cooper-Harper task tolerances used for this task were to keep the target within a 12.5 milliradian
reticle (±0.36û of aim point) 50% of the time for desired and 10% of the time for adequate performance.  The
reticle was depressed 35 milliradians.  Tracking time during the reversals was not counted.  This is a
precision tracking task.

Average CHR's from the five pilots showed desired performance was generally achievable in the roll
axis (all but one pilot) (Figure 39).  The pilots considered the control law to have good tracking
characteristics.  The only significant lateral-directional problem with this version of the control law is some
"wandering" in the roll axis.
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High Angle-of-Attack Tracking and Acquisition Tasks

These tasks were developed by McDonnell Douglas Aerospace under contract to NASA Langley and
were used during this control law development.  Longitudinal and lateral tasks have been developed at 30,
45, and 60 degrees angle-of-attack; however, only the 30 and 45 degree angle-of-attack tasks were available
at the time of this evaluation.  A general description of the maneuvers follows.  Detailed task descriptions
can be found in Wilson et al. 1993a and 1993b.  The tasks were used to evaluate longitudinal and lateral-
directional target acquisition and tracking characteristics.  For all tasks the target started in front of the
HARV and rolled into a nose low descending right turn at a specified a , airspeed, and power setting.  This
was done to put the target in the proper position for the HARV to acquire or track at the desired a .  Pre-
recorded target time histories were used for the target aircraft and therefore were perfectly repeatable.

Tracking:  For the tracking tasks the HARV selected maximum afterburner (A/B) and rolled in behind
the target.  The HARV delayed a pitch toward the target so that pulling to the target would result in a
HARV angle of attack near the desired a  to begin tracking.  When the a  required to track the target was
more than 5û from the desired a  , the task was terminated.  Desired aÕs of 30 and 45 degrees were used.
Desired criteria for these tasks required keeping the pipper within ±5 milliradians of the aim point 50% of
the time and within ±25 milliradians of the aim point the rest of the time with no objectionable PIO.
Adequate criteria required keeping the pipper within ±5 milliradians of the target 10% of the time and within
±25 milliradians the remainder of the task.  For both tasks concentric 12.5 and 50 milliradian diameter
reticles depressed 80 milliradians were provided to the pilot.

Average lateral-directional ratings from the five pilots are shown in Figure 40 for both a 's.  The
lateral-directional ratings were mostly Level Two.  Desired criteria were met by all but pilot five; his
ratings were not far from the others.  A difficulty in tracking at these conditions is that lateral-directional
and longitudinal motions couple in a way foreign to pilots with no high-a experience.  At these (extreme
by current airplane capabilities) a 's, a roll input significantly affects the longitudinal tracking due to the
nose moving around the "cone"  (Figure 36).  

Acquisition:  For the high-a acquisition tasks the targets flew paths similar to those used in the
tracking tasks.  The lateral-directional acquisition tasks required the HARV to pull to the desired a  and then
to roll at that a to capture the target.  These tasks were similarly dependent on target turn rate and HARV
motion and for the 45û a tasks, the target was out of view below the nose during part of the task.  These
tasks required precise timing in order to make the acquisitions at the desired a .  With practice the pilots
could do the tasks consistently, and the tasks worked well.

The Cooper-Harper desired performance criteria for the 30û a  acquisition tasks required aggressively
acquiring the aim point within ±25 milliradians laterally of the reticle with no overshoot and in a desirable
time to accomplish the task.  Adequate performance criteria allowed one overshoot/undershoot.  A 50
milliradian reticle depressed 35 milliradians was provided to the pilot for these tasks.  The Cooper-Harper
task tolerances for the 45û a  acquisition tasks were similar except the criteria was within ±40 milliradians
of the aim point.  An 80 milliradian reticle depressed 80 milliradians was provided to the pilot for these
tasks.

The average CHR's from the 5 pilots for the lateral-directional acquisitions at both a 's are shown in
Figure 41.  Most ratings for all these tasks were Level Two.  Predictability was a problem in both axes.
Pilot five gave ratings that were significantly different from the other four pilots for the 45û roll acquisition
tasks.  For all pilots, unless timing was precise, typically one overshoot occurred followed by a good
acquisition.
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CONCLUDING REMARKS

This report contains a description of a lateral-directional control law designed for the NASA High-
Alpha Research Vehicle (HARV).  This control law was designed using two separate design tools, CRAFT
and Pseudo Controls.  The combined CRAFT/Pseudo Controls design technique is a hybrid technique that
combines both linear and nonlinear design methods.  The CRAFT (Control Power, Robustness, Agility,
and Flying Qualities Tradeoffs) design process is a linear design approach based on eigenspace assignment
for determining measurement feedback gains.  The CRAFT design approach makes use of Direct Eigenspace
Assignment, which allows direct specification of closed-loop dynamics, in combination with graphical
overlays of metric surfaces which capture important design objectives.  Pseudo Controls is a nonlinear
control blending strategy for distributing control system commands in a near-optimal fashion to the
appropriate control effectors.  In this method, flight controls are ganged together to generate body-axis roll
and yaw moments as independent commands.  

Results of linear analyses, nonlinear batch simulation, and piloted simulation of this control law show
the following:

1)  The combined CRAFT/Pseudo Controls methodology has been demonstrated to be a useful
technique for aircraft control law design.  The control laws developed with this approach have demonstrated
good performance, robustness, and flying qualities in piloted simulation.

