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A complete “geometry to drag-polar” analysis capability for three-dimensional high-
lift configurations is described. The approach is based on the use of unstructured meshes
in order to enable rapid turnaround for complicated geomtries which arise in high-lift
configurations. Special attention is devoted to creating a capability for enabling analyses
on highly resolved grids. Unstructured meshes of several million vertices are initially
generated on a work-station, and subsequently refined on a supercomputer. The flow
is solved on these refined meshes on large parallel computers using an unstructured
agglomeration multigrid algorithm. Good prediction of lift and drag throughout the
range of incidences is demonstrated on a transport take-off configuration using up to 24.7
million grid points. The feasibility of using this approach in a production environment
on existing parallel machines is demonstrated, as well as the scalability of the solver on

machines using up to 1450 processors.

Introduction

The computation of three-dimensional high-lift
flows constitutes one of the most challenging steady-
state aerodynamic analysis problems today. Three-
dimensional high-lift is typically characterized by com-
plicated geometries, involving flaps, slats, and hinge
fairings, in addition to very complex flow physics which
must be captured adequately in order to provide a use-
ful predictive capability for the design process.

Unstructured grid techniques offer the potential for
greatly reducing the grid generation time associated
with such problems. Furthermore, unstructured mesh
approaches enable the use of adaptive meshing tech-
niques which hold great promise for increasing so-
lution accuracy at minimal additional computational
cost. However, unstructured mesh solvers require sig-
nificantly higher computational resources than their
structured grid counterparts, thus limiting their ap-
plicability for large three-dimensional calculations.

Due to the inherent complexities of high-lift flows
(both geometrical and flow physical), the accurate
analysis of such flows requires highly resolved grids.
Current estimates place the requirements for accurate
Reynolds-averaged Navier-Stokes high-lift analysis of a
complete transport aircraft configuration in the range
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of 107 to 10® grid points. This represents over an order
of magnitude larger problems than are currently con-
sidered practical for unstructured mesh methods. The
consideration of such problems gives rise to significant
challenges not only in the flow solution process, but
also in the grid generation procedure, which is usually
performed locally on a workstation.

The rapid advances in parallel computer architec-
tures, with their large aggregate memory capacity and
CPU power, have reached the point were such calcu-
lations can be considered in a practical sense. This
is particularly true for unstructured mesh techniques,
which have been shown to scale very favorably on
massively parallel machines using hundreds of proces-

SOI‘S.1 3

The goal of this work is to demonstrate a complete
“geometry to drag-polar” practical high-lift analysis
capability, based on unstructured mesh techniques,
using up to 25 million grid points for a full aircraft
configuration. The approach involves the generation
of multi-million point unstructured meshes on a work-
station, the refinement of these grids by an order of
magnitude on a supercomputer, and the solution of
the flow on these refined grids in a matter of hours on
large parallel computers. Scaling of the solver on ma-
chines using up to 1450 processors is demonstrated.
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Tetrahedral Mesh Generation

The computational grids employed in this paper
were generated with the NASA Langley unstruc-
tured grid generation codes GridTool and VGRIDns.
The subject geometry, known as the Energy Efficient
Transport (EET), consists of a fuselage, wing, leading-
edge slats, and trailing-edge flaps in a high-lift position
and involves complexities such as sharp corners and
small gaps between multiple components.

The geometry, defined in the IGES format, is first
converted into a number of contiguous patches with
the grid-utility interface GridTool. The union of
all patches, including the outer boundaries, forms a
“solid” surface which is used by VGRIDns for triangu-
lation. The grid characteristics such as spacings, grid
stretching, rate of growth, etc. are also prescribed by
the user with GridTool to complete the grid input file.
The processes of geometry preparation and grid pa-
rameter setup with GridTool constitutes 50-90 % of
the total grid generation time depending on the com-
plexity of the geometry definition.

The grid generation technique used in VGRIDns is
based on the Advancing-Front method (AFM)* and
the Advancing-Layers method (ALM),®> and produces
fully tetrahedral meshes. The generation of “viscous”
grids, containing thin layers of tetrahedral cells, is
divided into three main steps: (1) generation of a tri-
angular surface grid by the ALM and/or AFM, (2)
generation of thin tetrahedral cells in the boundary
layer by the ALM, and (3) generation of a regular (in-
viscid) tetrahedral grid outside the boundary layer by
the AFM. Although the entire process is completed
in separate stages with this approach, it is performed
in a single run with automatic transitions from one
stage to another. Generation of “inviscid” grids is ac-
complished in a similar fashion by simply skipping the
second step.

Both the Advancing-front and the Advancing-Layers
methods are based on the marching techniques. Grids
are generated with these methods by forming tetra-
hedral cells originating from triangulated boundaries
and marching into the computational domain. Un-
like the conventional AFM, which introduces cells in
the field in a totally unstructured manner, the ALM
generates layers of thin tetrahedral cells in a more or-
derly fashion while maintaining many advantageous
features of the AFM. The new strategy reduces the
grid generation complexities which usually arise from
floating-point operations of small numbers associated
with extremely small viscous grid spacings.

During the AFM and ALM marching processes, in-
formation regarding the grid point distributions is pro-
vided by a “transparent” Cartesian background grid
overlaying the entire domain.® Included in the back-
ground grid are a number of “point” and “line” sources
prescribed by the user. First, the grid characteristics
are smoothly diffused from the sources onto the back-

ground grid nodes by solving an elliptic equation. The
problem is similar to that of the heat transfer in a con-
ducting medium. The smoothed parameters are then
interpolated from the background grid (and sources)
during the unstructured grid generation.

