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Summary Introduction

An investigation was conducted in the model Supersonic cruise transport aircraft and
preparation area of the Langley 16-Foot modern military aircraft with supersonic cruise or
Transonic Tunnel to determine the effects of dash capabilities utilize variable-geometry
convoluted divergent-flap contouring on the exhaust nozzles to ensure efficient aeropropulsive
internal performance of a fixed-geometry exhaust (thrust-minus-drag) performance across a wide
nozzle. Testing was conducted at static speed range. A variable-geometry nozzle
conditions using a sub-scale, nonaxisymmetric, functions by adjusting throat area and expansion
convergent-divergent nozzle model designed with ratio to provide the optimum nozzle configuration
interchangeable divergent flap inserts. Force,for each engine throttle setting and flight
moment, and pressure measurements were takenondition. Independent throat ared) (control is
and internal focusing schlieren flow visualization necessary to satisfy engine afterburning
was obtained for one baseline and four convolutedrequirements, and separate control of the exit area
configurations. All tests were conducted with no (A) provides the proper nozzle expansion ratio
external flow at nozzle pressure ratios from 1.25 (AJA) at each flight condition (ref. 1). For
to approximately 9.50. example, a typical fighter aircraft might have a

low nozzle pressure ratio of about 3.0 at takeoff,

Results indicate that baseline nozzle requiring a nozzle expansion ratio of about 1.1 for
performance was dominated by unstable, optimum nozzle performance. During a
shock-induced, boundary-layer separation atsupersonic dash to Mach 2.0, nozzle pressure ratio
overexpanded (below the design nozzle pressurencreases to approximately 10.0, and a nozzle
ratio) conditions, which came about through the expansion ratio of 1.9 is required for optimum
natural tendency of overexpanded exhaust flow tonozzle performance. Figure 1 illustrates a typical
satisfy conservation requirements by detachingvariable-geometry nozzle at several operating
from the nozzle divergent flaps. Convoluted conditions.
configurations were found to significantly
reduce, and in some cases totally alleviate, Nozzle geometry variation is achieved using
shock-induced, boundary-layer separation atactuators and movable nozzle flaps as shown in
overexpanded conditions. This result was figure 2. While effective, these systems can be
attributed to the ability of convoluted contouring heavy, mechanically complex, and prone to
to energize and improve the condition of the fatigue through thermal, aerodynamic, and
nozzle boundary layer. Separation alleviation aeroacoustic loading. In addition, variable-
resulted in off-design nozzle thrust ratio penalties geometry mechanisms are inherently difficult to
that ranged from 3.6% to 6.4% below the fully integrate into fighter aircraft afterbodies and can
separated baseline configuration; thus, imposing abe a primary cause of afterbody drag. Additional
tradeoff between separation alleviation and nozzlerequirements such as multiaxis thrust vectoring
thrust ratio which may be acceptable in some (ref. 2), thrust reversing (ref. 3), low observability
applications. Separation alleviation offers (ref. 4), and noise suppression (ref. 5) further
potential for installed nozzle aeropropulsive complicate the propulsion-airframe integration of
(thrust-minus-drag) performance benefits by variable-geometry nozzle systems.
reducing drag at forward flight speeds, even
though this may reduce nozzle thrust ratio at The capabilities of future high performance
off-design conditions. At on-design conditions, military aircraft will be critically dependent on the
nozzle thrust ratio for the convoluted development of simple, lightweight exhaust
configurations ranged from 1% to 2.9% below the systems that are aerodynamically efficient,
baseline configuration; this was a result of compact, and low observable. Supersonic
increased skin friction and oblique shock lossestransport aircraft will rely heavily on efficient
inside the nozzle. nozzle performance for extended cruise at high



supersonic speeds where the ratio of lift to drag is Numerous research programs have shown that
low and fuel consumption is high. There is three-dimensional convoluted contouring can
tremendous incentive to improve both military enhance multistream mixing and reduce subsonic
and transport aircraft performance by reducing theboundary-layer separation in various applications
complexity of exhaust nozzles. (refs. 7 through 10). The objective of the research
described in this report was to determine the
The desire for reduced weight and complexity effects of convoluted divergent-flap contouring on
in exhaust systems has led designers to considethe internal performance of a fixed-geometry
reducing, or even eliminating, the need for exhaust nozzle. Testing was conducted at static
variable-geometry mechanisms in exhaust conditions in the model preparation area of the
nozzles. The fundamental problem with this Langley 16-Foot Transonic Tunnel using a sub-
solution is that a fixed-geometry nozzle will only scale, nonaxisymmetric, convergent-divergent
operate efficiently at the flight condition for nozzle model designed with interchangeable
which it is designed. When operated away from divergent flap inserts. The nozzle model had an
the design point (which may be common if a expansion ratio of 1.797 and a design nozzle
supersonic aircraft is expected to cruise pressure ratio of 8.78. Force, moment, and
subsonically, loiter, or divert to alternate airports), pressure measurements were taken and internal
a fixed-geometry nozzle suffers large off-design focusing schlieren flow visualization was
performance penalties. For example, if the fighter obtained for one baseline and four convoluted
aircraft mentioned previously were to operate configurations. All tests were conducted with no
with a fixed-geometry, 1.9 expansion ratio nozzle external flow and high-pressure air was used to
at the takeoff condition, a 20-percent loss in thrust simulate jet-exhaust flow at nozzle pressure ratios
ratio would result from nozzle overexpansion ranging from 1.25 to approximately 9.50.
effects (ref. 1). Large performance penalties such
as this would be unacceptable in most Symbo|s
applications.

All forces and moments are referred to the

The successful utilization of fixed-geometry model centerline (body axis). The model
nozzles in most aircraft applications will require (pajance) moment reference center was located at
improvements in off-design performance. At gtation 29.39. A discussion of the data reduction
highly overexpanded conditions, exhaust flow procedure, definitions of force and moment terms
separation results from the natural tendency of zng propulsion relationships used herein can be

overexpanded exhaust flow to satisfy found in reference 11. All pressures presented are
conservation requirements by separating from thegpsolute unless otherwise noted.

nozzle divergent flaps. This increases off-design
performance by allowing the nozzle to effectively

“adjust” to a shorter nozzle with a lower A, nozzle exit area, 7.7584n
expansion ratio. At forward flight speeds,

however, external flow can aspirate the separateda, nozzle throat area, 4.3172in
portion of the divergent flaps, causing increased

drag (ref. 6). In some instances, separationF measured thrust along body axis,
alleviation may be necessary to ensure efficient positive in forward direction, Ibf
aeropropulsive performance, even if losses in

thrust ratio result from increased exhaust flow F, ideal isentropic thrust, Ibf
overexpansion. A detailed study would be

required to determine the conditions at which F/F, nozzle thrust ratio

separation alleviation is beneficial to nozzle

aeropropulsive performance. (F/F)peax Pe2K NOZzZle thrust ratio



NPR

NPR,

A(F/F);

acceleration due to gravity, 32.174
ft/sed

Mach number
nozzle pressure ratlpt’,j/pa

design nozzle pressure ratio (NPR for
fully expanded flow at the nozzle exit)

local static pressure, psi
ambient pressure, psi
average jet-total pressure, psi

gas constant (foy=1.3997), 1716
ft’/seé-°R

average jet-total temperatuf®

measured weight-flow rate, Ibf/sec

linear dimension measured along model

centerline from nozzle connect station
(Sta. 41.13), positive downstream (see
figs. 8, 9, and 13), in.