2)  The closed-loop system meets the single-loop gain and phase margin guidelines of ±6 dB and 45
degrees, respectively, at both the plant inputs and outputs.

3)  Based upon a real structured singular value analysis, the closed-loop system has good robustness to
changes in plant stability and control derivatives.

4)  With the addition of the structural filters, the control law meets the structural mode attenuation
guideline of -10 dB.

5)  Nonlinear batch simulation analysis shows the control law exhibits good performance and meets
most of the design guidelines over the entire range of angle of attack.

6)  The control law has been extensively exercised in piloted simulation and shown to be very departure
resistant.  The characteristics predicted from piloted simulation generally held true during flight test.
Piloted simulation results are summarized in the following by task:

Roll Tasks

1g 360 Degree Rolls:  The majority of the Cooper-Harper ratingÕs were in the Level One region with a
few results edging into the Level Two handling qualities region.  This task did a good job of uncovering
roll coordination and predictability problems and lateral-directional Pilot Induced Oscillation (PIO)
sensitivities in the control system.

Loaded Rolls:  Average Cooper-Harper ratingÕs from the five pilots are similar to the 1g roll ratings
and generally on the Level One/Level Two handling qualities boundary.  These tasks were significantly
more difficult to carry out than the 1g roll tasks because of the set up required to get to the initial condition.

Moderate Angle-of-Attack (15-25 degrees)/ Elevated-g Tracking and Acquisition Tasks

Average Cooper-Harper rating's from the five pilots showed desired performance was generally
achievable in the roll axis.  The pilots considered the control law to have good tracking characteristics.

High Angle-of-Attack (30 and 45 degrees) Tracking and Acquisition Tasks

Tracking: Average lateral-directional Cooper-Harper ratingÕs from the five pilots were mostly Level
Two.  Desired criteria were met by all but pilot five; his ratings were not far from the others.  A difficulty
in tracking at these conditions is that lateral-directional and longitudinal motions couple in a way foreign to
pilots with no high angle-of-attack experience.
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Acquisition: The average Cooper-Harper ratingÕs from the five pilots for the lateral-directional
acquisitions at both angles-of-attack were mostly Level Two.  Predictability was a problem in both axes.
For all pilots, unless timing was precise, typically one overshoot occurred followed by a good acquisition.

This control law was flight tested during the Summer of 1994 at NASA Dryden Flight Research
Center.  Flight test results are presented in Murphy et al. 1994.

NASA Langley Research Center

Hampton, VA 23681-0001
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APPENDIX

This Appendix presents the twelve linear lateral/directional design models.  The models are based on
steady-state wings-level trim flight conditions at 25Ê000 feet.  They include the four standard lateral-
directional rigid-body degrees of freedom.

The models are given by:

Çx A x Bol ap= + d   (system dynamics)

d = G ufl   (blended control inputs)

z M x N uol col= +   
(system measurements)

u Gzc =   (feedback control law)

u u up c= +   (total control input)

up = pilot input

The system states are:

x v p rstab stab
T= [ ]f

where  v = side velocity (ft/sec),  pstab = stability-axis roll rate (rad/sec),  rstab = stability-axis yaw rate
(rad/sec), and f = bank angle (rad).

The physical controls are:

d d d d d= [ ]ail rud dt ytv
T

where  dail = aileron deflection (deg),  drud = rudder deflection (deg),  ddt = differential stabilator deflection
(deg), and dytv = yaw thrust vectoring deflection (deg).

The system controls are:

u a aroll yaw
T= [ ]

where  aroll = stability-axis roll acceleration (rad/sec2)  and  ayaw = stability-axis yaw acceleration
(rad/sec2).  The system, expressed as a function of system states and blended control inputs, is given by:

Çx A x B G u A x B uol ap fl ol col= + = +

The measurements used for feedback are:

z p r astab stab y
T= [ Ç ]b

where  pstab = stability-axis roll rate (rad/sec),  rstab = stability-axis yaw rate (rad/sec),  ay = lateral
acceleration (g's),  and úbÊ = sideslip rate (rad/sec).
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Angle of attack (ALPHA)  =  5.0 (degrees)
Dynamic Pressure (QBAR ) =  191.07 (psf)
Trim Velocity (VTOT)  =  598.07 (ft/sec)

AOL        =

  -0.1305    0.1512  -597.582   32.1667
  -0.0187   -1.5271    0.6757     0.0000
   0.0050    0.1152   -0.1529     0.0000
   0.0000    1.0000    0.0000     0.0000

BAP        =

  -0.0551    0.2975   -0.1025    0.2463    0.0024
   0.2746    0.0314    0.2225   -0.0059    0.0177
  -0.0283   -0.0242   -0.0161   -0.0294   -0.0019
   0.0000    0.0000    0.0000    0.0000    0.0000

GFL        =

   4.0251    2.4502
  -5.6822  -62.0789
   0.8580    4.8530
   0.0000    0.0000
   0.0000    0.0000

BCOL       =

  -2.0005  -19.1022
   1.1179   -0.1941
   0.0096    1.3527
   0.0000    0.0000

MOL        =

   0.0000    1.0000    0.0000    0.0000
   0.0000    0.0000    1.0000    0.0000
  -0.0021    0.0535   -0.0462    0.0000
  -0.0002    0.0003   -0.9992    0.0538