Two main operations are involved in the ALM: 1)
computation of surface vectors along which the grid
points are distributed and 2) construction of a pattern
of compatible tetrahedral cell connectivities within the
thin layers. The surface vectors are calculated using a
robust iterative algorithm based on an “equal-angle”
criterion followed by a Laplacian smoothing operation.
The connectivities among the tetrahedral cells are pre-
determined by an efficient, all-integer algorithm which
eliminates the need for a series of computer-intensive,
floating-point calculations as used in the conventional
AFM.

Thin layers of tetrahedral cells are formed by insert-
ing new points along the surface vectors and connect-
ing the points according to the predetermined connec-
tivity pattern. The distribution of points along surface
vectors is determined by the stretching function

dziy1 = dz * [1. 4+ a* (1. + b)) (1)

where dz; is the normal spacing of the ith layer, dz; is
the first layer spacing prescribed by the user, and the
factors a and b are constants determining the rate of
stretching.

The grid layers continue marching in the field until
a unit aspect ratio is reached, or some other limit-
ing criteria, based on the background grid information
and/or proximity of the approaching fronts, prevent
them from further advancement. At this point, the
process automatically switches from the advancing-
layers to the advancing-front mode to generate a reg-
ular grid outside the boundary layer. With a common
background grid controlling both methods, the tran-
sition from thin layers to the regular grid becomes
gradual and continuous. Also, the fact that the num-
ber of layers vary from one location to another adds
to the flexibility of the method and the smoothness of
the generated grids.

A salient feature of VGRIDns is its ability to gener-
ate multi-directional, anisotropically stretched grids in
which the surface triangles and tetrahedra in the field
are elongated in user-prescribed directions.” With this
capability, fewer points are distributed in the direc-
tions of reduced flow gradients without loss of grid
resolution in other essential directions. Grid stretch-
ing with VGRIDns is achieved through prescribing a
stretching direction and two spacings (along and nor-
mal to the stretching direction) for each background
grid source. To minimize complications due to the
marching of highly stretched cells, a local transforma-
tion is performed for each new cell being generated.
The physical (stretched) space is mapped into an

2 OF 14

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 99-0537



KRR

TR

g,uwavg;:glknv
REA

a%;%vz

3
&

Fig. 1 Illustration of Surface Grid for High-Lift
Configuration with Span-Wise Stretching Along
Slat Leading Edges
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Fig. 2  Illustration of Two-Dimensional Cross-
Section of Volume Grid at Spanwise Station Along
Wing

isotropic frame where equilateral grid elements are
formed, and the generated grid is back transformed
to the physical space. Spanwise grid stretching for
transport-type configurations results in at least a fac-
tor of three reduction in the total number of grid
points.

For the grids presented in this paper, the parameters
dzl was set to 1.35E-06 wing chords, and the values of

a and b in equation (1) were set to 0.4 and 0.01, respec-
tively. Anisotropic grid stretching was mainly applied
at the leading- and trailing-edges of the main wing and
flaps in the spanwise direction. The aspect ratios of the
generated grid elements (triangles on the surface and
tetrahedra in the volume) vary from a maximum value
of about 100:1 at the midspan leading-edges, where the
concentration of points is maximum, to 1:1 at the sur-
face corners, fuselage, and in the field away from the
geometry.

Several tetrahedral grids were generated for the
present study. The grid used as the basis for the
coarse grid computations described subsequently con-
tains 115,489 boundary nodes, 3,107,075 total grid
nodes, and 18,216,138 tetrahedral cells. Figure 1
shows the surface grid along with the triangulation
on the symmetry plane. As evident, the triangles are
highly stretched at the leading edges in the spanwise
direction. Also, the thin “viscous” layers are shown
on the symmetry plane around the geometry. The
level of spatial resolution is illustrated in Figure 2 were
a cross-section of the volume grid is depicted, show-
ing tetrahedral cells around the multi-element airfoil
geometry. Subdivision of this grid into 24.7 million
points (as explained in the following sections) results
in a doubling of the spatial resolution in all three co-
ordinate directions.

The grids were generated using a Silicon Graphics
Octane workstation with a 195 MHZ (R10000) pro-
cessor. The entire process, from CAD definition to
the final post-processed volume grid, was completed
in about 60 cumulative labor hours. As mentioned
earlier, a substantial percentage (in this case, more
than 90 %) of the total grid generation time was spent
on the geometry preparation. The surface and volume
grids (fine mesh) were generated in about 2.5 CPU
hours using the workstation.

Prismatic Element Merging

The advancing-layers phase of the initial grid gener-
ation procedure produces regularly shaped thin tetra-
hedral elements in the boundary layer regions near the
geometry surface, which can easily be merged into well
shaped prismatic elements.

