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ABSTRACT

     Wind tunnel oscillatory tests in pitch, roll, and yaw were performed on a 19%-scale

model of the X-31A aircraft.  These tests were used to study the aerodynamic

characteristics of the X-31 in response to harmonic oscillations at six frequencies.  In-phase

and out-of-phase components of the aerodynamic coefficients were obtained over a range

of angles of attack from 0˚ to 90˚.  To account for the effect of frequency on the data,

mathematical models with unsteady terms were formulated by use of two different indicial

functions.  Data from a reduced set of frequencies were used to estimate model parameters,

including steady-state static and dynamic stability derivatives.  Both models showed good

prediction capability and the ability to accurately fit the measured data.  Estimated static

stability derivatives compared well with those obtained from static wind tunnel tests.  The

roll and yaw rate derivative estimates were compared with rotary-balance wind tunnel data

and theoretical predictions.  The estimates and theoretical predictions were in agreement at

small angles of attack.  The rotary-balance data showed, in general, acceptable agreement

with the steady-state derivative estimates.
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 LIST OF SYMBOLS

a,b1 indicial function parameters

b wingspan, ft

c wing mean aerodynamic chord, ft

c indicial function parameter in Model I, eq. (12)

c1,c2 indicial function parameters in Model II, eq. (24)

CN,CA,Cm normal-force, axial-force, and pitching-moment coefficients

CY,Cl,Cn side-force, rolling-moment, and yawing-moment coefficients

f frequency, Hz

fu,fv mathematical model parameters

J cost function

k reduced frequency, k = ωl / V

l characteristic length, either l =c  / 2 or l = b / 2

m number of frequencies

n number of angles of attack

nc number of cycles

np number of unknown parameters in mathematical model

p rolling velocity, rad/sec

q pitching velocity, rad/sec
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s a.) standard error

b.) parameter in Laplace transform (used in Chapter 3)

t time, sec

T period, sec

T1 time constant, T1 = τ1l / V, sec



x

u,v steady-state aerodynamic derivatives as in mathematical models

V airspeed, ft/sec

wu,wv terms in Model II, eq. (32)
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β sideslip angle, rad or deg

∆ increment

φ roll angle, rad or deg

ψ yaw angle, rad or deg

θ pitch angle, rad or deg

ω angular frequency, rad/sec

τ1 nondimensional time constant, τ1=V / lb1

Ω rotation rate about freestream velocity vector, rad/sec

Subscript:

A amplitude

Superscript:

^ estimated value

Superscript over aerodynamic derivative:

___ oscillatory data
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1. INTRODUCTION

     Wind tunnel tests have long been used as a means of analyzing the aerodynamic

characteristics of aircraft.  These tests are necessary not only to validate theory, but also to

extend it where it is incomplete.1  Even with advancements in computational fluid

dynamics, wind tunnels remain prominent in the effort to obtain accurate aerodynamic data

for aircraft.  Various methods of wind tunnel testing are currently in use, each with its own

focus.  Through these different kinds of tests, an overall survey of an aircraft’s

aerodynamic characteristics can be pieced together.  While the different wind tunnel test

methods provide data for a variety of conditions, they can create difficulty in comparing

results.  As test methods continue to evolve, so must the methodologies by which their data

are analyzed.

     The simplest wind tunnel test method is static testing, where the model remains fixed at

selected angles of orientation.  The resulting measured data are aerodynamic force and

moment coefficients that are functions of angle of attack and sideslip, and are independent

of time.  From these data, angle-of-attack and sideslip stability derivatives typically are

estimated.  Derivatives related to control surface deflections can also be found using static

tests.  The angle-of-attack derivatives are usually determined by numerical differentiation of

the measured data.  The sideslip derivatives are found using data measured at different

sideslip angles.  The angle-of-attack and sideslip derivatives are sometimes referred to as

static derivatives.

     While the derivatives measured using static wind tunnel tests are important, they provide

no information about the aircraft’s response to motion.  To compensate for this deficiency,

dynamic wind tunnel test methods have been developed.  Dynamic tests are used to validate

the static test results and provide information about an aircraft in flight regimes where static

data are no longer sufficient to describe its characteristics.2  Typically, the model is moved



2

through a specific kind of motion that depends on the desired type of data.  In contrast to

static tests, the resulting data are often not only dependent on the model’s orientation, but

also on how it reached that orientation.  As with static testing, the measured data are

analyzed to find aerodynamic derivatives.  In this case, however, the results include

dynamic derivatives, such as translation or rotation rate derivatives.

     One type of dynamic wind tunnel testing is rotary-balance testing.  In the most common

type of rotary-balance test, the model rotates at a constant rate about the freestream velocity

vector.  Such a test could be used, for example, to determine an aircraft’s aerodynamic

characteristics during a spin.  The measured aerodynamic coefficients are functions of the

model’s rotation rate.  The derivatives of these data with respect to rotation rate are then

computed and used for analysis.

      Another dynamic wind tunnel test method is forced-oscillation testing.  While different

types of oscillatory tests are used, the most common consists of harmonic one-degree-of-

freedom motion about either the pitch, roll, or yaw axis.  The measured data from forced-

oscillation tests are time histories of the aerodynamic force and moment coefficients.  These

data are used to determine aerodynamic coefficients described by in-phase and out-of-phase

components.3  Typically, the in-phase component is comprised of a static derivative and a

rotational derivative, while the out-of-phase component features a rotary derivative

combined with a translation acceleration derivative.3  The equations for the in-phase

components explicitly account for frequency effects, while the out-of-phase equations used

to determine damping rate derivatives do not.  As a result, the estimated stability derivatives

are determined as functions of frequency.

     Traditionally, it is assumed that the effect of frequency on the forced-oscillation data is

negligible.  This assumption is valid in some cases, but not for modern fighter aircraft, as

demonstrated by the strong frequency dependence of forced-oscillation data that is noted in

references 3 and 4.  Modern fighters are designed to routinely operate at high angles of

attack, where this frequency effect is more pronounced.  The frequency dependence makes
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forced-oscillation data difficult to compare with other types of data, such as data from static

or rotary-balance tests.  It also is in conflict with the assumption that the values of the

stability derivatives do not change with time.3

     Various methods for dealing with the frequency effect on oscillatory data have been

suggested.  One approach implemented in references 3 and 4 uses indicial functions to

account for the unsteady behavior of the aerodynamic stability coefficients.  From

postulated forms of the indicial functions, mathematical models are developed and used to

fit the measured data.  The resulting estimated model parameters can be used to predict in-

phase and out-of-phase data for a given frequency.  More importantly, they provide a

means of obtaining steady-state (time and frequency independent) static and rate stability

derivatives from forced-oscillation data.  By removing the dependence on frequency, the

estimated static derivatives are easier to compare with static wind tunnel test data.

Estimated pitch, roll, and yaw rate derivatives can then also be compared more easily with

other kinds of dynamic test data, when available.

     The purpose of this report is to present the stability derivatives estimated from wind

tunnel oscillatory data for the X-31A aircraft and evaluate the mathematical models that

were used.  First, a brief description of the X-31A is given.  This is followed by a

description of the wind tunnel tests used to obtain data for this study.  The data from forced

oscillations in pitch, roll, and yaw are presented, along with data measured using static and

rotary-balance tests.  The traditional, steady model for analyzing oscillatory data is

developed.  Two indicial functions are then introduced and used to develop mathematical

models with unsteady terms.  Next, the parameter estimation procedure used in this study

is described.  Following that, the results from using the mathematical models are presented

and discussed.  This includes the fit and prediction capabilities of both models, as well as

the individual model parameters.  Comparisons are drawn between the two models.  The

accuracy of the estimated angle-of-attack and sideslip derivatives are assessed through

comparisons with the static wind tunnel test data.  The estimated pitch, roll, and yaw rate
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derivatives are presented, as well.  As a means of evaluating their accuracy, comparisons

with rotary-balance data are made.  Rate derivatives predicted using two theoretical

methods are included to provide another means of comparison.  The presented information

is then summarized, followed by some recommendations for future work.  
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2. WIND TUNNEL MODEL AND EXPERIMENT

2.1 X-31A Description

     The X-31A is a single-seat experimental fighter developed for the Enhanced Fighter

Maneuverability program.5  It features all-moving canards and a double-delta wing

planform.  The wing is equipped with leading and trailing-edge flaps for control purposes.

Control can also be provided by thrust vectoring.  The aircraft has no horizontal tail, and a

single vertical tail.  It also features leading-edge, nose, and aft-mounted strakes.  Figure 1

shows a three-view of the X-31 from reference 5.  Geometric parameters for the X-31 (also

from ref. 5) can be found in Table 1.  The wing area, S, of the full-scale aircraft is 226.3

ft2 (21.0 m2).  The wing span, b, is  22.83 ft (6.96 m).  The full-scale aircraft’s mean

aerodynamic chord, c , is 12.35 ft (3.76 m).  

      The numerous control surfaces of the X-31 provide many possibilities for controlling

the aircraft.  For this study, however, only one configuration was analyzed.  All data

presented in this thesis are for a symmetrical canard deflection of -40˚ (i.e., 40˚ canard

leading-edge downward).  The leading edge flaps were set at 40˚ down inboard and 32˚

down outboard.  There was no trailing edge flap deflection.  Also, all data are for a sideslip

angle of zero and are referred to body axes.

2.2 Wind Tunnel Test Setups

2.2.1 Forced-Oscillation Testing

     Oscillatory data were gathered using a one-degree-of-freedom forced-oscillation rig in

NASA Langley Research Center’s 30 x 60-Foot wind tunnel.  For the testing, a 19%-scale

model of the X-31A was used.  Three separate experiments were done for oscillations in
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pitch, roll, and yaw.  Figure 2 shows the model mounted on the forced-oscillation rig.

(Although the figure shows the model with its vertical tail removed, all of the data

presented in this thesis were obtained with the vertical tail attached.)  The tests were run at a

dynamic pressure of 10 pounds per square foot (psf), which corresponds at sea level to a

velocity of approximately 91.7 ft/s (28 m/s), a Mach number of about 0.08, and a

Reynolds number of 1.37x106, based on the c  of the 19%-scale model.  The amplitude of

the oscillations was ±5˚ about an offset angle of zero.  For the aforementioned control

surface deflections, measurements were taken at six different oscillation frequencies.

These frequencies were nondimensionalized for analysis purposes.  Tables 2 and 3 show

the relationship between the frequencies, f (Hz), and the reduced frequencies, k, given by

the equation:

  
k

V
f

V
= =l lω π2  (1)

where l is the characteristic length and V is the wind velocity.  For the longitudinal case,

the characteristic length is half of the mean aerodynamic chord of the wing.  For the lateral

case, the characteristic length is the semi-span of the wing, b/2.

     When analyzing the oscillatory data it is assumed that the longitudinal aerodynamic

coefficients are linearly dependent on angle of attack, pitching velocity, and their rates of

change for a small change from a reference condition.4  Following the development in

reference 4, the change in the normal-force coefficient with respect to its mean value is

written as

  
∆ ∆C C

V
C

V
C q

V
C qN N N N Nq q

= + + + 



α α

α αl l l
˙ ˙

˙ ˙
2

          (2)

where

∆α α ω= A tsin

˙ cosα ωα ω= =q tA      (3)

˙̇ ˙ sinα ω α ω= = −q tA
2
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From this, it can be found that

∆C C k C t k C C t

C t kC t

N A N N A N N

A N N

q q

q

= −( ) + +( )
= +( )

α ω α ω

α ω ω

α α

α

2
˙ ˙

sin cos

sin cos
(4)

where the in-phase and out-of-phase components of the normal-force coefficient are given

by the equations

C C k CN N Nqα α
= − 2

˙
(5)

C C CN N Nq q
= +

α̇
(6)

These parameters can be determined using the orthogonality condition to integrate the

measured time histories of the aerodynamic coefficients over nc cycles.  The resulting

integrals are written as

C
n T

C t t dtN
A c

N

n Tc

α α
ω= ( )∫2

0

∆ sin          (7)

C
k n T

C t t dtN
A c

N

n T

q

c

= ( )∫
2

0
α

ω∆ cos          (8)

For pitch-axis oscillations, this development can also be used for lift, drag, pitching

moment, and axial force.

     A similar analysis can be used for the roll and yaw-axis oscillations.  The resulting out-

of-phase equations used for the roll axis are of the form

C C Cl l lp p
= +

˙
sin

β
α             (9)

with similar equations for the yawing-moment and side-force coefficients.  For the yaw-

axis oscillations, the out-of-phase equations are of the form

C C Cl l lr r
= −

˙
cos

β
α (10)

All of the remaining expressions for this type of analysis can be found in Table 4.7  While

the equations account for some frequency dependence, they do not model any time-

dependent (or unsteady) effects.
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     The measured time histories of the aerodynamic coefficients of the X-31A were

integrated using eqs. (7) and (8) and similar equations for other coefficients.  The

computed in-phase and out-of-phase data are contained in Tables 5-13.  These data can also

be seen in Figures 3-11.  For clarity, only four frequencies were included in each graph.