NCOL       =

   0.0000    0.0000
   0.0000    0.0000
  -0.0614   -0.0669
  -0.0033   -0.0319

Angle of attack (ALPHA)  =  10.0 (degrees)
Dynamic Pressure (QBAR )  =  94.53 (psf)
Trim Velocity (VTOT)  =  420.67 (ft/sec)

AOL        =

  -0.0955    0.1610  -420.288   32.1678
  -0.0194   -0.8687    0.6852     0.0000
   0.0062    0.1333   -0.1871     0.0000
   0.0000    1.0000    0.0000     0.0000

BAP        =

  -0.0286    0.1409   -0.0358    0.2499    0.0004
   0.1350    0.0146    0.1010   -0.0085    0.0178
  -0.0261   -0.0130   -0.0161   -0.0290   -0.0032
   0.0000    0.0000    0.0000    0.0000    0.0000

GFL        =

   6.9740      2.5229
 -21.1742  -116.8032
   2.2404      8.4609
   0.0000      0.0000
   0.0000      0.0000

BCOL       =

  -3.2622   -16.8276
   0.8596    -0.5050
   0.0561     1.3108
   0.0000     0.0000

MOL        =

   0.0000    1.0000    0.0000    0.0000
   0.0000    0.0000    1.0000    0.0000
  -0.0012    0.0295   -0.0392    0.0000
  -0.0002    0.0004   -0.9991    0.0765

NCOL       =

   0.0000    0.0000
   0.0000    0.0000
  -0.0527   -0.0305
  -0.0078   -0.0400
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ALPHA  =  15.0 (degrees)
Dynamic Pressure (QBAR )  =  69.71 (psf)
Trim Velocity (VTOT)  =  361.25 (ft/sec)

AOL        =

  -0.0702    0.1331  -361.025   32.1679
  -0.0185   -0.5227    0.6580     0.0000
   0.0069    0.1218   -0.2358     0.0000
   0.0000    1.0000    0.0000     0.0000

BAP        =

  -0.0198    0.0873   -0.0149    0.2488   -0.0012
   0.0817    0.0078    0.0618   -0.0105    0.0173
  -0.0236   -0.0089   -0.0160   -0.0280   -0.0045
   0.0000    0.0000    0.0000    0.0000    0.0000

GFL        =

  10.2115    -0.9327
 -27.6436 -103.1960
   3.2085     6.6783
  -3.0905   -11.0352
   0.0000     0.0000

BCOL       =

  -3.4330  -11.8391
   0.8502   -0.3483
   0.0403    1.1444
   0.0000    0.0000

MOL        =

   0.0000    1.0000    0.0000    0.0000
   0.0000    0.0000    1.0000    0.0000
  -0.0007    0.0169   -0.0407    0.0000
  -0.0002    0.0004   -0.9994    0.0890

NCOL       =

   0.0000    0.0000
   0.0000    0.0000
  -0.0434    0.0220
  -0.0095   -0.0328

Angle of attack (ALPHA)  =  20.0 (degrees)
Dynamic Pressure (QBAR )  =  59.58 (psf)
Trim Velocity (VTOT)  =  333.97 (ft/sec)

AOL        =

  -0.0559    0.0400  -334.021    32.1674
  -0.0236   -0.2995     0.6025     0.0000
   0.0095    0.0932    -0.2797     0.0000
   0.0000    1.0000     0.0000     0.0000

BAP        =

  -0.0076    0.0559   -0.0082    0.2393    0.0039
   0.0464    0.0037    0.0454   -0.0120    0.0159
  -0.0183   -0.0061   -0.0169   -0.0261   -0.0062
   0.0000    0.0000    0.0000    0.0000    0.0000

GFL        =

  15.0221    -5.6111
 -33.4460  -90.6366
   3.6615     2.6429
  -6.9681   -18.4940
   0.0000     0.0000

BCOL       =

  -3.6822   -9.4746
   0.8233   -0.2519
   0.0488    1.0950
   0.0000    0.0000

MOL        =

   0.0000    1.0000    0.0000    0.0000
   0.0000    0.0000    1.0000    0.0000
  -0.0005    0.0069   -0.0477    0.0000
  -0.0002    0.0001   -1.0002    0.0963

NCOL       =

   0.0000    0.0000
   0.0000    0.0000
  -0.0411    0.0243
  -0.0110   -0.0284
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Angle of attack (ALPHA)  =  25.0 (degrees)
Dynamic Pressure (QBAR )  =  50.67 (psf)
Trim Velocity (VTOT) =  308.00 (ft/sec)

AOL        =

  -0.0472   -0.0569  -308.198    32.1682
  -0.0191   -0.2337     0.5856     0.0000
   0.0103    0.0901    -0.3405     0.0000
   0.0000    1.0000     0.0000     0.0000

BAP        =

   0.0108    0.0375    0.0061    0.2568    0.0022
   0.0315    0.0005    0.0354   -0.0158    0.0173
  -0.0162   -0.0035   -0.0179   -0.0263   -0.0085
   0.0000    0.0000    0.0000    0.0000    0.0000

GFL        =

  15.3733   -15.0921
 -41.2548  -84.1465
   3.5039    -1.3391
 -10.5999  -22.0790
   0.0000     0.0000

