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Abstract

The design of advanced rotorcrafts requires the
ability to analyse sophisticated, interdisciplinar
systems to a degree of re�nement that only re-
cently has become achievable at a low price,
thanks to the improvements in computer power.
Multi-body analysis allows the detailed model-
ing of the kinematics as well as of the struc-
tural properties of rather sophisticated mechan-
ical systems, such as helicopter rotors. When
integrated with aeroservoelastic analysis, it rep-
resents a powerful tool for both the analysis and
the design of aircrafts, with particular regard to
rotorcrafts. An original multi-body formulation
is presented, based on the direct writing of a
system of di�erential-algebraic equations (DAE)
that describe the equilibrium and the kinematic
constraints of a structural system. The �nite
rotations, during the time-step integration of
the initial value problem, are handled in an ef-
�cient manner by means of a technique called
\Updated-Updated Rotations", an Updated La-

grangian approach that uses as reference the pre-
dicted con�guration of the system. This allows
to neglect the rotation perturbations in the com-
putation of the Jacobian matrix, with consider-
able computational savings, while preserving the
accuracy by consistently computing the residual.
Control equations and the related unknowns are
added, to model the control system to the de-
sired level of re�nement, from idealised control
input/output signals, to each servosystem com-
ponent. The numerical analysis of a tiltrotor
con�guration is proposed, based on an analyt-
ical model of the WRATS wind tunnel model.
This is a 1/5 scale model of the V{22 tiltrotor

aircraft, currently tested in the Transonic Dy-
namic Tunnel (TDT) at NASA Langley. The
control strategy is based on the Generalized Pre-
dictive Control (GPC) technique, with a Recur-
sive Least Mean Squares (RLMS) on-line identi-
�cation of an equivalent discrete linear system,
that is used to design the adaptive controller.
The rotor pitch controls are used as actuators.
Di�erent combinations of strain gages and ac-
celerometers are used as sensor devices.

Keywords: Multi-Body Analysis, Predic-

tive Control, Tiltrotor

Introduction

Aerospace vehicles must satisfy many require-
ments on performances, but also on handling
qualities, comfort, environmental impact. Air-
craft and rotorcraft designers are required a
great e�ort to allow operations close to, or even
inside, highly populated areas, and to provide
the crew and the passengers a confortable cock-
pit or seat, subject to as little vibrations and
noise as possible. A viable answer to the lat-
ter requirements is represented by active control.
The active control of rotorcraft has been inves-
tigated for a long time. Interest began early in
the seventies, and grew continuously until to-
day [16], [14]. Di�erent techniques have been
proposed to achieve the main goal of vibration
and/or noise reduction. An exaustive resum�e of
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the state of the art and of the most promising
developments can be found in Ref. [5]. Vibra-
tions in the airframe can be reduced both by
cancelling their e�ects or by eliminating their
source, namely periodical blade airloads. In this
paper the second approach is investigated. Ba-
sically, rotorcraft vibrations originate from the
discrete nature of the rotor, that is made of a
�nite number of blades. This results in time-
dependent aerodynamic loads in forward 
ight,
related to the di�erent airstream speed expe-
rienced by the blade when it is advancing and
retreating, that results in dynamic stall and in
reverse 
ow at the inner part, even for com-
paratively low advancing ratios. Noise and vi-
brations are also originated by the vortex sheet
shed by a blade, when impacting on the follow-
ing one (Blade-Vortex Interaction, or BVI). The
loads generated by a rotor blade can be modi-
�ed by acting on the blade pitch, both directly
(i.e. by changing the pitch of the whole blade by
means of the swashplate or other pitch control
device) or indirectly (i.e. by actuating a trail-
ing edge 
ap, that induces a blade twisting mo-
ment). Rotorcraft active control has been tradi-
tionally and naturally oriented towards Higher
Harmonic Control-like (HHC) approaches ([10],
[3], [13] among the others) because the blade
pitch actuation mechanism represents an easy
and cheap way to apply the required control
power directly to the blade and requires limited
additional power. Moreover, the periodic nature
of the blade vibratory loads allow an easy design
of harmonic control laws. Both open- and close-
loop control have been investigated, the latter
often being used in conjunction with the adap-
tive, in-line identi�cation of a linearised, fre-
quency domain transfer function of the rotor-
craft. It su�ers from some disadvantages, mainly
related to the periodic nature of the control in-
put and to the comparatively low maximum ac-
tuation frequency, resulting in limited 
exibil-
ity. The Independent Blade Control (IBC) is
complementary to the HHC. Each blade is con-
sidered as an independent system, and is con-
trolled by an independent controller [9]. This
technology is not as mature as HHC; the main
problem that has to be faced is a viable and e�-
cient means to deliver the control power into the
rotating system [5], [8]. A di�erent approach is
used in the present work, based on the Gener-
alised Predictive Control technique [2], [4], [11].
There is no exploitation of the periodic nature
of the rotor dynamics as a means to generate

