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f.(c,z) M, x 1 gradient vector of f(c,z) with respect to ¢
fcc,-j ijth column vector of length K contained in array F,,
fmij . kth element of vector fmij

f,(c,zy) 1 x K gradient vector of f with respect to z

of, error vector



Of. element of error vector 6f,

G K x L matrix of g;(c.;, z) functions
Gu NK x NK matrix
g(C, z) 1 x L row vector of scalar-value functions of C and z

gi(c.j, z) jth element of g(C, z)

H K x NK replication matrix containing N copies of K x K identity matrix Ik
Hg M, x M, matrix

h(c, Z) 1 x M, vector gradient of Sso with respect to ¢

hEU i7th element of Hyg

I identity matrix

Ik K x K identity matrix

Iw diagonal matrix of ones and zeros

R subset of input space RM”

i,3,k,m,n  integer indices

J normalized average predicted output variance over set <&
K number of calibration observations

L dimension of multivariate function

M order of multivariate polynomial or integer

M. length of parameter vector ¢

M, length of extended input vector z

N number of replications or integer

N, number of input variables

P nonsingular matrix

P, orthonormal matrix

P, P, submatrices of P,

P mth row of R!

Q M, x M, weighted moment matrix

Q. M, x M, nonlinear moment matrix

Q.. N x N matrix

Um quadratic form

R M. x M. Jacobian matrix of Sy with respect to ¢
R, N x N matnx

R,,, submatrix of R, of rank ry,

vi



R set of real numbers

RM M -dimensional space over set of real numbers

r rank

TA rank of matrix A

T'm rank of matrix Q,,

S sensitivity of AOA sensor

Sy, Sy standard errors of regression

S standard error due to measurement uncertainty after replication

Ssp total residual sum of squares

Sscn total residual sum of squares of N replications with parameter substitution
SSGrun residual sum of squares of nth replication with parameter substitution
Ssur sum of squares due to measurement uncertainty after replication

Sso inner product to be minimized by least-squares estimation of parameter vector
Ssr total residual sum of squares of N replications

Ssr, residual sum of squares of nth replication

Sow quadratic form

Ssx sum of squares due to bias uncertainty after replication

Sx standard error due to bias uncertainty after replication

sin 6 K x 1 vector formed by element-by-element sine evaluation of X x 1 vector 6
Tows Txwm variance ratio

t ratio

t(«) t-distribution with k& degrees of freedom at confidence level «

U symmetric positive definite matrix

V variance error

v transformed output or observation vector

W, W, matrix, subscript K denotes dimension

Wp, Wg, matrix, subscript K denotes dimension

X 1 x N input vector

x applied scalar input

X estimated applied scalar input

X}, kth applied 1 x N input vector of experimental design

Y K x L matrix of observed output vectors yy.

y K x 1 calibration observation vector
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observed scalar output

kth observed scalar output

kth observed output vector

new observation for input z, after calibration

partial derivative of output y with respect to input x
predicted scalar output for input vector z

predicted value of new observation y,

K x M, general design matrix

K x M, submatrix of NK x M, replicated design matrix Zyg
NK x M, replicated design matrix

M, x 1 extended input vector obtained from mput x
element of extended mmput vector z

1 x M, extended input vector from kth row of design matrix Z
new extended input vector after calibration

angle of attack or confidence level; ratio

variable

matrix

transformed coeflicient vector

K x 1 vector of modeling errors

modeling error

K x L matrix of measurement uncertainty vectors €,;. and eg;.
K x 1 measurement error vector

scalar measurement uncertainty

K x 1 measurement error vector at nth replication
transformed K x 1 measurement error vector
uncertainty vector of kth applied input xj
uncertainty of new measurement

transformed vector

K x 1 vector of angle of attack sensor outputs

angle of attack sensor output

diagonal matrix of eigenvalues

element of A

expected value of vector v
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¢ N x 1 vector

¢ r, X 1 subvector of ¢

Pij 17th element of inverse moment matrix Q1

p;(2) quadratic form

¥, Xy,... covariance matrix of vector denoted by subscript

Ezij covariance matrix of input vectors z; and z;

oy standard deviation of measurement error

T covariance of ith and jth output measurements
vi i7th element of measurement uncertainty covariance matrix Xg

oy variance coefficient of Xy

o2(z) variance function of variable y

a0 standard deviation of new measurement

¢ misalignment angle of angle of attack sensor

Ye « percentile value of chi-square distribution

Q volume integral of input subspace &

QF;QFK ;QK K x K matrix
0k K x K matrix of zeros

(General notation:

Cme mth row of matrix C
C., nth column of matrx C
& expected value operator
pP-T —[PT
T matrix transpose
tr(A) trace of matrix A
) uncertainty operator
average value
predicted value or least-squares estimate of associated variable
o element-by-element multiplication of equally dimensioned matrices
® mner product of vector with columns of three-dimensional array

Bold capital letters represent matrices
Bold integer subscript denotes dimension of matrix

Bold lower case letters represent vectors

1x



Bold 0 or 1 denotes a vector of zeros or ones, respectively
Italic upper and lower case letters represent scalars

Lower case subscripts represent indices: a; denotes vector element; a,,, denotes matrix element;

z;, denotes kth vector of sequence of vectors

Subscript 0 represents new measurement



1. Summary

In 1993, a detailed uncertainty analysis of the six-component strain-gauge balance was
undertaken for the first time in wind tunnel tests at the Langley Research Center to provide
confidence and prediction intervals of the outputs as functions of the measurandsinstead of using
a general root-mean-square error quantity per component as a percentage of full-scale output.
The success of this effort, published in 1994 as ATAA-94-2589, has demonstrated the need for

similar analyses of the other wind tunnel instrumentation in use at Langley.

The present publication develops and documents a generalized set of mathematical tools
needed for thorough statistical analyses of instrument calibration and application. A compre-
hensive unified treatment directed toward wind tunnel instrument calibration was not found in
the literature.

2. Introduction

Aerospace research requires measurement of basic physical properties such as aerodynamic
forces and moments; strain; skin friction force; model attitude, including pitch, roll, and yaw
angles; translational position; temperature; pressure; mass-flow rate; and other properties.
The aerospace industry now requires that experimental aerodynamic data be furnished with
uncertainties specified at a statistical confidence level, typically 95 percent. This requirement,
in turn, imposes the need to quantify the uncertainty of each basic physical measurement at the
transducer and instrument level in the test facility as a function of the corresponding property
value at the specified confidence level.

A standard method for treatment of measurement uncertainty in gas turbine engine perfor-
mance testing was developed by Abernethy et al. (ref. 1). Based on National Bureau of Stan-
dards handbooks, Abernethy separated elementary measurement errors into two components:
precision error, which 1s a zero-mean random error due to measurement scatter, and bias error,
which is systematic and repeatable although unpredictable. The uncertainty of a final computed
parameter is determined by propagation of individual measurement uncertainties through the
functional expressions which define the parameter, usually by means of multivariable Taylor’s
series expansions. The final total uncertainty equals the root-sum-square of the propagated bias
and precision uncertainties.

Abernethy’s techniques were extended and formalized into an American National Standard
(ref. 2). Coleman and Steele (ref. 3) provide a detailed academic development of the standardized
uncertainty analysis specified in reference 2 that includes statistical concepts, experimental
design, the effects of replication, and confidence intervals. Reference 3 also provides practical
details for application of the standard to engineering practice. It introduces the concepts of
generalized uncertainty analysis for the conceptual validation of a proposed experiment and
detailed uncertainty analysis for processing experimental results of a completed experiment.
The useful concept of “fossilized bias uncertainty” resulting from the acceptance of calibration
data is introduced.

Aninternational standard for wind tunnel data uncertainty analysis has been developed by an
AGARD working group (ref. 4), which provides a standardized approach for estimating precision
and bias limits, for error propagation computation, and for determining confidence intervals of
the computed results in the wind tunnel testing context. Batill (ref. 5) has applied AGARD

techniques to the data reduction problem at the National Transonic Facility.

The present publication extends the analysis of instrument calibration uncertainty presently
addressed in the uncertainty analysis literature. Specifically, correlated measurement precision
error, calibration standard uncertainties, and correlated calibration standard bias uncertainties
are considered. The effects of mathematical modeling error on calibration bias uncertainty



are quantified. Statistical tests for detection of modeling error and calibration standard error
through the use of replication are developed. The effects of experimental design on precision
and bias uncertainties are also investigated.

Measurement uncertainties of individual measurements during calibration and experimental
testing have usually been considered to be statistically independent to facilitate computations.
The extensive use of multichannel multiplexed data acquisition systems with common amplifiers
and analog-to-digital converters introduces correlated measurement uncertainties which may be
significant. This publication allows rigorous treatment of correlated measurement uncertainties
whose covariance matrix is known.

During calibration, the uncertainties of the calibration standard are generally neglected by
assuming that their level is at least 1 order of magnitude less than that of the instrument being
calibrated. Often calibration standards must be used which do not satisfy this assumption. In
addition for calibration, the common use of stacked deadweight loadings for load cell, strain-
gauge balance, and skin friction balance introduces significant correlated uncertainties that
can magnify the resultant instrument calibration uncertainty several fold. Similar effects can
occur during calibration of any instrument with a similar “standard imstrument” such as a load
cell or skin friction balance. This publication develops the rigorous statistical techniques for
computation of calibration standard covariances and their inclusion in calculation of overall
imstrument confidence intervals. These techniques have been applied to calibration uncertainty
analysis of the six-component strain-gauge balance as described in reference 6.

Precision errors are traditionally viewed as zero-mean random variables whose uncertainties
can be reduced without limit by replication as shown by the central limit theorem (ref. 7).
However, the presence of systematic bias errors during calibration can lead to unrealistically low
computed standard errors when very large calibration experimental designs are used. The large
number of degrees of freedom can inadvertently reduce the portion of the standard error due to
bias uncertainty if correlation effects are neglected.

Other specific work is in progress that applies this analysis to important wind tunnel
mstruments, including invariable transducers such as load cells and skin friction balances, and
multivariable transducers, including the strain-gauge balance and inertial model attitude sensors.
Other systems should be analyzed in the future.

3. Instrument Modeling and Calibration Experimental Design

Instruments are routinely calibrated by means of analytical models through the use of
multivariate regression analysis to estimate calibration parameter. To quantify statistical
confidence levels of measurements obtained by a calibrated nstrument, the uncertainty of
predicted outputs must be estimated as a function of the mmput value through the use of the
analytic model.

3.1. General Multivariate Process

A formal mathematical representation of a multivariate (multiple-input)-single-output static
process, including stochastic components, is presented to describe the steady-state input—output
relationship for an instrument. The analysis does not include transient effects.

Let 3®*M¢ and ®™ denote M, and M, dimensional Euclidean spaces, respectively, where R is
the set of real numbers. Consider a real-valued multivariate function f of M, x 1 mput vector
z € RM and M, x 1 parameter vector ¢ € M. Function f maps the Cartesian product of
spaces RMe and RY= into the set of real numbers R; thus,

fiRjYe x jYe = R (1)

2



The notation f(c,z) denotes the output value of the function, an analytic model of a physical
process dependent upon stochastic input vector z and deterministic parameter vector c.

The observed output y of the process is generally a measured voltage whose uncertainty éy
depends upon both the uncertainty of the applied input 6z and the uncertainty of the stochastic
process measurement ¢p, a zero-mean random variable which is independent of éz. Thus the
observed output is

y = f(c,z+62) +cp (2)

where stochastic input vector z has been replaced by the sum of deterministic vector z plus
stochastic input uncertainty vector éz. The purpose of calibration is to estimate parameter
vector ¢ based upon multiple observations of output y corresponding to a set of selected inputs
specified by an experimenial destgn.

3.2. Single-Input—Single- Output Process

An example of a single-input—single-output process model in terms of a nonlinear polynomial
using inner-product notation is presented. Let x denote a known applied input to an instrument;
let y denote the corresponding observed output, in electrical units, for example; and let e denote
the measurement error, which is assumed to be a zero-mean random variable with standard
deviation ¢. Often the measurement process can be accurately modeled by an Mth degree
polynomial of the form

y=co+ cx+eri+ . ey 4+ e, (3)

which is seen to be a special case of equation (2). Arranging the polynomial coefficients into
(M + 1) x 1 vector ¢ gives

c=[cocr... cy)t (4)

Define an (M + 1) x 1 input vector z, denoted the eztended input vector, containing the first M
powers of x as

zlz)y=[az*... 2"]" (5)

The functional notation z(x) is used in the subsequent development only when needed for clarity.
Equation (3) can then be expressed in inner-product form as

y=z"c+cp (6)

Note that although the actual process input is scalar variable z, the process model function f
is constructed as a multivariate linear function of the (M + 1)th element input vector z which
Is, in turn, a nonlinear function of x.

3.3. Linear, Polynomial, and Nonlinear Multivariate Processes

More general notation suitable for representation of linear, polynomial, and general nonlinear
multivariate processes is presented. Consider a multivariate process with vector x denoting a
1 x Ny vector of input varables,



X =[r; 2y ... Ty,] (7)

The multivariate process is represented by equation (6) where yis a linear function of an Mz x 1
extended input vector z represented by

7 = [1 Z9 Z3 ... ZJWZ]T (8)

where z; = 1. For a unwariate linear process, the elements of z, generated from mput variable
z, consist only of [1 x]*. For a univariate polynomial process, vector z consists of the powers of
z from degree 0 through M as shown in equation (5). For a multivariate linear process, vector

z consists of the mdependent variables z(x) = [1:X]T. For a multivariate polynomial process,

vector z contains the powers and cross products of the elements of x from degree 0 through M.
For example, if N; = 3, then x = [z, @ x3]; if M =2, then M, = 10; and z(x) is given by

, T
2(x)= |1 21 o 23 ¥} mws T3 x) Taws T (9)

For a multivariate polynomial process of power M, the length of z is equal to

(N + M)!
M, = ———F— 10
NIM! (10)
For example, for a six-component strain-gauge balance modeled by a second-degree multivariate
polynomial where V; = 6 and M = 2 the length M, of vector z equals 28; that is, z contains
28 terms. Finally, for a general nonlinear multivariate process, z 1s 1dentical to mput vector x.