BCOL       =

  -4.0828   -8.9986
   0.7569   -0.2134
   0.1112    1.1441
   0.0000    0.0000

MOL        =

   0.0000    1.0000    0.0000    0.0000
   0.0000    0.0000    1.0000    0.0000
  -0.0002    0.0007   -0.0544    0.0000
  -0.0002   -0.0002   -1.0006    0.1044

NCOL       =

   0.0000    0.0000
   0.0000    0.0000
  -0.0267    0.0297
  -0.0133   -0.0292

Angle of attack (ALPHA)  =  30.0 (degrees)
Dynamic Pressure (QBAR )  =  42.48 (psf)
Trim Velocity (VTOT)  =  282.00 (ft/sec)

AOL        =

  -0.0403   -0.1337  -282.258    32.1549
  -0.0099   -0.3858     0.7811     0.0000
   0.0060    0.2001    -0.5262     0.0000
   0.0000    1.0000    -0.0280     0.0000

BAP        =

   0.0195    0.0270    0.0182    0.2530    0.0013
   0.0211   -0.0006    0.0287   -0.0170    0.0172
  -0.0137   -0.0022   -0.0185   -0.0249   -0.0103
   0.0000    0.0000    0.0000    0.0000    0.0000

GFL        =

  15.2351   -24.5759
 -47.9817   -75.1111
   2.9207    -5.1282
 -14.1410   -23.8682
   0.0000     0.0000

BCOL       =

  -4.5212   -8.6376
   0.6768   -0.2130
   0.1948    1.1910
   0.0000    0.0000

MOL        =

   0.0000    1.0000    0.0000    0.0000
   0.0000    0.0000    1.0000    0.0000
  -0.0007    0.0041   -0.0675    0.0000
  -0.0001   -0.0005   -1.0009    0.1140

NCOL       =

   0.0000    0.0000
   0.0000    0.0000
  -0.0145    0.0296
  -0.0160   -0.0306
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Angle of attack (ALPHA)  =  35.0 (degrees)
Dynamic Pressure (QBAR )  =  38.17 (psf)
Trim Velocity (VTOT)  =  267.31 (ft/sec)

AOL        =

  -0.0423   -0.2075  -267.564    31.9378
  -0.0027   -0.3023     0.8107     0.0000
   0.0019    0.1766    -0.6487     0.0000
   0.0000    1.0000    -0.1202     0.0000

BAP        =

   0.0246    0.0214    0.0250    0.2490    0.0013
   0.0155   -0.0011    0.0245   -0.0187    0.0160
  -0.0124   -0.0015   -0.0196   -0.0232   -0.0117
   0.0000    0.0000    0.0000    0.0000    0.0000

GFL        =

  14.9838   -35.8822
 -59.0482   -69.9067
   1.7375    -8.9323
 -16.4497  -22.9385
   0.0000     0.0000

BCOL       =

  -4.9497   -8.3163
   0.6501   -0.2688
   0.2488    1.2571
   0.0000    0.0000

MOL        =

   0.0000    1.0000    0.0000    0.0000
   0.0000    0.0000    1.0000    0.0000
  -0.0012   -0.0048   -0.0715    0.0000
  -0.0002   -0.0008   -1.0010    0.1195

NCOL       =

   0.0000    0.0000
   0.0000    0.0000
  -0.0058    0.0298
  -0.0185   -0.0311

Angle of attack (ALPHA)  =  40.0 (degrees)
Dynamic Pressure (QBAR )  =  36.52 (psf)
Trim Velocity (VTOT)  =  261.48 (ft/sec)

AOL        =

  -0.0435   -0.2705  -261.691    31.4209
   0.0003   -0.3069    0.6522     0.0000
  -0.0018    0.2127   -0.6252     0.0000
   0.0000    1.0000   -0.2193     0.0000

BAP        =

   0.0257    0.0181    0.0277    0.2457    0.0013
   0.0125   -0.0018    0.0210   -0.0202    0.0148
  -0.0123   -0.0008   -0.0207   -0.0214   -0.0129
   0.0000    0.0000    0.0000    0.0000    0.0000

GFL        =

  17.1216   -50.0765
 -72.7024   -55.6999
   0.8089   -13.0617
 -18.0346   -21.0078
   0.0000     0.0000

BCOL       =

  -5.2843   -7.8158
   0.7229   -0.3767
   0.2184    1.3802
   0.0000    0.0000

MOL        =

   0.0000    1.0000    0.0000    0.0000
   0.0000    0.0000    1.0000    0.0000
  -0.0018   -0.0081   -0.0628    0.0000
  -0.0002   -0.0010   -1.0008    0.1202

NCOL       =

   0.0000    0.0000
   0.0000    0.0000
  -0.0016    0.0377
  -0.0202   -0.0299
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Angle of attack (ALPHA)  =  45.0 (degrees)
Dynamic Pressure (QBAR )  =  36.54 (psf)
Trim Velocity (VTOT)  =  261.54 (ft/sec)

AOL        =

  -0.0383   -0.2061  -261.391   30.5801
  -0.0105    0.1843    0.0830     0.0000
   0.0088   -0.2481   -0.1543     0.0000
   0.0000    1.0000   -0.3264     0.0000

BAP        =

   0.0079    0.0162    0.0264    0.2404    0.0013
   0.0109   -0.0030    0.0247   -0.0215    0.0135
  -0.0129    0.0004   -0.0269   -0.0194   -0.0140
   0.0000    0.0000    0.0000    0.0000    0.0000