periodic control forces. On the contrary, the ro-
tor, and the whole rotorcraft, are considered as a
black-box that is identi�ed on-line as a discrete-
time, locally constant-coe�cient linear system.
The slow, long term variation of the system co-
e�cients is accounted for by the recursive im-
plementation of the identi�cation. Based on the
identi�ed system, the response is predicted, and
the control signal is designed by enforcing the
desired behaviour of the controlled system. The
paper �rst presents the predictive control theory
that is used in the design of the control. A brief
description of the multi-body formulation that is
used for the analytical model of the tiltrotor is
given, followed by a comparison with numerical
and experimental results of the WRATS tiltro-
tor wind tunnel model [7]. This model, con-
trolled by a proprietary implementation of the
HHC called MAVVS, has been tested by Bell
Helicopter at NASA Langley Research Center
(LaRC) [15]. Finally the numerical results of the
proposed control technique are illustrated and
discussed.

Discrete Control

Discrete Time Equation. A discrete time,
Auto-Regressive, Moving Average, with eXoge-
nous input (ARMAX) equation has the form:

y (k) = a1y (k � 1) + : : : + apy (k � p)

+ b0u (k) + : : :+ bpu (k � p)

+ e (k) + c1e (k � 1) + : : :+ cpe (k � p)

where y (t), u (t) are the output and input
arrays at time t, e (t) is the error array at time
t, aj , j = 1; p, bj , j = 0; p and cj , j = 1; p are
the matrices of a p-order, time-independent,
linear discrete system. The number of equations
is represented by the number of outputs m;
matrices ai are m � m, as matrices ci are.
Matrices bi are m � n, being n the number of
inputs. Usually the matrices of the system are
unknown, only measures of inputs and outputs
being available; the error can be measurable or
not, depending on its nature. An unmeasurable,
biased error is assumed unless otherwise stated.

System Identi�cation. The yet unknown sys-
tem matrices can be stacked in a matrix �,
while the observations can be stacked in an array
' (k), as follows:

� = [a1; : : : ; ap; b0; : : : ; bp; c1; : : : ; cp]



' =
�
y (k � 1)T ; : : : ; y (k � p)T ;

u (k)T ; : : : ; u (k � p)T ;

e (k � 1)T ; : : : ; e (k � p)
�T

The predicted output is:

ŷ (k) = �' (k) (1)

and the di�erence between the current and the
predicted output represents the error at the cur-
rent time step, which is unknown by de�nition.
Matrix � depends on k as far as it is estimated
from a �nite set of measures; it approaches the
exact value provided the true system has the
form of the assumed model. Equation 1 gives
a means to estimate the error at every time step
in a recursive manner. The error may be due
to unmeasured disturbances, errors in measures,
and errors in the parameters of the model (type,
order, and so on):

e (k) = y (k)� ŷ (k)

