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Abstract

Several approaches are presented to identify an experimental system model directly from
frequency response data. The formulation begins with a matrix-fraction description as the
model structure. Frequency weighting such as exponential weighting is introduced to solve a
weighted least-squares problem to obtain the coefficient matrices for the matrix-fraction de-
scription. A multi-variable state-space model can then be formed using the coefficient matrices
of the matrix-fraction description. An approach is introduced to fine-tune the model using non-
linear programming methods to minimize the desired cost function. The method deals with
the model in the real Schur or modal form and reassigns a subset of system poles using a
nonlinear optimizer. At every optimization step, the input and output influence matrices are
refined through least-squares procedures. The proposed approaches are used to identify an
analytical model for a NASA testbed from experimental data.

1 Introduction
One major objective of system identification is to provide mathematical models for dynamics and
control analysis and designs. However, models of systems can have various forms, such as transfer
functions, differential or difference equations, and state-space equations. A frequency-domain state-
space identification method [1− 5] provides a state-space model of a linear system from frequency
response data.

The method called the State-Space Frequency Domain (SSFD) identification algorithm [2] can
estimate Markov parameters (pulse response) from the frequency response function (FRF) without
window distortion when an arbitrary frequency weighting is used to shape the estimation error.
The method uses a rational matrix fraction description (the ratio of a matrix polynomial and a
monic scalar polynomial denominator) to curve-fit the frequency data and compute the Markov
parameters from FRF. The curve-fitting problem must be solved either by nonlinear optimization
techniques or by linear approximate algorithms with several iterations. To obtain the state-space
models from the Markov parameters, the Eigensystem Realization Algorithm (ERA) or its variant
ERA/DC is used [5].

Frequency domain methods presented in Refs. [3, 4, 5] start with identifying a left matrix-
fraction description (LMFD) of the transfer function matrix. The advantage of using the LMFD,
as an intermediate model between the data and the desired final state-space model, is that from
frequency response data to the LMFD is a linear least-squares problem, which is easy to solve.
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This method works quite well when the frequency response data are fairly accurate; however, it
might yield unstable, erroneous models if the data contains too much distortion and/or error. Data
distortion in the frequency domain is caused by a number of factors; limited sampling frequency,
filters to remove noise, and lack of periodicity. This data distortion often causes unstable modes to
be present in the identified system model. An improved method was introduced in Ref. [6] to deal
with the problem when data distortion is present. The idea is to stabilize or remove the unstable
modes before expanding the matrix-fraction description (MFD) into the Markov parameters (pulse
responses). This approach avoids introducing unstable modes while still maintaining the frequency
response close to the data.

In this paper, exponential frequency weighting [2, 7] is used to solve a weighted least-squares
problem for the LMFD coefficient matrices. A multi-variable state-space model is then realized
from the LMFD coefficient matrices. To improve the identified model, nonlinear programming
methods [8] are used to fine-tune the model parameters. A formulation is introduced in this paper
for parameter optimization. This formulation deals with system realizations in the real Schur or
modal forms, and uses a subset of system poles for parameter optimization. At every optimization
step, the input and output influence matrices are refined through least-squares procedures. Two
additional formulations for parameter optimization have also been developed. The first formulation
uses a general system realization, and utilizes nonlinear programming along with an eigenvalue
assignment [9−11] technique to adjust a subset of system poles. The second formulation deals with
system realizations in the real Schur or modal forms, and uses a subset of system poles, as well as
some coefficients to adjust the columns (rows) of the input (output) influence matrix for parameter
optimization. These formulations are not presented here due to space limitations, however, full
details on the two approaches is provided in Ref. [12]. Experimental data from a NASA testbed
with fifteen inputs and fourteen outputs are used with a total of two hundreds and ten transfer
functions to demonstrate the concepts proposed in this paper.

2 Weighted Least-Squares Method
Given the system frequency response function G(zk) at the frequency point zk, consider the left
matrix-fraction

G(zk) = α−1(zk)β(zk) (1)

where
α(zk) = Im + α1z

−1
k + · · ·+ αpz

−p
k (2)

β(zk) = β0 + β1z
−1
k + · · ·+ βpz

−p
k (3)

are matrix polynomials with Im being an identity matrix of order m. The matrix αi is an m ×m
real square matrix and each βi is an m × r real rectangular matrix. The factorization in Eq. (1)
is not unique. For convenience and simplicity, one can choose the order of both polynomials to be
equal to p.