GFL        =

  21.0191   -66.8294
 -88.2694   -33.0892
  -5.9323   -17.0833
 -19.0749   -18.6501
   0.0000     0.0000

BCOL       =

  -6.0103   -5.9983
   0.7541   -0.6494
   0.2208    1.6680
   0.0000    0.0000

MOL        =

   0.0000    1.0000    0.0000    0.0000
   0.0000    0.0000    1.0000    0.0000
  -0.0012   -0.0350   -0.0210    0.0000
  -0.0001   -0.0008   -0.9994    0.1169

NCOL       =

   0.0000    0.0000
   0.0000    0.0000
  -0.0045    0.0831
  -0.0230   -0.0229

Angle of attack (ALPHA)  =  50.0 (degrees)
Dynamic Pressure (QBAR )  =  36.59 (psf)
Trim Velocity (VTOT)  =  261.71 (ft/sec)

AOL        =

  -0.0333    0.0412  -261.3256   29.4799
  -0.0077   -0.0330     0.2272     0.0000
   0.0084   -0.0162    -0.3423     0.0000
   0.0000    1.0000    -0.4366     0.0000

BAP        =

  -0.0118    0.0147    0.0370    0.2348    0.0012
   0.0087   -0.0035    0.0242   -0.0227    0.0121
  -0.0129    0.0014   -0.0292   -0.0174   -0.0150
   0.0000    0.0000    0.0000    0.0000    0.0000

GFL        =

  19.4371   -77.3519
-102.6940   -9.2118
 -10.7424   -13.7265
 -20.3969   -16.7274
   0.0000     0.0000

BCOL       =

  -6.9250   -3.6611
   0.7313   -0.5911
   0.2730    1.6771
   0.0000    0.0000

MOL        =

   0.0000    1.0000    0.0000    0.0000
   0.0000    0.0000    1.0000    0.0000
  -0.0008   -0.0122   -0.0208    0.0000
  -0.0001    0.0002   -0.9985    0.1126

NCOL       =

   0.0000    0.0000
   0.0000    0.0000
  -0.0156    0.1270
  -0.0265   -0.0140
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Angle of attack (ALPHA)  =  55.0 (degrees)
Dynamic Pressure (QBAR )  =  37.70 (psf)
Trim Velocity (VTOT)  =  265.67 (ft/sec)

AOL        =

  -0.0381    0.1644  -265.408   28.4186
  -0.0065   -0.0508    0.2138     0.0000
   0.0087    0.0197   -0.3784     0.0000
   0.0000    1.0000   -0.5303     0.0000

BAP        =

  -0.0145    0.0143    0.0725    0.2314    0.0012
   0.0064   -0.0030    0.0312   -0.0235    0.0106
  -0.0124    0.0011   -0.0383   -0.0154   -0.0158
   0.0000    0.0000    0.0000    0.0000    0.0000

GFL        =

  14.2148   -87.3157
-116.8494   13.2775
  -2.1579    -1.6464
 -22.8541   -15.6222
   0.0000     0.0000

BCOL       =

  -7.3162   -2.2816
   0.9062   -0.2810
   0.1303    1.4012
   0.0000    0.0000

MOL        =

   0.0000    1.0000    0.0000    0.0000
   0.0000    0.0000    1.0000    0.0000
  -0.0009   -0.0050   -0.0240    0.0000
  -0.0001    0.0006   -0.9990    0.1070

NCOL       =

   0.0000    0.0000
   0.0000    0.0000
  -0.0110    0.1410
  -0.0275   -0.0086

Angle of attack (ALPHA)  =  60.0 (degrees)
Dynamic Pressure (QBAR )  =  40.61 (psf)
Trim Velocity (VTOT)  =  275.72 (ft/sec)

AOL        =

  -0.0472    0.1523  -275.577   26.6070
  -0.0058   -0.0638    0.2364     0.0000
   0.0089    0.0320   -0.3957     0.0000
   0.0000    1.0000   -0.6794     0.0000

BAP        =

  -0.0156    0.0144    0.1020    0.2223   -0.0045
   0.0051   -0.0022    0.0229   -0.0233    0.0104
  -0.0131   -0.0001   -0.0298   -0.0127   -0.0145
   0.0000    0.0000    0.0000    0.0000    0.0000

GFL        =

  15.5391  -108.1458
-115.8728    16.6490
   0.0000     0.0000
 -23.7783   -13.3737
   0.0000     0.0000

BCOL       =

  -7.1960   -1.0435
   0.8933   -0.2756
   0.1146    1.5810
   0.0000    0.0000

MOL        =

   0.0000    1.0000    0.0000    0.0000
   0.0000    0.0000    1.0000    0.0000
  -0.0013   -0.0083   -0.0097    0.0000
  -0.0002    0.0006   -0.9995    0.0965

NCOL       =

   0.0000    0.0000
   0.0000    0.0000
  -0.0029    0.1866
  -0.0261   -0.0038
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(a) HARV in flight.

(b) Close-up of thrust vectoring apparatus.