There are several reasons why the use of prismatic
elements rather than tetrahedral elements in these re-
gions is advantageous. Firstly, for the vertex-based
discretization employed herein, prismatic elements re-
sult in fewer interconnecting edges than tetrahedral
elements, for the same set of unknowns. This has the
effect of reducing the memory and computational over-
heads, since the residual assembly in the solver is based
on an edge data-structure. Because prismatic elements
contain almost half as many edges as tetrahedral ele-
ments, and up to two thirds of the grid elements are
often merged into prisms, the savings can be substan-
tial.
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Secondly, the use of prismatic elements provides a
distinct decoupling in the discretization between the
normal and tangential directions in the boundary layer
regions, which is essential for the success of the di-
rectional line-implicit multigrid algorithm described
below. For highly stretched tetrahedral elements, the
strong normal connections (edges) and the strong di-
agonal connections cannot be solved implicitly simul-
taneously, leading to a reduced effectiveness of the
algorithm.®

Any accuracy benefits of using prismatic elements
over tetrahedral elements in boundary layer regions
have not been proven conclusively. On the other
hand, it is generally acknowledged that prismatic ele-
ment discretizations are at a minimum no less accurate
than the corresponding tetrahedral element discretiza-
tions.?

The output of the VGRIDns grid generation pro-
gram identifies each point generated in the viscous
advancing-layers region with the surface grid point
(surface normal) from which it originated. With this
information, an algorithm can be devised for merg-
ing successive triplets of tetrahedra into prismatic ele-
ments, as depicted in Figure 3. Because the height of
the advancing layers is non-uniform across the geome-
try surface, special care must be taken to ensure a con-
sistent grid when merging the new prismatic elements
with the remaining tetrahedral elements. Grid incon-
sistencies can arise in the form of a hanging diagonal
on a prismatic face which borders on two tetrahedral
neighbors as shown in Figure 4. Such situations are
handled by considering the total number of hanging
diagonals on a given prismatic element. Prisms con-
taining three hanging diagonals (one on each quadri-
lateral face) are re-subdivided into three tetrahedra.
Prisms containing two compatible hanging diagonals
are divided into one tetrahedron and one pyramid. In
cases where this is not possible (i.e. two incompatible
hanging edges), or when there is only one hanging di-
agonal, an additional vertex is inserted at the middle
of the prismatic element which is then subdivided into
1 pyramid and 6 tetrahedra (for two hanging edges) or
2 pyramids and 4 tetrahedra (for one hanging edge).
In practice, only a very small number of additional
vertices are required.

—_—

Fig. 3 Illustration of Merging of Three Suitable
Tetrahedra into a Single Prismatic Element

Fig. 4 Illustration of Insertion of New Vertex and
Subdivision of Prismatic Element with one non-
compatible Face Diagonal

Global Grid Refinement

The generation of and flow solution on large unstruc-
tured grids (i.e. > 107 grid points) is not practical
on current high-end workstations. The memory and
CPU-time requirements associated with grids of this
size dictate the use of large parallel super-computers.
While unstructured mesh flow solvers have been shown
to parallelize effectively on such machines, success in
grid generation parallelization has not been as forth-
coming. In spite of several research efforts in this
area,'® parallelization of the grid generation process
remains hindered by the complicated logic, the atten-
tion devoted to special cases, and the need to easily
and rapidly access geometrical information and pre-
processing tools, which most often reside on worksta-
tions.

The strategy developed in this work consists of gen-
erating relatively coarse unstructured grids on a work-
station and refining these grids on a large-memory
supercomputer. The adjective relatively needs to be
stressed here, since these initial grids usually contain
several million vertices (up to 20 million tetrahedra),
and already represent the limit of what can be achieved
on a high-end workstation.

Once the initial tetrahedral grid has been generated,
it is merged into a mixed prismatic-tetrahedral mesh,
as described previously. This hybrid mesh is then
shipped to a supercomputer, such as an SGI ORIGIN
2000, where it is globally refined, by subdividing each
grid element (tetrahedra and prisms) into 8 smaller
self-similar elements.!’ This results in a factor of 8
increase in grid size. As an example, the generation
of a 24.7 million point grid through global refinement
of the 3.1 million point grid described earlier required
about 30 minutes of CPU time on a single processor
of the SGI ORIGIN 2000.

Ultimately, the mesh refinement operation should
be implemented in parallel. However, for expediency
at this stage, mesh refinement is performed sequen-
tially on a single processor of the SGI ORIGIN 2000.
However, the access to a large central memory pro-
vided by the cc-NUMA shared memory architecture
of the SGI ORIGIN 2000 is a key enabling feature for
the refinement of large unstructured grids. An addi-
tional benefit of this approach is that the resulting
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large grid is then available directly on the parallel ma-
chine for the flow computations, obviating the need
to transfer large amounts of data across the network.
This approach naturally extends to adaptive meshing
strategies, which are planned for future work.

One drawback of the current approach is that newly
generated surface points do not lie exactly on the orig-
inal surface description of the model geometry, but
rather along a linear interpolation between previously
existing coarse grid surface points. For a single level
of refinement, this drawback is not expected to have
a noticeable effect of the results. An interface for re-
projecting new surface points onto the original surface
geometry is currently under consideration.

Base Solver

The Reynolds averaged Navier-Stokes equations are
discretized by a finite-volume technique on meshes of
mixed element types which may include tetrahedra,
pyramids, prisms, and hexahedra. All elements of the
grid are handled by a single unifying edge-based data-
structure in the flow solver.!?

The governing equations are discretized using a cen-
tral difference finite-volume technique with added ar-
tificial dissipation. The thin-layer form of the Navier-
Stokes equations is employed in all cases, and the vis-
cous terms are discretized to second-order accuracy by
finite-difference approximation.'? For multigrid calcu-
lations, a first-order discretization is employed for the
convective terms on the coarse grid levels.