Pre-multiplying Eq. (1) by α(zk) produces

α(zk)G(zk) = β(zk) (4)

which can be rearranged into

G(zk) = −α1G(zk)z−1
k − · · · − αpG(zk)z

−p
k

+ β0 + β1z
−1
k + · · ·+ βpz

−p
k (5)

or

G(zk) = ΘGk (6)
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where the matrix Θ, of dimensionm×[p(m+r)+r], and the matrix Gk, of dimension [p(m+r)+r]×r,
are defined as

Θ =
[
α1 · · · αp β0 β1 β2 · · · βp

]
(7)

Gk =



G(zk)z−1
k

...

G(zk)z
−p
k

Ir

Irz
−1
k

· · ·
Irz
−p
k


(8)

Here, Ir is an r× r identity matrix. With G(zk) and z−1
k known, Eq. (5) or (6) is a linear equation.

Because G(zk) is known at zk = ej
2π(k−1)

` (k = 1, . . . , `), there are ` equations available.
The parameter matrix Θ in Eq. (6) is a real matrix whereas G(zk) and Gk are both complex

matrices. Thus Eq. (6) is a complex matrix equation with a total of ` complex equations . Let us
define

G̃k = [Real(G(zk)) Imag(G(zk))] and G̃k = [Real(Gk) Imag(Gk)] (9)
Equation (6) may be rewritten as

G̃k = ΘG̃k (10)
Equation (10) is a real matrix equation consisting of 2` linear equations for computing the parameter
matrix Θ. The matrix G̃k at the frequency point k is an m × 2r matrix, whereas G̃k is a [p(m +
r) + r]× 2r matrix.

Often, experimental data from a completed test is available which allows all calculations to
be performed at once. A batch version is presented in this section. Stacking the 2` equations in
Eq. (10) yields

G̃ = ΘG̃ (11)
where

G̃ =
[
G̃0 G̃1 · · · G̃`

]
G̃ =

[
G̃0 G̃1 · · · G̃`

] (12)

To solve Eq. (11), let us first define a weighted cost function to be minimized as

J(Θ, `) =
∑̀
i=1

w`−i ‖ ΘG̃`−i − G̃`−i ‖2
2 (13)

where 0 < w ≤ 1 is a forgetting factor weighting the frequency data. The data at the lowest
frequency point is given unit weight, but data that is k frequency points higher is weighted by
wk. The method is commonly called exponential forgetting. The cost function defined in Eq. (13)
is motivated by the fact that accelerometers are commonly used as the measurement device in
structural testing. The corresponding frequency response functions have better response levels in the
high frequency range. Identifying lower frequency information in the presence of measurement noise
becomes a problem. One way to solve this problem is to weight more the lower frequency region. On
the other hand, displacement sensors have better response capability for the low frequency region.
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For this case, the forgetting factor may be switched to weight the high frequency region more than
the lower frequency region. The form of Eq. (13) is unchanged except for the index `− i is replaced
by i. The least-squares solution for Θ, from Eq. (13), is given by

Θ = G̃G̃Tw [G̃G̃Tw ]−1 (14)

where
G̃w =

[
G̃0 wG̃1 · · · w`G̃`

]
(15)

The subscript w associated with G̃w indicates that the forgetting factor w is inserted into G̃ with
an appropriate power at each frequency point.

The weighting w` at the frequency point ` can be quite small depending on the length ` of the
data and the choice of the forgetting factor w. Fox example, w` ≈ 4.3 × 10−5 with ` = 1000 and
w = 0.99. Unless the amplitudes of those frequencies near the highest frequency are in the order of
10−5, their contribution to the identification process may become negligible. Using accelerometers,
the ratio of the highest frequency to the lowest frequency can be as high as 103 to 105. For this
case, the forgetting factor used in Eq. (15) is indeed a good weighting technique to perform a better
low-frequency identification.