distance between nozzle connect station
(Sta. 41.13) and nozzle throat, measured

along model centerline, positive
downstream (see fig. 13), 2.275 in.

vertical distance measured from model

centerline, positive upwards (see figs. 8

and 9), in.

lateral distance measured from model
centerline, positive to right when
looking upstream (see figs. 8 and 13),
in.

skin friction thrust ratio penalty

nozzle divergence half angle, 11.01 deg

oblique shock-wave inclination angle,

measured from upstream flow direction,

deg

Y ratio of specific heats, 1.3997 for air

0 angle of flow direction across an
oblique shock wave, measured from
upstream flow direction, deg

Subscripts:

1 conditions just upstream of a shock
wave

2 conditions just downstream of a shock
wave

Abbreviations:

C-D convergent-divergent

Hz Hertz

NPAC Nozzle Performance Analysis Code

radius, in.

Sta. model station, in.

Apparatus and Procedures
Test Facility

This investigation was conducted in the model
preparation area of the Langley 16-Foot
Transonic Tunnel. Although this facility is
normally used for setup and calibration of wind-
tunnel models, it can also be used for nozzle
internal performance testing at static (no external
flow) conditions. Testing is conducted in a 10 x
29-foot chamber where a cold-flow (=540°R)
jet from a single-engine propulsion simulation
system exhausts to the atmosphere through an
acoustically treated exhaust passage. A control
room is adjacent to the test chamber, and offers
access through a sound-proof door and
observation window. The model preparation area
shares a high-pressure air system with the 16-Foot
Transonic Tunnel that includes valving, filters,
and a heat exchanger to provide a continuous flow
of clean, dry air to the propulsion simulation



system for jet-exhaust simulation. A complete
description of the test facility is provided in
reference 12.

Single-Engine Propulsion Simulation
System

The single-engine propulsion simulation
system used in this investigation is shown in
detail in figure 3. High-pressure air supplied to

performance, the nozzle divergent flap surfaces
were modified with three-dimensional convoluted
contouring.

Convoluted contouring. Numerous research
programs have shown that three-dimensional
convoluted contouring can enhance multistream
mixing and reduce subsonic boundary-layer
separation in various applications (refs. 7 through
10). The most familiar application of convoluted

the propulsion simulation system was varied from contouring is the turbofan forced mixer shown in
atmosphere up to about 140 psi total pressure infigure 4, which efficiently mixes engine-core and
the instrumentation section at a constantfan exhaust flow in mixed-flow, long-duct,
stagnation temperature of approximately 330 turbofan nacelles by generating streamwise
As shown in figure 3(b), the high-pressure air was vorticity as shown in figure 5 (ref. 14). In
delivered by six air lines through a support strut addition, convoluted contouring has proven
into a annular high-pressure plenum. The air wassuccessful in alleviating boundary-layer
then discharged radially into a low-pressure separation on fighter aircraft afterbodies (ref. 9)
plenum through eight equally spaced, multiholed and airfoil trailing edges (ref. 7). Part of this
sonic nozzles. This flow transfer system was separation alleviation is due to energization of the
designed to minimize any forces imposed by the boundary layer from vorticity generated by the
transfer of axial momentum as the air passed fromconvoluted contours, but research has shown that
the non-metric high-pressure plenum to the metric the contouring can also delay separation in the
(attached to the balance) low-pressure plenum.convoluted section itself (refs. 7 to 10).
Two flexible metal bellows functioned as seals
between the non-metric and metric portions of the  The "bump" type convoluted contouring used
model and compensated for axial forces caused byin this investigation is depicted in figure 6. This
pressurization. The air then passed through acontouring generates multi-dimensional pressure
circular-to-rectangular transition section, a gradients and inviscid secondary flows in a
rectangular choke plate (primarily used for flow normally two-dimensional onset flow, providing
straightening), a rectangular instrumentation three-dimensional relief for the onset boundary
section, and then through the nozzle, which layer as it approaches an adverse pressure
exhausted to atmospheric back pressure. Thegradient. As boundary-layer flow nears the
instrumentation section had a ratio of flow path convolutions, it receives additional freedom of
width to height of 1.437 and was identical in movement in the lateral direction, which reduces
geometry to the nozzle airflow entrance (nozzle the tendency for two-dimensional separation to
connect station). All nozzle configurations tested occur. In addition, the convolutions generate
were attached to the downstream end of secondary flows in the form of horseshoe vortices
instrumentation section at model station 41.13. due to the inviscid turning and stretching of
vortex filaments as they pass over the contours.
These vortical secondary flows can trail
downstream 5 to 10 convolution heights before
A fixed-geometry, nonaxisymmetric, C-D breaking down, continuously energizing the
nozzle was designed with symmetric pairs (upper boundary layer in that region (ref. 9).
and lower) of convergent and divergent flaps and
flat (internally) sidewalls to contain the exhaust Nozzle Models
flow in the lateral direction. The nozzle was
based on a previous design described in reference  The model used in this investigation was a
13. In an effort to improve off-design sub-scale, nonaxisymmetric, C-D nozzle with an

Nozzle Concept



expansion raticAJA, of 1.797 (NPR=8.78), a
nominal throat ared, of 4.317 ir}, and a constant
flow path width of 3.990 in. The model was
composed of upper and lower nozzle flap

fashion. The length of the convoluted run was
1.00 inch for the fine, medium, and coarse
convoluted configurations and 1.75 inches for the
medium-long convoluted configuration.