The basic time-stepping scheme is a three-stage ex-
plicit multistage scheme with stage coefficients opti-
mized for high frequency damping properties,™® and
a CFL number of 1.8. Convergence is accelerated by
a local block Jacobi preconditioner, which involves in-
verting a 5x 5 matrix for each vertex at each stage.!4 17
A low-Mach number preconditioner'® 20 is also imple-
mented. This is imperative for high-lift flows which
may contain large regions of low Mach number flow
particularly on the lower surfaces of the wing. The
low-Mach number preconditioner is implemented by
modifying the dissipation terms in the residual as de-
scribed in reference® , and then taking the correspond-
ing linearization of these modified terms into account
in the Jacobi preconditioner, a process sometimes re-
ferred to as preconditioning?.® 2!

The single equation turbulence model of Spalart and
Allmaras?? is utilized to account for turbulence ef-
fects. This equation is discretized and solved in a
manner completely analogous to the flow equations,
with the exception that the convective terms are only
discretized to first-order accuracy.

Directional Implicit Multigrid Algorithm

An agglomeration multigrid algorithm'? 2324 ig

used to further enhance convergence to steady-state.
In this approach, coarse levels are constructed by fus-
ing together neighboring fine grid control volumes to
form a smaller number of larger and more complex
control volumes on the coarse grid. While agglomera-
tion multigrid delivers very fast convergence rates for
inviscid flow problems, the convergence obtained for
viscous flow problems remains much slower, even when
employing preconditioning techniques as described in
the previous section. This slowdown is mainly due
to the large degree of grid anisotropy in the viscous
regions. Directional smoothing and coarsening tech-
niques®2?® can be used to overcome this aspect-ratio
induced stiffness.

Directional smoothing is achieved by constructing
lines in the unstructured mesh along the direction of
strong coupling (i.e. normal to the boundary layer)
and solving the implicit system along these lines using
a tridiagonal line solver. A weighted graph algorithm
is used to construct the lines on each grid level, us-
ing edge weights based on the stencil coefficients for a
scalar convection equation. This algorithm produces
lines of variable length. In regions where the mesh

becomes isotropic, the length of the lines reduces to
zero (one vertex, zero edges), and the preconditioned
explicit scheme described in the previous section is re-
covered. An example of the set of lines constructed
from the two-dimensional unstructured grid in Figure
5 is depicted in Figure 6.

Fig. 5 Unstructured Grid for three-element airfoil;
Number of Points = 61,104, Wall Resolution = 10~°
chords
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Fig. 6 Directional Implicit Lines Constructed on
Grid of Figure 5 by Weighted Graph Algorithm

In the agglomeration multigrid algorithm, coarse
level grids are constructed by fusing together or ag-
glomerating neighboring control volumes to form a
coarser set of larger but more complex control volumes.
A multigrid cycle consists of performing a time-step on
the fine grid of the sequence, transferring the flow so-
lution and residuals to the coarser level, performing a
time-step on the coarser level, and then interpolating
the corrections back from the coarse level to update
the fine grid solution. The process is applied recur-
sively to the coarser grids of the sequence.

In previous work, a directional agglomeration strat-
egy has been shown to speed convergence for problems
involving highly stretched meshes.? 2> However, coars-
ening factors are presently limited to a ratio of 4:1
between fine and coarse levels, when employing a direc-
tional coarsening algorithm. This leads to additional
memory overheads for the storage of these levels. In
the interest of reducing overall memory requirements,
in order to enable the solution of larger grid sizes, the
directional coarsening strategy has been temporarily
abandoned in favor of the simpler isotropic coarsen-
ing strategy, which produces coarsening ratios of the
order of 8:1.12 While overall memory requirements
are reduced due to the more rapid coarsening rates,
observed convergence rates are somewhat slower than
those reported previously using the directional coars-
ening strategy.? 2

Parallel Implementation

The unstructured multigrid solver is parallelized by
partitioning the domain using a standard graph par-
titioner?®2” and communicating between the various
grid partitions running on individual processors us-
ing the MPI message-passing library.?® Distributed-
memory explicit message-passing parallel implementa-
tions of unstructured mesh solvers have been discussed
extensively in the literature.??3! In this section we

focus on the non-standard aspects of the present im-
plementation which are particular to the directional-
implicit agglomeration multigrid algorithm.

In the multigrid algorithm, the vertices on each grid
level must be partitioned across the processors of the
machine. Since the mesh levels of the agglomeration
multigrid algorithm are fully nested, a partition of the
fine grid could be used to infer a partition of all coarser
grid levels. While this would minimize the communica-
tion in the inter-grid transfer routines, it affords little
control over the quality of the coarse grid partitions.
Since the amount of intra-grid computation on each
level is much more important than the inter-grid com-
putation between each level, it is essential to optimize
the partitions on each grid level rather than between
grid levels. Therefore, each grid level is partitioned in-
dependently. This results in unrelated coarse and fine
grid partitions. In order to minimize inter-grid com-
munication, the coarse level partitions are renumbered
such that they are assigned to the same processor as
the fine grid partition with which they share the most
overlap.