3.4. Calibration Experimental Design

The expertmental design for instrument calibration consists of a set of mput values applied
by using calibrated input standards for which the instrument outputs are observed. The
calibration data set 1s used to estimate the parameters of the mathematical model. Notation for
representation of the experimental design and a figure of merit are introduced.

To estimate parameter vector ¢ during calibration, output y is observed for K values of
applied input vector z contained in a representative subset & of input space Rz, Subset & is
selected to cover the anticipated operating envelope of the instrument. The experimental design,
D C S, is ideally chosen to minimize the variance of estimated process output y averaged over
S, with parameter vector ¢ obtained by least-squares estimation. Box and Draper (ref. 8) define
a design figure of merit J as the average predicted output variance over set &, normalized by
the number of calibration points K and measurement variance ¢ to remove the effects due to
the number of points in design D, and measurement noise. Thus,

K IS oi(z) dx

J= 11
o’zﬁfsidx (1)

where U%(z) is the predicted output variance function defined later.

4



After determination of subset D C &, construct K x M, design matriz Z from the elements
x;, € D, where the kth row of Z equals the kth extended input vector z(x;) for k = 1... K as
follows:

{Z(X:K)TJ

Arrange the corresponding observed output values and measurement errors into observation
vector y and measurement error vector e€g, respectively, each having dimension of K x 1 as

y=lww .. ud" (13)

and
€ — [EEl €E2 e fEK]T (14)

where measurement error vector eg has zero mean and K x K covariance matrix Xg. For linear

and polynomial models, equation (6) is extended to a matrix form for K observations with the
help of equations (4) and (12) through (14) as

y =Zc+eg (15)

4. Generalized Linear Multivariate Regression Analysis

Multivariate linear regression techniques are developed (ref. 9) for least-squares estimation of
coefficient vector ¢ in equation (15), denoted by ¢, where the measurement errors are correlated.
Techniques are also provided for determination of confidence intervals for ¢ and for confidence
and prediction intervals for new measurements based on the calibrated value of ¢. Measurement
error covariance matrix Xg 18 assumed to be symmetric, positive definite, and expressible in the
form

Yp =o0:U (16)

where K x K maltrix U is a known symmetric positive definite matrix and ¢? is a scalar
to be estimated. If the K calibration observations are uncorrelated, then covariance matrix
Yg is diagonal. Otherwise a linear transformation must be applied to output vector y
to diagonalize Xy, which decorrelates the observations. If measurement error vector eg is
normally distributed, the decorrelated observations are independent, a necessary condition for
computation of confidence intervals using chi-square and ¢-distributions (ref. 7). Detailed proofs
of the following results are given in the appendix.

5



4.1. Decorrelation of Covariance Matrix

A coordinate transformation is applied to observation y which diagonalizes measurement
covariance matrix Xg. Because matrix U is symmetric and positive definite, a nonsingular
matrix P exists such that U can be decomposed into the matrix product as follows:

U =PPT (17)
Define transformed observation vector v as
v=Ply (18)
Equation (15) can now be transformed through a change of coordinates into the following:
v=P Zc+e, (19)
where e, = Peg. The covariance matrix of v is given by
S, =P 2P T =0l (20)

where P~ = (P™1)T; thereby, the elements of v are confirmed as uncorrelated (ref. 9).
4.2. Least-Squares Estimation of Process Parameters

The least-squares estimate of coefficient vector ¢, denoted by €, is obtained by minimizing
the following inner product with respect to ¢:

Ssg = (v — P'Zc)Y (v — P7'Ze)
= (y—2Zc)"U ' (y — Ze) (21)

Note that Sgg equals the residual sum of squares of the multivariate regression on vector v and
that the regression is equivalent to least-squares estimation of ¢ on vector y, weighted by the
inverse of measurement uncertainty covariance matrix Xg. Define M, x M, weighted moment
matrix Q as

Q=72"U"'Z (22)
The least-squares estimated coefficient vector ¢ is obtained as
c=Q 'Zz"Uly (23)

The expected value of ¢ equals ¢ and its covariance matrix is given by

T, =0;Q7" (24)

6



Define K x 1 predicted output vector v = P~'Z¢, and define K x 1 residual vector e, by

e,

Il
<
|
<)
(l
=
o
<
o
=

where K x K matrix Wy 1s defined as

Wi =1 — Q (26)
Ix 1s the K x K identity matrix, and Qg 1s defined as
Q= (P'Z2)Q7'(P'2)" (27)

Note that Qg is symmetric. Residual vector e, has zero expected value and covariance matrix

B, = 0p Wk (28)

The residual sum of squares Sg;;, obtained by minimization of equation (21), is defined as

Sse

63:‘6‘, = EE‘WKEV (29)

The standard error of the regression, defined as

g 1/2
Sp= [ —£— 30
g (K—MJ (30)

has expected value £[S ] = o and is thus an unbiased estimate of op.

5. Confidence and Prediction Intervals

The confidence interval for a statistical variate, such as the estimated parameter vector or
the predicted process output, is a closed interval within which the variate is computed to lie at
a specified probability or confidence level. See references 7 and 10 for detailed definitions.

5.1. Confidence Intervals of Estimated Parameters

If error vector €, is normally distributed, then Sgz/o? is chi-square distributed with K — M,
degrees of freedom. It follows that a confidence ellipsoid for estimated coefficient vector ¢ at
confidence level 1 — « 18 given by the following inequality:

(¢ =8)"Q(c—¢) < M, SpFu, i —u, (@) (31)

where F};(«) is the « level of the F-distribution with 4,7 degrees of freedom (ref. 7). The
length and direction of the semiaxes of the ellipsoid are determined from the eigenvalues and
eigenvectors, respectively, of matrix Q.



5.2. Calibration Confidence Intervals of Predicted Process Output

The calibration confidence mtervalis the closed interval within which a predicted process
output is computed to lie based on the calibration uncertainty. Let y(z) denote the predicted
scalar output for arbitrary input vector z based on estimated parameter vector ¢; that is

i(z) = 2% (32)

The expected value of §(z) equals z" ¢ and its variance is given by the following quadratic form:

oi(z) =0 2"Q 'z (33)

Y

Equation (33) equals the variance of the calibration based on estimated parameter vector c.
Matrix QQ, dependent only upon the experimental design Z and covariance matrix X, is fixed
after calibration. Hence, the calibration uncertainty becomes a fixed deterministic function of
applied input vector z. If €, is normally distributed, a confidence interval at level « for predicted
value y(z) is specified by the following inequality:

~ _ . o
|y - y| < (ZTQ 'z )l/zsﬁtlx"—Mz (5> (34)

where t;(«) 1s the a-percentile value of the two-tailed ¢-distribution with k& degrees of freedom
(ref. 9).

5.3. Prediction Interval of New Measurement

The prediction interval is the closed interval within which the predicted process output
is computed to lie due to both calibration uncertainty and the uncertainty of a single new
measurement. After calibration, let y, denote a new observation of the response of the instrument
to input zo, with uncertainty ¢; and standard deviation oo that is independent of calibration
measurement error vector e,. The observed value y, is given by

Yo = 7y €+ € (35)

The predicted value of the new observed y, obtained from equation (32), that is, the calibration
curve, is given by

h=1zc (36)

The prediction error éy,, defined as the difference between the observed and the predicted
observations, is given by

890 = yo — Yo = 7 (¢ — ¢) + €0 (37)

and has zero mean and variance

7 (1) = 0%+ 04 f Q7 (39

8



The prediction interval at confidence level o is specified for , as follows:

2

1/2
. o _ o
ly — ¥o| < (0_—2 +2z,Q 1Zo) Setr_wm, (5) (39)

L

This inequality represents the uncertainty of a single measurement after calibration. Note that
prediction error 6%, is composed of two components: the uncertainty of the new measurement
whose variance is 02 and the calibration uncertainty whose variance, given by equation (33), is a
deterministic function of applied input z,. The uncertainty of the new measurement is a precision
error which can be reduced by replicated measurements, whereas the calibration uncertainty is
a fossilized bias error (ref. 3) dependent upon x, that, after calibration, does not decrease with
replication.

6. Computation of Inferred Input With Confidence and Prediction Intervals

During instrument application an unknown input z; is apphed, and output y, is observed.
The desire is to infer input @, from observation y, by inverting the calibration equation (eq. (36))
rewritten as

yo = 7" (00 ) (40)

Solve equation (40) for # and denote the solution by z,, the estimated inferred input. Whenever
z(x) is nonlinear, solution of equation (40) may require an iterative computational technique.
Calibration confidence intervals and prediction intervals of inferred input z; are obtained by
dividing equations (34) and (39) by y.(z) and y.(%y), respectively, where

y,(3) = 3Z;f) r (41)

Then the calibration confidence interval of the inferred input, obtained from equation (34), is
given by

[2°()Q 1a(®)] " Sp tiu, (0/2)
Y. (%)

o — 3| <

(42)
Similarly, the prediction interval of the inferred input, obtained from equation (39), is given by

o 3| < L7817 A @I @ S b (/) (43)

yx(iﬁo)

7. Calibration Uncertainty Caused by Combined Input Errors and
Measurement Errors

In general, overall calibration uncertainty arises from input calibration standard uncertainties
as well as from output measurement uncertainty. The previously developed analyses are extended
to accommodate uncertainty in applied input x as well as measurement uncertainty €,. Consider
the combined effects during calibration of the uncertainty of the kth applied mput vector x,
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denoted by €,;, and the corresponding measurement uncertainty ep,. The uncertainty of the
kth extended input vector z,, denoted by M, x 1 vector éz,, is obtained as

6z, = 2(x; + €4) — 2(X}) (44)

2> the uncertainties of
the elements of z;, may be correlated. In addition, every pair of input vectors z, and z; may
be correlated with covariance matrix ¥, . Design matrix Z, defined in equation (12), then has

K x M, uncertainty matrix 67 constructed as follows:

Vector 8z, has zero expected value and M, x M, covariance matrix X

T
0z,

T
62,

Y/

(45)

T
0%

which has expected value 0, where 0 18 a K x M, matrix of zeros. FEach element of input
uncertainty matrix 87 is assumed to be independent of measurement error vector e defined in
equation (14).

The observed output vector y corresponding to the actual input matrix Z + 67 is given by

y=(Z+6Z)c + eg (46)

and the combined output error vector, denoted by 8y, is given by

by =y —Zc=06Zc+eg (47)

which has expected value 0. The K x K covariance matrix of combined output error vector éy,
denoted by X, is computed element-by-element with the following equation (eq. (48)) fori =1
to K and j = ¢ to K. Because 6Z and eg are independent, the covariance between elements
6y; and 0y; of by is obtained as

cov (8y;,0y;) =& [cTézi(Szjc] + Eleie ]

= CTZZ{]'C + O-U (48)

where oj; 1s the ijth element of measurement uncertainty covariance matrix Xg.

Rewrite equation (47) to express observed output vector y in the form of equation (15) as

y = Zc+ by (49)

10



where y has expected value Ze. Least-squares estimation of coefficient vector ¢ proceeds as
before, after replacing vector €, by éy and matrix 3, by Xy, respectively, in equations (16)
through (39). An analysis of variance for replicated calibrations of a multi-input-single-output
sensor presented in the subsequent development provides a test of significance for the presence
of calibration bias error due to loading uncertainty.

8. Effects of Process Modeling Error

Models of instrument steady-state input—output relationships are typically approximate
empirical relationships such as multivariate polynomials. The effects of modeling error and
experimental design on calibration uncertainty are quantified, based on generalized multivariate
linear regression analysis. Calibration standard uncertainty is neglected.

8.1. Uncertainty Analysis of Modeling Error

Let process f(c,z) be modeled as a linear function of an extended input vector z according
to f(c,z) = zc, whereas the actual functional relationship is given by

y(z) = fc,z) = zc + vy(2) (50)

where 7(z) represents the modeling error. However, the system is calibrated by using experi-
mental design matrix Z based on the linear model of equation (6). During calibration the kth
observation is given by

Y = z,c +y(2) + g, (51)

which is extended over K observations into matrix form as

y=Zc+~(Z)+ex (52)

where v(Z) is the A x 1 vector of modeling errors. Coefficient vector € is estimated by means
of equation (23); the expected value of ¢, biased by the modeling error, is given by

£(@)=c+Q'Z2TU 'y (Z) (53)

Predicted calibration output vector y is obtained by using equation (32). Then the expected
value of y is given by

E(¥) = Ze+2Q 'Z"U'~(Z) (54)

where the second term represents the predicted output bias error due to modeling error. Residual
vector €y, defined in equation (25), is found to be

e, = Wg[P™'(Z) +¢] (55)

11



and from this the expected value of e, is

Ele,] = WP '+(7Z) (56)

The covariance matrix of €, is given by

3. = 02 Wg (57)

v

The expected value of weighted error sum of squares Ssp given in equation (29) equals the
following;:

E[Ssp] = (K — Mz)o +4"(Z)P Wk P '~(2) (58)

It is seen that .5, given in equation (30), becomes a biased estimate of ¢ whenever modeling
error 4(Z) is nonzero.

The variance function (ref. 8) of predicted output ¥ is computed by using the above results
as is now shown. For arbitrary vector z, the predicted output is given by equation (32).
The corresponding actual output function value y without measurement uncertainty, shown
in equation (50), is given by

y(z) = zc +7(z) (59)

The corresponding predicted output error 8y is then

6y(z) =y(z) —y(2)
7(2) = 2Q7 2" U™ [7(Z) + e (60)

To find the variance function of y, take the expected value of the square of equation (60) and
after some algebraic manipulation, the following result is obtained:

0i(a) = opa Q 'z + [y(2) — 2Q 27U Y (Z) (61)

The first right-hand term of equation (61), identical to the predicted output variance function
of the model previously given in equation (33), represents the portion of the bias uncertainty of
the predicted output due to calibration measurement uncertainty. The second right-hand term
of equation (61) represents the portion of the bias uncertainty of the predicted output due to
modeling error.