On the other hand, one may prefer to have freedom of choosing a weighting factor. A slight
modification of Eq. (15) will provide such freedom, i.e.,

G̃w =
[
G̃0 w1G̃1 · · · w`G̃`

]
(16)

The quantities w1, w2, . . . , w`, can be all independent. They may be randomly or specifically chosen.
Some obvious choices include

wk = e−10(1−k)/`, wk =
1
k
, wk =

1
k2 ; k = 1, 2, . . . , `

For the case where the low frequency resolution is better than the high frequency resolution, the
weighting must be reversed.

Substituting Eq. (16) in Eq. (11) and solving for the parameter Θ that minimizes the following
cost function,

J(Θ, `) =
∑̀
i=1

wi ‖ ΘG̃i − G̃i ‖2
2 (17)

yields results similar to Eq. (14) except for the weighting factor.
In the next section, optimization-based approaches to further improve the least-square solution

are discussed.

3 Nonlinear Optimization
Another approach to enhance the identified model is to use nonlinear programming to tune the
model parameters obtained from the solution to Eq. (11). Once the solution, represented by the
parameter matrix Θ, is computed using Eq. (14), a state-space realization is determined. The
state-space realization can be in any canonical form such as Schur form, modal form, Jordan form,
observable form, etc. A formulation is introduced in this paper for parameter optimization. This
formulation deals with system realizations in the real Schur or modal forms, and uses a subset
of system poles for parameter optimization. The input and output influence matrices are refined
through least-squares procedures at every optimization step.

As mentioned earlier, two additional formulations for parameter optimization have also been
developed. The first formulation uses a general system realization, and utilizes nonlinear program-
ming along with an eigenvalue assignment technique to adjust a subset of system poles. The second
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formulation deals with system realizations in the real Schur or modal forms, and uses a subset of
system poles, as well as some coefficients to adjust the columns (rows) of the input (output) influ-
ence matrix for parameter optimization. These formulations are not presented here due to space
limitations, however, full details on the two approaches is provided in Ref. [12].

The details of the proposed parameter optimization approach for least-squares solution refine-
ment is presented next. This method starts with selecting a subset of system poles as optimization
parameters to minimize the error between the experimental and the identified transfer functions
over a frequency range of interest. The optimizer reassigns the system poles, which reside on the
diagonal elements or 2 × 2 block diagonal partitions of the state matrix. At each optimization
step, corrections are made to the input matrix B, the output matrix C, and the direct transmission
matrix D, through two least-squares solutions.

An optimization problem is presented below for improving the match between identified and
experimental transfer functions. Let (A,B0, C0, D0) represent an initial realization for the identified
system, and parameterize the input and output influence matrices as follows,

B = B0Sb +NB0RB = [B0 NB ]
(
SB
RB

)
≡ BQB (18)

C = SCC0 +RCNC0 = (SC RC )
[
C0

NC0

]
≡ QCC (19)

where the columns of NB0 represent a set of basis vectors in the null space of B0, the rows of NC0
represent a set of basis vectors in the null space of C0, and QB, defined in terms of SB and RB, and
QC , defined in terms of SC and RC , are the appropriate coefficient matrices. These coefficients are
determined, at each optimization step, by solving least-squares-based corrections of the absolute
error norm. The optimization problem is given as:

Minimize J1:
J1 = ||G(zk)− Ĝ(zk)||F (20)

over
blkdiag(A)

subject to
|λ(blkdiag(A))| < 1

The complex matrix Ĝ(zk) represents a system realization given by

Ĝ(zk) = C(zkIn − A)−1B +D (21)

The constraint on the modulus of λ(blkdiag(A)) guarantees the stability of the identified system,
and can be omitted if stability is not of concern. At each optimization step, as a new state matrix A
is defined, corrections are performed to the B and D matrices via a least-squares solution, followed
by corrections to the C and D matrices. These solutions are defined as follows.

