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1. Summary

In 1993, a detailed uncertainty analysis of the six-component strain-gauge balance was
undertaken for the �rst time in wind tunnel tests at the Langley Research Center to provide
con�dence and prediction intervals of the outputs as functions of the measurands instead of using
a general root-mean-square error quantity per component as a percentage of full-scale output.
The success of this e�ort, published in l994 as AIAA-94-2589, has demonstrated the need for
similar analyses of the other wind tunnel instrumentation in use at Langley.

The present publication develops and documents a generalized set of mathematical tools
needed for thorough statistical analyses of instrument calibration and application. A compre-
hensive uni�ed treatment directed toward wind tunnel instrument calibration was not found in
the literature.

2. Introduction

Aerospace research requires measurement of basic physical properties such as aerodynamic
forces and moments; strain; skin friction force; model attitude, including pitch, roll, and yaw
angles; translational position; temperature; pressure; mass-ow rate; and other properties.
The aerospace industry now requires that experimental aerodynamic data be furnished with
uncertainties speci�ed at a statistical con�dence level, typically 95 percent. This requirement,
in turn, imposes the need to quantify the uncertainty of each basic physical measurement at the
transducer and instrument level in the test facil ity as a function of the corresponding property
value at the speci�ed con�dence level.

A standard method for treatment of measurement uncertainty in gas turbine engine perfor-
mance testing was developed by Abernethy et al. (ref. 1). Based on National Bureau of Stan-
dards handbooks, Abernethy separated elementary measurement errors into two components:
precision error, which is a zero-mean random error due to measurement scatter, and bias error,
which is systematic and repeatable although unpredictable. The uncertainty of a �nal computed
parameter is determined by propagation of individual measurement uncertainties through the
functional expressions which de�ne the parameter, usually by means of multivariable Taylor's
series expansions. The �nal total uncertainty equals the root-sum-square of the propagated bias
and precision uncertainties.

Abernethy's techniques were extended and formalized into an American National Standard
(ref. 2). Colemanand Steele (ref. 3) provide a detailed academic development of the standardized
uncertainty analysis speci�ed in reference 2 that includes statistical concepts, experimental
design, the e�ects of replication, and con�dence intervals. Reference 3 also provides practical
details for application of the standard to engineering practice. It introduces the concepts of
generalized uncertainty analysis for the conceptual validation of a proposed experiment and
detailed uncertainty analysis for processing experimental results of a completed experiment.
The useful concept of \fossilized bias uncertainty" resulting from the acceptance of calibration
data is introduced.

An international standard for wind tunnel data uncertainty analysis has been developed by an
AGARD working group (ref. 4), which provides a standardized approach for estimating precision
and bias limits, for error propagation computation, and for determining con�dence intervals of
the computed results in the wind tunnel testing context. Batill (ref. 5) has applied AGARD
techniques to the data reduction problem at the National Transonic Facil ity.

The present publication extends the analysis of instrument calibration uncertainty presently
addressed in the uncertainty analysis literature. Speci�cally, correlated measurement precision
error, calibration standard uncertainties, and correlated calibration standard bias uncertainties
are considered. The e�ects of mathematical modeling error on calibration bias uncertainty



are quanti�ed. Statistical tests for detection of modeling error and calibration standard error
through the use of replication are developed. The e�ects of experimental design on precision
and bias uncertainties are also investigated.

Measurement uncertainties of individual measurements during calibration and experimental
testing have usually been considered to be statistically independent to facilitate computations.
The extensive use of multichannel multiplexed data acquisition systems with common ampli�ers
and analog-to-digital converters introduces correlated measurement uncertainties which may be
signi�cant. This publication allows rigorous treatment of correlated measurement uncertainties
whose covariance matrix is known.

During calibration, the uncertainties of the calibration standard are generally neglected by
assuming that their level is at least 1 order of magnitude less than that of the instrument being
calibrated. Often calibration standards must be used which do not satisfy this assumption. In
addition for calibration, the common use of stacked deadweight loadings for load cell , strain-
gauge balance, and skin friction balance introduces signi�cant correlated uncertainties that
can magnify the resultant instrument calibration uncertainty several fold. Similar e�ects can
occur during calibration of any instrument with a similar \standard instrument" such as a load
cell or skin friction balance. This publication develops the rigorous statistical techniques for
computation of calibration standard covariances and their inclusion in calculation of overall
instrument con�dence intervals. These techniques have been applied to calibration uncertainty
analysis of the six-component strain-gauge balance as described in reference 6.

Precision errors are traditionally viewed as zero-mean random variables whose uncertainties
can be reduced without limit by replication as shown by the central limit theorem (ref. 7).
However, the presence of systematic bias errors during calibration can lead to unrealistically low
computed standard errors when very large calibration experimental designs are used. The large
number of degrees of freedom can inadvertently reduce the portion of the standard error due to
bias uncertainty if correlation e�ects are neglected.

Other speci�c work is in progress that applies this analysis to important wind tunnel
instruments, including invariable transducers such as load cells and skin friction balances, and
multivariable transducers, including the strain-gauge balance and inertial model attitude sensors.
Other systems should be analyzed in the future.

3. Instrument Modeling and Calibration Experimental Design

Instruments are routinely calibrated by means of analytical models through the use of
multivariate regression analysis to estimate calibration parameter. To quantify statistical
con�dence levels of measurements obtained by a calibrated instrument, the uncertainty of
predicted outputs must be estimated as a function of the input value through the use of the
analytic model.

3.1. General Multivariate Process

A formal mathematical representation of a multivariate (multiple-input){single-output static
process, including stochastic components, is presented to describe the steady-state input{output
relationship for an instrument. The analysis does not include transient e�ects.