8.2. Design Figure of Merit

Design figure of merit J defined in equation (11) is obtained by integrating equation (61) over
input subspace 3. It allows examination of the effects of the experimental design on predicted
output error due to precision uncertainty and bias uncertainty. As in reference 8, figure of merit
J 1s separated into variance error term V and bias error term B5:

12



J=V+B (62)

The precision uncertainty portion of J obtained from the first right-hand term of equation (61)
equals

V= % 7' Q 'z dx (63)

5

Similarly, the bias uncertainty portion of J obtained from the second right-hand term of
equation (61) equals

K

B =
U%Q

[ b -2 22 ax (64

where €0 is the volume integral of subspace & given by

Q= / dx (65)

AN

8.3. Effects of Experimental Design on Figure of Merit

The effects of the experimental design on calibration uncertainty due to measurement
uncertainty and on calibration error due to modeling error are quantified by means of figure of
merit J. Simultaneous minimization of V' and B imposes conflicting requirements on selection
of experimental design D. Equation (63) indicates that precision uncertainty V tends to decrease
as the vector length magnification of matrix Q increases. The vector length magnification of
Q tends to increase as the distance of the design points from the origin increases, generally to
the boundary of volume <&. On the other hand, reference 8 demonstrates that bias uncertainty
B tends to be minimized by uniform placement of test points throughout space . Hence, the
accepted practice of uniformly spacing test pomts from zero input, to full scale input, and back
to zero can reduce calibration uncertainty caused by improperly modeled phenomena such as
nonlinearity and hysteresis.

A number of well-known methods exist for detection of modeling errors. Examination of
residual error plots often discloses the presence of systematic errors in addition to random
measurement errors (refs. 7 and 10). Residual normal probability plots (ref. 10) indicate the
presence of nonnormally distributed errors which are likely to be systematic. The process of
detecting modeling error may indicate the functional extension required for model improvement.
On the other hand, polynomial models should be limited to the minimum order needed to avoid
fitting data to random noise (ref. 10).

9. Uncertainty A nalysis of Nonlinear Instrument Calibration

The previously developed generalized linear regression analysis of instrument calibration,
with calibration standard uncertainty, is extended to include general multivariable-input—single-
output nonlinear processes.

9.1. Combined Input and Measurement Uncertainties

Consider a process modeled by nonlinear function y = f(c,z) defined in equation (2). Output
uncertainty éy can be approximated as the sum of the differential of f(c,z) with respect to z
and measurement uncertainty ¢g as follows:
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by= fle,z+éz)— f(c,z)+ ep = [W] b7 + eg (66)

During calibration, K observations are acquired in accordance with K x M, design matrix Z
defined in equation (12). The uncertainty éy: of the kth observation y; is given by

bz +ep, =1,(c,z,)02; + €p, (67)

where 1 x K gradient vector f,(c,z,) = [0f(c,z;.)/0z]. Note that éyi is normally distributed if
both éz, and ¢g, are normally distributed. The actual value of the kth observation is given by

yr = flc,z,) + éy (68)

Let f(c,Z) denote the K x 1 vector function which is obtained by evaluating function f(c, z) for
each of the K rows of Z. Also, let y and 8y denote the corresponding K x 1 vectors of observed
outputs and output uncertainties obtained by evaluating equations (67) and (68) for k = 1 to K,
respectively. Then y is given by

y=1(c,Z)+ 8y (69)

The K x K covariance matrix of éy, denoted by Xy, is obtained element by element with
equation (67) as follows:

Ty, = fz(c,z,-)Ezijff(c,zj) + 0y (70)

where X, is the covariance matrix of the ¢th and jth input vectors z; and z ;, o;; is the covariance
of the 7th and jth voltage measurements, and ¢ and j range from 1 to K. If ¥y is symmeftric
and positive definite, then it can be expressed in the form of equation (16) as

where K x K matrix U is known and can be decomposed into the product U = PPT as shown in
equation (17). Output vector y is transformed into vector v by equation (18), that is, v = P~'y.
Equation (69) then becomes

v=P"f(c,Z)+év (72)
where v = P '6y. The expected value of v is
Ev] = P 'f(e, Z) (73)

The covariance matrix of év is given by
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2, =il (74)
Therefore the elements of év are uncorrelated and év is normally distributed whenever éy 1s
normally distributed.

9.2. Least-Squares Estimation of Process Parameters

The least-squares estimate of parameter vector ¢, denoted by ¢, is obtained by minimizing
the error sum of squares Sg(, given by the following quadratic form, with respect to c:

Sso = [v = P7(c, Z)]"[v = P7(c, 2)] = [y —£(, 2)"U- [y = £(c,Z)]  (75)

To minimize Sgq, compute the gradient of equation (75) with respect to ¢ and set the resulting
set of M, equations equal to zero and expressed in vector form as

855(9

1
h 2 dc

=[v—P'f(c,Z)]"P'F, =0 (76)

where h is a function of independent arguments v, ¢, and Z; the dimension of h is 1 x M, and
of vector [v — P™'f(c, Z)] is K x 1; and K x M. matrix F. is defined as

F.(c,Z) = Mg—éz) (77)

Equation (76) can be solved for ¢ by means of a Newton-Raphson iteration or a similar method,
provided that the symmetric M, x M. Jacobian matrix of Sgo with respect to ¢, denoted by R,
is nonsingular in some region about ¢ and Z; that is

9%y ~0h
R= o2 dc

(78)

9.3. Uncertainty of Estimated Process Parameters

The uncertainty é¢ of stochastic vector ¢ is obtained in terms of combined output uncertainty
bv from the differential of equation (76) as follows:

T
[g_h] 5v + R6E =0 (79)

v
where K X M, matrix [0h/0v] equals

[8h

a_v] —PTF, (80)

Matrix R is shown in the appendix to be

h
R = [g—] =FIU'F. + Hg (81)
C
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where the 7jth element of M, x M. matrix Hg is given by

hg,=[v—-P (¢, Z)]"P ', (82)
where K x 1 vector f. is the ijth column of M, x M, x K array F. defined by

_OFT(c,Z)  &f(c, )

FCC
dc Oc?

(83)

and 1 < 4,7 < M,. It is seen that the K X 1 vector expression [v — P~'f(¢,Z)] contained in
equation (82) equals the vector of residuals denoted by €,. Then if the norm of €, is sufficiently
small, matrix Hg can be neglected in equation (81) to yield the following approximation:

R~ FIU'F, (84)

From equations (77) to (80), the uncertainty of estimated parameter vector ¢ equals

-1 T
56 = _[3_11] [a_h] v = —R'FIP v (85)
dc ov i

From equation (85), calibration parameter uncertainty ¢ has zero mean, it is normally
distributed whenever 8y is normally distributed, and its covariance matrix is given by

e =07Q7! (86)
where
Q.= [R'FIU 'F R (87)

If approximation (84) holds and if the rank of K x M, matrix F, equals M., then matrix R is
nonsingular and matrix Q. is approximated by

Q. ~ R (88)

9.4. Residual Sum of Squares and Standard Error of Regression

Let v denote the predicted calibration output vector corresponding to design matrix Z and
estimated parameter vector ¢, where

v =Pf(c, 2Z) (89)

The vector of residuals ey is defined as follows:

ev=v —v =P [f(c,Z) —f(c,Z)] + v (90)
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which 1s represented in differential form as

6, = P'F,(¢,Z)5¢ + 6v = (I — )6V (91)

where K x K matrix Qy is

Qp = (P'F)R(P'F,)" (92)

The expected value of €, equals zero, and the covariance matrix is given by

Y =ol(Ix — Q) (93)

An unbiased estimate of o2 is now obtained. The residual sum of squares is defined as
Ssp = ete, = 6VT(IK — QF)6V (94)

As shown in the appendix, Ssp/ol is chi-square distributed with K — M. degrees of freedom,
and the expected value of Sgpis

E(Ssp) = (K — Moy (95)

Therefore an unbiased estimate of ¢y i1s given by standard error Sy, which is defined as

SSE 1/2
Sy=[—L 96
v (K—M) (96)

A confidence interval for oy at confidence level & is given by
(K — M,)'2Sy o < (K — M,)?Sy

Ty
X(1+a)/2 X(1-a)/2

(97)

where y, 18 the a-percentile value of the chi-square distribution with K — M, degrees of freedom.
9.5. Confidence and Prediction Intervals of Predicted Output

The confidence ellipsoid for estimated calibration parameter vector ¢ is defined by the
following inequality:

(¢ —0)TQc(e =€) < MoS3 Fu, k- () (98)
where Fy. x_y. (@) is the a-percentile value of the F-distribution with M., K — M, degrees of

freedom.

After calibration, consider z, as an arbitrary deterministic input. The corresponding
predicted value go = f(¢,2y) is computed by using calibration parameter vector ¢. The
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uncertainty 6y of y due to calibration uncertainiy alone is obtained from the differential of
equation (2) as

6% = yo — Yo = fle,zy) — f(€,7)
=11 (¢,2))6c = £f(¢,2,) ) R'FLP'6v (99)

where M, x 1 gradient vector f.(c,z) is defined as

f.(c,z) = % (100)

The variance of predicted value ¥y (z;), termed the output variance function (ref. 8), is given by
the following quadratic form:

2

oi(zy) = ot [£7(¢,2,)Qc (€. 2,)] (101)

From equation (67) we can see that if uncertainty év is normally distributed, 6,/ is normally
distributed with zero mean and unit variance. Since SZ /o3 is chi-square distributed with K — M,
degrees of freedom, a confidence interval at level « is given for ¥ as

T — F(€.2,)] < [£2(2,2,) Q5. (€ 7))/ t. Sy (102)

where t, 1s the tail of Student’s ¢t-distribution at confidence level o with K — M, degrees of
freedom. Inequality (102) defines the calibration confidence interval.

Let a single new measurement y; be made after calibration by using an mstrument for which
the variance of a single measurement equals 0. With the use of equation (101), the variance of
the single new measurement is

P o 0'2
02 (2y) = o2 mn) + 0% = aé[psw ; —3] (103)

0y

where quadratic form p% 18 defined as follows:

pi(z) = £5(€,2))Qc'.(€,2)) (104)

The confidence interval at level a of new measurement gy i1s given by

~ 5 o’ 12
|0 — f(€,2,)| < [p;i(z(]) + 0_5] taSy (105)
Y

which is termed the prediction inierval

An analysis of variance for N replicated calibrations of a nonlinear multi-input-single-output
sensor 1s obtained in the appendix which provides a test of significance for the presence of
calibration bias error due to loading uncertainty. In addition, equations are provided for
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computation of matrix R, given by equation (81), in terms of the A x K covariance matrices of
a single replication.

10. Multivariate Multiple-Output Analysis

The preceding analysis is now extended to a multi-input—multi-output instrument such as a
six-component strain-gauge balance. Although the notation becomes cumbersome, the extended
computational procedure simply iterates the previous multi-input—single-output technique for
each process output element.

Consider an L-valued process g represented by a 1 x L row vector of scalar functions of an
Mex1 parameter vector c.; and z, each of the form of mapping equation (1). Let ¢;(c.;,2) denote
the jth function, where j ranges from 1 to L, where g¢; is dependent upon the corresponding
M. x 1 parameter vector c.; and 1 x M, input vector z which is common over all values of j.
Arrange the coefficient vectors I, into M, x L coefficient matrix C as

C=|ca,ca, ~ |Cr (106)

As usual, K observations are made during calibration in accordance with design matrix Z. For
the kth observation let g, y., and €,;. denote 1 x L vectors of functions g;, observed outputs,
and measurement errors, respectively, where

g(C,z,) = [g1(c.1,28) go(co2,2) ... golc., ze)] (107)
Vi = Yk Yeo - - Y] (108)
€ype = [E'Uk,l Euk,Q e evk,L] (109)

respectively, where evi. has zero mean and z; denotes the corresponding 1 x M, input vector
defined in equation (12) as the kth row of design matrix Z. Then the functional relationship for
the kth observation is obtained by extension of equation (2) to L space as follows:

Yi- = g(Cazk—i_éZk) + Evie
g(C,z,)+ by (110)

where uncertainty dy;. is given by

6yk' = g(Ca Zk—l—(SZ) - g(07 Zk) + €y

0g(C,
:(SZkT [%} + &vi. (111)
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Note that matrix [0g(C,z,)/0z] has dimension M, x L. Vector equation (110) is then extended
to a K x L matrix equation as shown by the following equations:

Y =G(C,Z+6Z) + Ey

=G(C,Z) +6Y (112)
g(C, Zl)
g(07 Z'z)
G(C,Z) = (113)
g(C’ZA)
Yi-
Y.
Y = . (114)
Yk
€yl
€9.
EV = . = [GV'IJ €2, ev-L] (115)
EvKe
Note that K x 1 vectors €y.q, ..., €,.; denote columns 1, ..., L of matrix E,. Also K x L matrix

8Y is obtained by extension of equation (111) as

Y = . +E. (116)

0y k-

Let ¥v,, ,» denote the K x K covariance matrix of error vector ey.,,, and Xv,, ., denote the K x K
covariance matrix of column m of matrix 6Y, which is computed element by element by using
equation (48) with m ranging from 1 to L and f replaced by g,,. Furthermore, define Sgq,, as in
equation (75) with f replaced by gm for each of the L elements of g. The least-squares estimated
coefficient matrix, denoted by C, is computed column by column by solving equation (76) to

20



minimize Sgq, for m =1, ..., L, with ¢.,, the mth column of C. The covariance matrix and
confidence ellipsoid for ¢.,, are computed as before with equations (86) and (98), respectively.