Typically, the frequencies omitted from the graphs were the third and fifth.  For the yawing

moment calculated from yaw oscillations, however, the third and fourth frequencies were

not included.  This was due to bad data for k=0.1186 (f=0.8 Hz).  It can be seen from the

figures that, in some cases, the data are independent of frequency at angles of attack less

than approximately 20˚.  This trend is shown more often by the in-phase components.

Overall, however, the figures show that the aerodynamic coefficients are very dependent on

frequency.

2.2.2 Static Testing

     Static wind tunnel tests on the X-31A configuration were done using a 13.3%-scale

model in NASA Langley’s 12-Ft. wind tunnel.  The control surface deflections were the

same as those used in the forced-oscillation tests, as was the dynamic pressure of the tunnel

(10 psf).  The measured normal-force, axial-force, and pitching-moment coefficients can be

found in Figure 12.  These curves were numerically differentiated to determine the angle of

attack derivatives shown in Figure 13.  Lateral stability derivatives were determined using

runs at β=±5˚.  These parameters are shown in Figure 14.

2.2.3 Rotary-Balance Testing

     To determine the high-angle-of-attack rotational aerodynamic behavior of the X-31A,

another 13.3%-scale model was tested in Langley’s 20-Ft Spin Tunnel using the rotary-

balance technique.8  The control surface deflections were the same as those used in the

other wind tunnel tests.  Various types of rotary-balance setups are currently in use,

including some that allow the inclusion of oscillatory motion.9  Reference 9 contains an in-
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depth look at rotary-balance testing.  The rig used for the X-31 tests generates a steady roll

about the wind axis, which is the most common type of rotary-balance test.  A thorough

description of the test procedure used for the X-31A can be found in reference 8.  The tests

were done at a freestream velocity of 25 ft/sec (7.62 m/s), which corresponds to a dynamic

pressure of only 0.74 psf.  Figure 15 shows the measured rolling and yawing-moment

coefficients at zero sideslip as a function of the spin coefficient (or nondimensional rotation

rate), Ωb/2V, where Ω is the rotation rate in radians per second.8  Using these data, the

rotation rate (also known as rotary) derivatives were determined.  Since the moment

coefficients are typically non-linear functions of the rotation rate, it is necessary to linearize

them over a small range approaching a rotation rate of zero.10  Figure 16 shows that the

estimated rotary derivatives are very dependent on the range that is used to calculate them.

The smallest range was selected, using data for Ωb/2V=±0.05.10  For this study, only the

rolling and yawing moment data were considered.  It is possible, however, to predict pitch

damping using measured pitching-moment coefficients from different sideslip settings.11
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3. MATHEMATICAL MODELS FOR OSCILLATORY DATA

3.1 Model I

     Data from forced-oscillation tests demonstrate a frequency dependence, which

contradicts the assumption that the stability derivatives are time-invariant.3  This frequency

effect for the X-31A was demonstrated by Figures 3-11.  To account for the frequency

dependence, aerodynamic models have been proposed that include unsteady terms.  By

using these terms, the frequency effect can be extracted from the data and steady-state

stability derivatives can be estimated.  The in-phase and out-of-phase components of the

aerodynamic coefficients are then represented as the sum of a steady-state (either static or

rotational) stability derivative and a term containing the unsteady effects.11  Such unsteady

mathematical models are developed through the use of indicial functions.12  These functions

are characterized by a response that damps to a steady-state value as time increases.  Some

applications of indicial functions are discussed by Tobak in reference 13.

     Reference 4 presents the development of a mathematical model for oscillatory data

where, for pitch oscillations, the equation for the normal-force coefficient can be written as

  
C t C t

V
C t q dN N

t

N q

t

( ) = −( ) ( ) + −( ) ( )∫ ∫α τ
τ

α τ τ τ
τ

τ τ
0 0

d
d

d
d

d
l

    (11)

where q represents the angular pitching velocity in radians per second.  The indicial

functions are represented by C tNα
( ) and C tNq

( ).  In reference 4, the effect of q̇ t( )  on the

lift is neglected.  In the analysis presented here, its effect on the normal force will similarly

be neglected.  Though indicial functions have been studied extensively in aerodynamics,

their proper analytical forms are not obvious.12  To achieve a model with a small number of

parameters, one form of indicial function can be postulated as4
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C t a e cN
b t

α
( ) = −( ) +−1 1  (12)

which can be rewritten as

C t C aeN N
b t

α α
( ) = ∞( ) − − 1  (13)

Using the Laplace transform on equation (11), a set of steady-state equations can be

determined, as is done in reference 12.  Using this approach, the resulting mathematical

model is found to be

C C a
k

kN Nα α

τ
τ

= ∞( ) −
+

1
2 2

1
2 21

            (14)

C C a
kN Nq q

= ∞( ) −
+

τ
τ

1

1
2 21

                  (15)

where k is the reduced frequency and τ1 is a nondimensional parameter given by the

equation

  
τ1

1

= V

bl
  (16)

For pitch oscillations, the same form will apply to the equations for lift, drag, axial force,

and pitching moment.  The value of τ1, however, will generally differ for each aerodynamic

coefficient.

     This model, which will be called Model I, can also be extended to roll and yaw

oscillations.  A detailed description can also be found in reference 12.  For oscillations in

roll, the rolling-moment coefficient is considered to be a function of only the roll angle, φ,

and the angular rolling velocity, p.12  From reference 12, the resulting equations can be

written as

C C a
k

kl lβ β
α τ

τ
α= ∞( ) −

+
sin sin1

2 2

1
2 21

         (17)

C C a
kl lp p

= ∞( ) −
+

τ
τ

α1

1
2 21

sin      (18)
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The sinα terms in equations (17) and (18) come from the relationship between sideslip

angle and rolling velocity.12  The equations for side-force and yawing-moment coefficients

are of a similar form.  The rolling-moment equations for yaw oscillations are determined to

be

C C a
k

kl lβ β
α τ

τ
α= ∞( ) −

+
cos cos1

2 2

1
2 21

         (19)

C C a
kl lr r

= ∞( ) +
+

τ
τ

α1

1
2 21

cos     (20)

where the cosα terms are from the relationship between sideslip angle and the angular

yawing velocity, r .12  As before, the side-force and yawing-moment equations follow the

same form.  All of the expressions for this model can be found in Table 14.

     To simplify the notation, the in-phase and out-of-phase equations of Model I can be

rewritten in the form

u u f a z fji i u i u ui j i
= −         (21)

v v a z fji i i v vj i
= −         (22)

where ui and vi represent the steady-state static and rate derivatives.  These are time-

independent coefficients that are functions of angle of attack.  In the case of pitch

oscillations, for the normal force:

u C v Ci N i i N iq
= ∞( ) = ∞( )

α
α α, ,

In all oscillation cases, the functions zu and zv represent the frequency-dependent terms

z
k

k
z

ku
j

j
v

j
j j

=
+

=
+

τ
τ

τ
τ

1
2 2

1
2 2

1

1
2 21 1

        (23)

The functions fu and fv in equations (21) and (22) are dependent on the type of oscillations

that the model represents.  For oscillations in pitch, both are equal to one for all values of

angle of attack.  For roll oscillations,
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f fu vi i
= =sinα

and for yaw

f fu vi i
= = −cosα

In all of these equations, i=1,2,...n and j=1,2,...m, where n is the number of values of

angle of attack and m is the number of frequencies to be used for analysis.

3.2 Model II

     As mentioned before, the proper forms for indicial functions are not readily known.

Using different indicial functions to develop other mathematical models provides a way to

determine the best form.  The response of the indicial function used in Model I is bounded

by its steady-state value; that is, the response curve never crosses the steady-state value.

The indicial responses presented by Tobak in reference 13 demonstrate a tendency to

overshoot the steady-state value before returning to it as time approaches infinity.  The

inability of the Model I indicial function to account for this type of behavior could

potentially affect the accuracy of the model.  A more accurate model can possibly be created

by using an indicial function with a response that resembles those of reference 13.

     One way of developing a new model would be to add another time-dependent term to

the indicial function used for Model I.  This extra term should be bounded with time so that

the response will reach a steady-state value as time approaches infinity.  A suitable new

indicial function would then be

  
C t a e c c

V
t eN

b t b t

α
( ) = −( ) + − 





− −1 1 1
1 2

2
2

l
  (24)

which can be rewritten in the form

  
C t C ae c

V
t eN N

b t b t

α α
( ) = ∞( ) − − 





− −1 1
2

2
2

l
 (25)

where the c term in the previous model has been renamed c1.  The parameter c2 is a function

of angle of attack similar to a.  The t2 term needs to be multiplied by the (V/l)2 term so that
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the vector c2 will be nondimensional.  This form of indicial function will allow the value of

the aerodynamic derivative to cross the steady-state value, though it will not always do so.

The shape of the indicial response will depend on the aerodynamic parameter it describes,

and the angle of attack.  The mathematical model based on the indicial function of equation

(25) will be called Model II.†

     Using the indicial function of equation (25), a steady-state set of equations can be

derived, as was done for Model I.  Following the development in reference 12, the Laplace

transform of equation (11) for the new model becomes

  

C s C a
s

s b
c

V s

s b V
C s sN N Nq

( ) = ∞( ) −
+

− 



 +( )

+












( )
α

α
1

2

2

1
2

2

l

l
      (26)

where q(s) was replaced by sα(s).  As in reference 12, the expression for α(t) can be

written in complex form as

α α α ω ωωt e t i tA
i t

A( ) = = ( ) + ( )( )cos sin (27)

and by replacing s with iω, the steady-state solution for the in-phase and out-of-phase

equations is found to be

C C a
k

c
k

k
kN Nα α τ

τ τ

τ
τ= ∞( ) −

+
+

−( )
+( )











1

1
2

3

11
2 2 2

1
2

1
2 2

1
2 2 3 1

2 2 (28)

C C a
k

c
k

k
N Nq q

= ∞( ) −
+

+
−( )

+( )










1
1

2
1 3

11
2 2 2

1
2

1
2 2

1
2 2 3 1τ

τ τ

τ
τ (29)

The equations for the other aerodynamic coefficients follow a similar derivation.  As with

Model I, the roll and yaw-axis equations will include sine and cosine terms.  All the

equations for Model II can be found in Table 15.  The two models are somewhat similar,

but the extra time-dependent term in the second indicial function causes the steady-state

solution to be more complex.

                                                
† Note:  The Model II presented here is different than the one presented in reference 4.
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     The equations for Model II can be represented in a simplified form as were those of

Model I.  The in-phase and out-of-phase equations are now

u u f a z f c w fji i u i u u u ui j i i j i
= − − 2          (30)

v v a z f c w fji i i v v v vj i i j i
= − − 2        (31)

where the u, v, a , and f represent the same terms as in Model I.  Also, the frequency-

dependent terms zu and zv remain the same.  The only change in the new model is the

addition of the wu and wv terms, where

w
k k

k
w

k

k
u

j j

j

v

j

j

j j
=

−( )
+( )

=
−( )

+( )
2 3

1

2 1 3

1

1
4 2

1
2 2

1
2 2 3

1
3

1
2 2

1
2 2 3

τ τ

τ

τ τ

τ
(32)

While the nomenclature used by Models I and II is similar, the unknown model parameters

will take on different values due to the different model structures.
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4. PARAMETER ESTIMATION METHOD

     To determine the values for the unknown model parameters, the nonlinear estimation

technique of reference 3 was used.  Due to the different structure of the two mathematical

models, the application of the estimation method differed slightly.  For data at n angles of

attack, Model I has 3n+1 unknown parameters:  ui, vi, ai, and τ1.  The addition of the extra

term in Model II adds n unknowns to this in the form of c
i2 .  For both models, a cost

function was defined that describes the sum of the squared differences between the

measured and estimated in-phase and out-of-phase data.  The cost function used in Model I

was

J u f u a z v v a z fI ji u i i u ji i i v v
i

n

j

m

i j j i
= − −( )[ ] + − −( )[ ]

==
∑∑

2 2

11

    (33)

and that of Model II was

J u f u a z c w v v f a z c wII ji u i i u u ji i v i v v
i

n

j

m

i j i j i j i j
= − − −( )[ ] + − − +( )( )[ ]






==

∑∑ 2

2

2

2

11

    (34)

Using the appropriate cost function, a linearized least-squares approach was initially used

to determine the value of τ1 that generates the lowest cost.3  Once this value was found, a

Modified Newton-Raphson method was used to find the final parameter estimates based on

the initial, least-squares values.  The standard errors of the parameters were also computed.

The variance estimate for this problem is given by the equation3

s2 = J θ( )
2nm − np

        (35)

where θ is the set of parameter estimates, m is the number of reduced frequencies used,

and np is the number of unknown model parameters.  The 2nm represents the total number

of data points used, as there were nm points for each set of in-phase and out-of-phase data.
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     Estimation using the mathematical models for roll and yaw-axis oscillations is

complicated by their trigonometric terms.  For angles of attack that cause these terms to be

zero, the in-phase component will be zero for all frequencies.  Also, the out-of-phase part

will be frequency independent at these angles of attack.  Considering measurement error,

the data from the X-31 tests indicate that these conditions may be physically accurate.