assemblies, (each equipped with interchangeable
divergent flap inserts) and two sidewall Instrumentation
assemblies (each equipped with optical quality
boro-silicate crown glass windows to permit Weight-flow rate of high-pressure air supplied
internal focusing schlieren flow visualization). A to the nozzle was calculated from pressures and
photograph, sketch, and geometric details of thetemperatures measured in a calibrated multiple-
nozzle model with baseline (no convolutions) critical venturi system located upstream of the
divergent flap inserts installed are presented inpropulsion simulation system. This venturi
figures 7, 8, and 9, respectively. The four system is the same airflow-measurement system
convoluted geometries investigated consisted of aused in the 16-Foot Transonic Tunnel, and is rated
fine configuration (fig. 10(a)), a medium to be 99.9% accurate in weight-flow
configuration (fig. 10(b)), a medium-long measurements. Forces and moments were
configuration (fig. 10(c)), and a coarse measured by a six-component strain-gauge
configuration (fig. 10(d)). Photographs of the balance located on the centerline of the propulsion
convoluted flap insert pairs and a typical simulation system. Jet total pressure was
convoluted nozzle configuration are presented in measured at a fixed station in the instrumentation
figures 11 and 12, respectively. section with a four-probe rake through the upper
surface and a three-probe rake through the corner
Design of the convoluted configurations was as shown in figure 3(b). Two iron-constantan
based on guidance from prior research (refs. 7 tothermocouples in the instrumentation section
10). Convolution length-to-height scaling was measured jet total temperature.
varied by testing aggressive contours, in which
the convolution rose to its maximum amplitude in Static pressures were measured inside the
a short distance (0.5 in. for the fine, medium, and nozzle for each configuration using 0.020-inch
coarse convoluted configurations), and a more diameter static pressure orifices as shown in
gentle contour, in which the convolution rose to figure 13. There were six static pressure orifices
its maximum amplitude over a longer distance in the nozzle convergent section and one orifice at
(0.875 in. for the medium-long convoluted the geometric throat (fig. 13(a)), located on the
configuration). The fine, medium, and coarse nozzle centerline (z=0.000 in.). The flap inserts
convoluted configurations had approximately the were equipped with a row of centerline and
same wetted area, while their geometry varied in sideline (0.400 inches from the sidewall) pressure
maximum amplitude. Engineering judgment was orifices, each containing 21 static pressure
used to pick a maximum amplitude of 0.0998 orifices spaced 0.100 inches apart. Unigque to the
inches for the medium convoluted configuration; convoluted configurations was an row of ten static
the fine and coarse convoluted configurations hadpressure orifices in the lobe valley (z=0.1995 in.),
maximum amplitudes that were one half and adjacent to the centerline lobe hill, that were
twice that of the medium convoluted added to determine multi-dimensional effects of
configuration, respectively. All convoluted the convolutions.
contours had parallel lobe walls, a lobe height to
width aspect ratio of 2.0, and semi-circular lobe Individual pressure transducers were used to
hills and valleys. Longitudinal and streamwise measure pressures in the air supply system,
convolution profiles were composed of multiple-critical venturi, instrumentation section,
symmetric, tangent arcs such that the and nozzle convergent section. The transducers
convolutions rose from zero height to their were selected and sized to allow the highest
maximum amplitude in a smooth, continuous accuracy over each required measurement range.



Divergent flap pressures were measured by twotemperature probes located in the instrumentation
electronically scanning pressure modules locatedsection. The average jet total pressure and jet
in the model preparation area test chamber in antotal temperature are computed as the arithmetic
acoustically shielded cabinet. mean of the individual measurements.

Data Reduction Nozzle thrust ratioF/F; is the ratio of
measured thrust along the body akisto the

Each data point is the average steady-statecomputed ideal isentropic thrust The measured

value computed from 50 frames of data taken at aweight-flow ratew,, which is determined by using

rate of 10 frames per second. All data were takena multiple-critical venturi system, is used to

with ascending NPR. A detailed description of determine ideal isentropic thrust from the

the procedures used for data reduction in thisfollowing equation:

investigation can be found in reference 11.

““RjTt,j 2y D_D 1 dv-l)/vg
¢ y-1 ONPRDO 7

Balance corrections. Each of the six Fi=wp_ |
measured balance components were initially \“
corrected for model weight tares and isolated
balance component interactions. Although the Uncertainty Analysis
bellows arrangement in the air pressurization
system was designed to minimize forces on the An uncertainty analysis of the results
balance caused by pressurization, small bellowspresented was performed based on a propagation
tares on the six-component balance still existed.of bias uncertainties of actual measurements
These tares resulted from small pressurethrough the data reduction equations. This
differences between the ends of the bellows whenanalysis assumes that bias errors are dominant
air system internal velocities were high and from over precision errors and is based on the method
small differences in the spring constant of the presented in reference 16. This method uses the
forward and aft bellows when the bellows were first order terms in a Taylor series expansion of
pressurized. Bellows tares were determined bythe data reduction equations to estimate the
testing Stratford choke calibration nozzles with uncertainty contributions of each measurement.
known performance over a range of expected With this technique, the contribution of each
internal pressure and external forces andmeasurement would be the measurement
moments. The resulting tares were then applieduncertainty multiplied by the derivative of
to the six-component balance data to obtainthe data reduction equation with respect to
corrected balance measurements. Balance axiathat measurement. The total uncertainty of the
force obtained in this manner is a direct final calculated result is estimated as the
measurement of the nozzle thrust along the bodyroot-sum-square of the individual contributions
axis, F. The procedure used for computing with 95-percent confidence.
bellows tares is discussed in detail in reference
15. The analysis accounted for the uncertainties of

the following measurements: jet total pressure, jet

Calculations. Jet total pressure was measured total temperature, atmospheric pressure, venturi
from four center rake and three corner rake total weight-flow rate, and balance axial force. The
pressure probes located in the instrumentationanalysis also accounted for the beneficial effect of
section. Nozzle pressure ratio (NPR) is the averaging multiple measurements of the same
average jet total pressum; measured in the quantity, such as the total pressure in the
instrumentation section divided by ambient instrumentation section. This type of analysis is
pressurey,; NPR was varied in this investigation typical of that used for experimental static test
from 1.25 to approximately 9.50. Jet total programs and is credited to the work presented in
temperaturel,; was obtained from two total reference 17.



The results of the analysis for the range of testare made in terms of percentage change from
conditions indicate that the uncertainty of NPR ideal /F=1) isentropic conditions. Graphical
and p/p; is approximately+0.28 percent of presentation of basic and summary data are

measured value. The uncertainty Bff; is presented in figures 15 to 30.
approximately +0.004 and is essentially
independent of NPR. Results and Discussion
Focusing Schlieren Flow Visualization On-Design Performance
A focusing schlieren flow visualization system Baseline configuration. Nozzle thrust ratio

was used during this investigation to visualize the F/F; performance for the baseline configuration is
nozzle internal (through glass sidewalls) and presented as a function of nozzle pressure ratio
external exhaust flowfield. An optical description (NPR) in figure 15. Peak thrust ratib/E;),ea for
and schematic layout of the focusing schlieren the baseline configuration is approximately 0.986
system are presented in figure 14. The systemat the on-design condition (NRE8.78), which is
was designed and built based on criterion reportedwithin the 0.985 to 0.990 range consistent with
in reference 18. The system is characterized by gorevious studies of nonaxisymmetric convergent-
133 mm diameter field of view, a sensitivity of 17 divergent nozzles (refs. 19 to 21). The
arcsec, a resolution of 0.25 mm, a depth of sharpapproximate 1.4% loss in peak thrust ratio from
focus of 4.6 mm, and a depth of unsharp focus ofideal isentropic conditions at NBRcan be
36 mm. The image was focused on the centerlineattributed to exit flow angularity effects and
of the nozzle. friction drag inside the nozzle (ref. 22).