After calibration, the predicted output matrix y for arbitrary input z using estimated
coefficient matrix C is given by ¥ = g(C, z). The uncertainty 8y due to calibration uncertainty
alone equals

5y:g(C,Z)—§(C,Z) (117)

The calibration confidence interval for 6y is obtained element by element by equation (102).
Similarly, the prediction interval of a new measurement is obtained element by element by
equation (105). This analysis is illustrated by an example of a two-input-two-output linear
process given in the subsequent development.

11. Uncertainties of Inferred Inputs From Inverse Process Function

An instrument is normally employed to infer the value of an input x based on the corre-
sponding observed output y by means of the process model f(c,z) for the single output case, or
g(C,z) for the L-dimensional case, following calibration. Calibration confidence intervals and
prediction intervals of the estimated process input are obtained.

Let g denote both cases in the following discussion. Input z can be computed if inverse
function g—! exists. A necessary and sufficient condition for the existence of g~—! is that function
g be bijective, that is, a one-to-one onto mapping from R¥z to ®L. If M, = L, g is continuous
and differentiable and if for observed output vector y,, an input vector z; exists such that
yo = g(C, zy), then a necessary condition (ref. 11) for the existence of the inverse function g=*
is that L x L matrix dg/dz be nonsingular in a region about z;. Indeed, the inverse function
may be obtained by solving the following system of ordinary differential equations obtained from
equation (111):

45" = dy [W] B (118)

Whenever a closed-form inverse function i1s unavailable, given observed output y,, the corre-
sponding predicted input value z, is computed iteratively from the relation y, = g(C,z,) by
means of Newton-Raphson iteration or a similar method.

If input z; were known, the uncertainty éy of the corresponding predicted output would be
given by equation (117). However, since predicted input z, is inferred from known output yj,
the uncertainty &y, is obtained from equation (118) as

8g(Cﬁo)]] (119)

(SA(’JI‘ — 6/};0 |: az

where dg/dz must be nonsingular and 8y, is estimated by equation (117) with z, replaced by
zy. Confidence and prediction intervals for z, are then obtained from those computed for y,
with equations (102) and (105) followed by transformation (eq. (119)).

12. Replicated Calibration

A statistical technique for detection and estimation of bias errors due to either modeling
error or calibration standard error is now developed, which requires multiple replications of
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the cahbration experiment. The use of replicated calibrations over an extended time period is
imp ortant for the following reasons:

To obtain adequate statistical sampling over time
To test for nonstationarity and drift

To test for bias uncertainty

H= W N

To estimate bias and precision uncertainties

The variance of averaged random errors is known to decrease as 1/N over N replications,
whereas that of bias errors, which are repeatable, does not decrease with replication. Tests for
the existence of significant bias uncertainty by analysis of variance are based on this fact. The
bias test, derived for a general multivariate nonlinear process in the appendix, computes the
sum of squares Sgy of the set of K residuals averaged over N replications. The mean value of
S¢x 1s an estimate of the variance due to bias uncertainty. The mean value, denoted by S, of
the difference Sgqj; between the sum of squares Sgp of the global set of N K residuals and Sgqy is
an estimate of the variance due to measurement error. The variance ratio NSy /Sy provides a
test of significance for the presence of bias errors. A similar analysis allows detection of drift of
any estimated parameter during replication. Details are given in the appendix.

12.1. Computation of Replicated Design Matrix

A replication matrix is defined which provides convenient computational notation for repli-
cated calibration experimental designs. Consider a single-output sensor modeled by an (M,—1)th
degree polynomial. The sensor is typically calibrated by using K standard loadings applied in
a predefined order, say zero to full scale and back in (K — 1) equal increments, represented by
K x M, experimental design matrix Zg. The calibration is replicated N times, described by
Ni x M, design matrix Znk, where

and where K x N K replication matrix H equals

H=[Ix Ix ... Ix] (121)

12.2. Replicated Moment Matrix for Linear Single-Output Process

Moment matrix Q is computed for a replicated experimental design for calibration of a
linear single-output instrument with uncorrelated measurement uncertainties. Use of replication
matrix H permits computation of QQ in terms of the single-replication K x M, experimental
design matrix Zg. Assume that the calibration standard uncertainties are fixed unknown bias
errors modeled as a zero-mean normally distributed random variable and that design matrix Zg
has K x K covariance matrix ¢’Ix. Because complete design Zyk contains N replications of
design Zg, the N subsets of K loadings are correlated with the NK x N K covariance matrix

3, of design Znk given by
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3, = O'iHTH = 0'5

Assume also that sensor output measurements are uncorrelated with covariance matrix

Ik Ok Ok
0x Ik Ox ,
EE = 0y = o-i‘INK
Ox Ok Ik
Then combined input covariance
Yy = UiUNK
where
UNK = INK + @HTH =
Ix Ik
and
_ %
o= )
It is readily shown that
(1-p8)/pIk —Ix
—Ik (1-73)/PIk
U&lK =Ink — ﬁHTH = /8
—Ix —Ix
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where

Y

= Natl

(127)

As shown in the appendix, the M, x M, generalized moment matrix Qng = ZﬁKUﬁKZNK 18
given by

2

FE T
Q +OZ 7, 192
NK—( Z/N) i K#K ( 8)

The portion of the calibration uncertainty due to calibration standard uncertainty, repre-
sented by o2 in the denominator of equation (128), does not decrease with replication. On the
other hand, the portion of the calibration uncertainty due to measurement uncertainty, repre-
sented by o3, in the denominator of equation (128), decreases as N~Y% with replication. Note that
equation (128) permits more efficient computation of uncertainties for an N K x M, replicated
experimental design in terms of nonreplicated K x M, design matrix Zk because computational
storage requirements are reduced by a factor of N.

12.3. Replicated Moment Matrix for General Single-Output Process

The technique developed in the previous section for computation of moment matrix Q for a
replicated experimental design is extended to a general nonlinear single-output instrument with
correlated measurement uncertainties. Consider a general multi-input—single-output process
calibrated by using experimental design Zy replicated N times. The K x 1 output uncertainty
vector of a single replication, denoted by éyk, is given by expanding equation (67) for
k=1,..., K. Then for N replications, NK x 1 output uncertainty vector éynk 1s given by

6yNK = HT(SfZ + €R (129)

where K x 1 gradient vector 6f,, defined in the appendix, has K x K covariance matrix
XY, = 02U, and NK x 1 measurement uncertainty vector eg has N K x N K covariance
matrix g = 0% Ugyg, all defined in the appendix. The measurement uncertainty is assumed
uncorrelated between replications and the K x K measurement covariance matrix of each
replication is assumed to be Xy, = 03Uy, . From equation (129),

Yk = BB+ Vi = O-QEUENK + UiUfZNK = U%UYNK (130)
where NK x NK covariance matrix g is given by
Yok = 0 Uy = 0oH'Ug, H (131)
From equation (131), Uy, can be written as
UYNK = UENK + anZNK (132)

where o is defined in equation (125).

24



As shown in the appendix, the mverse of NK x NK matrix Uy, can be expressed in terms
of K x K matrices U, and Ug, . Define K x K matrix B as

B = [Ug, + (N — 1)aUg,] " Uty (133)

and K x K matnx A as

A = (Ug +aUg, [Tk — (N = HB)) (134)

If the mverse matrices contained in equations (133) and (134) exist, then M, x M, moment
matrix Qg = ZﬁKUQLIKZNK, defined in terms of NK x M, matrix Zyg, and NK x NK
matrix Uyyy, can be computed in terms of K x M, matrix Zg and K x K matrices Iy, B, and

A as

Qnk = NZg[Ix — (N — 1)B]JAZk (135)

12.4. Analysis of Variance for Estimation of Bias and Precision Uncertainties

A test of significance for bias uncertainty due to calibration standard error or modeling
error and an estimate of the corresponding standard error are obtained by analysis of variance
techniques, as shown in detail in the appendix. Assume as null hypothesis that the calibration
bias error is zero; then matrix Uynk equals Ing in equation (124). By using equation (27),
NK x NK matrix Qng becomes

B 1
Qnk = ZnkQnkZak = FHTQKH (136)

where the K x K matrix Q2 is defined as
Qg =Zg(ZgZy) 'Ly (137)

The N K x 1 residual vector € has zero expected value and N K x N K covariance matrix ¢*W g,
given in equation (26) as

WNK = INK - QNK (138)

As shown in the appendix, the residual vector € can be expressed as

/é: WNKEE (139)

where NK x 1 error vector eg is normally distributed with covariance matrix ¢*Ingx. Let €,
denote the K x 1 residual vector at the nth replication, which has zero expected value and
covariance matrix oWy, given in equation (26) as

Wi = Ik — Qx (140)
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Thus, € is partitioned into N, (K x 1) subvectors
e =[eT ol ... &T]" (141)

Let @k denote the mean value of residual vector &, averaged over N replications; that is,

The total residual sum of squares can be partitioned as follows:

N N
Ssp =e"e =) ale, = Negex + »_(en — ex) (e, — ex) (143)

n=1 n=1

As shown previously, Ssp/e? is chi-square distributed with NK — M, degrees of freedom, and
the standard error of the regression given by

SSE 1/2
5= (wxc 235 (144)

is an unbiased estimate of . Define the first right-hand term of equation (143) as the sum of
squares due to bias uncertainty, which can be expressed as

K
_ o 1
SSX = NZef = NeI'I{‘eK = FEEWNK GHWNKEE (145)
k=1

where Gy = (1/N)HTH is defined in the appendix and €, is the kth element of eg. Tt can
be shown that S¢x/c? is chi-square distributed with K — M, degrees of freedom. Variable Sy,
defined as

g 1/2
— SX
Sy= (—K - Mz> (146)

is interpreted as the standard error due to bias uncertainty. Define the second right-hand term
of equation (143) as the sum of squares due to measurement uncertainty as follows:

N
Ssu = Z(an —ex)" (e, —ex) = e Wnk(Ink — Gu) Wk ee (147)

n=1

It can be shown that Sg,/o? is chi-square distributed with NK — K degrees of freedom; the
mean value
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Ssv \"*
Sw=\NF-& (148)

is interpreted as the standard error due to measurement uncertainty. Chi-square variates S5 /o7,
and S} /0% can be shown to be independent. Hence, the ratio S% /5% is F-distributed with
K — M, NK — K degrees of freedom; the test of significance for bias error is as follows:

FES‘

M

I

> P, vr (o) (149)

=

If inequality (149) is satisfied, then the null hypothesis is rejected; this indicates the existence
of bias error at confidence level . The analysis of variance is summarized in table 1.

Table 1. Analysis of Variance of Residual Sum of Squares

Source of variation Degrees of freedom | Sum of squares | Root-mean-square
Bias uncertainty K- M, Ssx Sx
Measurement uncertainty NK-K Ssm S
Residual sum of squares NK — M, Ssp = Ssx + Ssu Sg

12.5. Stationarity Test of Estimated Parameters

A test for stationarity of an element ¢, contained in estimated parameter vector ¢ over N
replicated calibrations is developed in the appendix. For example, significant variation of the
intercept or slope during replicated calibrations may be detected.

Let ¢ denote the parameter vector estimated globally over N sets of K-point calibrations. Let
cg, denote the parameter vector estimated over the K -point data set obtained during the nth
replication and Sgp, equal the corresponding residual sum of squares for n = 1,..., N. Define

N
SSK - ZSS'Rn (150)

n=1

It is shown that Sgp/ o7 is chi-square distributed with N(K — M,) degrees of freedom.

To test for stationarity of parameter c,, replace the mth element of cr, by ¢n € ¢, and

compute the resulting error sum of squares, denoted by Sg;,,,, for n =1,..., N. Compute the
sum
N
SsGn = Y S 5Gma (151)
n=1

It is shown that (Ssq, — Ssg)/o? is chi-square distributed with N — 1 degrees of freedom.
Therefore, the ratio [(Ssa, — Ssr)/(N — 1)]/{Ssr/[N(K — M,)]} is F-distributed with N — 1,
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N(K — M,) degrees of freedom. The test of significance for nonstationarity of parameter ¢, is
then as follows:

_ (SsGm — Ssr) /(N — 1)
» T TS IN(K — M)

T > Py gk—m) (@) (152)

13. Examples
13.1. Calibration of Single-Input—Single-Output Nonlinear Sensor

Consider an inertial angle-of-attack sensor which senses the projection of the gravitational
force onto the aircraft model axis. At zero roll, the angle of attack sensor is accurately modeled
by the following equation:

n=/f(c,a)=Ssin (0« —¢) +5b (153)

where the scalar «, the angle of attack in radians, is the independent variable z; the 3 x 1
parameter vector is given by ¢ = [b S ¢|', where b = Offset in V, S = Sensitivity in V/g,
¢ = Misalignment angle in radians, and 7 is the sensor output in V. For this example input
vector z equals applied angle « and éz denotes the uncertainty of & during calibration.

Calibration design matrix Z has dimension K x 1. Equation (153)is extended to K dimensions
as follows:

n="~f(c,Z) =5 sin (z — 1)+ b1 (154)

where 1 denotes the K x 1 angle of attack sensor output vector, z denotes the single column
of design matrix Z, sin denotes the KA x 1 vector obtained following element-by-element sine
function evaluation of the elements of (z — ¢1), and 1 denotes a K x 1 vector of ones.

Let 6z denote the calibration angle uncertainty, and let ex denote the uncertainty of the
sensor voltage measurement with variance o%. Then the observed output y is given by

y=fle,a+éz)+ex=Ssin (a+68z—¢)+ b+ ex (155)

Output uncertainty 8y is obtained with equations (66) and (153)

by =5cos (z—¢)oz+ep (156)

Equation (156) is extended to K dimensions as follows:

by = S cos (z —¢1) o bz + eg (157)

where cos denotes the K x 1 vector obtained following element-by-element cosine function eval-
uation of the vector z — ¢1, o denotes element-by-element multiplication of equally dimensioned
matrices, and oy, 6z, and eg denote K x 1 vectors of uncertainties 6,, éxr, and eg, respectively.
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The observed calibration output vector, including measurement uncertainty and calibration in-
put uncertainty, is thus extended to K dimensions with the use of equation (153) to the following
equation:

y=n+06y =95sin (z— ¢1)+ b1+ by (158)

It can be shown that the A x K covariance matrix of y is given by

Sy = cov (8y) = S’[cos (z — ¢1) cos (z— ¢1)"] 0 Ty + B (159)

where Xy and Xy are the covariance matrices of 6z and e, respectively. It is seen that Xy and
U given by equation (71) are symmetric and positive definite.