First, let G(zk) = G(zk)−D, and repartition the nd × (m× r) transfer function matrix, G(zk),
columnwise, such that each column of the repartitioned (nd × m) × r matrix, Gcol, is associated
with an input. Define Ĝ(zk) = C0(zkIn − A)−1B, repartition Ĝ(zk) similar to Gcol to obtain Ĝcol,
and define the absolute error function as

e = Gcol − ĜcolQB (22)

Now, solve for QB, in a least-squares sense, to obtain

QB = (Ĝ
T

colĜcol)−1Ĝ
T

colGcol (23)
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Once, QB is computed, then D is computed as

D = µ
(
G(zk)− C0(zkIn − A)−1B

)
(24)

where µ( ) denotes the mean over frequency points.
To compute QC , first define G(zk) = G(zk) − D, and repartition the nd × (m × r) transfer

function matrix, G(zk), rowwise, such that each row of the repartitioned m× (nd× r) matrix, Grow,
is associated with an output. Define Ĝ(zk) = C(zkIn−A)−1B, repartition Ĝ(zk) similar to Grow to
obtain Ĝrow, and define the error function as

e = Grow −QCĜrow (25)

Now, solve for QC , in a least-squares sense, to obtain

QC = GrowĜ
T

row(ĜrowĜ
T

row)−1 (26)

Once, QC is computed, then D is recomputed as

D = µ
(
G(zk)− C(zkIn −A)−1B

)
(27)

The number of poles that can be used as design parameters in the optimization is arbitrary. One
can use all the poles in the system, or just a few, for example, the real poles of the system. If one
starts the optimization with a system realization from the least-squares solution of Eq. (14), then
it is very likely that the complex poles of the identified system, representing resonant peaks in the
frequency response plots, match the experimental results well, and hence need not be manipulated
any further. In such a case, real poles of the system and unstable poles, real or complex, are the
best candidates for design optimization. However, one could conceivably use the modulus of all
complex poles, which determine the damping associated with each mode, as design parameters as
well.

One of the problems with nonlinear programming is the tendency of the solution to converge
to a local minimum. The problem becomes more aggravated as the number of design parameters
increases. One way to deal with this problem is to restart the optimization from another set of
design points in the neighborhood of the last optimal design. Another way of avoiding this problem
is to introduce an additional constraint requiring that the cost function be less than a desired value,
i.e.,

J ≤ Jd (28)
This constraint would move many of the local minima to the infeasible region, thereby avoiding
them.

The cost function in Eq. (20), which is the Frobenius norm of the error in the transfer functions
(experimental and identified), is dominated by the peaks (resonants) of the transfer functions.
Hence, optimization with Eq. (20) works well in reducing the errors at or around those peaks,
or wherever the transfer function magnitude is significant, but it may not do much in reducing
the errors elsewhere, e.g., zeros. In fact, the errors around the valleys might become worst. A
more equitable trade between the errors for peaks and valleys can be obtained by considering a
complementary optimization problem, wherein a norm of the relative error is optimized instead of
the absolute error given in Eq. (20). Details of this optimization problem are provided in Ref. [12].

4 Applications
This section describes the application of the proposed techniques to the system identification for
the PARTI wind-tunnel model [13], a laboratory test structure at NASA Langley. The model is
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a five-foot long, high aspect ratio wing designed to flutter at low speeds to simplify aerodynamic
analyses and wind-tunnel testing. The fully assembled semi-span model is shown in Fig. 1. The
model has a total of 72 actuators bonded to both sides of the plate. Each actuator contains two
stacks of two 0.01 inch piezoelectric patches. The 72 actuators are hardwired to actuate in 15
different groups. The 15 groupings were chosen such that each group primarily affects one of the
first three natural modes. Each group can be considered as one input, because all the actuators in
the group use the same signal. The piezoelectric patches were only used for actuation; ten strain
gages and four accelerometers were used as sensors. As a result, there are a total of 15 inputs and 14
outputs. Due to space limitations, only a few of the results are presented here. A full presentation
and discussion of the results are given in Ref. [12].

4.1 Weighted Least-Squares Solution
In the first application, the transfer function from input No. 1 to all outputs is considered for
identification. With signals from 14 sensor outputs (m = 14), input No. 1 (r = 1), and 10th
order polynomials (p = 10) used in the matrix-fraction expansion (see Eqs. (1)-(3)), a weighted
least-squares solution was first obtained from Eq. (14), using an exponential weighting function,
given as

wk ; k = 0, 1, . . . , `
Here, k = 0 refers to the zero frequency component of the FRF often known as the direct current
(DC) term in electrical engineering, and w was chosen at 0.98. By adjusting the value of w one may
emphasize the low frequencies or the higher frequencies. Values of w less than 1 would emphasize the
lower end of the frequency spectrum. Here, w was set to 0.98, to emphasize the range of frequency
from 0 to 25 Hz. The weighted least-squares solution resulted in an identified model of order 140,
which included 4 unstable poles. However, since the actual testbed is stable, it is desired to obtain
a stable identified model. Truncating the unstable states yielded a 136-order state-space realization
of the system. Magnitude and phase FRF plots for output No. 7 are shown in Fig.2.