Let <Mc and <Mz denote Mc and Mz dimensional Euclidean spaces, respectively, where < is
the set of real numbers. Consider a real-valued multivariate function f of Mz � 1 input vector
z 2 <Mz , and Mc � 1 parameter vector c 2 <Mc . Function f maps the Cartesian product of
spaces <Mc and <Mz into the set of real numbers <; thus,

f : <Mc � <
Mz )< (1)

2



The notation f(c; z) denotes the output value of the function, an analytic model of a physical
process dependent upon stochastic input vector z and deterministic parameter vector c.

The observed output y of the process is generally a measured voltage whose uncertainty �y

depends upon both the uncertainty of the applied input �z and the uncertainty of the stochastic
process measurement �E , a zero-mean random variable which is independent of �z. Thus the
observed output is

y = f(c; z+�z) + �E (2)

where stochastic input vector z has been replaced by the sum of deterministic vector z plus
stochastic input uncertainty vector �z. The purpose of calibration is to estimate parameter
vector c based upon multiple observations of output y corresponding to a set of selected inputs
speci�ed by an experimental design.

3.2. Single-Input{Single-Output Process

An example of a single-input{single-output process model in terms of a nonlinear polynomial
using inner-product notation is presented. Let x denote a known applied input to an instrument;
let y denote the corresponding observed output, in electrical units, for example; and let �E denote
the measurement error, which is assumed to be a zero-mean random variable with standard
deviation � . Often the measurement process can be accurately modeled by an Mth degree
polynomial of the form

y = c0 + c1x + c2x
2 + : : : + cMxM + �E (3)

which is seen to be a special case of equation (2). Arranging the polynomial coe�cients into
(M + 1)� 1 vector c gives

c = [c0 c1 : : : cM ]T (4)

De�ne an (M + 1)� 1 input vector z, denoted the extended input vector, containing the �rst M
powers of x as

z(x) = [1 x x2 : : : xM ]T (5)

The functional notation z(x) is used in the subsequent development only when needed for clarity.
Equation (3) can then be expressed in inner-product form as

y = zTc + �E (6)

Note that although the actual process input is scalar variable x, the process model function f

is constructed as a multivariate linear function of the (M + 1)th element input vector z which
is, in turn, a nonlinear function of x.

3.3. Linear, Polynomial, and Nonlinear Multivariate Processes

More general notation suitable for representation of linear, polynomial, and general nonlinear
multivariate processes is presented. Consider a multivariate process with vector x denoting a
1 �NI vector of input variables,

3



x = [x1 x2 : : : xNI
] (7)

The multivariate process is represented by equation (6) where y is a linear function of anMZ � 1
extended input vector z represented by

z = [1 z2 z3 : : : zMz
]T (8)

where z1 � 1. For a univariate linear process, the elements of z , generated from input variable
x, consist only of [1 x]T . For a univariate polynomial process, vector z consists of the powers of
x from degree 0 through M as shown in equation (5). For a multivariate linear process, vector

z consists of the independent variables z(x) = [1 x]T. For a multivariate polynomial process,

vector z contains the powers and cross products of the elements of x from degree 0 throughM .
For example, if NI = 3, then x = [x1 x2 x3] ; if M = 2, thenMz = 10; and z(x) is given by

z(x) =
h
1 x1 x2 x3 x2

1 x1x2 x1x3 x2
2 x2x3 x2

3

iT
(9)

For a multivariate polynomial process of power M; the length of z is equal to

Mz =
(NI +M )!

NI !M !
(10)

For example, for a six-component strain-gauge balance modeled by a second-degree multivariate
polynomial where NI = 6 and M = 2, the length Mz of vector z equals 28; that is, z contains
28 terms. Finally, for a general nonlinear multivariate process, z is identical to input vector x.

3.4. Calibration Experimental Design

The experimental design for instrument calibration consists of a set of input values applied
by using calibrated input standards for which the instrument outputs are observed. The
calibration data set is used to estimate the parameters of the mathematical model. Notation for
representation of the experimental design and a �gure of merit are introduced.

To estimate parameter vector c during calibration, output y is observed for K values of
applied input vector z contained in a representative subset = of input space <Mz . Subset = is
selected to cover the anticipated operating envelope of the instrument. The experimental design,
D � =, is ideally chosen to minimize the variance of estimated process output by averaged over
=, with parameter vector bc obtained by least-squares estimation. Box and Draper (ref. 8) de�ne
a design �gure of merit J as the average predicted output variance over set =, normalized by
the number of calibration points K and measurement variance �2 to remove the e�ects due to
the number of points in design D, and measurement noise. Thus,

J =
K

R
=
�2
ŷ
(z) dx

�2
E

R
=
dx

(11)

where �2
ŷ
(z) is the predicted output variance function de�ned later.
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After determination of subset D � =, construct K �Mz design matrix Z from the elements
xk 2 D, where the kth row of Z equals the kth extended input vector z(xk) for k = 1 : : : K as
follows:

Z =

2
666664

z(x1)T

z(x2)T

...
z(xK )T

3
777775 (12)

Arrange the corresponding observed output values and measurement errors into observation
vector y and measurement error vector �E, respectively, each having dimension of K � 1 as

y = [y1 y2 : : : yK]
T (13)

and

�E = [�E1 �E2 : : : �EK
]T (14)

where measurement error vector �E has zero mean andK �K covariance matrix �E. For linear
and polynomial models, equation (6) is extended to a matrix form for K observations with the
help of equations (4) and (12) through (14) as

y = Zc + �E (15)

4. Generalized Linear Multivariate Regression Analysis

Multivariate linear regression techniques are developed (ref. 9) for least-squares estimation of
coe�cient vector c in equation (15), denoted by bc, where the measurement errors are correlated.
Techniques are also provided for determination of con�dence intervals for bc and for con�dence
and prediction intervals for new measurements based on the calibrated value of bc. Measurement
error covariance matrix �E is assumed to be symmetric, positive de�nite, and expressible in the
form