The light source for the focusing schlieren Convoluted configurations. When an exhaust
system was a xenon strobe flash tube. A driving nozzle is operating at the on-design condition, it is
circuit picked up sync pulses generated by theinternally shock free, the flow is fully expanded,
recording video camera and triggered the flash atand peak thrust efficiency is produced. Therefore,
a 30 Hz rate with pulses of Ou&ec duration and the presence of convoluted contours in the
0.05 watt-sec power. A 720 x 480 pixel divergent section of the nozzle would likely result
resolution color video camera and a 70 mm still in on-design performance penalties. Because
camera recorded results. convolutions would probably be present at all

operating conditions, on-design performance

The focusing schlieren system was assembledpenalties associated with the convoluted geometry
on a 44 x 66 inch table that mounted on a rigid must be minimized to ensure that the benefits of
platform equipped with casters and leveling having the convolutions at off-design conditions
screws. The platform was placed under the are not outweighed by any on-design performance
propulsion simulation system and jacked and penalties.
leveled to the appropriate position. Flow
visualization data were recorded simultaneously  Nozzle thrust ratio performander baseline
with other data acquisition. and convoluted configurations is presented as a

function of NPR in figure 16. All convoluted
) configurations hadH/F),..« at NPR that were
Presentation of Results lower than the baseline value. This result is
summarized in table 7. Losses FIK;) . due to

Nozzle thrust ratioF/F;, and internal static the convolutions were 1% or less for the fine,
pressure ratiop/p; data for all nozzle medium, and medium-long convoluted
configurations tested are tabulated in table 1 andconfigurations. The coarse convoluted
tables 2 to 6, respectively. During the discussion configuration had a significantly larger 2.9% loss
of results, comparisons of nozzle thrust rdi6; in (F/F)peax @s a result of its more aggressive



convoluted geometry. 18, shows that the convoluted configurations
generated intense supersonic wave radiation that
The convoluted configurations had a coalesced into obligue shocks at certain points in
significant increase in wetted area over that of thethe nozzle. The presence of oblique shocks
baseline configuration. Consequently, increasedreduces jet momentum in the nozzle, which
skin friction losses were expected to impart a explains the additional peak thrust ratio penalties
thrust ratio penalty. After calculating wetted area imposed by the convolutions. The medium-long
for each configuration, skin friction drag penalties convoluted configuration (fig. 18(d)) appears to
A(F/F); were estimated andFAF) ..« values were  have generated less supersonic wave radiation
predicted using the baseline nozzle pressurethan the other convoluted configurations,
gradient as input to the nozzle internal explaining the aforementioned lower losses in
performance prediction package NPAC described (F/F;),..for this configuration.
in reference 22. The results are summarized in
table 8. A comparison of baseline and convoluted
internal static pressure ratio distributions (plotted
The increase in wetted area was 15% for theagainst nondimensionalized streamwise location
fine, medium, and coarse convoluted relative to the nozzle throatx) is presented in
configurations and 26% for the medium-long figure 19 at NPR=8.9. In each convoluted
convoluted configuration. Using NPAC, a skin configuration, pressures upstream and down-
friction drag penalty of 0.2% was estimated and stream of the convolution run were not greatly
peak thrust ratio of 0.984 was predicted for the affected by the convolutions. Flow over the fine
coarse, medium, and fine convoluted (fig. 19(a)) and medium-long (fig. 19(c))
configurations. A slightly higher skin friction convolution runs was characterized by weak
drag penalty of 0.3% and slightly lower peak compressions (locally increasingp;) at the
thrust ratio of 0.983 was predicted for the leading and trailing edges of the convolution hill
medium-long convoluted configuration. A and a stronger compression midway in the
comparison of NPAC predicted and convolution valley. Similar behavior occurred for
experimentally measured peak thrust ratios for the medium (fig. 19(b)) and coarse (fig. 19(d))
baseline and convoluted configurations is convoluted configurations except that compres-
presented in figure 17. The fine and medium-long sions were much stronger and were separated by
convoluted configurations had the highest thrust regions of rapid expansion (locally decreasing
ratio performance of the convoluted p/p;) for these configurations. This behavior may
configurations, which atR/F),.~0.980, was help explain why the medium convoluted
only 0.6% lower than the baseline value. The configuration had stronger supersonic wave
medium and coarse convoluted configurations hadradiation and a lowerH(F;),c.« than the medium-
peak thrust ratio performance that was 1.0% andlong convoluted configuration. Like the coarse
3.1% lower than the baseline value, respectively. convoluted configuration, the medium convoluted
Note that the medium-long convoluted configuration presented a much more aggressive
configuration, with 11% more wetted area than streamwise convolution geometry than the
the other convoluted configurations, had a higher medium-long or fine convoluted configurations,
(F/F)pea than the medium convoluted such that the flow had to turn more abruptly
configuration. This result suggests that on-designthrough the convolutions and a stronger
thrust ratio penalties for convoluted compression/expansion mechanism was
configurations are only partially attributable to necessary. The convolution hill for the coarse
increased wetted area; e.g., they are related taconvoluted configuration was aggressive enough
some other phenomena as well. to generate a strong shock (noted by a rapid
compression) at the start of the convolution run,
Flow visualization at NPR=8.9, presented for which explains the severe drop ifr/E;)pea
baseline and convoluted configurations in figure measured for that configuration.



Off-Design Performance recovery to ambient pressure occurred over the
remaining length of the nozzle. Flow
Baseline configuration. As shown in figure  visualization at NPR=1.8 in figure 21(b) shows
15, nozzle thrust ratio decreased as NPRthe shock with a small lambda foot structure. The
decreased below NRRa result of exhaust flow flow was also highly unstable; this phenomena
overexpansion effects. Internal static pressurewas observed in the schlieren video recorded
ratio distributions for the baseline configuration, during the test and is indicated by the schlieren
presented in figure 20, are typical of convergent- photograph, which captured an image of the
divergent nozzle flow characteristics (ref. 23). shock in two positions over a Oiec duration.
For centerline pressurez=0.00 in.), the first two  Because the image was focused on the centerline
curves at a NPR of 1.26 and 1.4 indicate chokedof the nozzle with a depth of sharp focus of 4.6
(p/p,;<0.528), internally overexpanded flow with mm, the dual-shock nature of this photo should
a weak shock (noted by the significant increase innot be attributed to an alignment problem.
p/p; with x/x) present near the nozzle geometric
throat &/x=1.00). Flow downstream of the shock An increase in pressure ratio to NPR=2.0 did
was subsonicp(p,;>0.528), remained attached to not significantly change shock location or
the divergent flap wall, and recovered to ambient strength, but did result in fully detached shock-
pressure [{/p,;=1/NPR) in a smooth, continuous induced separation with almost no pressure
fashion. Flow visualization for the baseline recovery downstream of the shock (fig. 20). Flow
configuration is shown in figure 21. At NPR=1.4 visualization at NPR=2.0 in figure 21(c) shows
(fig. 21(a)), there was a weak, almost normal the shock with a pronounced lambda foot
shock downstream of the throat with little or no structure and a large separation region extending
lambda foot structure evident. This behavior is from the leading lambda foot downstream past the
characteristic of a weak shock, with a flow Mach nozzle exit. The results discussed above indicate
number of approximately 1.2 just upstream of the that the nozzle flow adjusted to exit conditions at
shock (M), and a thin boundary layer inside the NPR=2.0 simply by detaching from the divergent
nozzle. Flow Mach number inside the nozzle was flaps, while normalized pressure (and thus Mach
estimated fromp/p; values using tables for number) upstream of the shock matched those of
compressible flow in reference 24. the previous NPR. This behavior indicates that
the onset of fully detached flow separation at
As shown in figure 20, the discontinuous NPR=2.0 was not the result of a stronger shock-
nature of the centerline pressure distribution at boundary layer interaction, but instead came
NPR=1.6 indicates that shock strength increasedabout through the natural tendency of
(M;=1.4), and the inflection point in the pressure overexpanded exhaust flow in a fixed-geometry
recovery downstream of the shock xdk=1.28 nozzle to conserve mass, momentum, and energy
indicates that flow separation occurred on the by detaching from the divergent flaps and
divergent flaps, though it was not severe. The "adjusting” to an effectively shorter nozzle with a
pressure distribution also indicates that the flow lower expansion ratio.
became subsonic downstream xdk=1.55 and
flow reattachment to the flap is indicated by the =~ As shown in figure 15, the onset of fully-
smooth pressure recovery downstream of thisdetached, shock-induced, boundary-layer separ-
point. By NPR=1.8, the upstream shock Mach ation at NPR=2.0 corresponds to a marked
number was MN<1.5 and shock-induced, increase in nozzle thrust ratio. By providing an
boundary-layer separation began to dominate effectively lower nozzle expansion ratio, internal
nozzle flow characteristics. At NPR=1.8, there flow separation reduced overexpansion losses in
are strong signs of a separation bubble, withthe nozzle and increased nozzle thrust ratio. It
minimal pressure recovery indicated by a should be noted that this beneficial effect may not
relatively flat pressure distribution from the shock exist at forward speeds where external flow could
location atx/x=1.35 out tox/x=1.7; however, full aspirate the separated portion of the divergent