During the estimation procedure, however, they cause the system of equations used in the

linearized least-squares approach to be ill-defined.  In other words, there will be more

unknown parameters than equations, and the estimation technique will not work.  To

eliminate this problem, data at α=0˚ were not used for analyzing roll-axis oscillations.  For

yaw-axis oscillations, data at α=90˚ were not used.

     During the estimation process, data were omitted at one frequency (f=0.6 Hz) and

reserved for checking the ability of the model to predict frequency-dependent in-phase and

out-of-phase data.  For the yawing-moment coefficient measured using oscillations in yaw,

one additional frequency (f=0.8 Hz) was eliminated due to irregular data.  The four

frequencies that remained were sufficient for the estimation process.  Equation (35)

indicates that the number of measured data points must be greater than or equal to the

number of unknowns.3  Using only four frequencies will satisfy this requirement, but the

smaller number of points may negatively affect the estimation accuracy.
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5. RESULTS AND DISCUSSION

5.1 Fit to the Measured Data and Prediction Capability

     Before analyzing the estimated model parameters themselves, it is necessary to assess

the ability of the mathematical models to fit the measured data.  Both mathematical models

were used to fit data from three different experiments:  oscillations in roll, yaw, or pitch.

Figures 17-22 compare the results of the estimation with the measured data for key

aerodynamic coefficients at selected frequencies.  Results were similar for the coefficients

that are not shown in the figures.  This can be seen in Table 16, which shows the estimated

variances and costs of both models for all of the aerodynamic coefficients.  This

information is also presented, in graphical form, in Figures 23 and 24.  From the cost

comparisons and the graphs, it can be seen that the estimated in-phase and out-of-phase

components of the aerodynamic coefficients agreed well with the experimental data for both

mathematical models.

     From Figures 17-22, it can be seen that the in-phase estimates of Model II were very

similar to those of Model I, and it is not apparent whether either model was more accurate

in modeling in-phase data.  Model II, however, demonstrated better accuracy in modeling

out-of-phase data.  This is shown most clearly by the oscillatory roll damping results

shown in Figure 20.  According to equation (35), the estimated variances of the models

will be dependent on the number of unknown parameters.  Since Model II consists of n

more unknowns than Model I, it will produce higher variances for the same cost.

Therefore, a comparison of the final costs of each model is useful.  The table shows that

Model II produced smaller costs and standard errors for all aerodynamic coefficients when

fitting the measured data.
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     After the parameter estimation, the mathematical models were used to predict in-phase

and out-of-phase data for a frequency of 0.6 Hz, for which measured data were omitted

during the estimation procedure.  These predictions are shown for three selected cases in

Figures 25-27.  Comparisons between Models I and II in this case are difficult to make

using the graphs, as both showed the ability to accurately predict the oscillatory force and

moment coefficients.  In some cases, Model I showed superior prediction capabilities.

Other times, however, the second model appeared to be better suited to predict the extreme

nonlinearity of the data.  Table 17 shows a comparison of the sum of the squared

differences (residuals) between the measured and predicted in-phase and out-of-phase data

at f=0.6 Hz for both models.  The squared residuals, r2, were found using the equation

r y yi i
i

n
2 2

1

= −( )
=
∑ ˆ          (36)

where yi  represents either the in-phase or out-of-phase component and, as before, n is the

number of angles-of-attack.  In most cases, the predictions of Model I produced slightly

smaller residuals than those of Model II.

     The minor increase in prediction error for Model II may be indicative of a more

substantial problem.  It is possible that the extra term in Model II improved the accuracy of

the fit to the data, but its high-order frequency dependence created some errors in

prediction.  This notion is supported by Figures 28 and 29, which show an example of

predicted in-phase and out-of-phase data over a range of frequencies just beyond the values

that were used experimentally.  The in-phase components predicted by both models were in

agreement with each other, and appeared well behaved over the entire frequency range.

These characteristics did not hold true for the out-of-phase component predictions shown in

Figure 29.  The out-of-phase components predicted by Model II were somewhat

inconsistent with those of Model I as the reduced frequency approaches zero, and seemed

to be erratic.
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     The prediction results suggest that Model I is a parsimonious model and should be used

when more conservative predictions are desired, particularly at very small values of

reduced frequency.  To improve the overall prediction quality of Model II, it would likely

be necessary to measure data at more frequencies.  The oscillation frequencies would also

need to be spaced closely to reduce the tendency of Model II to overpredict in regions

where there is no measured data.  While these two changes might improve Model II’s

prediction capability, they may do so at the cost of losing some of the improvement in fit

accuracy.  Gathering data at the additional frequencies would also increase the time (and,

therefore, money) spent on the wind tunnel test itself.

5.2 Estimated Parameters

     The individual parameters that comprise the mathematical models provide information

about the aircraft’s aerodynamic behavior.  The most important of these are the estimates of

the static and dynamic stability derivatives, the u and v terms in the models, but it is also of

interest to study the other unknown parameters in the models.  Tables 18-19 show the

estimated values of τ1 and calculated time constants for each model along with their

standard errors.  It can be seen that the values of τ1 differed between the models,

sometimes significantly.  Their values also were very dependent on the aerodynamic

coefficient for which they were used.  Also, neither model produced consistently lower

standard errors than the other.

     The effect of indicial function form on estimated parameters is evident in the differences

between their predicted indicial response curves.  These responses can be determined by

substituting the estimated model parameters into the indicial function definitions.  For

example, Figure 30 shows a comparison of indicial response curves predicted for Cmα
 at

different values of angle of attack.  Here, the influence of the extra time term is apparent,
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especially at α=80˚.  There did not appear to be a discernible trend describing the shape of

the indicial response for either model, however.

     Key to the shape of the aerodynamic derivative indicial response curves are the a vectors

in both models, and the c2 vector in Model II.  These parameters are related to the unsteady

effects on the aerodynamic coefficients, but their physical significance is not evident.12

Plots of these parameters are shown in Figures 31-36.  Included are the 2s confidence

intervals for the estimates of a from Model I, and the c2 estimates of Model II.  As can be

seen, the shape and values of these parameters varied depending on the particular

aerodynamic coefficient the model described.  In most cases, there was not a large

difference between the estimated a vectors of Models I and II.  The difference in the time

response of the two models was due to the inclusion of c2 in Model II.  It is important to

note that the c2 term in the model is multiplied by (V/l)2, which is typically much greater

than one.  This is why c2 is significant even though its values are very small.  It is not

evident whether the small size of the c2 parameters had any adverse effects on the

estimation procedure.

     The estimated steady-state static derivatives were compared to those determined

experimentally through static wind tunnel tests.  These are the stability derivatives with

respect to angle of attack and sideslip.  The comparison between the static data and the

estimates from the two models are shown in Figures 37-39.  For simplicity, only the

standard errors for the Model I estimates are included.  The static derivatives estimated by

both models were very similar.  The angle-of-attack derivatives estimated from pitch

oscillation data agreed well overall with the static test data, particularly for the normal-force

coefficient.  The estimated values of Cmα
 showed the largest discrepancy from the

measured data.

     The sideslip derivative estimates also showed, in general, good agreement with the static

test data.  The estimates of CYβ
, in particular, correlated well with the measured values.
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The estimates of Cnβ
 differed substantially from the measured data at angles of attack

between 50˚ and 70˚ in the roll case.  Due to the form of the mathematical models, either

roll or yaw oscillatory data can be used to estimate the sideslip derivatives.  Figures 40 and

41 show comparisons between the yaw-axis and roll-axis estimates for Models I and II.

Both oscillation cases produced similar derivative estimates.

     Many factors contribute to the discrepancies between the stability derivatives estimated

from forced-oscillation tests with those of static tests.  Some of these are related to the

experimental procedures.  Though for identical configurations, a different X-31 model was

used for each kind of test, which can create differences in their results.  Some discrepancies

may be due to the use of different wind tunnels.  Also, a potential source of error is the

measured forced-oscillation data itself.  No statement can be made regarding the accuracy

or repeatability of the data.  Error may also be induced by the time history integration used

to calculate the in-phase and out-of-phase data used in this study.

     Estimates of the pitch, roll, and yaw rate derivatives (e.g., Cmq
, Clp

, Clr
) from each

model are shown in Figures 42-44.  Again, the standard error bars have been shown for

only the Model I estimates.  As opposed to the static case, no experimental data were

available for a direct comparison, which made it difficult to assess the accuracy of the

estimates.  Though in agreement, there was more of a difference between the two models’

estimated dynamic derivatives than was shown with the static derivatives.  Rate derivatives

are closely related to the out-of-phase component of the oscillatory data.  The differences

between the results of the two models indicate that the extra term in Model II primarily

influenced the modeling of out-of-phase phenomena, which is also suggested by the fit to

the measured data.

     The influence of the fu and fv terms in the mathematical models can be seen by the

behavior of the standard errors of the estimated stability derivatives.  As shown before, the

roll-axis equations feature the sinα terms.  Consequently, data at α=0˚ were not used in the
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estimation process because the model would not be valid at that angle of attack.  For the

static derivatives, the standard errors were largest near α=0˚ for the roll-axis case and

decreased as angle of attack increased.  The opposite was true for the yaw-axis case, where

the sine terms are replaced by cosine terms.  Here, data at α=90˚ were not used, and the

standard errors increased with α for the sideslip derivative estimates.  The behavior of the

standard errors suggests that roll and yaw estimates be used together in a way to neutralize

the problems at α=0˚ and 90˚.  This would mean emphasizing the yaw-axis predictions for

small angles of attack, and the roll-axis predictions for large angles of attack.  The standard

error trends shown for the sideslip derivative estimates did not extend to the roll and yaw

rate derivatives.  The standard errors for the angle-of-attack derivatives were nearly

independent of angle of attack, especially for the normal and axial-force coefficients.  As

with the results from the other two oscillation axes, this trend did not extend to the rate

derivatives.

     In addition to the error bars included in the graphs, the minimum and maximum

standard errors for the estimated parameters can be found in Tables 20 and 21.  The tables

show that the extrema of Model II’s standard errors were often smaller than those of Model

I.  The errors for the a vectors varied between the two models, but comparisons are skewed

slightly by the different model forms.  For Model II, the standard errors for the c2 vectors

were very small, as were the values of c2 themselves.

5.3 Comparison with Rotary-Balance Data

     To help evaluate the estimated rate derivatives, comparisons were made with data

measured using the rotary-balance test method.  Due to the differences in the two

techniques, however, such comparisons are suspect.  As with the comparison between

forced-oscillation and static testing, differences in the X-31 wind tunnel models and the
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wind tunnels themselves can lead to some discrepancies.  Also, the rotary-balance tests

were done at a much lower dynamic pressure than the forced-oscillation tests, which could

also change the results.  One main difference between the two methods is that rotary-

balance data are measured at a constant rotation rate, as opposed to the harmonic motion of

forced-oscillation testing.  A result of this is that the two tests model different flow

phenomena.  Therefore, comparisons with rotary-balance data can provide a general

assessment of the forced-oscillation results, but not any significant conclusions about their

accuracy.

     Traditional comparisons between rotary-balance and oscillatory data have also been

complicated by the oscillatory derivatives’ frequency dependence.  This problem can be

reduced by using the steady-state roll and yaw rate derivative estimates: Clp
∞( ), Cnp

∞( ),

Clr
∞( ), and Cnr

∞( ).  Though this makes for a truer comparison, it does not compensate

for the substantial differences in test methods.  Since the derivatives from rotary-balance

testing are based the rate of rotation about the wind axis, it is necessary to convert the

derivatives estimated from the oscillatory data.  The relationship between the two is given

by the equations

C C Cl l lp rΩ
= ∞( ) + ∞( )cos sinα α (37)

C C Cn n np rΩ
= ∞( ) + ∞( )cos sinα α (38)

where ClΩ
 and CnΩ

 are the rotary derivatives.  

     The comparison between the estimated derivatives from rotary-balance data and the

steady-state estimates from forced-oscillation data is shown in Figure 45.  The figure

shows that the two types of data do not correlate well overall.  The estimated rotary rolling-

moment derivative, ClΩ
, varied from the rotary-balance data the most at angles of attack

between approximately 35˚ and 60˚, but showed good agreement at small angles of attack.

The estimated rotary yawing-moment derivatives followed the same trend as the measured

data, but individual data points did not agree as well as in the rolling-moment case.  Due to
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the limitations of this comparison, these discrepancies do not necessarily mean that the

estimated derivatives from oscillatory data were in error.