The least-squares estimate of parameter vector ¢ is obtained by minimization of the following
quadratic form given in equation (75):

Sso = [y — bl — S sin (z — ¢1)]"Uy'[y — b1 — S sin (z — ¢1)] (160)
The K x 3 Jacobian matrix of f(c, Z) is found to be the following:
F.(c,z) =[1,sin (z — ¢1) | — 5 cos(z — ¢1)] (161)

The least-squares estimated coefficient vector ¢ is obtained by solving the following 1 x 3 system
of nonlinear equations:

h(c,Z) =[y — b1l — S sin (z — ¢1)]TU[F.(c,Z)]
=e(c,Z)"U '[Fe(c,Z)) =0 (162)

where e(¢,Z) = [y — b1 — S sin (z — ¢1)]. The standard error of the regression is given by

(163)

{[y — b1 — S sin (z — ¢1)]"U~'[y — b1 — S sin (z — ¢1)] }1/2
Sy - K -3

which provides an unbiased estimate of o;.

From equation (161), equation (162) may be partitioned as follows:

h(c,Z) = [e%(c, Z)U "1 | eT(¢c,Z)U™" sin (z— ¢1) :—SeT(c,Z)U_1 cos (z — ¢1)] (164)

3

Then matrix R = [0h(¢,Z)/dc¢], given in equation (81), is found to be

R =F(c,2)U'F.(c,Z) + Hg (165)
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where

0 0 0
Hgy= |0 0 —eT (¢, Z)U " cos (z — ¢1) (166)

0 —eT(¢,Z)U ' cos (z—¢1) SeT(c,Z)U 'sin(z — 41)

The covariance matrix of ¢, denoted by X, = ¢2Q;! can now be computed with equation (86).
The three-dimensional confidence ellipsoid for € is given by equation (98); calibration confidence
intervals and prediction intervals for predicted output voltages are given by equations (102) and
(105), respectively.

Following calibration, confidence intervals and prediction intervals for inferred input angles,
given observed angle of attack sensor output voltages are now obtained. For this system, a
unique inverse function of f(c,«) exists for values of « in the interval [—7 /2,7 /2], given by

@ = arcsin (ng;b) —$ (167)

Confidence and prediction intervals for a are obtained by dividing equations (102) and (105),
respectively, by the gradient of f(c,«) with respect to «, where

af(a%a) =5 cos (o —¢) (168)

The desired 95 percent calibration confidence interval for angle « is then

~ Scos(a+9)

(169)

where p;(z) is defined in equation (104). Similarly, the 95 percent prediction interval for new
measurement « is obtained as

., ) 911/2
g — () < L 09DSx pifan + o]
B S cos (ag+ ¢)

(170)

where @(¢) denotes the predicted value of new measurement « inferred from measured output
Yo by means of equation (167).

13.2. Two-Input—Two-Output Linear Instrument

Consider a two-input—two-output hinear process—for example, a two-component strain-gauge
balance—with 1 x 2 input vector x = [z, @], 3 x 1 extended input vector z' = [1 z, x,], 2x 1
output vector y = [y; vy, and measurement error vector eg = [€ €y]. Coefficient matrix C is
given by
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Co1 Co2
C = [C.l : C-z] = C11 C19 (171)

Ca1  Ca2
where ¢., = [cgn €1n €20)" forn = 1,2.

For a single observation, the output is given by y = z7C + er. During calibration, K
calibration input vectors are applied, represented by the following K x 3 design matrix Z:

Z=| (172)

1 zg g

Measurement uncertainty is represented by K x 2 measurement error matrix Eg, where

[ €11 €12 |
€21 €22
EE = [EE'leE'Q:I = . . (173)
| €k1 0 €Kz |

The K x K covariance matrix for error vectors €g.,, and eg.,, form and n = 1 and 2, respectively,
is denoted by Xg, .

For K calibration measurements, the K x N output matrix Y is given by

Y = (Z +6Z)C + Eg (174)

where K x M, input error matrix 6Z 1s given by
0 6$1] (SZU]Q

0 (SIQl (SIQQ

0 oxpy dxpy

The 2 x 2 covariance matrix of input error vectors éx.; and éx.; is denoted by Exu‘

Tx1 X510

S, = (176)

Tx;i12 X422
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Let input vector x be random with zero-mean uncertainty e, = [e4, €4,]. Then extended input
vector zT has uncertainty e = [0 €, ex2]; K x 3 design matrix Z has uncertainty matrix Eg,
whose rows €z, and €z, have 3 x 3 covariance matrix Xz, , where

0 0 0
g, =€ {EZ; e%]} 0 ox;1 x5 (177)
0 x50 0X;0

Consider process outputs y; and y, separately; subscripts are omitted in the following computa-
tions. The total error vector ey, expressed as ey = Egzc + €, expands into

€2y, 01+ €2 ,C0 T+ €

E;I?Qlcl + 6,7’22 Co + €2

ey = . (178)

12

€1 €1+ €4 0Co €

The covariance between elements ¢, and ¢, of total error vector €, is given by

— T [P S . 2 .
cov (€y,, €y;) = € Bz + 0y = Ciox, y +CIe0X, |, + €0, ) + Tij (179)

The confidence interval at level 1 — « for estimated coefficient vector ¢ is expressed as a three-
dimensional ellipsoid as

(c —)*Q(c —¢) < 35°F, x_y(a) (180)

The ellipsoid can be characterized as follows: Since Q is symmetric, it is unitarily similar to a
real diagonal matrix A; in particular Q = PTAP, where A consists of the eigenvalues of Q and
P is unitary; that is, PP™ = I. Matrix P consists of the set of orthonormal eigenvectors of Q.
Apply the transformation v = Pc to coefficient vector ¢. The confidence ellipsoid then simplifies
to the form

'YTA’Y = /\1(71 - '?1)2 + /\2(72 - %)Q + A;s(% - %)2 < 332F3,A'—3(04) (181)

Let A denote the ¢th eigenvalue of Q). It is readily seen that the ¢th vertex of the ellipsoid is
located at distance

(182)

from point ¢ in the direction of the corresponding eigenvector, that is, the ¢th column of P.
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The uncertainty of the regression function, which is dependent upon extended input vector
z, is expressed by the calibration confidence interval at level of inequality (34):

ly — 9l < (27Q"'2) " Stx ()
< (pi + 2p 1921 + 2p130 + poy + 2pasw vy + P:s:aﬁi)l/QSth'f:a(Oé) (183)

where pij is the ijth element of Q™.

After calibration, apply input z, and make a single new measurement, where the measurement
uncertainty is . The prediction interval for output yo is obtained as follows with equation (39):

R 0_2 B 1/2
ly — | < (U_Z+Z0TQ lZo) Stg_s(a)

o? . 172
= (O_—Z + 1+ 201281 + 2p 1315 + oot 4 2ppaimy + P33$%> Sty_s(@) (184)

Confidence and prediction intervals for inferred inputs are obtained as follows: let 1 x 2
vector &y = [dy1 dyz] denote the simultaneous two-dimensional calibration confidence interval
or prediction interval defined in equations (183) and (184) that corresponds to observed output
vector yo. Let 6x denote the uncertainty (calibration confidence interval or prediction interval)
of inferred input vector x; corresponding to observed output y,. Then éx is given by

§x0 = 8y, C;) (185)
where
~ cn ¢
&, = An A12 (186)
€21 €22

14. Concluding Remarks

A generalized statistical treatment of uncertainty analysis for instrument calibration and
application has been developed. Techmques for propagation of measurement uncertainties
through experimental data reduction equations and for presentation of final engineering test
data results, which are well-established in the literature, have not been presented. Instead, the
emphasis has been on rigorous development of the correct statistical treatment of correlated
measurement uncertainties, correlated calibration standard uncertainties, nonlinear mathemati-
cal instrument models, and replicated calibrations, for which only heuristic approaches had been
available. Correlated bias errors may produce significant magnification of the uncertainties of
the calibration standard.

The effects of mathematical modeling error upon bias uncertainties have been quantified. A
design figure of merit has been established to assess the effects of experimental design on both
precision and bias uncertainties during calibration. Generally, predicted output variance due to
precision errors is minimized by calibrating only at zero and full-scale loads, whereas predicted
output variance due to modeling error is minimized by uniformly spacing test ponts throughout
the operating envelope of the instrument.
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Calibration confidence intervals and prediction intervals of a new measurement, for both the
predicted output and the inferred input, are obtained as functions of the applied load. Previously,

mstrument uncertainties were typically specified as constant error bands or as a fixed percentage
of the full-scale mput.

Replicated calibration is necessary to obtain adequate statistical sampling, to test for
nonstationarity, and to test for significant bias uncertainty. Analyses of variance of the regression
residual sum of squares have been applied to obtain individual estimated values of the standard
error due to bias uncertainty and the standard error due to precision uncertainty.

Additional associated uncertainty analyses are in progress which apply the results of this
document to the force sensor modeled by a linear function, the strain-gauge balance modeled
by a second-degree multivariate polynomial, and the mertial model attitude sensor in pitch and

roll modeled by a nonlinear coordinate transformation. The techniques have also been applied
to calibration of a skin friction balance modeled by a quadratic polynomial.
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Appendix
Mathematical Derivations

Al. Preliminaries

Al.1. Exztended Least-Squares Analysis. Let the instrument calibration data mput-output
relationship be expressed in matrix form as follows:

y=Zc+eg (187)

where Z is the K x M, calibration design matrix, ¢ is the M, x 1 parameter vector, y is the
K x 1 output observation vector, and eg 1s the K x 1 random measurement error vector with
zero mean and K X K covarlance matrix Xg. It 1s assumed that Xy can be expressed as

Y = 02U (188)

where K x K matrix U is symmetric and positive definite and measurement variance o is to
be determined. Then U can be decomposed into the matrix product

U =PPT (189)

where K x K matrix P is a nonsingular lower triangular matrix (ref. 12). For notational

convenience let P~T = [P_l]T.

A1.2. Lemmas and Theorems.

The following simple propositions, used frequently in the development, are proven for later
use. A matrix is said to be diagonalizable if it is similar to a diagonal matrix.

Lemmal. Ul'= P Tp!
Proof:

uPtp Yy =pPP'P P!
=P(P PP '=PP ' =1 (190)

where Ix i1s the K X K identity matrix.

QED

Lemma 2. Matrix A is idempotent if and only if it is diagonalizable and its eigenvalues are
either 0 or 1.

Proof of Sufficiency: By hypothesis A?=A. It is well-known from linear algebra (ref. 12) that
the eigenvalues of A must satisfy the scalar equation A?> = A, from which it follows that A = 0
or A= 1. In reference 11, A is shown to be diagonalizable.

QED Sufficiency
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Proof of Necessity: By hypothesis the eigenvalues of A are either 0 or 1. Since A is diagonalizable
a nonsingular matrix I' exists such that A = I' I,I'"! and I, is a diagonal matrix of zeros and
ones. It 1s clear that I,I, = I,. Therefore, AA = A.

QED Necessity

Lemma 3. If matrices A and B have dimension N x M and M x NN, respectively, then
tr(AB) = tr (BA).

Proof:
N N M
tr (AB) =Y (AB),, =3 > a,ub.
SR
- Z Zban = Z (BA) =tr(BA) (191)
m=1 n=1 m=1
QED

Lemma 4. If square matrix A is diagonalizable, then tr (A) = tr (A), where A is the diagonal
matrix of eigenvalues of A.

Proof: By hypothesis there exists nonsingular matrix T such that A= TAT-! (ref. 12). By using
Lemma 3,

tr(A) =tr (CAT") = tr (["'TA) = tr (A) (192)

QED

Lemma 5. For N x N matrices A and B, tr (A + B) = tr(A) + tr (B).
Proof:

N N N
tl"(A + B) = Z(ann + bn,n,) = Zann + Z bnn
n=1 n=1 n=1
= tr (A) + tr (B) (193)

QED

Lemma 6. If matrix A is idempotent, then rank (A) = tr (A).
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Proof: By Lemma 2, A is diagonalizable and its eigenvalues are either 0 or 1. Then, by Lemma 4,
tr(A) = tr (A), where A is the diagonal matrix of eigenvalues. Hence, rank (A) = tr (A).

QED

Lemma 7. If K x K matrix A is idempotent, then Ix — A 1s idempotent with rank K — ry,
where r4 = rank (A).

Proof:

(Ix —A)(Ix —A)=Ix —2A+ AA =T — A

By Lemmas 5 and 6, rank (Ix — A) = K — ra.

QED

Theorem 1. Let Sqpy = € We where 1 x N vector € is normally distributed with covariance
matrix ¥, = ¢2Iy and W is an N x N symmetric matrix with rank r. Then S gy/c% is chi-square
distributed with r degrees of freedom and expected value r if and only if W is idempotent.