flaps, causing increased drag. As a result, thelocation upstream of its centerline position.
ability to alleviate separation inside a fixed- Sideline pressures near the nozzle exit are lower
geometry nozzle may be beneficial to overall than centerline pressures, indicating that sideline
aeropropulsive performance at forward speeds,flow was recompressing downstream of the
even if small losses in nozzle thrust ratio occur asnozzle exit.
a result of the separation alleviation process. The
information required to make the tradeoff Convoluted configurations. Individual
between allowing separation to occur or comparisons of nozzle thrust ratio between
alleviating separation is beyond the scope of thisbaseline and convoluted configurations are
investigation. presented in figure 22. At very low NPRs, the
convoluted configurations exhibited performance

As shown in figure 20, fully-detached flow characteristics that were similar to the baseline
separation occurred for all subsequent internally configuration. Static pressure ratio distributions
overexpanded NPRs above 2.0. As NPR waspresented for each convoluted configuration in
increased beyond 2.0, the leading lambda footfigure 23 show overexpanded and separated flow
progressed downstream in the nozzle. Figureat NPRs up to 2.0 in the fine convoluted
21(d) shows the shock at NPR=2.4 with a well configuration (fig. 23(a)), 1.8 in the medium
defined lambda foot structure and fully detached convoluted configuration (fig. 23(b)), and 1.6 in
flow separation. By NPR=3.4 (fig. 21(e)), the the medium-long (fig. 23(c)) and coarse
lambda foot structure had grown significantly, convoluted configurations (fig. 23(d)). Flow
such that the main shock and trailing lambda foot visualization at these NPRs, presented in figure
were outside the nozzle. At this NPR, flow inside 24, show various degrees of separation for each
the nozzle past the separation point showed strongonfiguration. For all NPRs equal to or lower
resemblance to externally overexpanded exhausthan the above noted values, figure 23 shows the
flow; the jet plume necked down from the shock positioned upstream of the convolution run
separation point at the leading lambda foot to theand similar hill and valley pressure distributions,
trailing lambda foot, and there was an expansionindicating that a multi-dimensional pressure
fan emanating from each trailing lambda foot. gradient was not generated across the convolution
This behavior indicates that the separation pointrun at these low NPR values.
was behaving as if it were at the nozzle exit, and
flow past this point was externally overexpanded. = When nozzle pressure ratio was increased
Static pressure ratio distributions in figure 20 above these low NPR values, figure 22 shows that
indicate that the shock was positioned near thethere was a dramatic drop KiF; for each of the
nozzle exit by NPR=5.0 and that the nozzle was convoluted configurations. The drop K/F,
shock free by NPR=5.4. At NRR.4, all occurred for the fine convoluted configuration
pressure distributions fell on the same curve, (fig. 22(a)) at a NPR between 2.0 and 2.2, when
indicating that nozzle internal flow characteristics the shock jumped from its position upstream of
were independent of NPR beyond that point. the convolution run ak/x=1.2 to a position

midway through the convolution run atx=1.6

A comparison of sidelinez£1.595 in.) to (fig. 23(a)). Flow visualization for the fine
centerline £=0.000 in.) internal static pressure convoluted configuration in figure 25 shows a
ratio distributions in figure 20 indicates noticeable nearly normal shock at NPR=2.2 (fig. 25(a)) with
differences below NPR=2.4. Differences between a lambda foot structure significantly smaller than
sideline and centerline pressure distributions in that of the baseline configuration (fig. 21(c)) at a
both shock location and pressure recovery past thesimilar NPR and shock location. With this "shock
shock indicate that flow inside the nozzle was jump", flow over the convolution run was
three-dimensional and that the shock was non-supersonic, a multi-dimensional pressure gradient
planar. Sideline data at NPR of 1.26 and 1.4 was generated across the convolution run, and
show fully-detached flow separation and a shock flow separation was almost completely alleviated.
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As a result, nozzle internal flow could no longer indicates that the leading lambda foot remained in
adjust to exit conditions by detaching from the the same location while the main shock moved
divergent flaps; thus, exhaust flow overexpansion downstream and the lambda foot grew with
losses increasedr{F; decreased). increasing NPR. As this occurred, flow remained
attached through the shock, and downstream
Above the "shock jump" NPRE/F; for the pressure recovery was good.
fine convoluted configuration increased
continuously as overexpansion losses decreased As NPR was increased to 3.0, the shock once
(fig. 22(a)). Static pressure ratio distributions for again jumped downstream, this time fra/R=1.6
the fine convoluted configuration in figure 23(a) to a position near the nozzle exitxdk=1.9. As
indicate that the shock moved smoothly for the previous shock jump, there is a
downstream with each subsequent increase incorresponding shift in nozzle thrust ratio (fig.
NPR. At each shock position, the pressure rise22(b)), though in this case the shift is more likely
through the shock was gradual, the flow generally due to a loss effect than additional separation
remained attached (local areas of separated flowalleviation. As shown in figure 26(c), when the
are evident), and there was good pressureshock jumped downstream at NPR=3.0, it
recovery downstream of the shock. A comparison"uncovered" the valley oblique shock at the
of flow visualization for the fine convoluted trailing edge of the convolution run such that loss
configuration at NPRs of 2.2 and 2.6 in figure 25 effects of that shock could affect nozzle thrust
shows a larger lambda foot structure and a moreratio. Beyond NPR=3.0, the shock moved
turbulent attached region downstream of the smoothly out of the nozzle, and the nozzle was
shock at the higher NPR value. As indicated in shock free at NPR>4.6 (fig. 23(b)). The losses in
figure 23(a), the fine convoluted configuration F/F; due to the medium convolutions were as
was free of internal shocks at NPR>5.0. Losseslarge as 6.5% at NPR=2.0, but decreased to
in F/F; due to the fine convolutions were as large approximately 1% at NPR>4.6 (fig. 22(b)).
as 6% at NPR=2.2, but decreased to less than 1%
at NPR=5.0 (see figure 22(a)). The "shock jump" for the medium-long
convoluted configuration occurred between a
The "shock jump" for the medium convoluted NPR of 1.6 and 1.8 as indicated by the static
configuration occurred between NPRs of 1.8 and pressure ratio distributions in figure 23(c). The
2.0. The centerline static pressure distribution for centerline static pressure distribution at NPR=1.8
the medium convoluted configuration (fig. 23(b)) also indicates a double shock (onexat=1.45
at NPR=2.0 shows a gradual pressure rise throughand one atx/x=1.6) with a small separation
the shock and good downstream pressurebubble in between. Flow visualization for the
recovery. Flow visualization for the medium medium-long convoluted configuration at
convoluted configuration at NPR=2.0 (fig. 26(a)) NPR=1.8 (fig. 27(a)) shows the double shock
shows turbulent, attached flow downstream of the with attached flow downstream of the second
shock, indicating that this configuration also shock. Unlike the medium convoluted
provided good separation alleviation. However, configuration, F/F;, for the medium-long
F/F; for the medium convoluted configuration convoluted configuration at NPR>2.0 was
(fig. 22(b)) was not continuous above the "shock continuous (fig. 22(c)), and pressure distributions
jump" NPR (note discontinuity inF/F; at (fig. 23(c)) indicate that the shock moved
2.5<NPR<3.0). Static pressure ratio distributions smoothly downstream with each subsequent
for the medium convoluted configuration (fig. increase in NPR. At each shock position, the
23(b)) show that the main shock merged with the pressure rise through the shock was gradual, the
strong convolution valley oblique shock at a NPR internal flow remained attached, and there was
between 2.0 and 2.6. A comparison of flow strong pressure recovery downstream of the
visualization for the medium convoluted shock. Flow visualization for the medium-long
configuration at NPRs of 2.0 and 2.6 in figure 26 convoluted configuration at NPR=2.6 (fig. 27(b))
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shows a larger lambda foot structure and a moreon-design nozzle thrust ratio penalty given the
turbulent attached region downstream of the mainexcellent off-design flow separation alleviation
shock than at the lower NPR. Static pressure ratiocapabilities of this configuration (assuming that
distributions (fig. 23(c)) indicate that the medium- external flow effects would cause additional drag
long configuration was shock free at NPR>4.2. when internal nozzle flow was separated).