The observations at time steps ranging from i
to j can be stacked by columns: y = y (i : j),
' = ' (i : j), e = e (i : j), giving:

e = y ��' (2)

where the expected output that results from the
yet to be identi�ed system, ye = �', is used. If
the error is unbiased, Equation 2 does not de-
pend on the error itself (the error does not par-
ticipate in array ') and thus � can be solved
for a �nite set of measures to determine the op-
timal value of the unknown parameters. In case
of biased error, instead, it can be determined by
recursively adding columns to Equation 2, and
using each parameter estimate to compute the
current estimate of the error. A global measure
of the error is:

J = ee
T

The minimisation of J with respect to � gives a
least squares �t of the system:

� = y'
T
�
''

T
�y

where the y denotes the pseudo-inversion, that is
required in case the system is only semi-de�nite.
In this case, the excitation is not persistent, or
the system is not completely controllable.

Recursive Implementation. The recursive
expressions of matrices ''T and y'T are:

�
''

T
�
j+1

=
�
''

T
�
j
+ ' (k + j)' (k + j)T

and:

�
y'

T
�
j+1

=
�
y'

T
�
j
+ y (k + j)' (k + j)T

The inverse of matrix ''T can be directly up-
dated instead of factorising the updated ma-
trix, by using the LDLT factorisation, since
the matrix is symmetric and positive de�nite or
semide�nite in the worst case; the positive de�-
niteness can be arti�cially enforced. In this way,
the numerical loss of accuracy can be reduced
while improving the e�ciency of the computa-
tion. The recursive algorithm is:

� (k)y = �� (k � 1)y + ' (k)' (k)T

 (k) = � (k � 1) + y (k)' (k)T

�(k) =  (k) � (k)

e (k) = y (k)��(k)' (k)

The �rst two above equations update the

matrices � (k) =
�P

j=1;k ' (j)' (j)T
�y

and

 (k) =
P

j=1;k y (j)' (j)
T
, where a forgetting

factor � has been used to identify a compara-
tively slowly time-varying system. The third
equation updates the estimate of the system
parameters; the last equation estimates the
error at the current step. Arti�cial stabilisation
of the moving average part of the system is
required, since unstable error dynamics, that
can occur during the identi�cation especially in
the initial phase, have no physical meaning [1].

Output Prediction. As soon as an estimate of
the system to be controlled is available, either by
parametric modelling or by black box identi�ca-
tion, the horizon of the prediction can be easily
extended. The predicted value at time t = k+1
is:

y (k + 1) = a1y (k) + : : :+ apy (k � p+ 1)

+ b0u (k + 1) + : : :+ bpu (k � p+ 1)

+ c1e (k) + : : :+ cpe (k � p+ 1)

the di�erence between the predicted and the ac-
tual values being the error. By substituting the
predicted value of the output at time t = k, it
becomes:

y (k + 1) = a
1
1y (k � 1) + : : :+ a

1
py (k � p)

+ b0u (k + 1) + b
1
0u (k) + : : :+ b

1
pu (k � p)

+ c
1
1e (k � 1) + : : :+ c

1
pe (k � p)

where the new system matrices are recursively
de�ned as:

x
0
i = xi; x

j
i = a

j�1
1 x

0
i + x

j�1
i+1 ; xp+1 = 0

where x stands for a, b, and c, respectively. The
predicted error at step k and beyond is assumed
to be null since the error is assumed to be un-
correlated with the outputs, the inputs and the



past errors, while the estimates of the output
are supposed to be exact. The predicted value
at time t = k + j becomes:

y (k + j) = aj
1
y (k � 1) + : : :+ ajpy (k � p)

+ b
j
1
u (k � 1) + : : :+ b

j
pu (k � p)

+ c
j
1
e (k � 1) + : : :+ c

j
pe (k � p)

+ b
0

0u (k + j) + : : :+ b
j
0
u (k)

Let s be the number of steps ahead of the pre-
diction. The predicted outputs from time t = k
to time t = k + s� 1 become:

Ys = AYp +BUp + CEp + PUs (3)

The arrays and the matrices in Equation 3 are
obtained by stacking the equations of the out-
put at the above mentioned time steps, i.e. Ys
contains the predicted output at s future time
steps from the current one; Yp, Up and Ep con-
tain the (measured) outputs, inputs and errors
at the previous p time steps, being p the or-
der of the system, and thus are known; Us con-
tains the control inputs that must be determined
to obtain the desired behaviour. The predicted
output should be equal to a desired sequence of
values, namely Ys = Yd, resulting in:

Yd = AYp +BUp +CEp + PUs (4)

Generalised Predictive Control. The so
called Minimum Variance Control [2] descends
from Equation 4 by directly imposing the desired
output and solving with respect to the required
control input. Under the assumption that the
system has a direct transmission term (namely,
matrix b0 is invertible) and provided that it is
minimum phase, one prediction step is su�cient.
Moreover, the response follows the desired be-
haviour regardless of the required control e�ort,
except for the (unpredictable, because uncorre-
lated by assumption) error e (k). As a conse-
quence, the variance of the error is minimal.
The Generalised Predictive Control, on the other
hand, represents an extension and a generalisa-
tion of this behaviour. The control still tries
to force the system to follow the desired output
starting from the current step, but the desired
behaviour is imposed over a higher number of
steps ahead. A prediction horizon higher than
the control one can be used; in this case the de-
sired response is imposed in a least square sense.
Moreover, the control e�ort is accounted for by
weighting the control output against the predic-
tion error, to avoid saturation of the actuators
and/or a rough behaviour. Another form of pre-
dictive control is called Deadbeat Control [12]. It
has not been considered in this work since it can
be obtained as a special case of a more general

formulation of the GPC (the same applies to the
Minimum Variance), and because it resulted less
e�cient than the GPC itself, at least in the in-
vestigated case. The control output results from
the minimisation of the functional

J = (Yd � Ys)
T (Yd � Ys) + �U

T
s Us

with respect to the control input Us, yielding:

Us =
�
P
T
P + �I

�y
P
T (Yd �AYp �BUp �CEp)

where � is the control weight coe�cient. The
control input at time t = k is given by:

u (k) = �cYp + �cUp + 
cEp + �cYd

where �c is the last block-row of matrix

Q =
�
P TP + �I

�y
P T , and the feedback matri-

ces are �c = ��cA, �c = ��cB and 
c = ��cC.

Physical Interpretation of the Predictive

Control. The minimum variance control clearly
represents a form of zero-pole cancellation. The
control cancels the system poles and zeroes by
inverting the system A�1B. This operation is
permitted only if the system is stable and mini-
mum phase, and the resulting close-loop system
statically responds to the current, unpredictable
input only. The GPC attenuates this e�ect by
simply shifting the poles and zeroes of the sys-
tem towards higher frequencies. By properly
choosing the coe�cient �, both non-minimum
phase and unstable systems can be controlled,
with limited loss in performances. The choice of
the model order and of the prediction and con-
trol horizons are key to the e�ectiveness of the
control. The order p must be high enough to
account for all the meaningful poles of the sys-
tem (a rule of thumb says that p�m should be
equal to or slightly higher than the number of
poles). But too high an order could result in a
poor, and time consuming, identi�cation. The
prediction horizon s must be as high as p to en-
sure that the complete dynamics of the system is
accounted for; higher prediction horizons do not
add further information to the prediction, but,
together with a smaller control horizon, result
in an overcollocated enforcement of the desired
behaviour, thus overconstraining, and implicitly
reducing, the control e�ort.