�E = �2
EU (16)

where K � K matrix U is a known symmetric positive de�nite matrix and �2 is a scalar
to be estimated. If the K calibration observations are uncorrelated, then covariance matrix
�E is diagonal. Otherwise a linear transformation must be applied to output vector y

to diagonalize �E, which decorrelates the observations. If measurement error vector �E is
normally distributed, the decorrelated observations are independent, a necessary condition for
computation of con�dence intervals using chi-square and t-distributions (ref. 7). Detailed proofs
of the following results are given in the appendix.
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4.1. Decorrelation of Covariance Matrix

A coordinate transformation is applied to observation y which diagonalizes measurement
covariance matrix �E . Because matrix U is symmetric and positive de�nite, a nonsingular
matrix P exists such that U can be decomposed into the matrix product as follows:

U = PPT (17)

De�ne transformed observation vector v as

v =P�1y (18)

Equation (15) can now be transformed through a change of coordinates into the following:

v = P�1Zc + �v (19)

where �v = P�1
�E. The covariance matrix of v is given by

�v = P�1�EP
�T = �2

EI (20)

where P�T
� (P�1)T; thereby, the elements of v are con�rmed as uncorrelated (ref. 9).

4.2. Least-Squares Estimation of Process Parameters

The least-squares estimate of coe�cient vector c, denoted by bc, is obtained by minimizing
the following inner product with respect to c :

SSQ = (v�P�1Zc)T(v � P�1Zc)

= (y �Zc)TU�1(y �Zc) (21)

Note that S SQ equals the residual sum of squares of the multivariate regression on vector v and
that the regression is equivalent to least-squares estimation of c on vector y, weighted by the
inverse of measurement uncertainty covariance matrix �E . De�ne Mz �Mz weighted moment
matrix Q as

Q � ZTU�1Z (22)

The least-squares estimated coe�cient vector bc is obtained as

bc = Q�1ZTU�1y (23)

The expected value of bc equals c and its covariance matrix is given by

�ĉ = �
2
EQ

�1 (24)
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De�ne K � 1 predicted output vector bv = P�1Zbc, and de�ne K � 1 residual vector bev by

bev � v � bv = WKev (25)

where K �K matrix WK is de�ned as

WK � IK � 
K (26)

IK is the K �K identity matrix, and 
K is de�ned as


K � (P�1Z)Q�1(P�1Z)T (27)

Note that 
K is symmetric. Residual vector bev has zero expected value and covariance matrix

�êv
= �2

EWK (28)

The residual sum of squares SSE , obtained by minimization of equation (21), is de�ned as

S SE � beTv bev = �
T
vWK�v (29)

The standard error of the regression, de�ned as

SE �

 
SSE

K �Mz

!1=2

(30)

has expected value E [SE] = �E and is thus an unbiased estimate of �E .

5. Con�dence and Prediction Intervals

The con�dence interval for a statistical variate, such as the estimated parameter vector or
the predicted process output, is a closed interval within which the variate is computed to lie at
a speci�ed probability or con�dence level. See references 7 and 10 for detailed de�nitions.

5.1. Con�dence Intervals of Estimated Parameters

If error vector �v is normally distributed, then SSE=�
2
E is chi-square distributed with K �Mz

degrees of freedom. It follows that a con�dence ellipsoid for estimated coe�cient vector bc at
con�dence level 1 � � is given by the following inequality:

(c �bc)TQ(c� bc) � MzS
2
EFMz ;K�Mz (�) (31)

where Fi;j(�) is the � level of the F -distribution with i; j degrees of freedom (ref. 7). The
length and direction of the semiaxes of the ellipsoid are determined from the eigenvalues and
eigenvectors, respectively, of matrix Q.

7



5.2. Calibration Con�dence Intervals of Predicted Process Output

The calibration con�dence interval is the closed interval within which a predicted process
output is computed to lie based on the calibration uncertainty. Let by(z) denote the predicted
scalar output for arbitrary input vector z based on estimated parameter vector bc; that is

by(z) = zTbc (32)

The expected value of by(z) equals zTc and its variance is given by the following quadratic form:

�2
ŷ(z) = �2

E zTQ
�1
z (33)

Equation (33) equals the variance of the calibration based on estimated parameter vector bc.
Matrix Q, dependent only upon the experimental design Z and covariance matrix �v, is �xed
after calibration. Hence, the calibration uncertainty becomes a �xed deterministic function of
applied input vector z. If �v is normally distributed, a con�dence interval at level � for predicted
value by(z) is speci�ed by the following inequality:

jy � by j � (zTQ�1z)1=2SE tK�Mz

��
2

�
(34)

where tk(�) is the �-percentile value of the two-tailed t-distribution with k degrees of freedom
(ref. 9).

5.3. Prediction Interval of New Measurement

The prediction interval is the closed interval within which the predicted process output
is computed to lie due to both calibration uncertainty and the uncertainty of a single new
measurement. After calibration, let y0 denote a new observation of the response of the instrument
to input z0 , with uncertainty �0 and standard deviation �0 that is independent of calibration
measurement error vector �v. The observed value y0 is given by

y0 = zT0 c + �0 (35)

The predicted value of the new observed y0 obtained from equation (32), that is, the calibration
curve, is given by

by0 = zT0 bc (36)

The prediction error �by0, de�ned as the di�erence between the observed and the predicted
observations, is given by

�by0 � y0 � by0 = zT0 (c � bc) + �0 (37)

and has zero mean and variance

�2
ŷ
0
(z0) = �2

0 + �2
E z

T
0Q

�1z0 (38)
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The prediction interval at con�dence level � is speci�ed for by0 as follows:

jy � by0 j �
�
�2
0

�2
E

+ zT0 Q
�1z0

�1=2

SE tK�Mz

�
�

2

�
(39)

This inequality represents the uncertainty of a single measurement after calibration. Note that
prediction error �by0 is composed of two components: the uncertainty of the new measurement
whose variance is �2

0 and the calibration uncertainty whose variance, given by equation (33), is a
deterministic function of applied input z0. The uncertainty of the newmeasurement is a precision
error which can be reduced by replicated measurements, whereas the calibration uncertainty is
a fossilized bias error (ref. 3) dependent upon x0 that, after calibration, does not decrease with
replication.