Comparison of the plots indicates an excellent agreement between the experimental FRF (solid
line) and the identified FRF (dashed line), particularly around the peaks of the FRF or where the
gain values are significant. However, discrepancies can be observed around some of the zeros as
well as where the gain values are small. This should be expected because the least-squares problem
is dominated by the peaks and large gain values. Further inspection of these plots also indicates
that the agreement between the experimental and identified results is better in the 0-25 Hz range.
The Frobenius norm of the error between the experimental and identified transfer functions was
computed at 90.128, the majority of which is due to the differences between two FRFs at DC
frequency. In fact, since the DC gain values are quite large, particularly in some output channels,
they tend to dominate the rest of the FRF in a least-squares solution. Keep in mind that the
DC gain values may not be accurate due to the use of accelerometers and their insensitivity at
very low frequencies, drift problems that hampers accurate measurements, and lack of sufficient
data. Therefore, in this case, it is reasonable to de-emphasize the DC values by assigning a zero
value to the corresponding weighting function, such that the DC weight is set to zero. The FRF
plots, using the modified weighting function, are shown in Fig. 2 as dashed-dotted lines. This
figure indicates moderate improvements in various frequency ranges. The Frobenius norm of the
error between the experimental and identified transfer functions was computed to be 90.134, a
very minor change from the previous results. Comparing, the norm of the error for all frequency
points except DC, shows that the error went down from 0.241 to 0.223, which quantifies the better
match by using the modified weighting function. In order to show the effectiveness of the modified
exponential weighting, a polynomial with p = 3 is used in the matrix-fraction description. The
weighted least-squares solution resulted in a stable identified model of order 40. Figure 3 illustrate
the stable least-squares solutions for the nominal and modified exponential weightings for output
No. 7. These figures clearly demonstrate the advantage of modified exponential weighting for this
problem. In fact, the Frobenius norm of the error between the experimental and identified transfer
functions dropped from 12.035 to 0.3021, a significant improvement.
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4.2 Further Enhancements: Nonlinear Programming
To demonstrate the potential of the nonlinear programming approaches to further enhance the
least-squares solution, the parameter optimization approach, posed in Eq. (20), is applied to an
identified model for the PARTI testbed, obtained from a least-squares solution. In this optimization,
the Frobenius norm of the absolute error is minimized while adjusting the eigenvalues of the state
matrix, subject to stability constraints. Moreover, the optimization included corrections to the B
and D matrices, followed by corrections to the C and D matrices, at each functional evaluation
(see Eq. (23)-(24) and (26)-(27)). The 6 design variables used in the optimization were the values
of the real poles of the system. The optimization included 7 constraints, the first six to guarantee
the stability of the systems as the poles were reassigned, and a constraint on the value of the error
norm to avoid undesirable local minima. The initial design used in the optimization was taken from
a stable least-squares solution with modified exponential weighting, i.e., zero DC weighting. The
optimization reduced the norm of the absolute error from the initial value of 0.250 to 0.197, which
is over 20% reduction. Plots, comparing the FRF matrices for the experimental, nominal, and
optimal results are provided in Fig. 4, for output No. 7. The identified model (via optimization)
agrees very well with the experimental data.