As shown in figure 23(d), the "shock jump" Shock-Boundary Layer Interaction
for the coarse convoluted configuration occurred
between a NPR of 1.6 and 1.8. For this Baseline configuration. Flow visualization at
configuration, the shock moved downstream after NPR=3.0 for the baseline configuration in figure
the initial "shock jump"”, but then merged with the 29 shows the shock with a large, well defined
valley oblique shock and remained in that position lambda foot structure and fully-detached flow
at x/x=1.6 for NPRs between 2.2 and 3.8. A separation beginning at the leading branch of the
second jump in the shock positior/%=1.6 to lambda foot and extending downstream. Shock
XIx=1.75) for the coarse convoluted configuration angle measurements were made from figure 29,
is evident in figure 23(d) at NPR=4.2, when the and were used in conjunction with oblique shock
shock separated from the convolution valley theory (ref. 24) in an effort to better describe the
oblique shock. This is observed in flow shock-boundary layer interaction as shown in
visualization photographs for the coarse figure 30.
convoluted configuration at NPRs of 3.8 and 4.2
in figure 28, which shows the shock structure Upstream of the leading lambda foot, flow was
further downstream at the higher NPR value. As assumed to be locally parallel to the nozzle
was the case with the medium convoluted divergent flap and Mwas calculated fronp/p;
configuration, this jump coincided with a decrease values to be approximately 1.8. Flow decelerated
in nozzle thrust ratio (note the change in slope of across the leading lambda foot which, with an
F/F, at NPR:=4.0 in fig. 22(d)) when the valley inclination angle of approximately 52from the
oblique shock was uncovered and the loss effectsnozzle divergent flap, resulted in a downstream
of that shock were added. At NPR>4.2, the shockMach number M of approximately 1.2. Using
moved smoothly out of the nozzle, and the nozzle oblique shock theory, the flow turning angde
was shock free for NPR>5.4 as indicated by the across the leading lambda foot was calculated to
pressure distributions of figure 23(d). The lossesbe 15. The leading lambda foot possessed the
in F/F; due to the coarse convolutions (fig. 22(d)) severity of a normal shock and was strong enough
were as large as 8% at NPR=2.4, but decreased teco completely detach nozzle flow from the

approximately 2.6% near NRR divergent flaps. From the new flow direction, the
trailing branch of the lambda foot had an
The medium-long convoluted configuration inclination angle of B=63°. For M=1.2

provided the best combination of separation approaching this shock, the corresponding flow
alleviation and continuous downstream shock turning angle of the trailing lambda foot was
movement (no shock jumps past the initial jump). calculated to b&=3°. This satisfied flow turning
Separation alleviation began at NPR=1.8 for this requirements of the fully detached flow separation
configuration, and the nozzle was shock free for region and resulted in nearly axial flow
NPR>4.2, which was a lower NPR than for any of downstream of the trailing lambda foot.

the other convoluted configurations. The losses

in F/F; due to the medium-long convoluted In this shock-boundary layer interaction, it is
geometry (fig. 22(c)) were as large as 7% at apparent that the nozzle flap was steep enough
NPR=2.4, but decreased to less than 1% atand the remaining length of the nozzle past the
NPR>5.0. At on-design conditions, the medium- flow separation point was short enough that
long convoluted configuration suffered only a reattachment would not occur, since the given
0.6% loss ink/F),.s« This may be an acceptable shock structure resulted in nearly axial flow in the
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nozzle. As a result, the free shear layer generatedine convoluted contouring alleviated separation
in the flow separation process became the actualfor all NPRs past the shock jump. The medium
exit shear layer of the nozzle and the flow and medium-long convoluted configurations were
separation point behaved as if it were the nozzledesigned with common spanwise profiles, but it
exit. appears that the slightly less aggressive
streamwise run in the medium-long convoluted
Convoluted configurations. Each convoluted configuration provided the best off-design
configuration had dramatically different shock- separation alleviation over the widest range of
boundary layer interaction characteristics than theNPR with the lowest peak thrust ratio penalty.
baseline configuration. As indicated in figure 20, The coarse convoluted configuration also
static pressure ratio distributions for the baseline improved the shock-boundary layer interaction,
configuration at NPR>1.41 were characterized by but this configuration experienced substantial
a single, sharp compression with subsequentlosses in peak thrust ratio.
shock-induced, boundary-layer separation. This
behavior is illustrated by flow visualization in Conclusions
figure 21, which shows the baseline configuration
with a large, well defined lambda foot structure, An investigation was conducted in the model
and fully detached flow downstream of the preparation area of the Langley 16-Foot
leading lambda foot. Transonic Tunnel to determine the effects of
convoluted divergent-flap contouring on the
Static pressure ratio distributions presented in internal performance (nozzle thrust ratio) of a
figure 23 for the convoluted configurations fixed-geometry exhaust nozzle. Testing was
indicate that the convoluted contouring conducted at static conditions using a sub-scale,
significantly reduced, and in some cases totally nonaxisymmetric, convergent-divergent nozzle
alleviated, shock-induced boundary-layer model designed with interchangeable divergent
separation. Pressure distributions indicate that aflap surfaces. Force, moment, and pressure
multi-dimensional pressure gradient was formed measurements were taken and internal focusing
across the convolution run at all but the lowest schlieren flow visualization was obtained for one
NPRs. It is likely that the generation of baseline (no convolutions) and four convoluted
streamwise vorticity energized the nozzle configurations. All tests were conducted with no
boundary layer upstream of the shock-boundary external flow and nozzle pressure ratio was varied
layer interaction region. The energized boundary during jet simulation from 1.25 to approximately
layer was able to negotiate the severe adversed.50. The results of this investigation indicate the
pressure gradient of the shock, thereby following conclusions:
minimizing shock-induced boundary-layer
interaction effects and alleviating flow separation. 1. Convoluted configurations were found to
significantly reduce, and in some cases totally