6. Computation of Inferred Input With Con�dence and Prediction Intervals

During instrument application an unknown input x0 is applied, and output y0 is observed.
The desire is to infer input x0 from observationy0 by inverting the calibration equation (eq. (36))
rewritten as

y0 = zT(x0)bc (40)

Solve equation (40) for x and denote the solution by bx0, the estimated inferred input. Whenever
z(x) is nonlinear, solution of equation (40) may require an iterative computational technique.
Calibration con�dence intervals and prediction intervals of inferred input bx0 are obtained by
dividing equations (34) and (39) by yx(bx) and yx(bx0), respectively, where

yx(bx) = @zT(bx)
@x

bc (41)

Then the calibration con�dence interval of the inferred input, obtained from equation (34), is
given by

jx � bxj � [zT(bx)Q�1z(bx)]1=2 SE tK�Mz
(�=2)

yx(bx) (42)

Similarly, the prediction interval of the inferred input, obtained from equation (39), is given by

jx� bx0j �
[�2

0=�
2 + zT0 (bx0)Q�1z0(bx0)]

1=2
SE tK�Mz

(�=2)

yx(bx0)
(43)

7. Calibration Uncertainty Caused by Combined Input Errors and

Measurement Errors

In general, overall calibration uncertainty arises from input calibration standard uncertainties
as well as from outputmeasurement uncertainty. The previously developed analyses are extended
to accommodate uncertainty in applied input x aswell as measurement uncertainty �E . Consider
the combined e�ects during calibration of the uncertainty of the kth applied input vector xk,
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denoted by �xk, and the corresponding measurement uncertainty �Ek . The uncertainty of the
kth extended input vector zk, denoted by Mz � 1 vector �zk , is obtained as

�zk = z(xk + �xk)� z(x k) (44)

Vector �zk has zero expected value and Mz �Mz covariance matrix �zkk
; the uncertainties of

the elements of zk may be correlated. In addition, every pair of input vectors zi and zj may
be correlated with covariance matrix �zij

. Design matrix Z, de�ned in equation (12), then has
K �Mz uncertainty matrix �Z constructed as follows:

�Z �

2
66666666664

�zT1

�zT2

...

�zTK

3
77777777775

(45)

which has expected value 0, where 0 is a K � Mz matrix of zeros. Each element of input
uncertainty matrix �Z is assumed to be independent of measurement error vector �E de�ned in
equation (14).

The observed output vector y corresponding to the actual input matrix Z+ �Z is given by

y = (Z+ �Z)c + �E (46)

and the combined output error vector, denoted by �y , is given by

�y � y � Zc = �Zc + �E (47)

which has expected value 0. The K �K covariance matrix of combined output error vector �y,
denoted by �y , is computed element-by-element with the following equation (eq. (48)) for i = 1
to K and j = i to K . Because �Z and �E are independent, the covariance between elements
�yi and �yj of �y is obtained as

cov (�yi ; �yj) = E
�
cT�zi�zjc

�
+ E [�i�j ]

= cT�zijc + �ij (48)

where �ij is the ijth element of measurement uncertainty covariance matrix �E .

Rewrite equation (47) to express observed output vector y in the form of equation (15) as

y = Zc + �y (49)
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where y has expected value Zc. Least-squares estimation of coe�cient vector c proceeds as
before, after replacing vector �v by �y and matrix �v by �Y, respectively, in equations (16)
through (39). An analysis of variance for replicated calibrations of a multi-input{single-output
sensor presented in the subsequent development provides a test of signi�cance for the presence
of calibration bias error due to loading uncertainty.

8. E�ects of Process Modeling Error

Models of instrument steady-state input{output relationships are typically approximate
empirical relationships such as multivariate polynomials. The e�ects of modeling error and
experimental design on calibration uncertainty are quanti�ed, based on generalized multivariate
linear regression analysis. Calibration standard uncertainty is neglected.

8.1. Uncertainty Analysis of Modeling Error

Let process f(c; z) be modeled as a linear function of an extended input vector z according
to f(c; z) = zc, whereas the actual functional relationship is given by

y(z) = f (c; z) = zc + (z) (50)

where (z) represents the modeling error. However, the system is calibrated by using experi-
mental design matrix Z based on the linear model of equation (6). During calibration the kth
observation is given by

yk = zkc + (zk)+ �Ek
(51)

which is extended overK observations into matrix form as

y = Zc + (Z)+ �E (52)

where (Z) is the K � 1 vector of modeling errors. Coe�cient vector bc is estimated by means
of equation (23); the expected value of bc, biased by the modeling error, is given by

E(bc) = c +Q�1ZTU�1
(Z) (53)

Predicted calibration output vector by is obtained by using equation (32). Then the expected
value of by is given by

E(by) = Zc + ZQ
�1
ZTU�1

(Z) (54)

where the second term represents the predicted output bias error due to modeling error. Residual
vector bev, de�ned in equation (25), is found to be

bev =WK[P
�1
(Z) + �v] (55)
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and from this the expected value of bev is

E [bev] = WKP
�1
(Z) (56)

The covariance matrix of bev is given by

�ê
v
= �2

EWK (57)

The expected value of weighted error sum of squares SSE given in equation (29) equals the
following:

E [SSE ] = (K �MZ)�2
E + 

T(Z)P
�T
WKP

�1
(Z) (58)

It is seen that SE, given in equation (30), becomes a biased estimate of � whenever modeling
error (Z) is nonzero.