Figure 1.  High-Alpha Research Vehicle (HARV).
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Figure 2.  Major dimensions (feet) of the HARV.
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L-90-10308

Figure 3.  NASA Differential Maneuvering Simulator (DMS).
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L-90-5138

Figure 4.  Photo of Differential Maneuvering Simulator (DMS) cockpit.
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Table 1.  Control Surface Position and Rate Limits

Surface Position Limit (deg) Rate Limit (deg/sec)

Stabilator 40
Trailing Edge Up 24

Trailing Edge Down 10.5

Aileron 100
Trailing Edge Up 25

Trailing Edge Down 45

Rudder 82
Trailing Edge Left 30

Trailing Edge Right 30

Trailing Edge Flap 18
Trailing Edge Up 8

Trailing Edge Down 45

Leading Edge Flap 15
Leading Edge Up 3

Leading Edge Down 33

Speed Brake ~20 to 30
Trailing Edge Up 60
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Table 2.  Physical Characteristics of Unmodified F/A-18  and HARV*

Parameter Unmodified HARV

Weight (lbs) 31Ê980 35Ê765
Reference wing area (ft2) 400 400

Reference MACà (ft) 11.52 11.52
Reference Span (ft) 37.4 37.4

Center of Gravity (% MACà) 21.9 23.3
Roll inertia (slug-ft2) 22Ê040 22Ê633

Pitch inertia (slug-ft2) 124Ê554 174Ê246

Yaw inertia (slug-ft2) 139Ê382 189Ê336

Product of inertia (slug-ft2) -2Ê039 -2Ê132
Overall length (ft) 56 56
Wing aspect ratio 3.5 3.5

Stabilator span (ft) 21.6 21.6
Stabilator area (ft2) 88.26 86.48

  A Model F/A-18
* 60% fuel condition, landing gear up, clean configuration with pilot and support equipment
à Mean Aerodynamic Chord

Table 3.  HARV Weights, Inertias, and Center of Gravity Locations

State Weight
(lbs)

Xcg
(%MAC)

Zcg (W.L.) Ixx
(slug-ft2)

Iyy
(slug-ft2)

Izz
(slug-ft2)

Ixz
(slug-ft2)

Light 31Ê618 26.6 103.4 22Ê163 172Ê238 186Ê823 -2Ê043
Nominal 35Ê765 23.3 105.4 22Ê633 174Ê246 189Ê336 -2Ê132

Heavy 37Ê619 23.3 105.9 22Ê938 179Ê130 194Ê003 -2Ê507



60

Table 4.  Lateral-Directional Design Flight Conditions

Angle-of-Attack
(degrees)

Altitude
 (feet)

Load Factor
(g's)

Weight*

5 25Ê000 1 Nominal
10 25Ê000 1 Nominal
15 25Ê000 1 Nominal
20 25Ê000 1 Nominal
25 25Ê000 1 Nominal
30 25Ê000 1 Nominal
35 25Ê000 1 Nominal
40 25Ê000 1 Nominal
45 25Ê000 1 Nominal
50 25Ê000 1 Nominal
55 25Ê000 1 Nominal
60 25Ê000 1 Nominal

* See Table 3

Table 5.  Open-Loop Eigenvalues

Angle-of-Attack
(degrees)

Spiral Roll Dutch roll
frequency (rad/sec)

Dutch roll
damping

5 .004 -1.4 1.67 0.12
10 .011 -.74 1.58 0.13
15 .006 -.46 1.56 0.12
20 -.033 -.28 1.77 0.09
25 -.019 -.24 1.77 0.10
30 -.055 -.20 1.25 0.28
35 - ( 0.15 , 0.91 )* 0.61 0.59
40 .151 -.36 0.41  -1.17 

45 -.075 -.21 1.53 -0.09
50 - ( 0.11 , 0.91 )* 1.47 0.07
55 - ( 0.09 , 0.90 )* 1.51 0.10
60 -.036 -0.14 1.56 0.11

* Coupled roll-spiral mode ( frequency , damping )
  Real dutch roll mode
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Table 6.  Lateral-Directional Evaluation Flight Conditions

Angle-of-Attack
(degrees)

Altitude
(feet)

Load Factor
(g's)

Weight*

2.5 25Ê000 1 Nominal
5 15Ê000,  35Ê000 1 Nominal

10 15Ê000,  35Ê000 1 Nominal
15 15Ê000,  35Ê000 1 Nominal
20 15Ê000,  35Ê000 1 Nominal
25 15Ê000,  35Ê000 1 Nominal
30 15Ê000,  35Ê000 1 Nominal
35 15Ê000,  35Ê000 1 Nominal
40 15Ê000,  35Ê000 1 Nominal
45 15Ê000,  35Ê000 1 Nominal
50 15Ê000,  35Ê000 1 Nominal
55 15Ê000,  35Ê000 1 Nominal
60 15Ê000,  35Ê000 1 Nominal
65 25 000 1 Nominal
5 25Ê000 2, 4 Nominal

10 25Ê000 2, 4 Nominal
15 25Ê000 2, 4 Nominal
20 25Ê000 2, 4 Nominal
25 25Ê000 2, 4 Nominal
30 25Ê000 2, 4 Nominal
35 25Ê000 2, 4 Nominal
40 25Ê000 2, 4 Nominal
45 25Ê000 2, 4 Nominal
50 25Ê000 2, 4 Nominal
55 25Ê000 2, 4 Nominal
60 25Ê000 2, 4 Nominal
5 25Ê000 1 Heavy,  Light

10 25Ê000 1 Heavy,  Light
15 25Ê000 1 Heavy,  Light
20 25Ê000 1 Heavy,  Light
25 25Ê000 1 Heavy,  Light
30 25Ê000 1 Heavy,  Light
35 25Ê000 1 Heavy,  Light
40 25Ê000 1 Heavy,  Light
45 25Ê000 1 Heavy,  Light
50 25Ê000 1 Heavy,  Light
55 25Ê000 1 Heavy,  Light
60 25Ê000 1 Heavy,  Light