Multi-Body Model

A multi-body formulation has been used to
describe the dynamics of the tiltrotor. The



equilibrium equations of each node are written;
lumped inertia is associated to each node.
The bodies are connected by kinematic and
dynamic joints. The former are written as
algebraic equations that add reaction forces and
couples as unknowns, while the latter directly
participate in the equilibrium equations by
adding con�guration-dependent forces. An
important example of dynamic constraint is
represented by the beam element. Initial value
problems are considered, by time integrating
the resulting Di�erential-Algebraic Equation
(DAE) system from an initial compatible and
a la d'Alembert balanced con�guration. A
Predictor-Corrector integration scheme is used,
based on an original formulation that ensures
second order accuracy and linear A�L stability,
with tunable algorithmic damping [7].

Kinematics. The basic unknowns are repre-
sented by the positions and the reference frames
of the nodes. The total positions x are used as
nodal translational unknowns. Finite rotations
are intrinsically nonlinear and require a special
treatment in multi-body formulation kinemat-
ics. The rotations are described by means of the
Gibbs-Rodrigues rotation parameters in a modi-
�ed Updated Lagrangian scheme, called Updated-

Updated [7], that assumes the predicted con�g-
uration as reference. The unknown rotation pa-
rameters account for the correction only, and can
be considered truly \small", provided the pre-
diction is accurate. The rotation matrix R, as
function of the rotation parameters g, is:

R = I +
4

4 + gT g

�
g �+

1

2
g � g�

�

where the � represents the cross product be-
tween vectors, such that a� is the matrix that
multiplied by b gives a � b. In case of an up-
dated scheme, the total rotation at time k + 1
is Rk+1 = R (g)Rk and in the updated-updated
approach it reads Rk+1 = R (g)R0

k+1
, where the

superscript 0 refers to the predicted value of R
at time k + 1. The di�erentiation of a vector
that is constant in the local frame gives the ex-
pression of the rate of change of the rotation:
v0 = R0RT v = (Gg0)� v, where

G =
4

4 + gT g

�
I +

1

2
g�

�

The angular velocity is ! = G (g) _g; in updated-
updated form it is ! = G (g) _g +R (g)!0. Both
matrices R and G, as well as other entities

that depend on the rotation parameters such
as the angular velocity and those that are used
in the linearisation of the kinematic quanti-
ties, assume a particularly simple expression
when g is zero: both R and G become the
identity matrix, the angular velocity becomes
! �= _g + !0, while �G is zero. Since the
unknown updated-updated rotation parameters
are small, the simpli�ed expressions are used
to speed up the computation of the Jacobian
matrix used in the correction iterations, while
the residual is consistently computed by using
the complete expressions to ensure the accuracy.

Dynamics. The equilibrium equations are writ-
ten in terms of the derivatives of the momenta
�, 
: �

_� = F

_
 � (! � S)� _x =M

where S is the �rst order inertia moment and F ,
M are generic forces and moments. The de�ni-
tions of the momenta must be added:�

m _x+ S � ! = �

�S � _x+ J! = 


m, J being the mass and the second order
inertia moment.

Constraint Equations. A kinematic con-
straint is a relationship between kinematic
unknowns. Examples of basic constraints are
the coincidence and orthogonality constraints,
that can be used to build more complex cases.
They result in algebraic or di�erential equa-
tions, depending on whether the constraint
is or is not holonomic. A reaction force or
couple is required to enforce the constraint. A
Lagrangian Multipliers-like approach is used.
The reactions are direcly used as unknowns
instead of the multipliers, to avoid the need of
postprocessing to determine their value.

Finite Volume Beam. The �nite volume
beam results from the direct writing of the
equilibrium of a �nite piece of beam in terms
of the internal forces at the boundaries and
of the external loads. The internal forces and
moments are expressed as functions of the
spatial gradient of the con�guration by means
of arbitrary 6� 6 constitutive laws, resulting in
a C0 formulation. The generalised deformations
of the beam at the boundary sections result
from the di�erentiation of a linear interpolation
of the nodal positions and rotation parameters.