The variance function (ref. 8) of predicted output by is computed by using the above results
as is now shown. For arbitrary vector z, the predicted output is given by equation (32).
The corresponding actual output function value y without measurement uncertainty, shown
in equation (50), is given by

y(z) = zc + (z) (59)

The corresponding predicted output error �by is then

�by(z) = y(z)� by(z)

= (z) � zQ�1ZTU�1[(Z) + �E] (60)

To �nd the variance function of by, take the expected value of the square of equation (60) and
after some algebraic manipulation, the following result is obtained:

�2
ŷ(z) = �2

Ez
TQ�1z+ [(z)� zQ�1

ZTU�1
(Z)]2 (61)

The �rst right-hand term of equation (61), identical to the predicted output variance function
of the model previously given in equation (33), represents the portion of the bias uncertainty of
the predicted output due to calibration measurement uncertainty. The second right-hand term
of equation (61) represents the portion of the bias uncertainty of the predicted output due to
modeling error.

8.2. Design Figure of Merit

Design �gure of merit J de�ned in equation (11) is obtained by integrating equation (61) over
input subspace =. It allows examination of the e�ects of the experimental design on predicted
output error due to precision uncertainty and bias uncertainty. As in reference 8, �gure of merit
J is separated into variance error term V and bias error term B:
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J = V + B (62)

The precision uncertainty portion of J obtained from the �rst right-hand term of equation (61)
equals

V =
K




Z
=

zTQ�1z dx (63)

Similarly, the bias uncertainty portion of J obtained from the second right-hand term of
equation (61) equals

B =
K

�2
E


Z
=

[(z) � zQ�1ZT
(Z)]2 dx (64)

where 
 is the volume integral of subspace = given by


 =

Z
=

dx (65)

8.3. E�ects of Experimental Design on Figure of Merit

The e�ects of the experimental design on calibration uncertainty due to measurement
uncertainty and on calibration error due to modeling error are quanti�ed by means of �gure of
merit J . Simultaneous minimization of V and B imposes conicting requirements on selection
of experimental design D. Equation (63) indicates that precision uncertainty V tends to decrease
as the vector length magni�cation of matrix Q increases. The vector length magni�cation of
Q tends to increase as the distance of the design points from the origin increases, generally to
the boundary of volume =. On the other hand, reference 8 demonstrates that bias uncertainty
B tends to be minimized by uniform placement of test points throughout space =. Hence, the
accepted practice of uniformly spacing test points from zero input, to full scale input, and back
to zero can reduce calibration uncertainty caused by improperly modeled phenomena such as
nonlinearity and hysteresis.

A number of well-known methods exist for detection of modeling errors. Examination of
residual error plots often discloses the presence of systematic errors in addition to random
measurement errors (refs. 7 and 10). Residual normal probability plots (ref. 10) indicate the
presence of nonnormally distributed errors which are likely to be systematic. The process of
detecting modeling error may indicate the functional extension required for model improvement.
On the other hand, polynomial models should be limited to the minimum order needed to avoid
�tting data to random noise (ref. 10).

9. Uncertainty Analysis of Nonlinear Instrument Calibration

The previously developed generalized linear regression analysis of instrument calibration,
with calibration standard uncertainty, is extended to include general multivariable-input{single-
output nonlinear processes.

9.1. Combined Input and Measurement Uncertainties

Consider a process modeled by nonlinear function y = f(c ; z) de�ned in equation (2). Output
uncertainty �y can be approximated as the sum of the di�erential of f(c; z) with respect to z

and measurement uncertainty �E as follows:
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�y = f(c; z + �z)� f (c; z)+ �E =

�
@f(c; z)

@z

�
�z + �E (66)

During calibration, K observations are acquired in accordance with K � Mz design matrix Z
de�ned in equation (12). The uncertainty �yk of the kth observation yk is given by

�yk =

�
@f(c; zk)

@z

�
�zk + �Ek = fz(c; zk)�zk + �Ek

(67)

where 1 �K gradient vector fz(c ; zk) � [@f(c; zk)=@z]. Note that �yk is normally distributed if
both �zk and �Ek

are normally distributed. The actual value of the kth observation is given by

yk = f (c ; zk)+ �yk (68)

Let f (c;Z) denote the K � 1 vector function which is obtained by evaluating function f(c; z) for
each of the K rows of Z. Also, let y and �y denote the corresponding K � 1 vectors of observed
outputs and output uncertainties obtained by evaluating equations (67) and (68) for k = 1 toK ,
respectively. Then y is given by

y = f(c;Z)+ �y (69)

The K � K covariance matrix of �y , denoted by �Y , is obtained element by element with
equation (67) as follows:

�Yi j
= fz(c; zi )�zi j

fTz (c; zj)+ �ij (70)

where �zij
is the covariance matrix of the ith and jth input vectors zi and zj, �ij is the covariance

of the ith and jth voltage measurements, and i and j range from 1 to K . If �Y is symmetric
and positive de�nite, then it can be expressed in the form of equation (16) as

�Y = �2
Y U (71)

where K �K matrixU is known and can be decomposed into the productU = PPT as shown in
equation (17). Output vector y is transformed into vector v by equation (18), that is, v = P�1y.
Equation (69) then becomes

v = P�1f(c;Z)+ �v (72)

where �v = P�1�y . The expected value of v is

E [v] = P�1f(c; Z) (73)

The covariance matrix of �v is given by
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�v = �2
Y I (74)

Therefore the elements of �v are uncorrelated and �v is normally distributed whenever �y is
normally distributed.