* See Table 3
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Table 6.  Concluded

Angle-of-Attack
(degrees)

Altitude
(feet)

Load Factor
(g's)

Weight*

5 40Ê000 1 Heavy, Nominal, Light
10 40Ê000 1 Heavy, Nominal, Light
15 40Ê000 1 Heavy, Nominal, Light
20 40Ê000 1 Heavy, Nominal, Light
25 40Ê000 1 Heavy, Nominal, Light
30 40Ê000 1 Heavy, Nominal, Light
35 40Ê000 1 Heavy, Nominal, Light
40 40Ê000 1 Heavy, Nominal, Light
45 40Ê000 1 Heavy, Nominal, Light
50 40Ê000 1 Heavy, Nominal, Light
55 40Ê000 1 Heavy, Nominal, Light
60 40Ê000 1 Heavy, Nominal, Light

* See Table 3

Table 7.  Desired Closed-Loop Design Eigenvalues

Angle-of-Attack
(degrees)

Spiral Roll Dutch roll
Frequency (rad/sec)

Dutch roll
Damping

5 -.004 -2.2 1.6721 0.7
10 -.010 -2.0 1.5810 0.7
15 -.005 -1.9 1.5632 0.7
20 -.030 -2.2 1.7663 0.7
25 -.018 -2.1 1.7734 0.7
30 -.050 -1.4 1.2935 0.7
35 -.100 -1.0 1.00 0.7
40 -.100 -1.0 1.00 0.7
45 -.070 -0.7 1.5792 0.7
50 -.100 -0.7 1.4759 0.7
55 -.080 -0.7 1.5135 0.7
60 -.030 -0.7 1.5609 0.7
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Table 8.  Desired Eigenvectors

System States Dutch Roll Mode
(Magnitude, Phase(deg))

Roll Mode Spiral Mode

Sideslip (1 , 0) 0 0
Stability-axis Roll Rate (x , x) 1 x
Stability-axis Yaw Rate (x , x) x x

Bank Angle (0 , 0) x 1
x  denotes elements not weighted in the cost function

Table 9.  Lateral Stick and Pedals Shaping Functions

Pilot Input Shape Function

Lateral Stick Output=(1-0.4788*(1-0.3361*abs(input)))*0.3361*Input
Pedals Output=0.01*(2.34838e-03*abs(Input)+0.763225)*Input

Table 10.  Measurement Structural Filters 

Measurement Numerator
Frequency
(rad/sec)

Numerator
Damping

Denominator
Frequency
 (rad/sec)

Denominator
Damping

Stability-axis
roll rate

80 0.08 80 0.7

Stability-axis
 yaw rate

150 0.08 150 0.7

Lateral
acceleration

58 0.08 58 0.7

80 0.08 80 0.7
Sideslip rate 80 0.08 80 0.7

  Filters have unity steady-state gain
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Table 11.  Lateral and Directional Feedback Gains

Lateral Feedback Gain Table 

Angle-of-Attack
(degrees)

Stability-Axis
Roll Rate Gain

Stability-Axis
Yaw Rate Gain

Lateral
Acceleration

Gain

Sideslip
Rate Gain

5 -0.6112 -0.7420 -0.0019 -0.3825
10 -1.3001 -0.9917 -0.1014 -0.1852
15 -1.5267 -0.8051 -0.0005 -0.6436
20 -2.0934 -1.4072 -0.6063 -1.2320
25 -2.2762 -1.1051 0.3622 -1.1257
30 -1.4900 -1.7434 0.1121 -1.2376
35 -1.1466 -1.9652 -0.2291 -0.9062
40 -1.0211 -1.3905 0.0175 -0.4289
45 -0.9574 -0.2758 -0.6353 -1.0400
50 -0.8741 -0.5382 -0.2759 -0.9231
55 -0.7826 -0.3339 -0.0765 -0.7941
60 -0.6847 0.0901 -0.3657 -0.1400

Directional Feedback Gain Table 

Angle-of-Attack
 (degrees)

Stability-Axis
Roll Rate Gain

Stability-Axis
Yaw Rate Gain

Lateral
Acceleration

Gain

Sideslip
Rate Gain

5 -0.0524 0.1184 0.0524 1.7372
10 -0.0122 0.1826 0.0607 1.7539
15 0.0857 0.2316 0.0600 1.5931
20 0.2006 0.3522 0.2004 1.9451
25 0.2903 0.4131 0.0183 2.1152
30 0.1704 0.7166 -0.0254 1.6765
35 0.1384 0.7926 -1.3296 1.3411
40 -0.0608 0.4468 -2.0258 1.2669
45 0.3635 0.1073 -0.2938 1.5237
50 0.3420 0.3262 0.2016 1.3646
55 0.3158 0.3086 0.1557 1.5059
60 0.3007 0.1606 0.2077 1.3010

  Gains are for roll rate in (rad/sec), yaw rate in (rad/sec), lateral acceleration in (gÕs), and sideslip rate in
(rad/sec)
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Table 12.  Acceleration Command Structural Filters*

Acceleration
Command

Numerator
Frequency
(rad/sec)

Numerator
Damping

Denominator
Frequency
 (rad/sec)