Partition
Boundary

,,,,,,,,,,,,,,,,, Created Internal Edges
. Communication Path

Fig. 7 Illustration of Creation of Internal Edges
and Ghost Points at Inter-processor Boundaries

For each partitioned level, the edges of the mesh
which straddle two adjacent processors are assigned
to one of the processors, and a “ghost vertex” is con-
structed in this processor, which corresponds to the
vertex originally accessed by the edge in the adjacent
processor (c.f. Figure 7). During a residual evaluation,
the fluxes are computed along edges and accumulated
to the vertices. The flux contributions accumulated
at the ghost vertices must then be added to the flux
contributions at their corresponding physical vertex
locations in order to obtain the complete residual at
these points. This phase incurs interprocessor commu-
nication. In an explicit (or point implicit) scheme, the
updates at all points can then be computed without
any interprocessor communication once the residuals
at all points have been calculated. The newly updated
values are then communicated to the ghost points, and
the process is repeated.
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The use of line-solvers can lead to additional com-
plications for distributed-memory parallel implemen-
tations. Since the classical tridiagonal line-solve is an
inherently sequential operation, any line which is split
between multiple processors will result in processors
remaining idle while the off-processor portion of their
line is computed on a neighboring processor. However,
the particular topology of the line sets in the unstruc-
tured grid permit a partitioning the mesh in such a
manner that lines are completely contained within an
individual processor, with minimal penalty (in terms
of processor imbalance or additional numbers of cut
edges). This can be achieved by using a weighted-
graph-based mesh partitioner such as the CHACO?®
or MeTiS?" partitioners. Weighted graph partitioning
strategies attempt to generate balanced partitions of
sets of weighted vertices, and to minimize the sum of
weighted edges which are intersected by the partition

boundaries.
i =3
E=2
Fig. 8 Illustration of Line Edge Contraction and

Creation of Weighted Graph for Mesh Partitioning;
V and E Values Denote Vertex and Edge Weights
Respectively

In order to avoid partitioning across implicit lines,
the original unweighted graph (set of vertices and
edges) which defines the unstructured mesh is con-
tracted along the implicit lines to produce a weighted
graph. Unity weights are assigned to the original
graph, and any two vertices which are joined by an
edge which is part of an implicit line are then merged
together to form a new vertex. Merging vertices also
produce merged edges as shown in Figure 8, and the
weights associated with the merged vertices and edges
are taken as the sum of the weights of the constituent
vertices or edges. The contracted weighted graph is
then partitioned using one of the partitioner described
in references?% 27 | and the resulting partitioned graph
is then de-contracted, i.e. all constituent vertices of
a merged vertex are assigned the partition number of
that vertex. Since the implicit lines reduce to a sin-
gle point in the contracted graph, they can never be
broken by the partitioning process. The weighting as-
signed to the contracted graph ensures load balancing
and communication optimization of the final uncon-
tracted graph in the partitioning process.

As an example, the two dimensional mesh in Fig-
ure 5, which contains the implicit lines depicted in

Figure 6, has been partitioned both in its original
unweighted uncontracted form, and by the graph con-
traction method described above. Figure 9 depicts the
results of both approaches for a 32-way partition. The
unweighted partition contains 4760 cut edges (2.6 %
of total), of which 1041 are line edges (also 2.6 % of
total), while the weighted partition contains no inter-
sected line edges and a total of 5883 cut edges (3.2 %
of total), i.e. a 23% increase over the total number of
cut edges in the non-weighted partition.

Fig. 9
and Weighted (below) 32-Way Partition of Two-
Dimensional Mesh

Comparison of Unweighted (above)

Due to the large size of the grids considered in
this work, all preprocessing operations must be per-
formed on a large parallel supercomputer. This in-
cludes the global grid refinement procedure, the ag-
glomeration procedure, the partitioning of the various
coarse and fine multigrid levels, and the determina-
tion of the inter-processor communication schedules.
This is mostly due to the large memory requirements
of these procedures, (which run between 50 % and 75
% of the memory requirements of the flow solver, i.e.
1 Kbyte per grid point), rather than the CPU time re-
quirements, which are small compared to those of the
flow solver. At present, these procedures are executed
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sequentially on a single processor of an SGI ORIGIN
2000, but using large portions of the memory of the
entire machine. For example, the various preprocess-
ing operations for a 24.7 million point grid required
between 10 to 20 Gbytes of memory and between 45
minutes to 90 minutes for each of the operations men-
tioned above. The sequential execution of large jobs
of this nature is made possible by the shared mem-
ory architecture of the SGI ORIGIN 2000, and cannot
be performed on purely distributed memory machines
such as the Cray T3E. The complete parallelization of
these procedures for distributed-memory machines is
planned for the near future.

The above run times also apply to the CHACO par-
titioner. The exception was the MeTiS partitioner,
which managed to partition the 24.7 million point
grid in approximately 10 minutes, about 4 times faster
than the CHACO partitioner. On the other hand, the
CHACO partitioner provided better load-balancing in
the final partitions, albeit with a slightly larger num-
ber of cut edges, particularly for the coarse grid levels
of the multigrid sequence. The differences were still
small enough that a detailed study of the effect of the
two partitioners on parallel efficiency was not consid-
ered essential.

Scalability Study

The scalability of the directional implicit multigrid
algorithm is examined on an SGI Origin 2000 and a
CRAY T3E machine. The SGI Origin 2000 machine
contains 128 MIPS R10000 195 MHz processors with
286 Mbytes of memory per processor, for an aggregate
memory capacity of 36.6 Gbytes. The CRAY T3E
contains 512 DEC Alpha 300 MHz processors with
128 Mbytes of memory per processor, for an aggregate
memory capacity of 65 Gbytes.