9.2. Least-Squares Estimation of Process Parameters

The least-squares estimate of parameter vector c, denoted by bc, is obtained by minimizing
the error sum of squares SSQ, given by the following quadratic form, with respect to c :

SSQ = [v� P�1f (c ;Z)]T [v� P�1f (c; Z)] = [y � f (c;Z)]TU�1[y � f (c;Z)] (75)

To minimize SSQ , compute the gradient of equation (75) with respect to c and set the resulting
set of Mc equations equal to zero and expressed in vector form as

h �
1

2

@SSQ

@c
= [v� P�1f (c;Z)]TP�1Fc = 0 (76)

where h is a function of independent arguments v, c, and Z; the dimension of h is 1 �Mc and
of vector [v� P

�1
f(c; Z)] is K � 1; and K � Mc matrix Fc is de�ned as

Fc(c ;Z) �
@f(c; Z)

@c
(77)

Equation (76) can be solved for bc by means of a Newton-Raphson iteration or a similar method,
provided that the symmetric Mc �Mc Jacobian matrix of SSQ with respect to c, denoted by R,
is nonsingular in some region about bc and Z; that is

R �

@ 2SSQ

@c2
=
@h

@c
(78)

9.3. Uncertainty of Estimated Process Parameters

The uncertainty �bc of stochastic vector bc is obtained in terms of combined output uncertainty
�v from the di�erential of equation (76) as follows:

�
@h

@v

�T
�v+R�bc = 0 (79)

where K �Mc matrix [@h=@v] equals

�
@h

@v

�
= P�TFc (80)

Matrix R is shown in the appendix to be

R =

�
@h

@c

�
= FT

cU
�1Fc +HE (81)
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where the ijth element of Mc �Mc matrix HE is given by

hEij
= [v �P

�1
f (c; Z)]TP�1fcci j (82)

where K � 1 vector fccij is the ijth column of Mc �Mc �K array Fcc de�ned by

Fcc =
@FT

c (c;Z)

@c
=

@2f(c; Z)

@c2
(83)

and 1 � i; j � Mc. It is seen that the K � 1 vector expression [v �P�1f(bc;Z)] contained in
equation (82) equals the vector of residuals denoted by bev . Then if the norm of bev is su�ciently
small , matrix HE can be neglected in equation (81) to yield the following approximation:

R � FT
c U

�1Fc (84)

From equations (77) to (80), the uncertainty of estimated parameter vector bc equals

�bc = �

�
@h

@c

��1 �
@h

@v

�T
�v = �R�1FT

c P
�T�v (85)

From equation (85), calibration parameter uncertainty �bc has zero mean, it is normally
distributed whenever �y is normally distributed, and its covariance matrix is given by

�ĉ = �2
Y Q

�1
c (86)

where

Qc �
�
R�1FT

cU
�1FcR

�1
��1

(87)

If approximation (84) holds and if the rank of K �Mc matrix Fc equals Mc , then matrix R is
nonsingular and matrix Qc is approximated by

Qc � R (88)

9.4. Residual Sum of Squares and Standard Error of Regression

Let bv denote the predicted calibration output vector corresponding to design matrix Z and
estimated parameter vector bc, where

bv � P�1f(bc; Z) (89)

The vector of residuals bev is de�ned as follows:

bev � v � bv =P�1[f(c; Z) � f(bc; Z)] + �v (90)
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which is represented in di�erential form as

bev �P�1Fc(bc ;Z)�bc + �v = (IK �
F)�v (91)

where K �K matrix 
F is


F � (P�1Fc)R
�1(P�1Fc)

T (92)

The expected value of bev equals zero, and the covariance matrix is given by

�ê
v
= �2

Y (IK �
F) (93)

An unbiased estimate of �2
Y is now obtained. The residual sum of squares is de�ned as

SSE � beTvbev = �vT(IK �
F)�v (94)

As shown in the appendix, SSE=�
2
Y is chi-square distributed with K � Mc degrees of freedom,

and the expected value of S SE is

E (SSE) = (K � Mc)�
2
Y (95)

Therefore an unbiased estimate of �Y is given by standard error S Y , which is de�ned as

SY �

�
SSE

K �Mc

�1=2

(96)

A con�dence interval for �Y at con�dence level � is given by

(K �Mc)1=2SY

�(1+�)=2

� �Y �
(K �Mc)1=2SY

�(1��)=2

(97)

where �� is the �-percentile value of the chi-square distribution with K�Mc degrees of freedom.

9.5. Con�dence and Prediction Intervals of Predicted Output

The con�dence ellipsoid for estimated calibration parameter vector bc is de�ned by the
following inequality:

(c � bc)TQC(c � bc) � McS
2
Y FMc ;K�Mc(�) (98)

where FMc ;K�Mc(�) is the �-percentile value of the F-distribution with Mc ; K � Mc degrees of
freedom.

After calibration, consider z0 as an arbitrary deterministic input. The corresponding
predicted value by0 = f(bc; z0) is computed by using calibration parameter vector bc. The
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uncertainty �by of by due to calibration uncertainty alone is obtained from the di�erential of
equation (2) as

�by0 = y0 �by0 = f(c; z0) � f(bc; z0)

= f Tc (bc; z0)�c = fTc (bc; z0)R�1FTCP
�1�v (99)

where Mc � 1 gradient vector fc(c; z) is de�ned as

fc(c; z) �
@f(c;z)

@c
(100)

The variance of predicted value by(z0), termed the output variance function (ref. 8), is given by
the following quadratic form:

�2
ŷ
(z0) = �2

Y

�
fTc (bc; z0)Q�1

C fc(bc; z0)
�1=2

(101)

From equation (67) we can see that if uncertainty �v is normally distributed, �by0=�ŷ is normally
distributed with zero mean andunit variance. Since S2

Y =�
2
Y is chi-square distributed with K�Mc

degrees of freedom, a con�dence interval at level � is given for by as

jby0 � f(bc; z0)j � �
f Tc (bc; z0)Q� 1

C fc(bc ; z0)�1=2 t�SY (102)

where t� is the tail of Student's t-distribution at con�dence level � with K � Mc degrees of
freedom. Inequality (102) de�nes the calibration con�dence interval.