Denominator
Damping

Lateral 140 0.74 40 0.6
Directional 140 0.74 40 0.6

*Filters have unity steady-state gain

Table 13.  Closed-Loop System Dutch Roll Cancellation

Angle-of-Attack
(degrees)

(zf wf  /  zdr wdr) (wf / wdr)

5 1.01 1.00
10 1.03 1.00
15 0.92 1.01
20 0.87 1.01
25 0.95 1.00
30 1.00 1.00
35 1.04 1.02
40 1.06 1.02
45 1.00 1.00
50 0.92 0.99
55 0.92 0.99
60 0.98 0.91
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Table 14.  Stability Margins for Variations of Stability Derivatives:  Yv, Nv, Lp, and Nr

Angle-of-Attack
(degrees)

1g-15k ft
(mR)Ð1/freq

1g-25k ft
(mR)Ð1/freq

1g-35k ft
(mR)Ð1/freq

2g-25k ft
(mR)Ð1/freq

4g-25k ft
(mR)Ð1/freq

5 3.99/0.52 4.25/0.52 4.22/0.52 4.57/0.52
10 3.25/0.52 3.61/0.52 3.90/0.52 3.73/0.52 3.51/0.52
20 3.36/0.52 4.88/0.52 6.04/4.90 3.68/6.09 2.78/6.54
35 2.99/0.52 2.76/0.52 2.43/0.52 1.54/0.52 1.23/0.69
40 4.14/0.52 3.34/0.52 2.15/0.52 1.39/0.52 0.95/0.74
45 5.81/0.52 5.51/0.52 4.52/0.52 1.35/0.78 0.97/2.20
50 4.25/3.40 4.53/3.94 5.20/4.23
55 3.85/3.66 4.53/3.94 4.86/4.23

Frequency in units of radians/second

Table 15.  Stability Margins for Variations of Control Derivatives: Ldail, Nrud, Ldstab, and Nyjet

Angle-of-Attack
(degrees)

1g-15k ft
(mR)Ð1/freq

1g-25k ft
(mR)Ð1/freq

1g-35k ft
(mR)Ð1/freq

2g-25k ft
(mR)Ð1/freq

4g-25k ft
(mR)Ð1/freq

5 1.11/1.42 1.09/1.53 1.09/1.53 1.17/1.90
10 1.04/1.23 1.01/1.23 .98/1.23 1.15/1.65 1.11/2.05
20 1.34/1.15 1.31/1.15 1.27/1.15 1.51/1.65 1.65/2.05
35 2.19/0.52 2.33/0.52 2.49/0.74 2.62/0.80 2.51/2.95
40 1.46/1.06 1.32/1.53 1.15/1.90 1.08/2.20 0.83/2.95
45 2.32/0.69 2.53/0.80 2.64/0.69 3.31/.92 3.14/6.54
50 2.87/0.60 2.73/0.64 2.62/0.52
55 4.72/0.86 5.02/0.92 8.58/0.99

Frequency in units of radians/second

Table 16.  Lateral-Directional Coupling Guidelines

Dfw
Maximum Excursion From

Target Condition
Da Db

90û ±6û 7û adverse
1û proverse

90û Þ 360û ±10û 7û adverse
1û proverse
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Table 17.  Cooper-Harper Ratings from Five Pilots for all Maneuvers

Pitch
Rating 

Roll
Rating 

Maneuver Target P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

1-g 360û roll a = 5û 2 2 2 2 2 4.5 4 5 3 5
with bank angle

capture
a = 15û 5 4 4 4 4.5 5 3 3 3 5

and a  regulation a = 25û 4 3 2.5 3 2.5 3 3 2.5 3 3
from target a a = 35û 3 2 3 3 2 3 3 2.5 3 3

a = 45û 3 3 3 3 2 2 3 2.5 3 3
a = 55û 2.5 3 2.5 2 2 2 3 3 3 3
a = 65û 3 3 2.5 3 2 4 3 4 3 4.5

Loaded roll at M=0.6 a = 5û 3 2 2 2 4.5 4 5 3 5
with bank angle

capture
a = 15û 4 3 4 3 3 4 4 5 3 3

and a  regulation a = 25û 3 3 4 3 3 3 3 4 3 3

Loaded roll at M=0.4 a = 15û 4 5 4 3 5 4 3 3 3 3
with bank angle

capture
a  = 25û 3 4 3 4 4.5 3 3 3 4 3

and a  regulation a  = 35û 3 4 3 3 3 3 3 3 3 2

Target tracking
M=0.6

3-g Target 3 5 4 4 5 2 4 3 3 4.5

Target tracking
M=0.45

3-g Target 4 6 3 4 7 4 4 3 3 4.5

Lat./Dir. target
acquisition

a  = 30û 5 5 4 4 6

Target tracking a = 30û 5 4 5 5 7 4 3 4 3 5.5
Lat./Dir. target

acquisition
a  = 45û 5 5 4 4 7

Target tracking a  = 45û 4.5 5.5 5 5 8 3 4 4.5 3 6
  Pi denotes rating from pilot number i

Table 18.  Percentage of Ratings where CHR Spread was less than a Given Value

Difference between
max. and min. CHR

Percent of ratings from
5 pilots

5 pilots minus 4
outlying points from

1 pilot

²1 40% 46%
²2 76% 84%
²3 92% 100%
²4 98% -
²5 100% -
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