5.4 Comparison with Theoretical Predictions

     There are several methods available for the analytical prediction of an aircraft’s

aerodynamic qualities.  These can be limited in their ability to model aircraft such as the X-

31, but provide a way to quickly estimate desired parameters.  One commonly used tool for

stability derivative prediction is the USAF Datcom handbook, reference 14, which has been

integrated into a computer program called Digital Datcom.15  The normal limitations of

Datcom’s analytical methods are accentuated by the configuration of the X-31.  The canard

must be input as a wing and the wing as a horizontal tail, which the program neglects when

computing the lateral-directional dynamic derivatives.16  The methods used by the program

allow for the superposition of the results, so the final predictions for canard configurations

must be assembled from separate runs.16  Digital Datcom does not have the ability to

precisely match the leading and trailing-edge flap configuration of the X-31.  It also does

not take into account the effect of strakes.  These problems can be offset by the input of

experimental data when it is available.

     Another way to predict an aircraft’s stability and control characteristics is the use of strip

theory.  One computer program that predominantly uses strip theory to determine pitch,

roll, and yaw rate derivatives is called DYNAMIC. 17  For this program, experimental data

are required for all surfaces.  The load distributions for the lifting surfaces are to be input,

as well as the normal and axial-force coefficients as a function of angle of attack.  It is

sufficient to use panel methods to generate the input when experimental data are not

available.17  The program has the capability to approximate the normal force curve for the

fuselage, as well as its CYβ
 curve.  It can also approximate the aerodynamic characteristics

of the vertical tail.  The output from DYNAMIC is primarily the roll and yaw rate
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derivatives for Cn and Cl.  The computed static derivatives for the fuselage and vertical tail

can also be output.

     For the prediction of the X-31’s dynamic derivatives, the geometry input data were

scaled to 19% to match the wind tunnel model used in forced-oscillation tests.  The fore

and aft strakes were neglected due to the limits of the programs.  To account for the wing

strakes and control surface deflections, a panel method was used to predict the lift curve of

the wing.  This prediction was then used as input for the programs in lieu of experimental

data.  The flight conditions input for the theoretical predictions were the same as those of

the oscillatory tests, as well.

     It is also possible to predict the lateral-directional stability derivatives using a combined

method using rotary-balance and theoretical data.10  Here, the spin rate derivatives from

rotary-balance testing are used in conjunction with analytical predictions, such as Datcom

or DYNAMIC.  To make these predictions, the relationship between the rotary and body-

axis roll and yaw rate derivatives is manipulated to give the following equations10
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The results are roll and yaw rate derivatives that can be compared with the analytical or

forced-oscillation predictions.  The inclusion of rotary-balance data may improve the results

by accounting for nonlinear behavior.10

     A comparison of the predictions from Digital Datcom and DYNAMIC with the estimated

derivatives from oscillatory data can be found in Figures 46 and 47.  It can be seen that the

estimated derivatives agreed well with the theoretical predictions for small angles of attack.
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The X-31’s aerodynamic parameters are highly nonlinear, particularly at angles of attack

greater than approximately 25˚.  The theoretical predictions are not capable of modeling

such nonlinearities.  The predictions of Clp
, however, showed good agreement at slightly

larger angles of attack, while the other predicted derivatives did not.  Combining the

predictions with rotary-balance data improved the results for higher angles of attack, as was

also noted for a different study in reference 10.  The results for the X-31 are shown by

Figures 48 and 49.  Figure 50 shows a comparison of the theoretical predictions with

rotary-balance data and the oscillatory estimates in the form of the rotary derivatives.  As

before, theory provides results that concurred with the wind tunnel data estimates for

moderate angles of attack.  The predicted values of ClΩ
 tended to be in better agreement

with the estimated data.  At small angles of attack, the theoretical predictions indicated, in

general, that the oscillatory estimates were reasonable with respect to theory.  Due to their

limitations, however, the theoretical predictions cannot be used to draw any major

conclusions about the accuracy of estimated derivatives from oscillatory data.
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6. CONCLUDING REMARKS

     Three types of wind tunnel tests--static, rotary-balance, and forced-oscillation--were

performed on models of the X-31A configuration.  Three separate forced-oscillation tests

were performed, one each for oscillations in pitch, roll, and yaw.  The resulting data were

shown to be dependent on the frequency of the motion.  Two unsteady models developed

using indicial functions were used to account for this frequency effect.  Both functions

were formulated so that the estimated aerodynamic coefficient would approach a steady-

state value as time increases.  The second function featured an added term that made it

possible for the value of the coefficient to cross its steady-state value.

     The unsteady models were used to fit the measured data and estimate the X-31’s static

and dynamic stability derivatives.  Both models showed good accuracy in fitting the

measured data.  Model II produced a closer fit, especially for the out-of-phase data.  The

two models also showed good prediction capability.  In comparison to the experimental

data, the predictions for both models were similar, with Model I appearing to have

produced a more accurate prediction overall.  Results based on a range of frequencies

indicated that Model II is likely to overpredict in-phase and out-of-phase data.

     Both models were used to estimate steady-state stability derivatives, which were

compared with static and rotary-balance wind tunnel data.  The estimated static derivatives

showed good agreement, in general, with those from the static test data.  No experimental

data were available for direct comparison with the estimated rate derivatives.  For a general

assessment of the results, the estimated roll and yaw rate derivatives from oscillatory data

were compared with rotary-balance data.  The estimated derivatives followed the overall

trend of the rotary-balance data, but showed substantial disagreement in some areas, likely

due to differences in the wind tunnel test methods.
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     Two analytical methods were also used for comparison of roll and yaw rate derivatives.

Though the configuration of the X-31 limited their effectiveness, the analytical methods

provided useful theoretical predictions of stability parameters at small angles of attack.  The

accuracy of these predictions was improved slightly by combining them with rotary-balance

data.  Overall, the theoretical predictions indicate that the estimated rate derivatives have

reasonable values at small angles of attack.  Due to their limitations, however, no

conclusive statements could be made regarding the accuracy of the oscillatory data

estimates.

     There were many potential sources for error in the comparisons used in this study.  The

three wind tunnel test methods described different flow phenomena, which influenced the

results even though the estimated derivatives from oscillatory data were frequency

independent.  Also, while the unsteady mathematical models showed the ability to

accurately fit the measured data, no statement can be made as to the accuracy of the data.

Inaccuracies in the measured data might have lead to inaccurate derivative estimates.  Also,

the in-phase and out-of-phase data used for this study were not measured directly, but

computed from the measured data.  This also could have introduced error into the results.  

     The formulation of the indicial function used in the mathematical models was shown to

have an influence on the parameter estimates.  The inclusion of another term into the

indicial function slightly improved the overall accuracy of the model in fitting the

experimental data.  The prediction problems shown by Model II, especially when

predicting out-of-phase data at certain frequencies, might have been due to its high-order

frequency terms.  In general, Model II seemed to have poorer prediction capabilities than

Model I.  Both of the models produced similar results when estimating the angle of attack

and sideslip derivatives.  The standard errors produced by Model II, however, were

typically smaller.  This held true even in some areas where the estimates of Model I were

closer to the static test data, which may be related to the accuracy of the measured data.

The dynamic stability derivatives estimated with both models agreed overall, but sometimes
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differed notably.  It is possible that the extra term in Model II provided better modeling of

out-of-phase effects, which are related to the rate derivatives.  The improved fit accuracy of

Model II was offset by its increased complexity and possible prediction errors, and could

not be directly linked to more accurate steady-state stability derivative estimates.  Overall,

the results suggested that Model I was the better unsteady mathematical model.
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7. RECOMMENDATIONS FOR FUTURE RESEARCH

     While the use of models with unsteady terms to analyze oscillatory data is effective, it is

possible that some improvements can be made.  Not neglecting the effect of CNq̇
 (or the

comparable terms for the other coefficients) in the mathematical model derivation may

improve the estimation results.  While the criteria used to justify its omission were valid,

conditions may exist where the term's influence is substantial.  Taking this effect into

account could make the stability derivative estimates more accurate.  Inclusion of the CNq̇

term may also alleviate the problems caused by the sine and cosine terms for the roll and

yaw axis oscillation models.  The trigonometric terms might not apply to the new term

when the model is derived.  Also, the type of indicial function may be studied further to

determine what is the best form to use.   

     Another item to be studied is the extension of the indicial function approach to other

types of dynamic wind tunnel testing.  For example, reference 9 describes a rotary-balance

test rig that features the addition of oscillatory motion.  Other different types of oscillatory

testing are also in use.  It may be possible to extend the indicial function approach to these

test methods.  This potentially could provide more accurate stability derivative estimates or

estimates of parameters not included in the models for one-degree-of-freedom oscillatory

motion.
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Table 1.  Basic geometric characteristics of the X-31A.  (Ref. 5)

    Full Scale       19%         13.3%     
Center of Gravity:

FS (inches) 269.2 51.0 35.8
BL (inches) 0.0 0.0 0.0
WL (inches) -2.0 -0.38 -0.267

Wing:
Span (ft) 22.83 4.34 3.04
Mean Aerodynamic Chord (ft) 12.35 2.35 1.65
Reference Area (sq. ft) 226.30 8.17 4.02
Aspect Ratio 2.30 2.3 2.3
Sweep, inboard (deg) 57 57 57
Sweep, outboard (deg) 45 45 45

Vertical Tail:
Height (ft) 6.81 1.29 0.908
Reference Area (sq. ft) 37.55 1.35 0.668
Sweep (deg) 50 50 50
Volume Coefficient 0.0925 0.0925 0.0925

Fuselage:
Length (ft) 43.33 8.23 5.78

Canard:
Span (ft) 8.64 1.64 1.15
Reference Area, Total (sq. ft) 23.6 0.852 0.420
Aspect Ratio 3.18 3.18 3.18
Sweep (deg) 45 45 45
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Table 2.  Frequencies used in analysis for longitudinal cases.

f, hz ω, rad/sec k

0.25 1.5708 0.0201
0.40 2.5133 0.0322
0.60 3.7699 0.0483
0.80 5.0265 0.0643
1.00 6.2832 0.0804
1.19 7.4770 0.0957

Table 3.  Frequencies used in analysis for lateral-directional cases.

f, hz ω, rad/sec k

0.25 1.5708 0.0371
0.40 2.5133 0.0593
0.60 3.7699 0.0890
0.80 5.0265 0.1186
1.00 6.2832 0.1483
1.20 7.5398 0.1779
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Table 4.  Expressions for aerodynamic coefficients with no unsteady terms.

In-phase Out-of-phase
Pitching

C k Cm mqα
− 2

˙
C Cm mq

+
α̇

C k CN Nqα
− 2

˙
C CN Nq

+
α̇

C k CA Aqα
− 2

˙
C CA Aq

+
α̇

Rolling
C k CY Ypβ

αsin
˙

− 2 C CY Yp
+

˙
sin

β
α

C k Cn npβ
αsin

˙
− 2 C Cn np

+
˙
sin

β
α

C k Cl lpβ
αsin

˙
− 2 C Cl lp

+
˙
sin

β
α

Yawing
C k CY Yrβ

αcos
˙

+ 2 C CY Yr
−

˙
cos

β
α

C k Cn nrβ
αcos

˙
+ 2 C Cn nr

−
˙
cos

β
α

C k Cl lrβ
αcos

˙
+ 2 C Cl lr

−
˙
cos

β
α
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Table 5a.  Measured in-phase components of normal-force coefficient.  Pitch-axis
oscillations.

Component α , deg k = 0 . 0 2 0 1 k = 0 . 0 3 2 2 k = 0 . 0 4 8 3 k = 0 . 0 6 4 3 k = 0 . 0 8 0 4 k = 0 . 0 9 5 7

0.0 2.9644 3.0093 3.0388 3.0308 3.0675 3.0679

10.0 3.0490 3.0784 3.0853 3.1155 3.1086 3.1656

15.0 3.0512 3.0192 3.0459 3.0456 3.0631 3.0755

20.0 2.9015 2.9257 2.9651 2.9853 2.9931 2.9935

25.0 2.2512 2.3124 2.4025 2.4988 2.5567 2.6446

27.5 1.5669 1.7588 2.0242 2.2276 2.4063 2.5900

30.0 1.0503 1.2950 1.6580 2.0583 2.3847 2.5579

32.5 0.7645 1.0451 1.4478 1.8572 2.1304 2.4222

35.0 0.8624 1.1175 1.4762 1.8220 2.1189 2.3325

37.5 1.1976 1.3905 1.6922 2.0048 2.2077 2.3455

40.0 1.3744 1.5706 1.8226 2.0318 2.2169 2.3848

CNα
42.5 1.4045 1.6117 1.8757 2.1219 2.2684 2.4686

45.0 1.5323 1.7273 1.9445 2.1456 2.2837 2.4480

47.5 1.6601 1.8429 2.0133 2.1694 2.2989 2.4273

50.0 1.5299 1.6314 1.8398 1.9920 2.1101 2.1813

55.0 1.0131 1.2205 1.4974 1.7007 1.8115 1.8694

60.0 0.5689 0.8753 1.1776 1.4707 1.6047 1.6987

65.0 0.4255 0.7035 0.9406 1.1898 1.3275 1.4235

70.0 0.3566 0.5232 0.7302 0.9407 1.0250 1.2002

75.0 0.2487 0.3801 0.5411 0.6791 0.7615 0.8197

80.0 0.2082 0.2219 0.3848 0.4526 0.5065 0.6488

85.0 0.1377 0.2112 0.2306 0.3070 0.3176 0.3969

88.0 0.0485 0.1537 0.1425 0.1899 0.2449 0.2600
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Table 5b.  Measured out-of-phase component of normal-force coefficient.  Pitch-axis
oscillations.