Let a single new measurement y0 be made after calibration by using an instrument for which
the variance of a single measurement equals �2

0. With the use of equation (101), the variance of
the single new measurement is

�2
y0
(z0) = �2

Y �
2
ŷ(z0) + �2

0 = �2
Y

�
�2ŷ(z0) +

�2
0

�2
Y

�
(103)

where quadratic form �2
ŷ
is de�ned as follows:

�2
ŷ
(z0) � f Tc (bc ; z0)Q�1

C fc(bc; z0) (104)

The con�dence interval at level � of new measurement y0 is given by

jy0 � f(bc; z0)j �

�
�2ŷ(z0) +

�2
0

�2
Y

�1=2
t�SY (105)

which is termed the prediction interval.

An analysis of variance forN replicated calibrations of a nonlinear multi-input{single-output
sensor is obtained in the appendix which provides a test of signi�cance for the presence of
calibration bias error due to loading uncertainty. In addition, equations are provided for
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computation of matrix R, given by equation (81), in terms of the K �K covariance matrices of
a single replication.

10. Multivariate Multiple-Output Analysis

The preceding analysis is now extended to a multi-input{multi-output instrument such as a
six-component strain-gauge balance. Although the notation becomes cumbersome, the extended
computational procedure simply iterates the previous multi-input{single-output technique for
each process output element.

Consider an L-valued process g represented by a 1 � L row vector of scalar functions of an
Mc�1 parameter vector c: j and z, each of the form ofmapping equation (1). Let gj (c.j ; z) denote
the jth function, where j ranges from 1 to L , where gj is dependent upon the corresponding
Mc � 1 parameter vector c.j and 1 �Mz input vector z which is common over all values of j.
Arrange the coe�cient vectors L into Mc � L coe�cient matrix C as

C =
h
c.1 c.2 . .. c.L

i
(106)

As usual, K observations are made during calibration in accordance with design matrix Z. For
the kth observation let g, yk., and �vk. denote 1 � L vectors of functions gj , observed outputs,
and measurement errors, respectively, where

g(C; zk) = [g1(c.1; zk) g2(c.2 ; zk) : : : gL(c.L; zk)] (107)

yk. = [yk;1 yk;2 : : : yk ;L ] (108)

�vk. = [�vk; 1 �vk;2 : : : �vk ;L ] (109)

respectively, where �vk. has zero mean and zTk denotes the corresponding 1 � Mz input vector
de�ned in equation (12) as the kth row of design matrix Z. Then the functional relationship for
the kth observation is obtained by extension of equation (2) to L space as follows:

yk. = g(C; zk+�zk) + �vk.

= g(C; zk)+ �yk. (110)

where uncertainty �yk. is given by

�yk. = g(C; z
k
+�z)� g(C; z

k
)+ �vk.

= �zTk

�
@g(C; z

k
)

@z

�
+ �vk. (111)
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Note that matrix [@g(C; zz)=@z] has dimensionMz �L . Vector equation (110) is then extended
to a K � L matrix equation as shown by the following equations:

Y =G(C; Z+�Z) + EV

=G(C; Z) + �Y (112)

G(C;Z) =

2
66666666664

g(C; z1)

g(C; z2)

...

g(C; zK )

3
77777777775

(113)

Y =

2
66666664

y1.

y2.

...

yK.

3
77777775

(114)

Ev =

2
66666664

�v1.

�v2.

...

�vK.

3
77777775
= [�v.1; �v.2 ; �v.L ] (115)

Note thatK � 1 vectors �v.1 , .. ., �v.L denote columns 1, . .., L of matrix Ev. Also K � L matrix
�Y is obtained by extension of equation (111) as

�Y =

2
66666664

�y1.

�y2.

...

�yK .

3
77777775
+ Ev (116)

Let �Vm;m denote the K�K covariance matrix of error vector �V.m, and�Ym;m denote the K�K
covariance matrix of column m of matrix �Y, which is computed element by element by using
equation (48) withm ranging from 1 to L and f replaced by gm. Furthermore, de�ne SSQm as in
equation (75) with f replaced by gm for each of the L elements of g. The least-squares estimated

coe�cient matrix, denoted by bC, is computed column by column by solving equation (76) to
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minimize SSQm for m = 1, ... , L, with bc.m the mth column of bC. The covariance matrix and
con�dence ell ipsoid for bc.m are computed as before with equations (86) and (98), respectively.

After calibration, the predicted output matrix by for arbitrary input z using estimated
coe�cient matrix bC is given by by = g(bC; z). The uncertainty �by due to calibration uncertainty
alone equals

�by = g(C; z)� bg(C ; z) (117)

The calibration con�dence interval for �by is obtained element by element by equation (102).
Similarly, the prediction interval of a new measurement is obtained element by element by
equation (105). This analysis is illustrated by an example of a two-input{two-output linear
process given in the subsequent development.

11. Uncertainties of Inferred Inputs From Inverse Process Function

An instrument is normally employed to infer the value of an input x based on the corre-
sponding observed output y by means of the process model f(c; z) for the single output case, or
g(C; z) for the L-dimensional case, following calibration. Calibration con�dence intervals and
prediction intervals of the estimated process input are obtained.

Let g denote both cases in the following discussion. Input z can be computed if inverse
function g�1 exists. A necessary and su�cient condition for the existence of g�1 is that function
g be bijective, that is, a one-to-one onto mapping from <Mz to <L . If Mz = L, g is continuous
and di�erentiable and if for observed output vector y0, an input vector z0 exists such that
y0 = g(C; z

0
), then a necessary condition (ref. 11) for the existence of the inverse function g�1

is that L � L matrix @g=@z be nonsingular in a region about z0. Indeed, the inverse function
may be obtained by solving the following system of ordinary di�erential equations obtained from
equation (111):

dzT = dy

�
@g(C; z)

@z

�
�1

(118)

Whenever a closed-form inverse function is unavailable, given observed output y0, the corre-
sponding predicted input value bz0 is computed iteratively from the relation y0 = g(C; bz0) by
means of Newton-Raphson iteration or a similar method.