Proof of Necessity: Since W is idempotent, by Lemma 2 its eigenvalues are either 0 or 1. Hence,
there exists an N x N matrix I' such that

W = "Iyl (194)

where I''T' = Iy, and Iw is diagonal with r ones and N — 7 zeros. Note that Iw = IwIw. Let
(w = IwIl'e. Then

Cowlw =€ T'Twle = € We =Sgy (195)
Moreover,

Sew = € [Gwlw] = IwlEgM Ty
= oL IwIT Iy = 031w (196)

Therefore, ¢w/o is normally distributed with covariance matrix Iw. Thus, Sqy /02 equals the
sum of squares of r independent unit variance normal variates, and therefore Sgy/o? is chi-
square distributed with r degrees of freedom (ref. 7). The expected value of Sg, is obtained by
using Lemma 3 and equations (195) and (196) to yield

E[Ssw] = € [tr (Cwiw)] =€ [tr(Cwiw)]
=tr(Bgy,) =0’ tr(Iw) =c’r (197)

QED Necessity
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Proof of Sufficiency: By hypothesis Sg;y-/e2 is chi-square distributed with r degrees of freedom
and, hence, equals the sum of squares of r independent zero-mean, unit-variance normal variates.
Symmetric matrix W can be written as

W = [TART (198)

where N x N diagonal matrix Ay contains r nonzero elements since W has rank r. Define

{w = A;{,QFE, where the elements of diagonal matrix A;{f equal the square roots of the
corresponding elements of Aw. Note that (w contains r nonzero elements. Then

Cwlw = € TTA e = e"We =Sy (199)
But ’ ’
T = Elewlh] = AWTERTTAY = c2AG TITAY =02 Ay (200)

If any nonzero element of Aw does not equal 1, the hypothesis that S¢y /0% equals the sum of
squares of r independent unit-variance normal variates is contradicted. Hence, diagonal matrix
Aw contains only ones and zeros, and by Lemma 2, W 1s idempotent.

QED Sufficiency

Theorem 2 (ref. 10). Let €'e = X ¢, for 1 <m < M, where 1 x N random vector € is normally
distributed with covariance matrix Iy, ¢,, = €' Q,,€, and nonnegative indefinite N x N matrix
Q.. is symmetric with rank r,,. Then the variables ¢, are independent chi-square distributed
random variables if and only if >~ r,, = N, for 1 <m < M.

Proof of Necessity: By Theorem 1, €Te is chi-square distributed. Also, by hypothesis

M M
ele = ZETQme = Z . (201)

m=1 m=1

where Q,, has rank r,, and

M

> ra=N (202)

m=1

Since QQ,,; 1s symmetric and nonnegative indefinite with rank 7,,, it can be expressed in the form

Q'Vﬂ = PﬁAWLP m (203)

where P, is orthonormal and A,, is diagonal, containing r,, positive elements and (N — r,,)
zero elements on the diagonal. After rearranging its elements, matrix Q,, can be written in
partitioned form as
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A, ' O P,
| =PTFA

rm I'm

P

Qm = |:P3:n : PEm (204)

0o ' 0 P

1 Sm

where NxN matrix PL = [PT | PT ] P, has dimension r,, x N, P, has dimension (N—r,)xN,

and A, has dimension r,, X 7,,. Define r,, x N matrix R, as

R, = AP, (205)
It is seen that R,,, has rank 7, and that R} P, = Q,,. Also define r, x 1 vector &, as
&n =R, x (206)

where x 1s an arbitrary N X 1 normally distributed random vector with covariance matnx Iy.
Then, inner product gm = &-¢m = X' Qux forms N x N matrix R, from the set of M matrices

anl as

R,
R = | : (207)
R

T M

It follows from equation (202) that R, has rank N and is therefore nonsingular. Construct N x 1

vector € from subvectors &, ..., £y defined in equation (206) as
&
E=| ' | =Rx (208)
€M

It follows that

M M
Tx= Y xTQ,x =Y €%, =% = x"RIRx (209)
m=1

m=1

Since equation (209) holds for arbitrary vector x, it follows that RTR, = In = R,RT and,
hence, R, is orthonormal. The covariance matrix of £ is found to be

B =8[¢¢"] =R, £ [xxT|RF = RRT = Iy (210)
Therefore, the covariance matrix of £, equals I,,,. It then follows from Theorem 1 that random

variable ¢, = €X¢,, is chi-square distributed with »,, degrees of freedom. Moreover, since R, is
orthonormal, the set of random variables ¢,, is mutually independent.

QED Necessity
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Proof of Sufficiency: Construct matrix R, and vector £ as before. By hypothesis, the elements &,
are mutually independent with chi-square distributed inner products; thus, covariance matrix 3
contains r = Xr,, ones on the diagonal and zeros elsewhere. Since xTx is chi-square distributed
with N degrees of freedom, it follows from equation (209) that £€7¢ is likewise distributed. Hence,
rank 3¢ equals N and N = r.

QED Sufficiency

A1.3. Linear Leasi-Squares Estimation.

From equation (187), note that the expected value of y is given by

Ely] = Zc (211)
Define K x 1 transformed observation vector v as
v=Py (212)

Equation (187) now becomes

v=P "Zc+Pleg =P 'Zc+e, (213)

where K x 1 vector &, = P 'eg. Immediately the expected value of v is

py, = E[v] =P 'Zc (214)

Then the K x K covariance matrix of v (which equals the covariance matrix of €, as well),
denoted by X,, is obtained with the help of equations (188) and (189) as

Y, =E[(v —p)(v— ) = P Eeger P T
—P 'SP " = 2P 'PP"P " = oI (215)

Thus the elements of v and of €, are uncorrelated.

Based on transformed output observation vector v, the desire is to estimate the value of
parameter vector ¢, denoted by ¢, which minimizes the sum of squares Ssq given by the following
inner product:

Sso=(v—py)"(v—py)=(v—P 'Ze)" (v - P 'Zc) (216)

Note that equation (216) may be rewritten as

Sso=(y — Zc)"P"P Yy —Zc) = (y — Zc)" U\ (y — Ze) (217)
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It is well-known (ref. 7) that the least-squares value ¢ which minimizes equation (216) is obtained
as follows:

c=[(P ey (Pt z)v = (Z'P TP Z) 2P Ty
(Z'U'Zy'2'P v =Q7'Z"P "y (218)

where M, x M, generalized moment matrix Q of the experimental design is defined as

Q=72"U"'% (219)

It is to be noted that QT = Q. With the help of equations (213), (214), and (218) the expected

value of ¢ is found to be an unbiased estimate of ¢ as follows:

el =Q 'z TP T £gv] = Q1ZTU 'Zc
=Q 'Qe=c (220)

The covariance matrix of € is found by first combining equations (213) and (218) to obtain

c—c=Q'Z"P TP 'Zc+e&)—c=Q 'Z"U "Zc+ Q2P e, — ¢
=Q7'Qc+ Q7 'Z"P e, —c = Q2P "¢, (221)

It is seen that €—c is normally distributed since €, is normally distributed. From equations (219)
and (221) it follows that M, x M, covariance matrix 3~is given by

T-=E[C-c)c—c) | =Q'Z'P T Elevel] =P ZQ !
=0pQ'2Z'U'ZQ T = 03Q7'QQT = 01Q (222)
Define K x 1 predicted output vector v by
v=P'Z¢ (223)

and define A x 1 residual vector €, = v — v. Using equations (213), (218), and (223) yields

—~

ev=v—-v=v—-P'2Q '2TP Ty

=(Ix —P'ZQ 'Z"P ") (P 'Zc +€,)

= (Ix —P'ZQ'Z™P T) e, = Wge, (224)
where K x K matrix W i1s defined as

Wy = Ix — Qg (225)

and K x K matrx Qk 1s defined as
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Q= P 'Z2)Q (P 'z2)T (226)

An integer subscript will be appended as needed to distinguish the dimension of matrices U,
W, @, Z, Q, and I for nonreplicated and replicated experimental designs.

It 1s seen that Qg 1s both symmetric and idempotent as follows:

Qe = [P'ZQ'Z'"P "] [P'2Q'Z"P "]
=P 'zQ'z'u'zqQ'z'p T
=P7'Z2Q'QQ7'Z'P T = P 'ZQ'ZTP " = Qg (227)

Also, using Lemmas 3, 4, and 6,

rank (k) = tr P 'ZQ'Z'P ) = tr (Q'ZTP TP 'Z)
=tr(Q7'Q) = M (228)

Then by Lemma 7, Wk is idempotent with rank K — M,.

It is seen that ey is normally distributed. From equation (224), the expected value of e, is
zero. The covariance matrix of €, then is found by using equations (215) and (224) as follows:

S, =& [8,87) = Wi & e, "] WE
=0t W Wi = o3 Wy (229)

The M, x K covariance matrix of ¢ and ‘e, is shown to be zero (ref. 7), and with the help of
equation (215),

cov (¢,8,) =E[(€—c)el| =Q'Z"P " £ e, el | Ix —P'ZQ'Z"PT)
=L (Q'Z' P T-Q 2P ") =0 (230)

Thus ¢ and e, are uncorrelated and independent.

The residual sum of squares Sy, defined as the sum of squares of the elements of residual
vector ey, is obtained with the help of equation (224) as

Ssp=ere, =el WeWe, = e Wie, (231)
E[Ssp) = oK — M,) (232)

From equation (228) and Theorem 1, Sgg/0% is chi-square distributed with K — M, degrees of
freedom and expected value K — M,.
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Therefore Sy, denoted the standard error, is defined as

SSE 1/2
Sp=| ——— 233
v (K _ Mz> (233)

Note that S i1s an unbiased estimate of o ;.

A confidence ellipsoid for € is now obtained. Evaluate the quadratic form

Sse=(c = ©)'Q(ec — )

with equation (221) to yield

Sse=(c=0)TQ(c—¢) = ey PT'ZQ'Z"P T, = €] Qe (234)

v

Recall that K x K matrix g was shown by equation (228) to be idempotent with rank M,.
Then by Theorem 1, it follows that Ssc/c} is chi-square distributed with M, degrees of freedom
and expected value M,. Since ¢ — ¢ and €, are independent, Sy~ and Sy are independent.
Hence, the ratio F' = [Ssa/(0%,M,)]/{Ssx/[0c%(K — M,)]} is F-distributed with M,, K — M,
degrees of freedom (ref. 6). Therefore, a confidence interval for ¢ at level a is given by the
following inequality:

(C —E)TQ(C — E) S MZSZ;FA,TZ‘[(,A,{Z (O[) (235)

where F} ;(a) is the 1 — o tail of the F-distribution with ¢, j degrees of freedom and 5}, is defined
in equation (233). The quadratic form of equation (235) defines an ellipsoid in M, dimensional
hyperspace termed the confidence ellipsoid.

Given M, x 1 input vector z, the corresponding predicted scalar output 3 is given by

Y(z)=1z"¢ (236)

From equation (220), the expected value of y(z) equals zTc. With equations (222) and (236),
the variance of y(z) is obtained as follows:

oi(z) = E({i(z) — E[H(2)]}") = E{[z" (¢ — )"}
=&z (c—C)(e—E)'z]=2"E[(c —C)c—¢)']z

=2z'3%z=02"Q 7'z (237)

Then the normally distributed variate 69(z)/ [o(zTQ~'2)"/?] has zero mean and unit variance,
where 6§ = y— 7. Recall that S%./07 is chi-square distributed with K — M, degrees of freedom.
Then the ratio ¢ defined as follows has Student’s {-distribution with KX — M, degrees of freedom
(ref. 7):

)/ [oe (" Q')
SSL'/ [O-L(I{ — Mz)l/Q]

(238)
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Combine equations (233), (237), and (238) to obtain the calibration output confidence interval
defined by the following inequality:

ly =91 < (#7Q'2) S tre g (/2) (239)
where t, () is the a-percentile of the two-tailed ¢-distribution with n degrees of freedom.

A2, Effects of Process Modeling Error

Consider a process f(c,z) modeled as a linear function of extended input vector z

flc,z) =zc (240)

whereas the actual functional relationship is

J(e,2) = ne +7(2) (241)

where y(z) 1s the modeling error. Let the system be calibrated with calibration design Z in
accordance with equation (187) based on the linear model in equation (240). The observed
calibration output is then

y=Zc+~(Z)+eg (242)

where v(Z) denotes the K x 1 vector of modeling errors

7(21)
v(z) = | (243)
(k)
Estimated coefficient vector ¢ is obtained from equations (218) and (242) as follows:

T=Q'Z"U Yy = Q'Z"U [Ze + v(Z) + €]
=c+Q'Z2"U[y(Z) + ex] (244)

The expected value of ¢ is seen to be

Elel=c+Q 'Z"U '~(Z) (245)

Predicted output vector y becomes

§=Z¢=Zc+ZQ 'Z U ' [(Z) + €] (246)
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It follows from equation (246) that the expected value of predicted output vector y is given by

Ely] = Ze + ZQZTU '~ (Z) (247)

Combine equations (242) and (246) with (225) to obtain residual vector €, as

v—-v=Ply-y)=P ' (Ix—ZQ'Z"P"P) [7(Z) + €]
= (Ixk — P'ZQ7'Z"P ") [P7'9(Z) + &,] = Wk[P'v(Z) + €] (248)

o)

v

The expected value of &€, is seen to be

£le,] = Wi P~'~(Z) (249)

After combining equations (215), (248), and (249), the covariance matrix of €, is found to be

3, =l - £ — £(@)]T = oW (250)

ey

Since W is idempotent, the residual sum of squares is obtained from equation (248) as follows:

Ssp =6, = [P7y(2) + &, ]"Wi[P'v(Z) + €] (251)

Because Wy has rank K — M, the expected value of Sgpis

ElSspl= (K — M,)o, +~(Z)"P "Wy P~ 'y(Z) (252)

Note that S, = [Ssp/(K — M,)]"/? is no longer an unbiased estimate of ¢ when modeling error
v(z) is nonzero.