The test case involves a grid of 1.98 million points
over an ONERA M6 wing at a Mach number of 0.1,
an incidence of 2.0 degrees, and a Reynolds number
of 3 million and is reproduce from reference® . Fig-
ures 10 and 11 show the relative speedups achieved on
the two target hardware platforms for this case. For
the purposes of these figures, perfect speedups were
assumed on the lowest number of processors for which
each case was run, and all other speedups are com-
puted relative to this value. In all cases, timings were
measured for the single grid (non-multigrid) algorithm,
the multigrid algorithm using a V-cycle, and the multi-
grid algorithm using a W-cycle.

The figures reveal good scalability on both machines
up to the maximum number of processors. The better
scalability of the single grid versus the multigrid algo-
rithms is indicative of the increased volume of com-
munication generated by the coarse grid-level time-
stepping in the multigrid algorithm. Although the
multigrid W-cycle algorithm displays slightly inferior
scalability than the V-cycle or single grid algorithm, it

provides the most rapid convergence and is thus used
exclusively for all subsequent calculations.
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Fig. 10 Observed Speedups for ONERA M6 Wing

Case (1.98 million grid points) on SGI Origin 2000
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Fig. 11 Observed Speedups for ONERA M6 Wing
Case (1.98 million grid points) on CRAY T3E

Results

The high-lift flow over a complete aircraft config-
uration has been computed for an entire range of
incidences on two grids of different resolution. The
geometry consists of a twin-engine transport known
as the energy efficient transport (EET) configuration,
which has been tested both as a full span and semi-
span model in the NASA Langley 14 x 22 ft subsonic
wind-tunnel.?? The geometry studied in this work con-
tains no pylon or nacelle. The wing has an aspect
ratio of 10, a leading edge sweep of 28.8 degrees, and
consists of a super-critical airfoil section with a slat
and double slotted flap. The case studied in this work
consists of a take-off configuration, with a slat deflec-
tion of -50 degrees, a vane deflection of 15 degrees,
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and a flap deflection of 30 degrees, with respect to the
main airfoil. The freestream Mach number is 0.2, and
the Reynolds number is 1.6 million based on the wing
reference chord, and the experimental flow incidence
varies over a range of -4 degrees up to 24 degrees.
Experimental results are available in the form of
force and moment coefficients as a function of angle of
attack, and chordwise pressure distributions at three
spanwise locations. At the time of writing, only the
pressure distributions at 10 degrees incidence were ac-
cessible for comparison. While reference3? describes
the experiments on a semi-span model with pylon
and nacelle, the full-span “nacelle-off” results used

for comparison in this paper have not been previously
published.

Fig. 12 Illustration of Mixed Prismatic-
Tetrahedral Elements near Fuselage Nose Region
for 3.1 million Point Grid

The computations are all performed at zero yaw
angle, and therefore only include one half of the sym-
metric aircraft geometry, delimited by a symmetry
plane. The coarse grid for this case contained 3.1 mil-
lion vertices and 18.2 million tetrahedra. This grid
was generated directly on an Silicon Graphics Octane
workstation which required about 60 cumulative la-
bor hours for geometry and grid generation parameter
setup, and 2.5 hours for the actual surface and vol-
ume grid generation. This tetrahedral grid was then
merged into a mixed-element grid of 3.9 million prisms,
6.6 million tetrahedra, and 46,899 pyramids. The fine
grid was obtained by uniform refinement of this mixed
prismatic-tetrahedral grid, resulting in a grid of 24.7
million vertices, with 53 million tetrahedra, 31 million
prisms, and 281,000 pyramids. The refinement opera-
tion was performed sequentially on a single processor
of an SGI ORIGIN 2000, and required approximately
10 Gbytes of memory and 30 minutes of CPU time.

Fig. 13
tours on Wing, Slat and Flap Corner Areas on 3.1
million point Mesh; Mach = 0.2, Incidence = 10
degrees, Re = 1.6 million

Illustration of Computed Pressure Con-
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Figure 12 illustrates the mixed prism-tetrahedral na-
ture of the 3.1 million point grid in the vicinity of
the nose of the fuselage on the symmetry plane. An
illustration of the computed solution at 10 degrees in-
cidence on the 3.1 million point grid is given in Figure
13 as a set of surface pressure contours on the wing
and flaps.

The preconditioned line-implicit agglomeration
multigrid algorithm was employed to converge the so-
lution to a steady-state. The isotropic agglomeration
routine was used in order to reduce memory overheads
of the flow solver, and scalar dissipation was employed
in the discretization. Five multigrid levels were em-
ployed in the 3.1 million point case, with the coarsest
level containing only 1,651 vertices. The convergence
history on this grid for a flow incidence of 10 degrees is
depicted in Figure 14. A residual reduction of four or-
ders of magnitude is observed in 600 multigrid cycles.
However, the lift coefficient remains within 0.1 % of its
final value after only 180 multigrid cycles, so that an
engineering results could be obtained with confidence
in about 300 cycles.

For the 24.7 million point grid case, convergence was
hindered by the behavior of the low-Mach number pre-
conditioner. Figure 15 depicts a comparison between
the convergence history obtained using six multigrid
levels with and without the low Mach number precon-
ditioner, as well as using five multigrid levels without
the low Mach number preconditioner. In the precondi-
tioned case, convergence stalls after roughly 2.5 orders
of magnitude decrease in the density residuals, whereas
the non-preconditioned case converges four orders of
magnitude in 500 cycles. In fact, the convergence
history for the non-preconditioned case is nearly iden-
tical to that obtained on the coarser grid, as shown
in Figure 14, which provides a good illustration of the
grid-independent convergence properties of the multi-
grid algorithm. The addition of a sixth multigrid level
in the 24.7 million point grid case (which contains only
718 points, versus 2208 points on the fifth level) has
almost no effect on the overall convergence, therefore
five multigrid levels were used in most of the compu-
tations.