From a mathematical standpoint, the �nite
volume beam descends from a weighted resid-
uals weak form of the di�erential equilibrium
equation of the beam, with piecewise constant
weighting functions. Advantages of the �nite
volume approach are the ease in the determi-
nation of the contribution to the equilibrium
equations (only collocated evaluation of the
forces is required), the absence of shear locking
without the need of any numerical adjustment,
and a more intuitive, physical meaning of the
contribution to the equilibrium equations. A
three-node beam element has been implemented
[6].

Tiltrotor Model. The system under analysis
is represented by a multi-body analytical model
of the Wing and Rotor Aeroelastic Testing Sys-
tem (WRATS) tiltrotor aeroelastic wind-tunnel
model. It is a semispan model of the V-22 cur-
rently used at LaRC to investigate the tiltrotor
technology; it was originally built for the prelim-
inary and full-scale design of the V-22. The ana-
lytical model, Figure 1, is made of a three blade,
hingeless rotor mounted on a pylon, that is elas-
tically attached to the clamped half-wing. The
rotor blades are modelled by 4 beam elements
each, plus one beam element for each 
exbeam.
The complete control chain has been modelled,
from the swashplate to the blades through the

exible control links and the pitch horns. The
hub is linked to the mast by means of a gimbal
joint, that allows the 
apped hub to maintain
a constant rotation speed both in terms of am-
plitude and direction. The correct modelling of
the gimbal required seven basic joints and one
extra body. The analytical model has been vali-
dated in terms of kinematic, structural and aero-
dynamic properties [7]. The kinematic analy-
ses have been used to assess the correct kine-
matic couplings between blade pitch, 
ap and
lag. Some of these couplings involve the 
exi-
bility of the 
exbeam and of the control chain,
and required to be calibrated directly from the
physical model. Structural properties have been
compared to analytical results from Bell Heli-
copter, from previous analyses by means of Uni-
versity of Maryland Advanced Rotorcraft Code
(UMARC) and NASTRAN, and to experimental
results from Ground Vibration Tests (GVT) per-
formed at LaRC. Basic aerodynamic and aeroe-
lastic validation has been performed by compar-
ing to data from previous wind-tunnel tests and
numerical simulations.

Table 1: 888 rpm, �75% = �3 deg, Hz

Mode Myklestad UMARC MBDyn

Gimbal - 14.8 14.8
Cone 17.2 17.3 17.5
1 Lag 22.4 20.8 24.0
Coll Lag 42. 44.0 36.0
2 Flap 37.33 49.6 41.0
2 Flap asym. - 70.2 65.0
3 Flap 75.33 90.3 73.0
Flap/Torsion 89.33 92.7 90.0
Lag/Torsion - 113.4 104.0
Torsion - 116.0 110.0

Numerical Results

Model Validation. Each component of the
model has been validated separately. Both
non-rotating and rotating analyses have been
performed. Good agreement with numerical
and experimental data has been found. The
relatively rough discretisation used for the
rotor blade has been able to capture all the
desired modes. The full rotor vibration analysis
highlighted the limits of conventional modal
analysis of a single blade, since the gimbal joint
and the three blade con�guration break the
symmetry the single blade analyses usually rely
on. The UMARC code has been modi�ed to
model the three blades in the modal analysis
phase, and it con�rmed the results of the
multi-body analysis. A comparison of modal
analysis results is presented in Tables 1 and
2, referring to the rotating frequencies at 888
and 742 rpm, that correspond to the hover and
cruise rotating speeds. More exaustive results
of the analysis may be found in Ref. [7].