Consider arbitrary input vector z. The corresponding output y, obtained with equation (241),
is

y=fle,z) =2c+7(z) (253)

The predicted output is ¥ = zc. Prediction error §y is then

Sy=y—7=7(2)—2Q'Z"U '[+(Z) + € (254)

The expected mean-square prediction error is obtained from equation (254) as

oA(z) = €657 = [1(2) — 2Q7 LU (Z)]? + 02" Q2 (255)
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A3. Nonlinear Least-Squares Estimation With Input Uncertainty

Let ¢ denote the M, x 1 parameter vector; (z+ éz), the 1 x M, stochastic input vector, where
z is the 1 x M, nominal input vector and éz is the 1 x M, stochastic input uncertainty vector;
¢, the measurement uncertainty, a zero-mean random variable. Then the process output is of
the form

y = f(c,z+0z) +ex = f(c,2)+ 6y (256)

The uncertainty éy; of the kth observation is then

Sy = 6k + 1, (257)
where

6fu = fz(cazk)ézk (258)

and the 1 x M, vector f,(c,z;) is defined as

e = [ PLznd] 0

Define K x 1 error vector 6f, as

5F, = [6f-1 ... 6f.]T (260)

It is seen that é6f, is given by
|-fz(c,zl)621T-|

\‘fz(c,zﬁ»)(Sz,T(‘

of, =

4

(261)

Note that subscript z 1s appended to indicate that 6f depends on the entire design matnx Z.
The K x K covariance matrix of éf, is given by

3y, = E[6F,68]] (262)

The K x 1 output vector y is obtained by extending scalar equation (256) to the following A x 1
vector equation

y =f(¢,Z) + by (263)

where Z 1s the K x M, design matrix, and éy is the K x 1 zero-mean combined output uncertainty
vector given by
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by =61, + &g (264)

and dy has K x K combined output covariance matrix Xy which can be expressed as

v = X5, + g (265)
The assumption is that 3y can be expressed in the form of equation (188), namely Xy = ¢2 U,

where U satisfies the conditions of equation (189), with transformed K x 1 output vector v
defined in equation (213), and equation (263) becomes

v=P"(c,Z)+ 6v (266)

where K x 1 uncertainty vector §v = P~'4y and K x K matrix P is defined as in equation (189).
The expected value of év is zero, and the expected value of v is

1y = E[v] = P (¢, Z) (267)

The K x K covariance matrix of év, denoted by X, then becomes

B, =EvevT] =P EysyTIP T = 2P UPTT =021k (268)

It 1s seen that év is uncorrelated and normally distributed whenever éy 1s normally
distributed. As in equation (216) define the sum of squares as

Sso= v —p)"(v—py) =[v-P H(c,Z)" v - P 'f(c,Z)] (269)

To minimize S gq (ref. 13) compute its gradient with respect to ¢ and equate the resultant 1 x M,
set of equations to zero as follows:

h= % (%) — [v— P '(c,Z)"P" [S_E(C,Z)]

=[v—-P(c,Z)]"P'E =0 (270)
where h i1s a function of independent arguments v, ¢, and Z and has dimension 1 x M.,

[v —P 'f(¢,Z)]is K x 1, Pis K x K, and K x M, matrix F, is defined as

df1(e,z1) df(e,71)

deq dem,,

F, = [g—i(c,Z)] = : : (271)

0fx(czr) Of i (czi )

deq o deyg,.
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Finally 0 denotes a 1 x M, vector of zeros. Equation (270) is solved numerically for ¢ by Newton-
Raphson iteration or similar method. Necessary conditions for the existence of a solution are
now obtained.

To obtain the uncertainty of ¢ denoted by é¢, compute the total differential of equation (270)
and equate to zero as follows:

6h = év?T [gh

\%

] +6¢TR =0 (272)
where K x M, matrix [0h/Jv] is seen to equal

[g—i‘] =P 'F, (273)

and the M, x M, matrix R is defined as

02 ASVS’Q 0 2»5'5'(2
a(t{I) e de O M,
oh
R=|—]| = : : (274)
ac . R .
3 SsQ 32 SsQ
0 é)(‘MZ Y O 2\ I

A necessary condition for the existence of a solution to equation (270) for ¢ and to equation (272)
for é¢ is that matrix R be nonsingular in some open interval about ¢ (ref. 11).

To evaluate R differentiate equation (270) with respect to ¢ as indicated to obtain

R=F'P"P'F,+[v—P'f(c,Z)]"P '®F, =F'U'F, +Hg (275)

where Hpg 1s defined as

He=[v-P'f(c,Z)"P ' ® Fe. (276)

The M, x M. x K array F is defined as the partial derivative of M, x K array FT with respect
to vector ¢; that is,

F

ce

[—aFfTa(z’ Z)] (277)

where the ijkth element of Fec(c, Z) equals the second partial derivative of the kth element of
function f(c,Z) with respect to ¢; and ¢; as follows:

_ ank(cﬂZk)

o= 2
f{‘,(‘,‘l‘]‘ 8Ci aCJ ( 78)
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for 1 <¢,5j < M., and 1 < k < K. The ® operator denotes formation of the mner product of
1 x K row vector [v — P 'f(¢,Z)]"P~" with each K X 1 column of array F.. Thus the ¢jth

element of M, x M, matrix Hg 18 given by

hﬁ,ij = [V — P_lf(C, Z)]T P_lFCC”;j = e‘TP_lFmij (279)
for 1 < 4,j < M., where F.; denotes the ijth (A x 1) column of array F., and
e, = v— P !f(c,Z). After least-squares estimation of vector ¢, vector e, becomes residual vector

e, defined subsequently. If norm || €, || is small, matrix Hg can be neglected in equation (275).
Then R is closely approximated by

R~ FIU'F. (280)

Note that matrix R has rank M, i.e. is nonsingular, only if rank (F.,) = M, Combine
equations (272) and (273) and solve for M. x 1 uncertainty vector ¢ to yield

f¢ = —R'FIP Tév (281)

From equation (281), ¢ has zero mean and covariance matrix as follows:

2 =R'FIP TS, P'F.R!
=R'FIU'FR =02Q]' (282)

where M, x M, matrix Q, equals

-1

Q.= [R'FIU'F, R (283)

Note that satisfaction of the approximation in equation (280) is a sufficient condition, but not
necessary, for the existence of matrix Q.. Equation (280) implies that

Q.= R (284)

A3.1. Residual Sum of Squares.

As for calibration design matrix Z and estimated parameter vector ¢, define K x 1 predicted
output vector V as

V=P 'f(¢,Z) =P ' [f(c,Z) + F.6c]
= P~ [f(¢.Z) - ERV'FIP"ov] = P'f(e.Z) — Qebv (285)
where
2 = (P7F) R (P7F)" (256)

As before, K x 1 residual vector ey is defined as
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v —% =P U[f(c, Z) — £(¢,Z)] + év

€y

Let éf. = f(¢,Z) — f(¢,Z), which is closely approximated by éf. = F.(c, Z)é¢.

equation (287) can be expressed in differential form as
e, = P7'F (¢,Z)5¢ + v
Combine equations (281), (286), and (288) to obtain
& =(Ix—P 'F.R'FI'P ") év = Wy, év

where

WFK =1k — Qp

(287)

Then

(288)

(289)

(290)

Subscript K, appended to denote the matrix dimension, is treated as an index. If approximation

in equation (280) holds, then 2y is idempotent as is shown in the following equation:

QpQp = P'F.R'FTPTP'F.R'FTPT
=P 'FR'(FIU'F,)R'FIP T
=P 'F.R'FIPT = O

By using Lemmas 2, 3, and 6,

rank (Qg) = tr (P'F.R'F'P ") =tr (R'F'P P 'F,)
=tr (R'FIU'F.)=tr (R'R) = M,

Therefore, by Lemma 7, Wy, is idempotent with rank K — M..

The covariance matrix of €, is given by

2
S, =02 Ws,

and the residual sum of squares Sqz is given by

_ aTs _ g T
Sep=e ey, =6v Wy, 0ov

(291)

(292)

(293)

(294)

Then by Theorem 1, Sgp is chi-square distributed with K — M, degrees of freedom and with

expected value

E(Ssn) = (K — M,)o2

An unbiased estimate of oy 1s provided by standard error Sy, where
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S\

A confidence interval for oy at confidence level « is given by

K — M,)25, K — M,)"25
(K= M) RSy K= MRSy

<oy < (297)
X(1+a)/2 X(1-a)/2

where Y, 18 the « percentile value of the chi-square distribution with K — M, degrees of freedom.

A3.2. Confidence Intervals.

A confidence ellipsoid is now obtained for ¢. Let

Sse =(c—0)'Qe(c —¢) = év'P'F.R'Q.R 'FIP Tov
=v"PT'F.RT'FIP T 6v = 6vTQpbv (298)

Because Qp is idempotent, Ssc /ol is chi-square distributed with M. degrees of freedom by
Theorem 1. Hence, the ratio F' = [Sso/ 02 M.]/{Ssi/[cH(K — M.)]} is F-distributed with
M., K — M. degrees of freedom (ref. 7). Then the confidence ellipsoid at level « for ¢ is defined
by

(¢ — ) Qulc — ) < MS2Fy, 5 () (299)

For arbitrary input vector z, the corresponding predicted scalar output denoted by y(z) is

y(z) = f(c, z) (300)

The uncertainty of y(z) due to calibration uncertainty alone is obtained with equation (281) as

8 =y—y=[(c2)— f(&z)
_ [3f(€,z):| 56 = —fCT(C, Z)Rleg‘Pflév (301)
de

where M. x 1 gradient vector fe(c,z) is defined as

£,(c,z) = [%} (302)

It follows that 8y is normally distributed with zero expected value. Then the expected value of
y(z) is

Ely(2)] = fle,2) (303)

51



The variance of predicted output y(z), denoted the variance function, is obtained from equa-
tion (301) as follows:

o3(z) = £[67 8] = £ (c,z)R'FIP 'Esv sv"IPTTF, R, (c, 2)
= o7 (c,2)R_ FTU FR™'fi(c, 2)
= o2 (c,7)Q f.(c, %) (304)

If the approximation in equation (280) holds, then equation (304) simplifies to
oi(z) = a2 (¢, )R fo(c,2) (305)

112
The normally distributed variate éy(z)/ {O’y [fg(c,Z)Q:Ifc(c,z)

} has zero-mean and unit

variance. It was shown previously that Ssz /ol is chi-square distributed with K — M, degrees
of freedom when the approximation in equation (280) holds. Then the ratio ¢ defined below has
Student’s ¢-distribution with K — M, degrees of freedom.

552/ {ov [ (c, QM (e,2)] ]
Y XU AL e

Then the output prediction confidence interval at o confidence level is given by

ly =1 < [£7(¢,2) Qo' £u(€, )] /Syt s, (/2) (307)
where ¢, (@) 1s the o percentile value of the two-tailed ¢-distribution with n degrees of freedom.

A4. Analysis of Replicated Calibrations

In the following development, subscripts K and NK are appended to matrices I, Z, Q, U,
and © to distinguish between single calibrations (K observations) and replicated calibrations
(NK observations). Consider an arbitrary A x M, experimental design matrix Z for calibration
of a single- output sensor, which is replicated N times. The sets of input loading uncertainties
are seen to be intercorrelated among replications. The N K x M, replicated experimental design

ZNK iS
[ZK]
Zx

Zx

where K x N K replication matrix H is defined as

HE[IK Ix ... IK] (309)
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The following properties of H are used in the subsequent development. The K x K matrix
product HHT equals

HH" = NIy (310)

and NK x NK matrix product HTH equals

Ik Ix ... Ig
T Ix ... 1

o | T T (311)
T Ie ... Ig

For any K x K matrix A, the NK x NK matrix product H'AH equals

A A ... A
A A ... A

H'AH=|" : (312)
A A ... A

Let Dy be an NK x NK block diagonal matrix constructed from K x K matrix A as

{A Ok ... Ok
0 A ... 0

Dk = K : :K (313)
0k Ok ... A

where Ok 1s a KX x K matrix of zeros. Then it follows that
HDyHT = VA (314)

A4.1. Single-Input—Single- Output Process With Uncorrelated Uncertainiies.

Over N replicated calibrations, let the elements of N A x 1 measurement uncertainty vector eg
be uncorrelated with N K'x N K covariance matrix o%Ing, and let the unknown bias uncertainties
of a single replication due to the calibration standard be uncorrelated with covariance matrix
02Tk . Since the loading sequence is replicated, then

cov (24, 2im) = O (Jf =l =nkK;n=1,... N-1I;m=1,...,M,)
=0 (Otherwise) (315)

where z;,  is the mth element of vector z; and £ = 1,..., NK. Thus, from equation (311), the
NK x NK covariance matrix of design matrix Z is given by

Yz =0c’H™H (316)
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Similarly, the N K x N K measurement uncertainty covariance matrix is given by

Ix Ok ... Ok
‘ , |0 I ... 0
EE = O-i'INK = O'i,v K K :K

Noting that ¢2 > 0 and ¢? > 0, define combined output covariance matrix Xy as

EY = EE + EZ = U'i‘INK + O'f,HTH = O-i;UNK

where
Ung = Ink + cHTH =
and
o?
a= —=
o
It is readily shown that
(1—p)Ik — Ik . el %
) ST, S 8
U;IIK == INK — ﬁHTH =
— Ik —0Ik o (1= 9)Ig
where
o
f= Na+1

(317)

(318)

(319)

(320)

(321)

(322)

Then M, x M, generalized moment matrix Qg is obtained with the help of equation (310) as

follows:

Qnk = Zog UnkZng = ZeH(Ing — SHTH)H  Zy
= N(1 - NpB)ZgZx
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Combine equations (320), (322), and (323) to yield

2
Ty

=—r 777 324
QNK (o'i,/N)—I—O'f KK ( )

Note from equation (324) that the portion of calibration uncertainty due to calibration standard
bias errors 1s not reduced by replication, whereas that due to measurement errors decreases
roughly as N~'/2.

For the analysis of variance tests presented subsequently in the null hypothesis the input
uncertainty is assumed to be zero. Then g, = 0 and matrix Ung equals Ing; consequently, P

equals Ink in equation (189). For this special case, equations (308), (310), and (323) imply that
From equations (226) and (325), NK x NK matrix Qyk is given by

1
Onk = Znk QnicZax = ﬁHTQKH (326)

where X' x K matrix Qx 1s
Ok = Zx Q' Zg (327)

As shown in equations (226) and (228), Qk and Qg are symmetric and idempotent with
rank M.

A4.2. General Multi-Input—Single- Output Process.