While the preconditioned case on the fine grid failed
to converge the residuals monotonically, the lift coef-
ficient actually approaches its final value faster than
in the non-preconditioned case, achieving a devia-
tion smaller than 0.1 % of its final value in just 110
multigrid cycles, as opposed to 260 cycles for the
non-preconditioned case. It is speculated that the
convergence problems of the preconditioned case may
relate to the limiter required by such techniques in
regions of stagnating flow, and may therefore by of
a local nature. However, because of the uncertainty
generated by the lack of residual convergence in the
preconditioned cases, the complete lift curve has been
computed both with and without preconditioning for

the 24.7 million point grid. This also affords the op-
portunity to study the effect of the preconditioner on
the final solution at various angles of attack. Low-
Mach number preconditioning affects solution accu-
racy through a modification of the eigenvalues used
to scale the artificial dissipation.

3.1 Million Point Grid

24.7 Million Point Grid
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Log (Error)

Normalized Lift Coefficient
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Fig. 14 Convergence Rate for Coarse (3.1 million
pt) Grid using 5 Multigrid Levels and Low Mach
Number Preconditioning and Fine (24.7 million pt)
Grid using 6 Multigrid Levels and no Precondition-
ing at 0.2 Mach Number and 10 degress Incidence
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Fig. 15 Convergence Rate for Fine (24.7 million
pt) Grid using 5 and 6 Multigrid Levels with and
without Low-Mach Number Preconditioning at 0.2
Mach Number and 10 degress Incidence
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Figures 17 through 19 provides a comparison of the
computed surface pressures on the coarse and fine grids
with experimental values at the three spanwise loca-
tions illustrated in Figure 16 for an incidence of 10
degrees. For the fine grid, the preconditioned and
non-preconditioned results are almost indistinguish-
able, hence only one set of fine grid results is plotted.
The differences between the coarse and fine grid values
are rather small, with the fine grid computations pro-
viding slightly higher suction peaks at the main and
flap leading edges. Both computational results com-
pare favorably with experimental values at all three
stations.

Station C

Station B

Fig. 16 Definition of Three Spanwise Stations for
Comparison of Computed and Experimental Pres-
sure Distributions

Main Airfoil

n s L s J s J
g 005 0.1 015 02 o 005 o1
xic xlc

Fig. 17 Comparison of Computed and Experi-
mental Surface Pressure Distributions at Spanwise
Station A for 10 Degrees Incidence Case

Main Airfoil Slat

Fig. 18 Comparison of Computed and Experi-
mental Surface Pressure Distributions at Spanwise
Station B for 10 Degrees Incidence Case

Main Airfoil Slat

Fig. 19 Comparison of Computed and Experi-
mental Surface Pressure Distributions at Spanwise
Station C for 10 Degrees Incidence Case

A comparison between computed and experimental
lift coefficients as a function of angle of attack is given
in Figure 20 for both grids. As expected, the fine grid
produces slightly higher lift coefficients than the coarse
grid. The effect of preconditioning on the fine grid
lift values is very small. The experimental lift values
are over-predicted by both fine and coarse grid results.
However the slope of the lift curve is reproduced very
accurately by both computations. The maximum lift
point, which experimentally occurs at 16 degrees inci-
dence, is well predicted by the coarse grid. The fine
grid over-predicts the maximum lift incidence by 1 de-
gree, giving a value of 17 degrees. In both cases the
value of Cl,,q, is over-predicted. These characteris-
tics are similar to those observed in two-dimensional
calculations on highly-resolved grids.?3

After stall, the computations fail to converge ad-
equately, producing large variations in the lift coef-
ficients. The average, as well as the minimum and
maximum of these computed lift coefficients are plot-
ted in the figure. It is interesting to note that post-stall
computed values averaged in this manner follow the
experimental values fairly closely, although the range
of computed min-max values is rather large.
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Fig. 22 Comparison of Computed and Experimen-
tal Drag Polars

The fact that the coarse grid computations provide a
closer prediction of the Cl,,q4, point in this case must
be considered fortuitous and probably cannot be gen-
eralized to other cases.

Figure 21 provides a comparison of computed and
experimental drag coefficients versus angle of attack,
while the corresponding drag polar plots are given in
Figure 22. The drag values appear to be reasonably
well predicted, with the fine grid values agreeing most
closely with the experimental values. The shape of
the curves is well predicted on both grids up to stall,
as are the absolute values of drag. In this case, the
low Mach number preconditioning has a non-negligible
effect on the drag values, providing even closer agree-
ment with experiment for the fine grid case than the
un-preconditioned case. In fact the agreement with
experiment is very close. For example, at 10 degrees
incidence, the fine grid preconditioned value is 0.1810.
while the experimental value is 0.1800, with only 10
counts difference between the two values. More expe-
rience with large-scale unstructured grid computations
will be required to determined whether this level of
agreement can be relied upon, or is simply fortuitous.