All the identification results obtained so far were based on the 14 FRFs from the first input to
all 14 outputs. Now, let us consider the FRFs from all 15 inputs to all 14 outputs for identification.
With the signals from all 14 sensor outputs (m = 14) and all 15 inputs (r = 15), and 3rd order
polynomials (p = 3) used in the matrix-fraction expansion(see Eqs. (1)-(3)), a weighted least square
solution was first obtained from Eq. (14). Similar to the previous cases, an exponential weighting
function was used, with parameter w chosen at 0.98 to emphasize the range of low frequencies. In
addition, the DC weight was set to zero. The Frobenius norm of the error between the experimental
and identified FRFs was computed at 246.855, the majority of which is due to a discrepancy between
two FRFs at the DC frequency, i.e., zero frequency. The Frobenius norm of the absolute error, for
all frequency points except the DC, was computed to be 1.721. For the purpose of illustration,
plots for the experimental and realized FRFs are depicted in Fig. 5, for output No. 7 with input
No. 1, and in Fig.6, for the same output with input No. 8. The experimental transfer functions
are shown as solid lines and the transfer functions, obtained via direct least square, as dashed lines.
These figures indicate moderate to good agreement between the transfer functions in low frequencies
ranges, particularly, around the peaks or high gain areas of the transfer functions.

Now consider the least-squares optimization approach presented in Eq. (20) for the 15 inputs and
14 output case. The initial design used in the optimization was the stable least-squares solution with
modified exponential weighting. This realization had 14 real poles, whose locations were used as
design variables in the optimization, i.e., there were 14 design variables. The optimization included
15 constraints, the first 14 to guarantee the stability of the systems as the poles were reassigned,
and the last constraint on the value of the error norm to avoid convergence to undesirable local
minima. The optimization reduced the norm of the error from the initial value of 1.165 to 1.090,
about a 6.5% reduction. Plots, comparing for the experimental (solid line), nominal (dashed line),
and optimal transfer function (dashed-dotted line) are provided in Figs. 5 and 6. It is observed that
the identified model (obtained via optimization) performs well, although only 3rd order polynomials
were used in the matrix fraction description to match a 15 input by 14 output transfer function.
Comparing Fig. 5 and Fig. 4, which correspond to the same input and output channels, confirms
the good level of correlation obtained following the optimization-based approach.

5 Concluding Remarks
Several techniques have been presented to identify an experimental system model directly from
frequency response data. The techniques used a matrix-fraction description (MFD) to describe the
identified system. The MFD coefficients were obtained from the solution of a weighted least-squares
problem. Frequency weighting concepts were introduced in order to emphasize a frequency range
of interest. An optimization-based method was introduced to fine-tune the experimentally realized
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models. The method adjusts a subset of the system poles to improve the identified model. The
input and output influence matrices are computed at every optimization step through least-squares
procedure. These techniques were applied to data from PARTI wind tunnel model, a laboratory
testbed at NASA Langley Research Center. The benefits of the optimization-based refinement tech-
nique as well as frequency weighting techniques were demonstrated. It was shown that with optimal
fine-tuning and proper choice of frequency weighting a 40th order system realization could provide
almost the same level of model fit as a full-order 136th order model. The numerical computation of
the gradients may require a large number of functional evaluation, which would be costly in a com-
putational sense. Alternatively, one may attempt to obtain analytical expressions for the gradients,
and perhaps second-order partial derivatives, to improve computational efficiency and accuracy.
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Figure 1: PARTI Model
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Figure 2: Comparison of FRFs for Output No. 7 with exponential weighting and 136-order system:
experimental FRF (solid line), identified FRF (dashed line), identified FRF with zero DC weighting
(dashed-dotted line).
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Figure 3: Comparison of FRFs for Output No. 7 with exponential weighting and 40-order of system:
experimental FRF (solid line), identified FRF (dashed line), identified FRF with zero DC weighting
(dashed-dotted line)
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Objective function: norm(FRF(id)−frf(ex)), Output No.7
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Figure 4: Comparison of FRFs for Output No. 7 with least-squares optimization approach and 40-
order system: experimental FRF (solid line), identified FRF (dashed line) with zero DC weighting,
enhanced FRF with absolute-error optimization (dashed-dotted line)
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Figure 5: Comparison of FRFs for Output No. 7 and Input No. 1 with least-squares optimization
approach and 42-order system: experimental FRF (solid line), identified FRF (dashed line) with
zero DC weighting, enhanced FRF with absolute-error optimization (dashed-dotted line)
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Figure 6: Comparison of FRFs for Output No. 7 and Input No. 8 with least-squares optimization
approach and 42-order system: experimental FRF (solid line), identified FRF (dashed line) with
zero DC weighting, enhanced FRF with absolute-error optimization (dashed-dotted line)
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