Rigid Blade

Blade
Deformable

Aerodynamic Fairings

Gimbal

Flexbeam

Cuff, Bearing

Swash Plate

Conversion Mechanism

Semispan Wing

Fixed Control Link

Rotating Control Link

and Pitch Link

Figure 1: Analytical Model



Table 2: 742 rpm, �75% = 55 deg, Hz

Mode Myklestad UMARC MBDyn

Gimbal - 12.4 12.6
Cone 14.7 14.9 15.1
1 Lag 15.3 15.8 16.5
2 Flap asym. - 42.3 44.2
Coll Lag 32.7 45.9 46.9
2 Flap 45.3 45.6 49.1
3 Flap asym. - 46.9 60.3
3 Flap 66.0 60.1 65.2
Flap/Torsion 89.3 90.6 97.8
Lag/Torsion 90.0 90.8 89.7
3 Lag - 92.0 92.9
Torsion - 116.0 108.5

Control Validation. A very simple system
from Ref. [11] is studied. It is made of three
masses in series with three springs and dampers;
an excitation force is applied at the free end,
and the control measures are the accelerations
at the other two points, thus implementing a
system with no direct transmission term. The
properties are: m1 = m2 = m3 = 1, k1 = 1,
k2 = 2, k3 = 3; the damping is assumed
proportonal to the square root of the sti�ness,
i.e. ci = 0:05

p
ki. The system has 6 poles.

Di�erent values for the order of the identi�ed
system p as well as for the control weight �

have been tested. The prediction and control
advancing horizons have been chosen equal
to p. The integration time step is 0.01 s; the
sampling for the discrete controller is taken
every 10 time steps. The system is excited by
a unit amplitude harmonic force at 0.4 Hz; a
white noise with 0.001 amplitude is applied
and measured to identify the system. The
control is activated after 40 s of simulation.
An order p = 6 has been used, with � = 10�3.
The control weight is gradually lowered to the
nominal value in about ten seconds to avoid an
abrupt intervention of the control. Figures 2,
3 show the two measured accelerations and
the control force, and the displacements at
the three nodes, respectively. When the �rst
damping coe�cient is set to a negative value
c1 = �0:15

p
k1, the response, Figure 4, shows

the e�ectiveness of this form of adaptive control
for unstable systems. It is interesting to note
that the control is not collocated and the
unstable section of the system is close to one
of the measures, but not directly controllable.
The control weight � can be reduced even more,
with performance improvements expecially in
the unstable case, but with excessive penalty in

the required control force.
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Hover Simulations. The e�ectiveness of the
GPC applied to a more complex and realistic
system has been assessed by performing simple
SISO control analyses of the WRATS model
in hover. The rotor is rotating at 888 rpm,
and it is externally excited by a shaker with
a harmonic load at 5 Hz, close to the �rst
wing out-of-plane bending frequency, about 5.5
Hz. The time step is 0.001 s, and the control
samples are taken every 8 steps, resulting in a
frequency of 125 Hz, which is higher than the
�rst torsional frequency of the blade, to prevent
the blade resonance. The bending strain at
the root of the wing is measured, �ltered by
a washout (band-pass) analog �lter to cut out
of the measured signal the static signal as
well as the higher frequencies, and the rotor
thrust is used as actuator by controlling the
collective pitch. A pass-band �ltered measure
of the vertical acceleration at the pylon is
alternatively used. A good compromise for the
system order has been found in p = 60. The
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Figure 5: Hover bending moment, str. meas.
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Figure 6: Hover bending moment, acc. meas.

results of the two cases, compared to a baseline
analysis with harmonic excitation but without
control, are presented in Figures 5, 6, for two
di�erent values of �. They show the bending
out-of-plane moment at the wing root. The
control signals are shown in Figures 7, 8, while
the vertical acceleration of the pylon in the
latter case is shown in Figure 9; the high fre-
quency noise is the persistent excitation that is
used to continuously identify the system, while
the control of the harmonic motion determines
the main, low frequency oscillation.