Each convoluted configuration had a distinct
shock-boundary layer interaction mechanism,
undoubtedly due to the different contouring in
each case. The fine convoluted configuration had
the least aggressive contouring, resulting in
shock-boundary layer interaction characteristics
closest to the baseline nozzle. (Compare figures
20 and 23(a).) However, flow visualization for
the fine convoluted configuration (fig. 25(a))
shows a noticeably smaller lambda foot structure
than the baseline configuration and static pressure
ratio distributions in figure 23(a) indicate that the
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alleviate, shock-induced, boundary-layer
separation at off-design conditions. This
indicates that the convoluted contouring
energized and improved the condition of the
nozzle boundary layer such that the boundary
layer was able to resist the natural separation
tendency of the exhaust flow. This did,
however, result in off-design nozzle thrust
ratio penalties that ranged from 3.6% to 6.4%
below the fully separated baseline
configuration, thus imposing a tradeoff
between separation alleviation and nozzle



thrust ratio which may be acceptable in some 6 .
applications.

2. Of the four convoluted configurations tested,
the medium-long convoluted configuration
provided the best combination of off-design
separation alleviation and continuous down-
stream shock movement. Separation
alleviation began at NPR=1.8 in this g
configuration, and the nozzle was shock free
at NPR>4.2, earlier than any of the other
convoluted configurations tested. Even with
26% more internal wetted area than the 9.
baseline configuration, the medium-long
convoluted configuration had a peak thrust
ratio of 0.980, only 0.6% below the baseline
value.

10.

3. At on-design conditions, nozzle thrust ratio
for the convoluted configurations ranged from
1% to 2.9% below the baseline configuration.
This was a result of the convolutions 11
increasing skin friction and oblique shock
losses inside the nozzle.

NASA Langley Research Center
Hampton, Virginia 23681-0001

January 4, 1999 12.
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LZ

Table 7. Measured Peak Thrust RakitR)peakat NPR=8.9

Configuration (FIF)peak
Baseline 0.986
Fine convoluted 0.980
Medium convoluted 0976
Medium-long convoluted 0.980
Coarse convoluted 0.957

Table 8. Wetted Area, Skin Friction Drag Penalfigs/Fi)f, and Peak Thrust Rati&/Fj)peak

Configuration Wetted Area,in2 | Estimated A(F/F i)f | Predicted (F/Fj)peak | Measured (F/Fj)peak
Baseline 52 400 00075 0.986 0986
Fine convoluted 60206 0.0092 0984 0980
Medium convoluted 60.206 0.0092 0.984 0976
Medium-long convoluted 65.965 00105 0.983 0980
Coarse convoluted 60.206 0.0092 0984 0957




Takeoff Condition Subsonic Cruise

ANNNN \\§§§§§ ANNNY \W
V77777 /% vZ7777. /m

Dash to Mach 2 Maximum Power at Mach 2

Figure 1. Sketch showing a typical variable geometry nozzle over several operating conditions.

Reverser actuator

Flange

Area control o Reverser vane
vane =, £

Convergent Flap hinge
actuator

Divergent
actuator

Offset pivot
Transition
section
Convergent flap
Arc valve

Sidewall disk

. /,.— External

flap

Divergent flap

Sidewall

Figure 2. Sketch showing a typical variable geometry nonaxisymmetric exhaust nozzle.
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Figure 7. Photograph of the static test model with baseline flap inserts installed.



Section B-B 3-Quarter View

Sta.
41.13
y
. A
Sidewall assembly -
N
Nozzle flap assembly
L > 7
+ > X
Sidewall assembly
End View
Section A-A (looking upstream)

"

I

I
Interchangeable _

divergent flap inserts

— | _|_ — —
! ———
Glass window
|
I

.

Figure 8. Sketch of nozzle model with baseline flap inserts (shaded) installed.
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Sta. _ Coordinates
41.13 Point - -

x,in. | y,in.

1 0.000 [ 0.000

2 0.000 | -0.614

3 0.000 [ 1.386

4 0.917 1.163

5 1.988 | 0.611

6 2.394 | 0.553

7 2.430 | 0.559

8 2.275 1.166

9 4550 | 0.972

X _ _Nozzle
centerline

2 ' 2.160 |

3.990

(a) Nozzle flap assembly.
Figure 9. Sketch showing nozzle geometric details. Dimensions are in inches.
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Sta.

41.13
A
<€0.875> 1€ 3.675 >
1.944
A A
\ 2
Glass window
Section A-A

A\

I\\

(b) Sidewall assembly.

Figure 9. Concluded.
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Coarse

Medium-long

L92-08773

Figure 11. Photograph of the convoluted flap insert pairs.

Convoluted inserts=

L93-1014

Figure 12. Photograph of the static test model with convoluted flap inserts installed.
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View A-A

- — —o- oo—o—o—o—?—— — — —
| |
z |
|
|
|
Throat Exit
. . Static Pressure Orifice Locations
481%11'3 Side View
: X, in. X/IXt
—> X
Xt = 2.275 | 0.750 0.330
1.000 0.440
7 1.250 0.550
/ 1.500 0.659
1.750 0.769
2.025 0.890
/ Throat 2.275 1.000
/‘ o Denotes static pressure orifice location

NN

(a) Nozzle flap assembly static pressure taps.

Figure 13. Nozzle static pressure orifice locations. Dimensions are in inches.
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Sta.
41.13

Static Pressure Orifice Locations

z=0.000 in. z=1.595in.