T T

/

Fig. 23 Computed Mach Contours on Two-
Dimensional Plane Defined by Spanwise Station A
for 16 degrees Incidence Case on Fine (24.7 million
point) Grid

A two dimensional cut of the computed Mach con-
tours on the fine grid is depicted in Figure 23. Qualita-
tively, these solutions appear to approach the type of
resolution typically used in common two-dimensional
calculations. However, isolated flow features such as
the slat wake are not captured adequately, since there
has been no effort to anisotropically increase grid res-
olution in these areas.

The 3.1 million point grid cases were run on an SGI
ORIGIN 2000 machine, and a Cray T3E-600 machine.
The scalability of this case on these machines is similar
to that illustrated in Figures 10 and 11. This case
requires a total of 7 Gbytes of memory and 80 minutes
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on 128 processors (250 MHz) of the ORIGIN 2000, or
62 minutes on 256 processors of the Cray T3E-600 for
a 500 multigrid cycle run.

The 24.7 million point case was run mostly on the
Cray T3E-600 machine using 512 processors. This case
requires 52 Gbytes of memory, and 4.5 hours for 500
multigrid cycles, which includes 30 minutes of I/O time
to read the grid file (9 Gbytes), and write the solution
file (2 Gbytes). A total of 18 different cases have been
computed on this fine grid. Although these are large
calculations, they are entirely feasible on existing pro-
duction machines, such as the NASA Goddard T3E,
or the NAS 256-processor SGI ORIGIN 2000. Further-
more, in a production mode, the solution times could
be further reduced (by up to a factor of 2) by using
solutions at previously computed angles of attack as
the starting point for additional incidence cases and
using fewer multigrid cycles.
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Fig. 24 Observed Speedups for 24.7 million point
Grid Case on 1520 Processor CRAY T3E-1200e

During the course of this work, a unique oppor-
tunity was afforded to perform benchmark runs on
a large Cray T3E-1200e machine. The Cray T3E-
1200e contains 600 MHz DEC Alpha processors as
well as an upgraded communication chip, as com-
pared to the previously mentioned T3E-600 (300MHz
processors). This particular machine contained 1520
processors each with a minimum of 256 Mbytes per
processor. Figure 24 depicts the speedups obtained by
the single grid, and the five level and six level multi-
grid runs on the 24.7 million point grid running on
256, 512, 1024 and 1450 processors. The single grid
computations achieve almost prefect scalability up to
1450 processors, while the speedups achieved by the
multigrid runs are only slightly below the ideal values.
The six level multigrid case could not be run on the
maximum number of processors, since the partitioning
of the coarsest level resulted in empty processors with
no grid points. While this does not represent a fun-
damental problem, the software was not designed for

such situations. In any case, the five level multigrid
runs are the most efficient overall, since there is little
difference in the convergence rate between the five and
six level multigrid runs, as shown in Figure 15. The
single grid results are included simply for comparison
with the multigrid algorithm, and are not used for ac-
tual computations since convergence is extremely slow.

24.7 Million Pt Case
(5 Multigrid Levels)
Platform | No. of Procs | Time/Cyc | Gflop/s

T3E-600 512 28.1 22.0
T3E-1200e 256 38.3 16.1
T3E-1200e 512 19.7 314
T3E-1200e 1024 10.1 61.0
T3E-1200e 1450 7.54 82.0
Table 1 Timings and Estimated Computa-

tional Rates for 24.7 million point Grid Case
on Various Cray T3E Configurations; Compu-
tational Rates are obtained by linear scaling
according to wall clock time with smaller prob-
lems run on the Cray C90 using the hardware
performance monitor for Mflop ratings

The computation times are depicted in Table 1. On
512 processors, the 5 level multigrid case requires 19.7
seconds per cycle, as compared to 28.1 seconds per
cycle on the 512 processor Cray T3E-600, which cor-
responds to an increase in speed of over 40 % simply
due to the faster individual processors. On 1450 pro-
cessors, the same case required 7.54 seconds per cycle,
or 63 minutes of computation for a 500 multigrid cy-
cle run. A complete run required 92 minutes, which
includes 29 minutes of I/O time. No attempt at op-
timizing I/O was made, and it is felt that substantial
reductions in the I/O could be achieved by changes in
both hardware and software configuration.

Since the 24.7 million point grid was run on 256 pro-
cessors of this machine, simple scaling arguments show
that such a machine would be capable of solving over
100 million grid points in several hours. However, for
computations of this size, the bottleneck of sequential
preprocessing must first be addressed.

Conclusions and Further Work

A complete approach for simulating high-lift flows
using highly resolved unstructured grids has been pre-
sented. Unstructured grid generation for complex
high-lift geometries can be accomplished in a matter of
days, and the flow solution can be achieved in several
hours on existing production supercomputers. Good
agreement between computed and experimental pres-
sure coefficients and force coefficients as a function of
angle of attack has been shown for a full aircraft con-
figuration. Good drag prediction has been obtained,
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while the lift values and Cl,,4, location are slightly
over-predicted. Good scalability of these computa-
tions has been demonstrated using up to 1450 pro-
cessors, although the solution of substantially larger
problems will require the resolution of bottlenecks in
preprocessing, I/O time and network file transfer.

Additional work is required to enhance the robust-
ness of the low-Mach number preconditioner partic-
ularly for fine grids. Accurate resolution of isolated
flow features, such as slat wakes will require more re-
search into novel grid generation techniques in order to
increase resolution in these regions, and/or increased
use of adaptive meshing techniques.
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