Component α , deg k = 0 . 0 2 0 1 k = 0 . 0 3 2 2 k = 0 . 0 4 8 3 k = 0 . 0 6 4 3 k = 0 . 0 8 0 4 k = 0 . 0 9 5 7

0.0 7.3819 7.2324 6.4397 5.7717 5.2901 4.9654

10.0 3.5563 4.7111 4.5399 4.5419 4.7022 4.6821

15.0 4.1972 4.2075 4.4031 4.4406 4.3294 4.3789

20.0 4.8884 5.9337 5.2135 4.8264 4.8108 4.6280

25.0 12.3860 11.8060 11.4250 9.9515 9.4749 8.8731

27.5 28.3080 23.0710 19.5670 16.4900 14.6790 12.5730

30.0 37.9760 34.8380 29.1800 22.9610 19.1410 16.4260

32.5 43.5530 39.3970 33.0350 27.5990 22.8270 18.9270

35.0 37.8140 33.6610 27.2840 22.0400 19.0870 16.3390

37.5 29.5150 25.5790 21.0190 18.0890 15.3390 13.4850

40.0 25.7460 24.4820 19.3410 16.7250 14.3390 11.9340

CNq
42.5 26.7710 23.3050 19.1120 15.1560 12.6090 10.8170

45.0 23.9680 20.5280 16.9760 13.5630 11.4260 9.6863

47.5 21.1640 17.7510 14.8400 11.9700 10.2430 8.5554

50.0 18.4510 16.7520 14.0670 11.8780 10.5180 9.2547

55.0 28.2390 22.9380 17.9190 13.3160 11.3750 10.1080

60.0 36.1080 27.9480 21.6920 15.8220 12.9350 10.5460

65.0 28.9460 25.5880 19.4510 15.1780 12.2360 10.0320

70.0 25.7800 20.3700 16.3080 12.9660 10.4530 8.8396

75.0 16.0550 15.3680 12.1220 9.7379 8.8626 7.5955

80.0 9.1150 10.7460 9.4733 7.8003 6.9229 6.4940

85.0 5.8386 6.6643 5.8922 5.0492 5.2447 4.2496

88.0 7.5967 5.9899 5.5013 4.5757 3.6865 3.8332
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Table 6a.  Measured in-phase component of axial-force coefficient.  Pitch-axis oscillations.

Component α , deg k = 0 . 0 2 0 1 k = 0 . 0 3 2 2 k = 0 . 0 4 8 3 k = 0 . 0 6 4 3 k = 0 . 0 8 0 4 k = 0 . 0 9 5 7

0.0 -0.2795 -0.2746 -0.2849 -0.2762 -0.2862 -0.2848

10.0 -0.5876 -0.5936 -0.5937 -0.5980 -0.5970 -0.6121

15.0 -0.6041 -0.5968 -0.6055 -0.6011 -0.6067 -0.6092

20.0 -0.5488 -0.5526 -0.5593 -0.5639 -0.5665 -0.5711

25.0 -0.3228 -0.3394 -0.3539 -0.3729 -0.3914 -0.4197

27.5 -0.1274 -0.1595 -0.2051 -0.2429 -0.2852 -0.3264

30.0 0.0014 -0.0398 -0.0922 -0.1672 -0.2316 -0.2701

32.5 0.0498 0.0074 -0.0593 -0.1195 -0.1711 -0.2281

35.0 0.0072 -0.0269 -0.0701 -0.1169 -0.1628 -0.1949

37.5 0.0304 0.0021 -0.0546 -0.0919 -0.1206 -0.1402

40.0 0.0668 0.0258 -0.0202 -0.0506 -0.0877 -0.1177

CAα
42.5 0.0644 0.0223 -0.0284 -0.0735 -0.1076 -0.1487

45.0 -0.0019 -0.0381 -0.0938 -0.1492 -0.1914 -0.2346

47.5 -0.0682 -0.0985 -0.1592 -0.2249 -0.2751 -0.3205

50.0 -0.1617 -0.1839 -0.2166 -0.2739 -0.2945 -0.3143

55.0 -0.2576 -0.2957 -0.3348 -0.3761 -0.4129 -0.4089

60.0 -0.1808 -0.2437 -0.3071 -0.3972 -0.4028 -0.4289

65.0 -0.0745 -0.1645 -0.1965 -0.3171 -0.3077 -0.3165

70.0 -0.0336 -0.0724 -0.1309 -0.1820 -0.2308 -0.2731

75.0 -0.0377 -0.0660 -0.1169 -0.1708 -0.2095 -0.2248

80.0 -0.1320 -0.1487 -0.1878 -0.2056 -0.2217 -0.2473

85.0 -0.1280 -0.1429 -0.1456 -0.1519 -0.1644 -0.1893

88.0 -0.0984 -0.1155 -0.1057 -0.1137 -0.1138 -0.1145
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Table 6b.  Measured out-of-phase component of axial-force coefficient.  Pitch-axis
oscillations.

Component α , deg k = 0 . 0 2 0 1 k = 0 . 0 3 2 2 k = 0 . 0 4 8 3 k = 0 . 0 6 4 3 k = 0 . 0 8 0 4 k = 0 . 0 9 5 7

0.0 -0.9875 -0.9834 -0.8656 -0.7448 -0.7206 -0.6713

10.0 -0.4132 -0.5735 -0.5488 -0.6012 -0.5803 -0.5987

15.0 -0.6099 -0.5959 -0.5128 -0.5913 -0.5528 -0.5624

20.0 -0.8181 -0.9397 -0.7487 -0.6911 -0.6851 -0.6618

25.0 -2.6108 -2.3402 -2.3286 -2.0070 -1.8101 -1.6532

27.5 -5.3939 -4.6436 -4.0475 -3.4463 -3.0479 -2.5955

30.0 -6.8789 -6.3442 -5.3223 -4.3288 -3.6972 -3.1630

32.5 -7.1502 -6.4088 -5.2353 -4.4113 -3.4749 -2.8161

35.0 -5.4894 -4.6579 -3.6305 -2.9303 -2.5670 -2.1387

37.5 -4.7378 -4.1495 -3.2195 -2.6751 -2.1803 -1.8402

40.0 -5.3772 -4.7622 -3.6626 -2.9736 -2.4837 -2.1142

CAq
42.5 -5.6872 -4.9292 -3.9794 -3.0719 -2.5298 -2.1806

45.0 -5.5565 -4.7180 -3.9154 -2.8889 -2.3280 -1.8982

47.5 -5.4259 -4.5068 -3.8513 -2.7060 -2.1261 -1.6159

50.0 -2.9475 -2.6133 -2.1813 -1.6834 -1.4784 -1.2031

55.0 -2.9148 -2.1853 -1.3904 -0.6488 -0.3670 -0.3806

60.0 -4.8699 -3.8305 -2.6422 -1.5768 -1.1129 -0.6621

65.0 -4.8362 -4.4163 -3.2913 -2.1396 -1.7411 -1.2413

70.0 -4.5385 -3.4046 -2.7931 -2.1076 -1.5282 -1.2472

75.0 -3.4333 -3.3004 -2.4056 -1.8296 -1.5997 -1.3912

80.0 -1.5134 -1.5978 -1.3987 -0.8530 -0.7322 -0.5955

85.0 -0.4405 -0.5961 -0.6032 -0.5116 -0.4688 -0.4299

88.0 -0.8655 -0.8608 -0.8479 -0.6208 -0.6558 -0.6157
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Table 7a.  Measured in-phase component of pitching-moment coefficient.  Pitch-axis
oscillations.

Component α , deg k = 0 . 0 2 0 1 k = 0 . 0 3 2 2 k = 0 . 0 4 8 3 k = 0 . 0 6 4 3 k = 0 . 0 8 0 4 k = 0 . 0 9 5 7

0.0 -0.0805 -0.0712 -0.0743 -0.0836 -0.0468 -0.0661

10.0 -0.0105 -0.0190 -0.0086 -0.0151 0.0222 -0.0026

15.0 0.1116 0.1101 0.1077 0.1047 0.1381 0.1116

20.0 0.2564 0.2455 0.2363 0.2345 0.2633 0.2399

25.0 0.2046 0.2078 0.1921 0.1763 0.1932 0.1593

27.5 0.1063 0.1095 0.0929 0.0736 0.0903 0.0637

30.0 0.0521 0.0598 0.0353 0.0092 0.0283 -0.0164

32.5 0.0827 0.0797 0.0688 0.0332 0.0432 -0.0015

35.0 0.1043 0.0889 0.0579 0.0189 0.0149 -0.0432

37.5 0.0938 0.0661 0.0321 -0.0235 -0.0319 -0.0735

40.0 0.0698 0.0492 -0.0021 -0.0506 -0.0490 -0.1055

Cmα
42.5 0.0662 0.0310 -0.0291 -0.0974 -0.0982 -0.1714

45.0 -0.0199 -0.0476 -0.1063 -0.1537 -0.1607 -0.2117

47.5 -0.1060 -0.1261 -0.1835 -0.2099 -0.2233 -0.2521

50.0 -0.0546 -0.0808 -0.1308 -0.1590 -0.1887 -0.2153

55.0 0.0846 0.0361 -0.0445 -0.0951 -0.1289 -0.1585

60.0 0.0098 -0.0476 -0.1042 -0.1613 -0.1985 -0.2229

65.0 -0.1508 -0.1814 -0.2210 -0.2589 -0.2937 -0.3072

70.0 -0.3168 -0.3213 -0.3448 -0.3603 -0.3490 -0.3590

75.0 -0.3905 -0.3987 -0.4062 -0.4004 -0.3851 -0.3655

80.0 -0.3371 -0.3135 -0.3358 -0.3431 -0.3509 -0.3650

85.0 -0.3841 -0.3929 -0.3932 -0.4122 -0.4148 -0.3996

88.0 -0.4106 -0.4162 -0.4315 -0.4420 -0.4575 -0.4395
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Table 7b.  Measured out-of-phase component of pitching-moment coefficient.  Pitch-axis
oscillations.

Component α , deg k = 0 . 0 2 0 1 k = 0 . 0 3 2 2 k = 0 . 0 4 8 3 k = 0 . 0 6 4 3 k = 0 . 0 8 0 4 k = 0 . 0 9 5 7

0.0 -1.3311 -1.3257 -1.2309 -1.3829 -1.3414 -1.3496

10.0 -1.4057 -1.3000 -1.4350 -1.3010 -1.3959 -1.4256

15.0 -2.2334 -1.9633 -1.8958 -1.8188 -1.8282 -1.8942

20.0 -2.6677 -2.6009 -2.6323 -2.5487 -2.5324 -2.4871

25.0 -3.4637 -3.1751 -3.0431 -2.9947 -2.8638 -2.8015

27.5 -2.7033 -2.7150 -2.8446 -2.7941 -2.7511 -2.7952

30.0 -3.4375 -3.5230 -3.2897 -3.1202 -2.8808 -2.8039

32.5 -4.3033 -4.0930 -4.2917 -3.7993 -3.8028 -3.6685

35.0 -5.3307 -5.0833 -4.7723 -4.3824 -4.1151 -3.9903

37.5 -6.3114 -5.6738 -4.8771 -4.3377 -3.9514 -3.7483

40.0 -6.6859 -6.1380 -5.3756 -5.0104 -4.5129 -4.0015

Cmq
42.5 -6.8577 -6.4663 -5.7257 -4.9542 -4.3354 -3.9234

45.0 -6.3878 -5.8314 -4.9620 -4.3785 -3.9751 -3.5760

47.5 -5.9178 -5.1965 -4.1984 -3.8029 -3.6149 -3.2286

50.0 -6.0593 -5.7958 -5.0830 -4.3470 -3.9861 -3.6628

55.0 -9.2338 -8.0336 -6.9525 -5.9864 -5.2790 -4.8483

60.0 -9.4763 -7.5477 -6.2749 -5.2536 -4.6959 -4.1613

65.0 -6.4440 -5.5953 -5.0093 -3.9720 -3.7720 -3.3335

70.0 -4.3785 -3.9715 -3.1556 -2.9936 -2.6346 -2.6024

75.0 -1.8598 -2.1815 -1.9029 -2.0292 -2.0935 -2.0749

80.0 -2.3493 -3.2793 -2.9855 -2.9844 -2.9938 -3.1111

85.0 -2.4780 -2.7302 -2.8948 -2.6485 -2.7628 -2.5395

88.0 -3.5091 -2.6139 -2.7245 -2.4417 -2.2283 -2.2611
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Table 8a.  Measured in-phase component of rolling-moment coefficient.  Roll-axis
oscillations.