X, in. XIXt X, in. XIXt

2,528 [ 1.111 | 2,528 | 1.111
2.626 | 1.154 | 2.626 | 1.154
2.724 | 1.198 | 2.724 | 1.198
2.823 | 1.241 | 2.823 | 1.241
2.921 | 1.284 | 2.921 | 1.284
A 3.019 | 1.327 | 3.019 | 1.327

A 3.117 | 1.370 | 3.117 | 1.370
3.215 | 1.413 | 3.215 | 1.413
3.313 | 1.456 | 3.313 | 1.456

3.412 | 1.500 | 3.412 | 1.500
3.510 | 1.543 | 3.510 | 1.543
3.608 | 1.586 | 3.608 | 1.586
3.706 | 1.629 | 3.706 | 1.629
3.804 | 1.672 | 3.804 | 1.672

; 3.902 | 1.715 | 3.902 | 1.715
View A-A 4.001 | 1.758 | 4.001 | 1.758
4.099 | 1.802 | 4.099 | 1.802

N\

Sta. 4197 | 1.845 | 4.197 | 1.845
43.56 4295 | 1.888 | 4.295 | 1.888
} 2.160 } 4393 | 1.931 | 4.393 | 1.931

4,491 | 1.974 | 4.491 | 1.974
O Denotes static pressure orifice location

B B Section B-B
@ L 000000000000000000000] J

I __3 990 | w

000000000000000000000] i

(b) Baseline flap insert static pressure taps.

Figure 13. Continued.
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Sta.

4113 Static Pressure Orifice Locations

I_, X z=0.000 in. z=0.1995 in. z=1595in.

7 X, in. xIxy | X, in. xIx¢ | X, in. XIXt

/ 2,528 | 1.111 2,528 | 1.111
2.626 | 1.154 2.626 | 1.154
2.724 | 1.198 2.724 | 1.198

/ 2.823 | 1.241 2.823 | 1.241
2.921 | 1.284 2.921 | 1.284

/ 3.019 | 1.327 | 3.019 | 1.327 | 3.019 | 1.327
3.117 | 1.370 | 3.117 | 1.370 | 3.117 | 1.370

3.215 | 1.413 | 3.215 | 1.413 | 3.215 | 1.413
A 3.313 | 1.456 | 3.313 | 1.456 | 3.313 | 1.456

3.412 | 1.500 | 3.412 | 1.500 | 3.412 | 1.500
A 3.510 | 1.543 | 3.510 | 1.543 | 3.510 | 1.543
3.608 | 1.586 | 3.608 | 1.586 | 3.608 | 1.586

3.706 | 1.629 | 3.706 | 1.629 | 3.706 | 1.629
3.804 | 1.672 | 3.804 | 1.672 | 3.804 | 1.672
3.902 | 1.715 | 3.902 | 1.715 | 3.902 | 1.715

4.001 | 1.758 4.001 | 1.758

4.099 | 1.802 4.099 | 1.802

4,197 | 1.845 4,197 | 1.845

4.295 | 1.888 4,295 | 1.888

4.393 | 1.931 4,393 | 1.931
s View A-A 4491 | 1.974 4.491 | 1.974
43.56 O Denotes static pressure orifice location

2.160
Section B-B

! N\

€ AL ooooo o00009 ﬂj‘

| c |
) 3.990 Section C-C
1.995
00000Q00000000D0000O0O0] i
0.400
Flow )
_>

(c) Convoluted flap inserts (medium convoluted flap insert shown) static pressure taps.

Figure 13. Concluded.
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Figure 16. Comparison of nozzle thrust ratio performance for baseline and convoluted configurations.
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Figure 17. Comparison of NPAC predicted and experimentally measured peak thrust ratios for baseline and
convoluted configurations.
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Baseline
NPR =8.9

(a) Baseline configuration.

Convolution
run

Fine convoluted
NPR =8.9

(b) Fine convoluted configuration.

Figure 18. Focusing schlieren flow visualization at NPR=8.9 for baseline and convoluted configurations.
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Convolution
run

Medium convoluted
NPR =8.9

(c) Medium convoluted configuration.

Convolution run

Medium-long
convoluted
NPR = 8.9

(d) Medium-long convoluted configuration.

Figure 18. Continued.
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Convolution
run

Coarse convoluted
NPR =8.9

(e) Coarse convoluted configuration.

Figure 18. Concluded.
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(b) Medium convoluted configuration.

Figure 19. Comparison of baseline and convoluted internal static pressure ratio distributions at NPR=8.9.
Open symbols deonte hill pressures; solid symbols denote valley pressures.
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(d) Coarse convoluted configuration.

Figure 19. Concluded.
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Figure 20. Internal static pressure ratio distributions for the baseline configuration.
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Baseline
NPR=1.4

(a) NPR = 1.4.

Baseline
NPR =1.8

(b) NPR = 1.8.

Figure 21. Focusing schlieren flow visualization for the baseline configuration.
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Baseline
NPR=2.0

(c) NPR = 2.0.

Baseline
NPR=2.4

(d) NPR = 2.4.

Figure 21. Continued.
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NPR =34

(e) NPR = 3.4.

Figure 21. Concluded.
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(b) Medium convoluted configuration.

Figure 22. Individual comparisons of nozzle thrust ratio performance for baseline and convoluted configurations
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(d) Coarse convoluted configuration.

Figure 22. Concluded.
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(a) Fine convoluted configuration.

Figure 23. Internal static pressure ratio distributions for convoluted configurations.
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(b) Medium convoluted configuration.

Figure 23. Continued.
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(c) Medium-long convoluted configuration.

Figure 23. Continued.
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(d) Coarse convoluted configuration.

Figure 23. Concluded.
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Convolution
run

Fine convoluted
NPR=2.0

(a) Fine convoluted configuration.

Convolution
run

Medium convoluted
NPR =1.8

(b) Medium convoluted configuration.

Figure 24. Focusing schlieren flow visualization for convoluted configurations showing nozzle shock
upstream of convolution run.
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Convolution run

Medium-long convoluted
NPR =1.6

(c) Medium-long convoluted configuration.

Convolution
run

Coarse convoluted
NPR =1.6

(d) Coarse convoluted configuration.

Figure 24. Concluded.
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Convolution
run

Fine convoluted
NPR=2.2

(a) NPR =2.2.

Convolution
run

Fine convoluted
NPR = 2.6

(b) NPR = 2.6.

Figure 25. Focusing schlieren flow visualization at NPRs of 2.2 and 2.6 for the fine convoluted configuration.
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Convolution
run

Medium convoluted
NPR =2.0

(a) NPR = 2.0.

Convolution
run

Medium convoluted
NPR= 2.6

(b) NPR = 2.6.

Figure 26. Focusing schlieren flow visualization at NPRs of 2.0, 2.6, and 3.0 for the medium convoluted
configuration.
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Convolution
run

Medium convoluted
NPR = 3.0

(c) NPR = 3.0.

Figure 26. Concluded.
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Convolution run

Medium-long convoluted
NPR =1.8

(a) NPR = 1.8.

Convolution run

Medium-long convoluted
NPR = 2.6

(b) NPR = 2.6.

Figure 27. Focusing schlieren flow visualization at NPRs of 1.8 and 2.6 for the medium-long convoluted
configuration.
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Convolution
run

Coarse convoluted
NPR =3.8

(a) NPR = 3.8.

Convolution
run

Coarse convoluted
NPR =4.2

(b) NPR = 4.2.

Figure 28. Focusing schlieren flow visualization at NPRs of 3.8 and 4.2 for the coarse convoluted
configuration.
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Baseline
NPR =3.0

Figure 29. Focusing schlieren flow visualization at NPR = 3.0 for the baseline configuration.

Figure 30. Sketch showing shock-boundary layer interaction lambda foot structure at NPR = 3.0
for the baseline configuration.
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