Consider a general multi-input-single-output nonlinear process calibrated by using experi-
mental design Zy replicated N times as before. The K x 1 output uncertainty vector of a single
replication, denoted by éyk, is given by equation (264). Then for NV replications N K x 1 output
uncertainty vector dyyk 1s given by

bynk = HT6f, + e (328)

where K x 1 vector éfz is given by equation (261) with K x K covariance matrix Yz = (TfoZK,
given in equation (262), and where N K X 1 measurement uncertainty vector eg has NK X NK
covariance matrix Xy = O'%UENK. The measurement uncertainty is assumed uncorrelated
between replications and the K x K measurement covariance matrix of each replication is
assumed to be X, = 02 Ug,. Then

[Ug, Ok ... Og |
Ok UEK Ok
Ubyg = . . : (329)
i Ok Ok UEK_

and from equation (328),
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By = B8 + Bizye = 05Uy + 02Utz = 05Uy (330)
where NK x NK covariance matrix Xgz o, 1S given by
2fZNK = UiUfZNK = UiHTUfZKH (331)

From equation (330), Uy, can be expanded into

[UENK + aUpg, aUg, . Uy, ]
anZK UEK + OL’UfZK N OéUfZK
Uyng = Upng T @Uszg = ] ) . (332)

where « is defined in equation (320).

The mverse of NK x NK matrix Uy, can be computed in terms of X' x K matrices Ug,
and Ug, as follows. Define K x K matrix B as

B = [Ug, + (N — 1)aUg,] ' Ug, (333)
and K x K matrix A as

A={Uy +aUgy [Ix —(N-1B]} (334)

If the inverse matrices of equations (333) and (334) exist, then Uy!  can be shown to be given

by

{ A —BA .. —BA-I
] . _BA A ... —BA
Uy, = Dnx — H"BAH = 5 . (335)
_BA —-BA ... A

where N K x N K block-diagonal matrix Dy 18 constructed from IV replications of K x K matrix

(A 4+ BA) as

[A—i—BA Ok Ok ]
0 A+BA ... 0
Dnk=| . : . (336)
Ok 0x ... A+BA

For the hnear case M, x M, moment matrix Qung can now be computed in terms of K x K
matrices as follows:
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Qnk = Zng Uy, Znx = (ZgH) Uy, (ZgH)® (337)

It can readily be seen from equations (314), (335), and (336) that

HU, H"=H(Dnk - H'BAH)H" = N[Ix — (N — 1)B]A (338)
Hence for the linear case,

For the nonlinear case, a single replication of experimental design Zyg, evaluation of equa-
tion (271) yields K x M, matrix F, . Then over N replications of Zg, with design matrix
Znk given by equation (308), equation (271) yields NK x M, matrix F ., = H'F. . If equa-
tion (275) holds, it follows from equation (338) that

~ T -1 _wT -1 T
R~F] Uy F. =FrHUy H'F,
= NF} [Ix — (N - 1)BJAF,, (340)

Equation (340) permits computation of confidence and prediction intervals for replicated cali-
bration data in terms of K x K matrices; thereby, required computer storage and computational
resources are reduced when NV is large.

With reference to equations (188) and (189), the analysis of variance null hy pothesis assumes
that if matrix Uy = Ing; then matrix P = Ink. If equation (280) holds, then for the null
hypothesis M, x M, matrix R becomes

~ FT _ T T
R~F. F., =F HH'F
= NF, F (341)

It follows that N K x NK matrix Qp ., given in equation (286), is given by

1
_ —1lpT _ T T —1pT
Drg = Fo BT = TH F (FL P ) F H
1
= NHTQFKH (342)

where K x K matrix Qpg is obtained from equation (286) as

Qi =F, (FLF, ) 'FT (343)

As shown in equation (291), matrices Qp, and Qg are symmetric and idempotent with
rank M..
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A4.3. Analysis of Vartance of Replicated Calibrations.

Analysis of variance of replicated calibrations provides tests of significance for the presence
of bias uncertainty due to input loading errors or mathematical modeling errors, as well as for
nonstationarity of estimated parameters. The analysis of variance is developed in this section
with single-input—single-output process notation. Note that similar results are obtained for the
general multi-input—single output case by replacing Qnk, Qx, Wnk, Wk, and M, by Qp,,
Qp,, Wiy, WFg, and M, respectively.

Let the null hypothesis (ref. 7) assume that input loading uncertainties and modeling errors
are zero and that NK x 1 measurement uncertainty vector eg has NK x NK covariance matrix
¥y = 02Iyk. Then NK x NK matrices U and P are both equal to Iyx and do not appear
in the following equations. Transformed output vector v is equal to and replaced by observed
output vector y.

The K x K matrix Wy is defined in equation (225) as

Matrix Wy, is defined similarly in equation (290). After N replications K x K matrix Wy
expands to NK x NK matrix Wyg given as

Wik = Ink — Onk (345)

where matrices Qnk and Qpy, are in equations (326) and (342) and has rank M,. Since Qnk
18 idempotent, then by Lemma 7 matrix Wyx is idempotent with rank NK — M.

For use in the development, define NK x NK matrix Gy as

N A .
Gp=—-H™H=—| & ! :

n=cHH= 1 (346)
e Ix ... Ik

It is readily seen that Gy is idempotent with rank K. By Lemma 7, matrix Iyx — Gy is
idempotent with rank NK — K.

Next Gy is shown to be a two-sided identity of any matrix of the form 1/NHTAH, in
particular Qyg. Indeed, from equations (326) and (342),

1 T T 1 T
Gy Qng = FH HH QKH = ﬁH QKH = Onk
1
- FHT‘QKHHTH = Onk G (347)

From equations (345) and (347),

GuWnk = WrkGa (348)
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Therefore, NK x NK matrix product WGy Wk, to be used later, 1s idempotent. Also, it 1s
seen that

WnkGu Wk = (INK - QNK)GH (INK - QNK) = (GH - QNK)(INK - QNK)

Since Gy has rank K and Qnx has rank M, it follows from Lemmas 5 and 6 and equation (349)
that product Wnk GuW nk has rank K — M,. Note that K — M, > 0.

Estimated M, x 1 parameter vector ¢, NK x 1 predicted output vector y, and NK x 1
residual vector € are obtained with equations (218), (223), and (224), respectively, for a linear
process, and equations (270), (285), and (289), respectively, for a nonlinear process. Recall from
equation (224) that € can be expressed as

with zero expected value and NK x NK covariance matrix o> Wyg .

Let €, denote the K x 1 residual vector at the nth replication, which has zero expected
value and covariance matrix c?Wyg. Then residual vector € can be partitioned into N, K x 1
subvectors as shown below:

T
eT— [eT &r ... & (351)

Let €k denote the mean value of the set of residual vectors €, averaged over N replications; that

1s,

Ek=—9 en=—He=—HWngeg (352)

T@ = E£WNK€E (353)

By Theorem 1, Sgp is chi-square distributed with N &K — M, degrees of freedom; the standard
error of the regression given by

Sep 1/2
Sp=[— 354
. (NK — M) (354)

Is an unblased estimate of o.
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Residual sum of squares Sgz can be partitioned into the following sum of quadratic forms:

Ser=6"6 = 8" Wy GrWnié + 8T (Ing — Wy GrWg) € (355)

By using equations (348) and (350) and the fact that Wy is idempotent, Sgp can be expressed
as

Ssr= ey WnkGu Wnkee + e Wrk (Ink — Gu) Wker (356)

Denote the first right-hand term in equation (355) by S¢x as follows:

SS)( = ETWNKGHWNKE = EEWNKGHWNKEE (357)

which follows from equation (350) and the fact that Wy is idempotent. Then Sgy can be
expressed as

SSX = EEWNKGHWNKEE = NéI’I{‘éK (358)

which follows from equations (350), (352), and (357). It has been shown that WyxGyWyk
is idempotent with K — M, degrees of freedom. Therefore, it follows from equation (358) and
Theorem 1 that Sgy/o% is chi-square distributed with K — M, degrees of freedom. Define the
root-mean-square value of Ssy as

SSY 1/2
SX = (m) (359)

Variable Sy is interpreted as the standard error due to bias uncertainty.

Consider next the second right-hand term of S5, in equation (355). Define Sg, as

N

K N
S =33 @ — ) = > (8n— &) (@, — ) (360)

k=1 n=1 n=1

where €,, is the kth element of K x 1 residual vector en, and € is the kth element of K x 1
vector €. Variable S, 1s seen to equal the sum of squares about the means of the set of NV
residual vectors €, each of dimension K x 1. Tt follows from the definition of H that

N
Ssu = Z(én —&k)"(en —ex) = (e — H"8k)"(e — H'ex) (361)

n=1
Define NK x 1 vector ey as follows and use equations (350) and (352) to obtain the result
en =8~ H 6 = &~ THHE = (Ing — Gn)é
= (Ink — Gu)WnkeE (362)
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By using equations (360) to (362),

Ssu = eyem = eg Wk (Ink — Gu) W nker (363)

Comparison of equations (356 ) and (363) shows that Sgy; equals the second right-hand term of
Sy Moreover, 1t is clear that matrix product

WNK (INK - GH)WNK = WNK - WNKGHWNK

is idempotent and, by Lemmas 5 and 6, has rank NK — K | since Wy has rank NK — M,, and
Wk GaW g has rank K — M,. By Theorem 1, Sgy,/0% is chi-square distributed with NK — K
degrees of freedom. Variable S, can be interpreted as the portion of residual sum of squares
S¢p due to measurement uncertainty. The root-mean-square value

I 1/2
SM
S = (W) (364)

is interpreted as an estimate of the standard deviation o5 of the measurement uncertainty.

It follows from Theorem 2 that Sgy and Sgp are mdependent. Therefore, the ratio
Ty, = [Ssx/(K — M,)]/[Ssu/(NK — K)] is F-distributed with K — M,, NK — K degrees of
freedom. The test of significance for the existence of distinct input loading biases is as follows.
Assume as the null hypothesis that input loading bias error and modeling error are zero. Form
the expression

Sex /(K — M,)

T =
Xu S SM / (N K- K

) > Freu,, vir (@) (365)

If inequality (365) is satisfied, then the null hypothesis that both input loading bias error and
modeling error equal zero is rejected at confidence level a.

A4.4. Stationarity Test of Estimated Parameters.

A test 1s developed for nonstationarity of estimated individual parameter ¢,, € ¢ over NV
replicated calibrations. Let g, denote the parameter vector estimated at the nth replication by

a K-point regression, with residual sum-of-squares Sgg,, for n = 1,.. ., N. Define
N
Ssp= Z Ssr, (366)
n=1

Let ¢ denote the parameter vector estimated by an N K-point global regression over the complete
set of N replicated calibrations. To test for stationarity of parameter ¢, replace the mth
element of ¢g, by ¢, € ¢ and compute resulting the error sum-of-squares, denoted by Ssg,,, for
n=1,...,N. Compute Sg;,, = >.S55¢,, forn =1, .., N. The ratio (S5, — Ssr)/Ssr

is subsequently shown to be F-distributed and thereby provides a test of significance for
nonstationarity of the estimated value of ¢, over the N replicated calibrations.

m
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The null hypothesis assumes that calibration standard errors and modeling errors are zero

and that estimated parameter vector Cg, is stationary over the N replications. Let NK X 1

measurement error vector eg be partitioned among the N replications as [ef, ...ex |, where ey
1 N n

denotes the K x 1 measurement error vector at the nth replication. Also, let §eg, denote the
uncertainty of the nth estimated parameter vector, which is obtained from equation (281) as

(SER” = —Ril FSGE” (367)

The uncertainty of element ¢ € Cg, is seen to be

where pT is the mth row of R™!. Similarly, the uncertainty of globally estimated parameter
vector Cg 1s given by

. 1
§¢g = —WR*FEHEE (369)

and the uncertainty of element ¢, € Cqg is

- 1
6CGm = —NP;ZE;FCTHEE (370)

The residual vector of the nth replication, denoted by eg,, is found by using equation (288) as

6Rn = FC(S/C\RH + eEn (371)

Replace ¢, . by ¢g, in equation (371) to obtain the error vector of the nth replication
computed with the globally estimated value of parameter ¢, which is denoted by €, ,. From
equations (368) to (371), the difference between error vectors €, , and €, is given by

—~ 1
G = £, LF (en, — e (372)

where f, is the mth colunm of F..

T
, which can then be expressed in terms

o~

. —~ [~ T
Let NK x 1 error vector egg,, = {eGR - €GR,

‘m, 1

of NK x 1 measurement error vector eg as

~ 1
€GR,, = (IA - ﬁHTAH> €E (373)

where K x K matrix A =f. p.F! and NK x NK block diagonal matrix I is defined as
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IATz L J (374)
o o0 ... A

It is seen that the inner product €gy €qr,, equals (Ssg,, — Ssr). Clearly A has rank 1. It follows
from equation (280) that p F £,

m

= 1. Hence,

m

A'A = mepTFEfCrupTFE = mepTFE = A'

m m m

and A is idempotent. It can then be seen that I, i1s idempotent with rank N, since A 1s
idempotent with rank 1. Thus I, —1/NHTAH is idempotent with rank (N — 1), and therefore

. ~r o~
the inner product egp_ecr, can be expressed as

o~ 1
SSGm — SS’R = engeGRm p— E% (IA — FHTAH) €r (375)

It follows from Theorem 1 that Sss, — Ssr 1s chi-square distributed with N — 1 degrees of
freedom.

The residual sum of squares of the nth replicated regression, Sgg, = ef Wieg,, has been
shown as chi-square distributed with K — M, degrees of freedom. Because the error vectors ey,
are mutually independent, it follows from equation (366) and Theorem 2 that the total replicated
sum of squares Sgp is chi-square distributed with N(KX — M,) degrees of freedom. Therefore, if
the following mmequality is satisfied

T = (Ss6,, — Ssr)/(N—1)
em Ssr/[N(K — M,)]

> F(Nfl).,N(l\"—Mz)(a) (376)

then the null hypothesis that parameter ¢, is stationary is rejected at confidence level a.
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