Component α , deg k = 0 . 0 3 7 1 k = 0 . 0 5 9 3 k = 0 . 0 8 9 0 k = 0 . 1 1 8 6 k = 0 . 1 4 8 3 k = 0 . 1 7 7 9

0.0 -0.0003 0.0111 0.0005 -0.0020 0.0045 0.0009

10.0 0.0094 0.0100 -0.0020 0.0023 -0.0020 -0.0074

15.0 -0.0096 -0.0082 -0.0163 -0.0103 -0.0131 -0.0203

20.0 -0.0275 -0.0242 -0.0273 -0.0293 -0.0300 -0.0329

25.0 -0.0682 -0.0545 -0.0594 -0.0590 -0.0454 -0.0493

27.5 -0.0272 -0.0237 -0.0276 -0.0208 -0.0189 -0.0129

30.0 -0.0567 -0.0461 -0.0542 -0.0431 -0.0373 -0.0351

32.5 -0.1485 -0.1118 -0.0981 -0.0705 -0.0703 -0.0740

35.0 -0.1899 -0.1756 -0.1647 -0.1343 -0.1257 -0.1129

37.5 -0.2003 -0.1724 -0.1578 -0.1350 -0.1132 -0.1024

Clβ
40.0 -0.1722 -0.1634 -0.1431 -0.1235 -0.1123 -0.0937

42.5 -0.1005 -0.1022 -0.1149 -0.1178 -0.1140 -0.1102

45.0 -0.0895 -0.0819 -0.0865 -0.0811 -0.0863 -0.0828

47.5 -0.0761 -0.0695 -0.0806 -0.0726 -0.0651 -0.0703

50.0 -0.0692 -0.0609 -0.0622 -0.0664 -0.0577 -0.0559

55.0 -0.0742 -0.0760 -0.0669 -0.0750 -0.0688 -0.0613

60.0 -0.0858 -0.0697 -0.0751 -0.0771 -0.0791 -0.0758

65.0 -0.0725 -0.0679 -0.0801 -0.0801 -0.0823 -0.0794

70.0 -0.0810 -0.0742 -0.0851 -0.0733 -0.0828 -0.0844

80.0 -0.0978 -0.0918 -0.0965 -0.0954 -0.0928 -0.0887

90.0 -0.1030 -0.1002 -0.1070 -0.1055 -0.1046 -0.1093
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Table 8b.  Measured out-of-phase component of rolling-moment coefficient.  Roll-axis
oscillations.

Component α , deg k = 0 . 0 3 7 1 k = 0 . 0 5 9 3 k = 0 . 0 8 9 0 k = 0 . 1 1 8 6 k = 0 . 1 4 8 3 k = 0 . 1 7 7 9

0.0 -0.1783 -0.1344 -0.2939 -0.2711 -0.2319 -0.2205

10.0 -0.3405 -0.1882 -0.3277 -0.3053 -0.2755 -0.2416

15.0 -0.3075 -0.1498 -0.1880 -0.2643 -0.2049 -0.2347

20.0 -0.0190 -0.1332 -0.2368 -0.1913 -0.2164 -0.2177

25.0 0.0211 0.0145 -0.0650 -0.1395 -0.0997 -0.0959

27.5 -0.0336 0.0850 -0.0506 -0.1414 -0.1461 -0.1817

30.0 0.3584 0.2553 0.0670 0.0264 -0.0250 -0.0907

32.5 1.3111 0.8771 0.6045 0.4370 0.2905 0.1561

35.0 1.0869 1.0373 0.7485 0.6641 0.5410 0.4028

37.5 1.4454 1.3413 0.9794 0.7022 0.5476 0.4890

Clp
40.0 1.2772 0.9859 0.8215 0.5501 0.4889 0.4715

42.5 -0.2458 -0.0548 0.0232 0.1746 0.2380 0.2241

45.0 0.0829 0.1436 0.0532 0.0938 0.1147 0.1494

47.5 0.2477 0.1610 0.1182 0.1300 0.1131 0.0907

50.0 0.1679 0.0852 0.0199 0.0610 0.0372 -0.0546

55.0 0.0468 0.0183 -0.1580 0.0532 0.0404 0.0035

60.0 0.0981 0.1520 -0.0294 0.0468 -0.0940 -0.0377

65.0 -0.0260 -0.1666 -0.0587 -0.1005 -0.1703 -0.1021

70.0 -0.0542 -0.0051 -0.0881 -0.0987 -0.0981 -0.1070

80.0 -0.0179 0.0308 0.0809 -0.1409 -0.1250 -0.1156

90.0 -0.1670 -0.0884 -0.1284 -0.1718 -0.0578 -0.0660
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Table 9a.  Measured in-phase component of yawing-moment coefficient.  Roll-axis
oscillations.

Component α , deg k = 0 . 0 3 7 1 k = 0 . 0 5 9 3 k = 0 . 0 8 9 0 k = 0 . 1 1 8 6 k = 0 . 1 4 8 3 k = 0 . 1 7 7 9

0.0 0.0028 0.0034 0.0022 0.0014 0.0010 0.0007

10.0 0.0300 0.0303 0.0256 0.0331 0.0306 0.0217

15.0 0.0254 0.0238 0.0210 0.0285 0.0245 0.0213

20.0 -0.0012 -0.0004 0.0040 -0.0024 -0.0048 -0.0010

25.0 -0.0156 -0.0155 -0.0212 -0.0124 -0.0180 -0.0228

27.5 -0.0388 -0.0472 -0.0535 -0.0485 -0.0476 -0.0438

30.0 -0.0170 -0.0322 -0.0476 -0.0607 -0.0486 -0.0362

32.5 0.0529 0.0349 0.0031 -0.0110 -0.0095 0.0091

35.0 0.1027 0.0883 0.0784 0.0614 0.0574 0.0543

37.5 0.1235 0.1120 0.0814 0.0612 0.0567 0.0453

Cnβ
40.0 0.1552 0.1402 0.1359 0.0908 0.0864 0.0593

42.5 0.1226 0.1266 0.1284 0.1270 0.1052 0.1191

45.0 0.0852 0.0876 0.0807 0.0763 0.0779 0.0672

47.5 0.0591 0.0607 0.0586 0.0405 0.0429 0.0480

50.0 0.0832 0.0819 0.0700 0.0675 0.0786 0.0794

55.0 0.1511 0.1587 0.1420 0.1432 0.1362 0.1262

60.0 0.1885 0.1866 0.1826 0.1704 0.1811 0.1491

65.0 0.0429 0.0553 -0.0262 0.0477 0.1198 0.0003

70.0 -0.2327 -0.2326 -0.2350 -0.2393 -0.2377 -0.2256

80.0 -0.2377 -0.2342 -0.2224 -0.2253 -0.1962 -0.2217

90.0 -0.0760 -0.0610 -0.0623 -0.0711 -0.0687 -0.0539



46

Table 9b.  Measured out-of-phase component of yawing-moment coefficient.  Roll-axis
oscillations.

Component α , deg k = 0 . 0 3 7 1 k = 0 . 0 5 9 3 k = 0 . 0 8 9 0 k = 0 . 1 1 8 6 k = 0 . 1 4 8 3 k = 0 . 1 7 7 9

0.0 0.0383 0.0699 0.0260 0.0082 0.0179 0.0056

10.0 -0.0698 -0.0034 -0.0079 -0.0087 -0.0098 0.0073

15.0 -0.0523 -0.0352 -0.1034 -0.0653 -0.0497 -0.0691

20.0 -0.0522 -0.0493 -0.0754 -0.0116 -0.0597 -0.0719

25.0 -0.2142 0.0117 -0.0492 -0.0324 -0.0089 0.0049

27.5 -0.0014 -0.0975 -0.0676 0.0012 -0.0429 0.0222

30.0 -0.4294 -0.3884 -0.1247 -0.0572 -0.0575 -0.0044

32.5 -1.2851 -0.8479 -0.6237 -0.4568 -0.2925 -0.2671

35.0 -1.0604 -0.8571 -0.7261 -0.6674 -0.5516 -0.5299

37.5 -1.4513 -1.4141 -1.0624 -0.9252 -0.7200 -0.6794

Cnp
40.0 -2.0667 -1.6895 -1.4713 -1.1341 -1.0936 -0.9697

42.5 0.2998 -0.0644 -0.3285 -0.4958 -0.8048 -0.6602

45.0 -0.9418 -0.5928 -0.6890 -0.7208 -0.7447 -0.6437

47.5 -0.4427 -0.6524 -0.5456 -0.4521 -0.4571 -0.4236

50.0 -0.2813 -0.5183 -0.4425 -0.4725 -0.4357 -0.4101

55.0 -0.7189 -0.8262 -0.7097 -0.8586 -0.7045 -0.7565

60.0 -1.2318 -1.2808 -1.2629 -1.0405 -0.7069 -0.8855

65.0 -0.6309 -0.8584 -0.6628 -0.8312 -0.5580 -0.7496

70.0 -0.0168 -0.0628 -0.0628 -0.0362 -0.1187 -0.0365

80.0 0.1713 0.3604 0.0200 0.2448 0.1940 0.1797

90.0 -0.0734 -0.1218 -0.0325 -0.0953 0.0737 0.2000
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Table 10a.  Measured in-phase component of side-force coefficient.  Roll-axis oscillations.

Component α , deg k = 0 . 0 3 7 1 k = 0 . 0 5 9 3 k = 0 . 0 8 9 0 k = 0 . 1 1 8 6 k = 0 . 1 4 8 3 k = 0 . 1 7 7 9

0.0 -0.0277 0.0014 0.0242 0.0027 -0.0149 -0.0164

10.0 -0.2574 -0.2595 -0.2254 -0.2514 -0.2355 -0.2049

15.0 -0.2988 -0.2785 -0.3038 -0.3120 -0.2887 -0.3063

20.0 -0.3285 -0.3283 -0.3277 -0.3131 -0.3165 -0.3299

25.0 -0.4019 -0.3663 -0.3802 -0.3819 -0.3908 -0.3745

27.5 -0.4285 -0.3977 -0.3946 -0.3952 -0.4189 -0.4065

30.0 -0.3945 -0.3909 -0.3821 -0.3809 -0.4072 -0.4200

32.5 -0.2217 -0.2489 -0.2656 -0.2817 -0.3092 -0.3450

35.0 -0.1525 -0.1540 -0.1803 -0.2387 -0.2651 -0.2700

37.5 -0.0308 -0.0653 -0.1377 -0.1743 -0.2318 -0.2494

CYβ
40.0 -0.0420 -0.0728 -0.1366 -0.1720 -0.2098 -0.2480

42.5 -0.2023 -0.1681 -0.1466 -0.1320 -0.1144 -0.1184

45.0 -0.0072 -0.0226 0.0290 0.0367 0.0522 0.1221

47.5 0.2368 0.2445 0.2914 0.3295 0.3378 0.3236

50.0 0.4275 0.4521 0.4640 0.4584 0.4287 0.5053

55.0 0.1839 0.2256 0.1881 0.3133 0.3044 0.3310

60.0 0.2909 0.3691 0.4116 0.4608 0.4038 0.5307

65.0 0.2953 0.3584 0.2844 0.4873 0.4188 0.5164

70.0 0.1061 0.1440 0.1572 0.1770 0.1506 0.1372

80.0 0.1232 0.1094 0.1039 0.0593 0.0213 0.0556

90.0 0.0586 0.0404 0.0418 0.0140 -0.0198 -0.0046
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Table 10b.  Measured out-of-phase component of side-force coefficient.  Roll-axis
oscillations.

Component α , deg k = 0 . 0 3 7 1 k = 0 . 0 5 9 3 k = 0 . 0 8 9 0 k = 0 . 1 1 8 6 k = 0 . 1 4 8 3 k = 0 . 1 7 7 9

0.0 0.2293 -0.3053 0.0658 0.0759 0.1364 0.1447

10.0 0.1480 0.1000 0.2558 0.0677 0.2342 0.1866

15.0 0.4670 0.2649 0.4995 0.2518 0.2951 0.2616

20.0 0.5192 0.0985 0.1672 0.1182 0.1526 0.1761

25.0 0.1770 -0.1940 -0.0282 -0.0974 -0.0810 -0.0212

27.5 0.1599 0.2469 0.2740 0.0501 0.1228 0.0408

30.0 -0.5858 -0.1358 -0.2439 -0.1524 -0.0638 -0.1919

32.5 -1.0657 -1.3661 -0.9983 -0.7950 -0.6163 -0.4033

35.0 -1.5901 -1.0848 -1.2104 -0.9084 -0.7216 -0.6148

37.5 -2.4393 -2.4381 -2.0775 -1.5656 -1.1642 -0.8205

CYp
40.0 -2.3031 -1.9522 -2.0344 -1.3683 -0.8929 -0.7866

42.5 0.5250 0.5444 0.3402 -0.1301 -0.0809 -0.0744

45.0 1.4551 0.9332 0.6810 0.4220 0.3758 -0.0086

47.5 -0.2069 0.3485 0.0101 -0.8433 -0.4764 -0.5636

50.0 -0.6460 -0.0776 -1.2388 -1.2086 -1.4195 -1.0678

55.0 1.1938 0.7093 0.4900 0.0150 -0.0336 0.0604

60.0 0.7729 0.8654 0.2764 0.1047 -0.1630 -0.4845

65.0 0.6884 1.2056 0.0519 -0.1131 -1.3147 -0.6338

70.0 0.0819 -0.1974 -0.1726 -0.0998 -0.0748 -0.3628

80.0 -0.7640 -1.4649 -1.1196 -1.2360 -0.9720 -1.0373

90.0 -0.1028 -1.0847 -0.9980 -0.6591 -1.6847 -2.0007
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Table 11a.  Measured in-phase component of rolling-moment coefficient.  Yaw-axis
oscillations.