Forward Flight Simulations. Forward 
ight
analyses have been performed by controlling the
collective and the cyclic pitch of the blades based
on di�erent measures of strains at the wing root.
The model is in airplane con�guration, at an air-
speed of 100 ft/s, and the rotor is rotating at 742
rpm. In this case the order is p = 20, since the
number of measures is higher (3 vs. 1). First
the wing out-of-plane excitation force is o�set
aft of the wing to obtain also a twisting exci-
tation. The rotor has little control authority in
its plane in terms of force, the 
apping of the
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Figure 7: Hover collective, str. meas.
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Figure 8: Hover collective, acc. meas.

disk being required to tilt the thrust. Since the

apping response has a delay of about 90o, the
accuracy of the prediction is key to the e�ec-
tiveness of the control. In this case the actu-
ation force, transverse to the wing, lies in the
plane of the rotor, thus being not directly con-
trollable by a simple change in thrust. Moreover,
since the motion of the gimballed rotor is char-
acterised by a wide spectrum dynamics, from
the high frequency vibrations induced by the ad-
vancing blade modes, to the wing elastic modes,
down to the very low frequency precession mo-
tion, a high number of physical and numerical
poles are required for an adequate identi�cation.
The results of the simulations are reported in
Figure 10, that shows the wing root bending
moment. Figure 11 shows the control signals.
The initial low frequency oscillations in the con-
trol signals are due to the precession of the rotor
during the transient following the application of
the harmonic excitation. The uncertain initial
behaviour of the controller is related to a poor
initial identi�cation of the low frequency poles
of the system. In fact, with � = 1:0 the con-
trol authority is low, but with � = 0:1, after a
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Figure 9: Hover accelerometer signal

few cycles the system goes slightly unstable (af-
ter about 1.5 s), returning under control as soon
as the identi�cation is improved. The following
behavior is de�nitely better than the previous
case, as can be appreciated in the last part of
the plot. A more realistic case is considered,
by using the control parameters tuned with the
former case. A cosinusoidal vertical gust, with
an amplitude of 4 ft/s and a wavelenght of 20 ft,
is encountered by the model while the control is
working. The e�ect of the control on the wing
bending is shown in Figure 12: the free oscilla-
tions resulting from the wind-up of the rotor are
damped as the control starts; when the model
encounters the gust, the peak of the moment is
attenuated �rst, then the control overshoots due
to the need to re-identify the system. The newly
identi�ed system brings the bending moment, as
well as the other measured internal moments, to
a neglibible value in a few cycles. The control
signals, i.e. the pitch controls determined by the
controller, are particularly meaningful. The col-
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Figure 10: Forward 
ight bending

lective is negligible, since it mainly controls the
in-plane bending of the wing, that is not directly
excited by the vertical gust. The cyclic controls
instead are heavily used by the controller to gen-
erate the rotor aerodynamic moment required to
tilt the rotor disk. Since the disk tilts about an
horizontal axis due to the wing bending and tor-
sion excited by the gust, the rotor is mainly re-
quired to generate a pitch moment (in airplane
sense) that counteracts this motion. In fact the
higher cyclic control signal is the lateral pitch,
about twice as large as the fore/aft pitch, which
causes a fore/aft 
apping of the rotor. Figure 13
shows a detail of the control signals across the
gust input.

Concluding Remarks

The Generalized Predictive Control has been
used in the multi-body numerical simulation of
the active vibration control of a tiltrotor aeroe-
lastic model currently investigated at NASA
Langley Research Center. The control has been
applied by means of the control mechanism that
is used on the actual model, a conventional, hy-
draulically actuated swashplate. A combination
of strain and acceleration measures have been
used to identify the system, and di�erent oper-
ating conditions and external disturbances have
been considered. The predictive control resulted
highly e�ective in most of the investigated con-
ditions, giving substantial reduction of the load
level. In detail, both the strain and the acceler-
ation measurements allowed the correct identi�-
cation of the system, and the intrinsic adaptivity
of the proposed implementation of the gener-
alised predictive control allowed the correction
of inaccurate initial system identi�cation even
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in variable test conditions. The multi-body ap-

proach represented a viable solution for the anal-

ysis of complex systems requiring a high level of

detail in the modelling of mechanisms. Future

developments of the control will involve the in-

troduction of the adaptivity of the weight coef-

�cient, to reduce the need of an ad hoc tuning

of the various control parameters, and a variable

order model in the identi�cation of the system.
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