Component α , deg k = 0 . 0 3 7 1 k = 0 . 0 5 9 3 k = 0 . 0 8 9 0 k = 0 . 1 1 8 6 k = 0 . 1 4 8 3 k = 0 . 1 7 7 9

0.0 0.0557 0.0571 0.0594 0.0542 0.0559 0.0527

10.0 -0.0188 -0.0223 -0.0217 -0.0209 -0.0197 -0.0288

15.0 -0.0967 -0.0993 -0.1069 -0.1036 -0.1070 -0.1083

20.0 -0.1024 -0.1039 -0.1021 -0.1063 -0.1110 -0.1122

25.0 -0.1283 -0.1293 -0.1299 -0.1365 -0.1393 -0.1480

27.5 -0.1381 -0.1383 -0.1266 -0.1299 -0.1255 -0.1230

30.0 -0.1614 -0.1310 -0.1072 -0.1049 -0.0957 -0.0942

32.5 -0.1975 -0.1746 -0.1559 -0.1281 -0.1211 -0.1195

35.0 -0.2748 -0.2586 -0.2381 -0.2196 -0.1992 -0.1789

37.5 -0.2872 -0.2662 -0.2476 -0.2039 -0.1901 -0.1832

40.0 -0.2696 -0.2743 -0.2355 -0.2185 -0.1939 -0.1882

Clβ
42.5 -0.1459 -0.1656 -0.1764 -0.1707 -0.1744 -0.1535

45.0 -0.1222 -0.1296 -0.1318 -0.1336 -0.1343 -0.1215

47.5 -0.0931 -0.1001 -0.1004 -0.1114 -0.1066 -0.1023

50.0 -0.0795 -0.0850 -0.0888 -0.0849 -0.0889 -0.0894

55.0 -0.0489 -0.0489 -0.0485 -0.0561 -0.0557 -0.0542

60.0 -0.0517 -0.0483 -0.0473 -0.0533 -0.0457 -0.0450

65.0 -0.0408 -0.0409 -0.0366 -0.0390 -0.0371 -0.0372

70.0 -0.0276 -0.0284 -0.0291 -0.0329 -0.0302 -0.0351

75.0 -0.0238 -0.0239 -0.0239 -0.0254 -0.0244 -0.0253

80.0 -0.0170 -0.0178 -0.0183 -0.0169 -0.0118 -0.0120

85.0 -0.0145 -0.0118 -0.0129 -0.0101 -0.0121 -0.0151

90.0 -0.0051 -0.0074 -0.0009 -0.0007 0.0017 -0.0028
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Table 11b.  Measured out-of-phase component of rolling-moment coefficient.  Yaw-axis
oscillations.

Component α , deg k = 0 . 0 3 7 1 k = 0 . 0 5 9 3 k = 0 . 0 8 9 0 k = 0 . 1 1 8 6 k = 0 . 1 4 8 3 k = 0 . 1 7 7 9

0.0 0.1038 0.0528 0.1009 0.1529 0.1248 0.0929

10.0 0.2514 0.2463 0.2284 0.1923 0.2267 0.2573

15.0 0.2275 0.1868 0.1560 0.1997 0.2096 0.2040

20.0 0.2844 0.3813 0.3296 0.3901 0.3739 0.3842

25.0 0.2547 0.2512 0.3751 0.3634 0.4274 0.3910

27.5 0.0975 0.1210 0.2094 0.3197 0.3235 0.4137

30.0 -1.2594 -0.7124 -0.1764 0.0339 0.2694 0.3344

32.5 -1.1117 -0.9104 -0.3248 -0.1709 0.0107 0.2229

35.0 -1.5339 -1.0524 -0.6853 -0.5322 -0.4036 -0.2989

37.5 -1.2108 -1.2361 -0.9612 -0.6479 -0.4567 -0.2928

40.0 -1.2149 -0.9945 -0.6646 -0.5499 -0.4130 -0.3221

Clr
42.5 0.5155 0.1485 -0.0047 -0.1399 -0.2439 -0.2865

45.0 0.3472 0.1234 0.0197 -0.0711 -0.1014 -0.1212

47.5 0.0197 0.0755 0.0321 0.0135 -0.0084 -0.0374

50.0 0.2216 0.2434 0.1267 0.1154 0.0560 0.0740

55.0 0.0790 0.0676 0.2428 0.1899 0.1855 0.1428

60.0 -0.0412 -0.0102 0.0441 0.0187 0.1092 0.0885

65.0 0.0079 0.0378 0.0154 0.0197 0.0518 0.0351

70.0 0.0555 0.0680 0.0803 0.0762 0.0764 0.0344

75.0 0.0791 0.0449 0.0248 0.0230 0.0280 0.0393

80.0 0.0677 0.0703 0.1038 0.0495 0.0421 0.0570

85.0 0.0988 -0.0173 0.1675 0.0948 0.1335 0.0996

90.0 0.1090 0.0351 0.0469 0.0407 0.0691 0.0613



51

Table 12a.  Measured in-phase component of yawing-moment coefficient.  Yaw-axis
oscillations.

Component α , deg k = 0 . 0 3 7 1 k = 0 . 0 5 9 3 k = 0 . 0 8 9 0 k = 0 . 1 1 8 6 k = 0 . 1 4 8 3 k = 0 . 1 7 7 9

0.0 0.0686 0.0756 0.0784 0.0817 0.0774 0.0971

10.0 0.0957 0.0985 0.0997 0.1083 0.1059 0.1164

15.0 0.0886 0.0928 0.0889 0.0991 0.0905 0.1104

20.0 -0.0169 -0.0073 -0.0107 0.0015 -0.0033 0.0042

25.0 -0.0738 -0.0685 -0.0575 -0.0611 -0.0404 -0.0295

27.5 -0.0643 -0.0598 -0.0628 -0.0468 -0.0499 -0.0308

30.0 -0.0379 -0.0682 -0.0789 -0.0901 -0.1089 -0.0932

32.5 0.0485 0.0189 0.0026 -0.0286 -0.0604 -0.0455

35.0 0.0955 0.0856 0.0575 0.0444 0.0217 0.0066

37.5 0.0990 0.0842 0.0586 0.0166 -0.0197 -0.0247

40.0 0.1347 0.1083 0.0900 0.0434 -0.0055 -0.0281

Cnβ
42.5 0.1912 0.1802 0.1593 0.1347 0.0830 0.0428

45.0 0.1262 0.1147 0.1032 0.2488 0.0597 0.0345

47.5 0.0289 0.0064 0.0053 0.3196 -0.0165 -0.0299

50.0 -0.0105 -0.0251 -0.0300 0.2350 -0.0514 -0.0336

55.0 0.0064 0.0134 -0.0315 0.3081 -0.0133 0.0038

60.0 0.0819 0.0871 0.0514 0.3763 0.0429 0.0262

65.0 0.1167 0.0966 0.0823 0.4008 0.0639 0.0218

70.0 -0.0631 -0.0562 -0.0592 0.2592 -0.0480 -0.0618

75.0 -0.0833 -0.0851 -0.0831 0.2314 -0.0938 -0.0851

80.0 -0.0524 -0.0446 -0.0617 0.2434 -0.0511 -0.0646

85.0 -0.0260 -0.0398 -0.0385 0.2685 -0.0341 -0.0523

90.0 0.0067 0.0074 -0.0002 0.3093 -0.0030 0.0084
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Table 12b.  Measured out-of-phase component of yawing-moment coefficient.  Yaw-axis
oscillations.

Component α , deg k = 0 . 0 3 7 1 k = 0 . 0 5 9 3 k = 0 . 0 8 9 0 k = 0 . 1 1 8 6 k = 0 . 1 4 8 3 k = 0 . 1 7 7 9

0.0 -0.7696 -0.7513 -0.7474 -0.7478 -0.7580 -0.7660

10.0 -0.7809 -0.7005 -0.7527 -0.7954 -0.7711 -0.7930

15.0 -0.6904 -0.6840 -0.7701 -0.7778 -0.7800 -0.7777

20.0 -1.0426 -0.8424 -0.9537 -0.9033 -0.9300 -0.9629

25.0 -1.2447 -1.0885 -1.1340 -1.1171 -1.1045 -1.1303

27.5 -1.0309 -1.0051 -1.1080 -1.0507 -1.0791 -1.1582

30.0 0.7704 0.2054 -0.2155 -0.4894 -0.7030 -0.8039

32.5 1.0242 0.7483 0.2443 -0.1156 -0.2741 -0.4265

35.0 0.7701 0.6548 0.3935 0.2732 0.1909 0.1025

37.5 1.2423 1.1722 1.0214 0.7486 0.6235 0.4700

40.0 2.1476 1.7036 1.7573 1.3286 1.0983 0.9858

Cnr
42.5 1.5566 1.7716 1.3620 1.3903 1.5296 1.3853

45.0 0.6779 0.8042 1.0254 1.1466 0.9245 1.0105

47.5 0.3047 0.5082 0.6091 0.7292 0.5482 0.4807

50.0 0.7284 0.5022 0.4884 0.2342 0.4258 0.6051

55.0 0.7536 0.4378 0.5457 0.6687 0.7144 0.8218

60.0 0.9760 0.8150 0.8129 0.6892 0.8533 0.7957

65.0 1.6615 1.3927 1.3356 1.2085 1.0574 1.2092

70.0 -0.2518 -0.3184 -0.3248 -0.1049 -0.1343 -0.1290

75.0 -0.2207 -0.3465 -0.3335 -0.1851 -0.3241 -0.3004

80.0 -0.3594 -0.3025 -0.2203 -0.0807 -0.1698 -0.3343

85.0 -0.4654 -0.4997 -0.1424 -0.0324 -0.1964 -0.2423

90.0 -0.0649 -0.1229 -0.2202 -0.2131 -0.2903 -0.2440
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Table 13a.  Measured in-phase component of side-force coefficient.  Yaw-axis oscillations.

Component α , deg k = 0 . 0 3 7 1 k = 0 . 0 5 9 3 k = 0 . 0 8 9 0 k = 0 . 1 1 8 6 k = 0 . 1 4 8 3 k = 0 . 1 7 7 9

0.0 -1.2071 -1.2006 -1.2296 -1.2580 -1.2756 -1.2894

10.0 -1.3089 -1.3130 -1.3061 -1.3237 -1.3518 -1.3503

15.0 -1.1909 -1.2256 -1.2072 -1.2298 -1.2244 -1.2622

20.0 -0.9923 -1.0209 -1.0236 -1.0474 -1.0626 -1.0953

25.0 -0.8815 -0.8780 -0.8983 -0.9354 -0.9445 -0.9943

27.5 -0.8716 -0.8775 -0.8916 -0.9543 -0.9531 -0.9940

30.0 -0.6809 -0.7087 -0.7173 -0.7513 -0.7532 -0.7956

32.5 -0.3937 -0.4307 -0.5104 -0.5390 -0.5669 -0.6307

35.0 -0.1842 -0.2331 -0.2939 -0.3454 -0.3863 -0.4094

37.5 -0.0391 -0.0744 -0.1464 -0.2134 -0.2477 -0.3028

40.0 0.0200 -0.0036 -0.0931 -0.1306 -0.1547 -0.1717

CYβ
42.5 -0.2125 -0.1577 -0.1056 -0.0863 -0.0450 -0.0397

45.0 -0.1393 -0.0936 -0.0327 0.0083 0.0725 0.1223

47.5 0.0566 0.1150 0.1580 0.1699 0.2397 0.2796

50.0 0.3130 0.3583 0.4227 0.4224 0.4653 0.4970

55.0 0.0758 0.1087 0.2009 0.2052 0.2929 0.3268

60.0 0.1056 0.1425 0.1678 0.1499 0.2317 0.3734

65.0 0.1375 0.1685 0.2647 0.2849 0.3155 0.3322

70.0 0.0416 0.0459 0.0674 0.0611 0.1194 0.1632

75.0 0.0255 0.0558 0.0332 -0.0046 0.0428 0.0029

80.0 0.0457 0.0205 0.0571 0.0339 0.0301 0.0449

85.0 0.0368 0.0733 0.0894 0.0675 0.1224 0.1106

90.0 0.0393 0.0338 0.0497 0.0021 0.0308 0.0502
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Table 13b.  Measured out-of-phase component of side-force coefficient.  Yaw-axis
oscillations.

Component α , deg k = 0 . 0 3 7 1 k = 0 . 0 5 9 3 k = 0 . 0 8 9 0 k = 0 . 1 1 8 6 k = 0 . 1 4 8 3 k = 0 . 1 7 7 9

0.0 0.7261 0.6392 0.8237 1.1890 1.3541 1.4379

10.0 1.0827 0.3108 0.8036 1.1440 1.1683 1.3027

15.0 0.8243 1.0339 1.0699 1.3983 1.3053 1.4407

20.0 0.9669 1.0009 1.4554 1.4873 1.5582 1.6336

25.0 1.4195 1.1909 1.9273 1.6202 1.9135 1.9351

27.5 1.3266 1.5696 1.7907 1.5701 1.5969 1.7379

30.0 1.9311 1.7005 1.9808 1.6946 1.8877 1.8956

32.5 3.6799 3.2349 2.9141 2.5638 2.1983 2.3083

35.0 3.7730 2.7103 2.6575 2.4252 2.1272 1.9476

37.5 3.3288 3.2430 2.9257 2.2714 1.8962 1.7730

40.0 2.3255 2.3049 1.9268 1.5337 1.1640 1.0708

CYr
42.5 -2.6066 -1.9045 -1.0118 -0.9485 -0.5004 -0.2662

45.0 -2.4425 -1.9047 -1.5228 -1.2635 -0.6128 -0.4561

47.5 -1.2037 -1.1548 -0.8032 -0.5239 -0.0885 0.2458

50.0 -1.4719 -0.7216 0.0742 0.5609 0.6286 0.4907

55.0 -1.7574 -1.5515 -1.6808 -1.6010 -1.2863 -0.9604

60.0 -1.5675 -1.8584 -1.6011 -0.8926 -1.2269 -0.8953

65.0 -1.9387 -1.5712 -0.8955 -0.1233 0.1583 0.3807

70.0 -0.5665 -0.3958 -0.5769 -0.6126 -0.6725 -0.0295

75.0 -0.4481 -0.2195 -0.1820 -0.3372 -0.1956 -0.4398

80.0 0.0507 -0.2337 -0.5623 -0.5267 -0.5402 -0.1111

85.0 -0.4420 0.5036 -0.7752 -0.6032 -0.6948 -0.4142

90.0 -0.7074 -0.5092 -0.0164 -0.1749 -0.4182 -0.1543
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Table 14.  Expressions for aerodynamic coefficients with unsteady terms.  Model I.
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Table 15.  Expressions for aerodynamic coefficients with unsteady terms.  Model II.
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Table 16a.  Comparison of model costs and variances.  Pitch-axis oscillations.

Measured s2
I s2

I I JI JII
Data

C CN Nqα , 0.1685 0.0447 26.955 6.1227

C Cm m qα , 0.0091 0.0029 1.4487 0.4298

C Ca a qα , 0.0054 0.0031 0.8564 0.3994

Table 16b.  Comparison of model costs and variances.  Roll-axis oscillations.

Measured s2
I s2

I I JI JII
Data

C Cy y pβ , 0.0282 0.0180 3.9242 2.1477

C Cn n pβ , 0.0033 0.0016 0.4561 0.1899

C Cl l pβ , 0.0012 0.0005 0.1619 0.0629

Table 16c.  Comparison of model costs and variances.  Yaw-axis oscillations.

Measured s2
I s2

I I JI JII
Data

C Cy y rβ , 0.0216 0.0129 3.3053 1.6480

C Cn n rβ , 0.0035 0.0012 0.3846 0.1070

C Cl l rβ , 0.0011 0.0003 0.1707 0.0379
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Table 17a.  Comparison of model prediction residuals.  Pitch-axis oscillations, k=0.0483.

Measured r2
I r 2

II
Data
Ca α

0.0050 0.0061

Ca q
0.4179 0.4488

CN α
0.0636 0.0656

CNq
6.5379 7.3098

Cmα
0.0030 0.0031

Cmq
0.6608 0.8721

Table 17b.  Comparison of model prediction residuals.  Roll-axis oscillations, k=0.089.

Measured r2
I r 2

II
Data
Cnβ

0.0079 0.0078

Cnp
0.1298 0.2046

Clβ
0.0008 0.0015

Clp
0.0969 0.1146

Cyβ
0.0204 0.0390

Cyp
0.6384 1.1930

Table 17c.  Comparison of model prediction residuals.  Yaw-axis oscillations, k=0.089.

Measured r2
I r 2

II
Data
Cnβ

0.0059 0.0046

Cnr
0.2999 0.5145

Clβ
0.0012 0.0010

Clr
0.1005 0.0942

Cyβ
0.0099 0.0095

Cyr
1.2003 1.4700
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Table 18.  Estimated model parameters.  Model I.

Measured Parameter
Data τ1

b1, sec- 1 T 1, sec

Pitching
C CN Nqα , 18.5 ± 0.46 4.22 ± 0.11 0.24 ± 0.01

C Cm mqα , 21.3 ± 0.81 3.67 ± 0.14 0.27 ± 0.01

C CA Aqα , 18.1 ± 0.42 4.33 ± 0.10 0.23 ± 0.01
Rolling

C CY Ypβ , 7.54 ± 1.13 5.62 ± 0.84 0.18 ± 0.03

C Cn n pβ , 13.7 ± 1.43 3.09 ± 0.32 0.32 ± 0.03

C Cl lpβ , 12.0 ± 0.80 3.54 ± 0.24 0.28 ± 0.02
Yawing

C CY Yrβ , 9.96 ± 0.98 4.25 ± 0.42 0.24 ± 0.02

C Cn nrβ , 12.7 ± 1.24 3.35 ± 0.33 0.30 ± 0.03

C Cl lrβ , 12.3 ± 0.55 3.46 ± 0.16 0.29 ± 0.01

Table 19.  Estimated model parameters.  Model II.

Measured Parameter
Data τ1

b1, sec- 1 T 1, sec

Pitching
C CN Nqα , 19.75 ± 0.58 3.96 ± 0.12 0.25 ± 0.01

C Cm mqα , 22.35 ± 0.96 3.50 ± 0.15 0.29 ± 0.01

C CA Aqα , 19.92 ± 0.84 3.92 ± 0.17 0.25 ± 0.01
Rolling

C CY Ypβ , 17.81 ± 1.73 2.38 ± 0.23 0.42 ± 0.04

C Cn n pβ , 15.25 ± 1.34 2.78 ± 0.24 0.36 ± 0.03

C Cl lpβ , 16.96 ± 1.11 2.50 ± 0.16 0.40 ± 0.03
Yawing

C CY Yrβ , 16.27 ± 1.38 2.60 ± 0.22 0.38 ± 0.03

C Cn nrβ , 10.61 ± 0.83 3.99 ± 0.31 0.25 ± 0.02

C Cl lrβ , 13.21 ± 0.52 3.21 ± 0.13 0.31 ± 0.01
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Table 20.  Minimum and maximum values of standard errors of estimated parameters.
Model I.

Measured
s(â) s C

xξ ∞( )( )*

Data min max min max
Pitching

Ca α
0.0073 0.0133 0.0329 0.0330

Ca q
0.0769 0.1122

CN α
0.0399 0.0765 0.1846 0.1849

CNq
0.4232 0.6461

Cmα
0.0079 0.0167 0.0428 0.0429

Cmq
0.0886 0.1478

Rolling
Cnβ

0.0075 0.0425 0.0260 0.1497

Cnp

0.0480 0.0695

Clβ
0.0050 0.0287 0.0155 0.0893

Clp
0.0309 0.0513

Cyβ
0.0454 0.2583 0.0778 0.4435

Cyp

0.2233 0.4501

Yawing
Cnβ

0.0085 0.1034 0.0300 0.3448

Cnr

0.0576 0.0903

Clβ
0.0048 0.0548 0.0152 0.1741

Clr

0.0298 0.0491

Cyβ
0.0287 0.3259 0.0670 0.7685

Cyr

0.1515 0.2406

*where ξx=Aα,Aq,Nα,Nq,mα,mq,nβ,np,lβ,lp,Yβ,Yp,nr,lr, or Yr
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Table 21.  Minimum and maximum values of standard errors of estimated parameters.
Model II.

Measured
s(â) s ĉ2( )x103

s C
xξ ∞( )( )*

Data min max min max min max
Pitching

Ca α
0.0078 0.0198 0.0257 0.0351 0.0252 0.0256

Ca q
0.0863 0.1523

CN α
0.0301 0.0776 0.0991 0.1749 0.0952 0.0956

CNq
0.3308 0.5903

Cmα
0.0055 0.0135 0.0188 0.0364 0.0243 0.0245

Cmq
0.0676 0.1106

Rolling
Cnβ

0.0051 0.0280 0.0582 0.3285 0.0186 0.1048

Cnp

0.0361 0.0586

Clβ
0.0029 0.0251 0.0293 0.1713 0.0106 0.0623

Clp

0.0187 0.0397

Cyβ
0.0188 0.1068 0.1699 0.9533 0.0625 0.3581

Cyp

0.1047 0.2027

Yawing
Cnβ

0.0095 0.1308 0.1000 1.4000 0.0178 0.2052

Cnr

0.0546 0.0965

Clβ
0.0026 0.0378 0.0307 0.3718 0.0077 0.0893

Clr

0.0184 0.0371

Cyβ
0.0141 0.4504 0.1000 1.9000 0.0526 0.6524

Cyr

0.0956 0.1420

*where ξx=Aα,Aq,Nα,Nq,mα,mq,nβ,np,lβ,lp,Yβ,Yp,nr,lr, or Yr
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Figure 2.  19%-scale X-31 model (with reduced vertical tail) mounted on forced-oscillation
test rig in the NASA Langley 30x60-Ft. wind tunnel.  (NASA L-94-08995)
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Figure 3.  Measured in-phase and out-of-phase components of normal-force coefficient.
Pitch oscillations.
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Figure 4.  Measured in-phase and out-of-phase components of axial-force coefficient.
Pitch oscillations.
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67

-0 .25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

k=0.0371
k=0.0593
k=0.1186
k=0.1779

Clβ

-0 .5

0.0

0.5

1.0

1.5

- 2 0 0 2 0 4 0 6 0 8 0 100

α  (deg)

Cl p
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Roll oscillations.
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Roll oscillations.
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Figure 15.  Measured rolling and yawing-moment coefficients from rotary-balance test.
(Ref. 8)



77

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

∆Ωb/2V=0.1
∆Ωb/2V=0.2
∆Ωb/2V=0.4
∆Ωb/2V=0.6
∆Ωb/2V=0.8

ClΩ

-0.5

-0.25

0

0.25

0.5

0 10 20 30 40 50 60 70 80
α  (deg)

CnΩ

Figure 16.  Rate derivatives estimated from rotary-balance test.



78

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 Measured:
k=0.0201
k=0.0322
k=0.0643
k=0.0957
Estimated:
k=0.0201
k=0.0322
k=0.0643
k=0.0957

C Nα

Model I

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

- 2 0 0 2 0 4 0 6 0 8 0 100
α  (deg)

C Nα

Model II

Figure 17.  Measured and estimated in-phase component of normal-force coefficient.  Pitch
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Figure 18.  Measured and estimated out-of-phase component of normal-force coefficient.
Pitch oscillations.
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Figure 19.  Measured and estimated in-phase component of rolling-moment coefficient.
Roll oscillations.
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Figure 20.  Measured and estimated out-of-phase component of rolling-moment coefficient.
Roll oscillations.
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Figure 21.  Measured and estimated in-phase component of yawing-moment coefficient.
Yaw oscillations.
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Figure 31.  Comparison of estimated "a" vectors from Models I and II.  Pitch oscillations.
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Figure 32.  Comparison of estimated "a" vectors from Models I and II.  Roll oscillations.
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Figure 33.  Comparison of estimated "a" vectors from Models I and II.  Yaw oscillations.
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Figure 34.  Estimated "c2" vectors from Model II.  Pitch oscillations.
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Figure 35.  Estimated "c2" vectors from Model II.  Roll oscillations.
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Figure 37.  Comparison of longitudinal stability parameters from static data with estimates
from Models I and II using pitch oscillation data.
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Models I and II using yaw oscillation data.
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Figure 41.  Comparison of lateral stability parameters estimated using roll and yaw axis
oscillation data.  Model II.
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Figure 42.  Estimated pitch rate stability derivatives.
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Figure 43.  Estimated roll rate stability derivatives.
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Figure 44.  Estimated yaw rate stability derivatives.
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Figure 47.  Comparison of estimated yaw rate derivatives with theoretical predictions.
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Figure 48.  Comparison of estimated roll rate derivatives with combined predictions.
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Figure 49.  Comparison of estimated yaw rate derivatives with combined predictions.
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