If input z0 were known, the uncertainty �by of the corresponding predicted output would be
given by equation (117). However, since predicted input z0 is inferred from known output y0,
the uncertainty �by0 is obtained from equation (118) as

�bzT0 = �by0

�
@g(C;bz0)

@z

�
�1

(119)

where @g=@z must be nonsingular and �by0 is estimated by equation (117) with z0 replaced bybz0. Con�dence and prediction intervals for bz0 are then obtained from those computed for by0

with equations (102) and (105) followed by transformation (eq. (119)).

12. Replicated Calibration

A statistical technique for detection and estimation of bias errors due to either modeling
error or calibration standard error is now developed, which requires multiple replications of
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the calibration experiment. The use of replicated calibrations over an extended time period is
important for the following reasons:

1. To obtain adequate statistical sampling over time

2. To test for nonstationarity and drift

3. To test for bias uncertainty

4. To estimate bias and precision uncertainties

The variance of averaged random errors is known to decrease as 1=N over N replications,
whereas that of bias errors, which are repeatable, does not decrease with replication. Tests for
the existence of signi�cant bias uncertainty by analysis of variance are based on this fact. The
bias test, derived for a general multivariate nonlinear process in the appendix, computes the
sum of squares SSX of the set of K residuals averaged over N replications. The mean value of
SSX is an estimate of the variance due to bias uncertainty. The mean value, denoted by SM, of
the di�erence SSM between the sum of squares SSE of the global set of NK residuals and SSX is
an estimate of the variance due to measurement error. The variance ratio NSX=SM provides a
test of signi�cance for the presence of bias errors. A similar analysis allows detection of drift of
any estimated parameter during replication. Details are given in the appendix.

12.1. Computation of Replicated Design Matrix

A replication matrix is de�ned which provides convenient computational notation for repli -
cated calibration experimental designs. Consider a single-output sensor modeled by an (Mz�1)th
degree polynomial. The sensor is typically calibrated by using K standard loadings applied in
a prede�ned order, say zero to full scale and back in (K � 1) equal increments, represented by
K � Mz experimental design matrix ZK . The calibration is replicated N times, described by
NK �Mz design matrix ZNK, where

ZNK =

2
66666664

ZK

ZK

...

ZK

3
77777775
=HTZK (120)

and where K � NK replication matrix H equals

H � [ IK IK : : : IK ] (121)

12.2. Replicated Moment Matrix for Linear Single-Output Process

Moment matrix Q is computed for a replicated experimental design for calibration of a
linear single-output instrument with uncorrelated measurement uncertainties. Use of replication
matrix H permits computation of Q in terms of the single-replication K � Mz experimental
design matrix ZK. Assume that the calibration standard uncertainties are �xed unknown bias
errors modeled as a zero-mean normally distributed random variable and that design matrix ZK
has K �K covariance matrix �2IK . Because complete design ZNK contains N replications of
design ZK , the N subsets of K loadings are correlated with the NK � NK covariance matrix
�z of design ZNK given by
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�z = �2
xH

T
H = �2

x

2
66666664

IK IK : : : IK

IK IK : : : IK

...
... : : :

...

IK IK : : : IK

3
77777775

(122)

Assume also that sensor output measurements are uncorrelated with covariance matrix

�E = �2
E

2
66666664

IK 0K : : : 0K

0K IK : : : 0K

...
... : : :

...

0K 0K : : : IK

3
77777775
= �2

EINK (123)

Then combined input covariance

�Y = �2
xUNK

where

UNK = INK + �HT
H =

2
66666664

(�+ 1)IK IK : : : IK

IK (�+ 1)IK : : : IK

...
... : : :

...

IK IK : : : (� + 1)IK

3
77777775

(124)

and

� =
�2
x

�2
E

(125)

It is readily shown that

U
�1
NK

= INK � �HT
H = �

2
66666664

(1� �)=�IK �IK : : : �IK

�IK (1 � �)=�IK : : : �IK

...
... : : :

...

�IK �IK : : : (1� �)=�IK

3
77777775

(126)
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where

� =
�

N� + 1
(127)

As shown in the appendix, the Mz � Mz generalized moment matrix QNK = ZT
NKU

�1
NKZNK is

given by

QNK =
�2
E

(�2
E=N)+ �2

x

ZT
KZK (128)

The portion of the calibration uncertainty due to calibration standard uncertainty, repre-
sented by �2

x in the denominator of equation (128), does not decrease with replication. On the
other hand, the portion of the calibration uncertainty due to measurement uncertainty, repre-
sented by �2

E in the denominator of equation (128), decreases asN�1=2 with replication. Note that
equation (128) permits more e�cient computation of uncertainties for an NK �Mz replicated
experimental design in terms of nonreplicated K �Mz design matrix ZK because computational
storage requirements are reduced by a factor of N .

12.3. Replicated Moment Matrix for General Single-Output Process

The technique developed in the previous section for computation of moment matrix Q for a
replicated experimental design is extended to a general nonlinear single-output instrument with
correlated measurement uncertainties. Consider a general multi-input{single-output process
calibrated by using experimental design ZK replicated N times. The K � 1 output uncertainty
vector of a single replication, denoted by �yK , is given by expanding equation (67) for
k = 1; : : : ; K . Then for N replications, NK � 1 output uncertainty vector �yNK is given by

�yNK = HT�fz + �E (129)

where K � 1 gradient vector �fz, de�ned in the appendix, has K � K covariance matrix
�fZK

= �2
xUfZK

and NK � 1 measurement uncertainty vector �E has NK � NK covariance
matrix �E = �2

EUENK , all de�ned in the appendix. The measurement uncertainty is assumed
uncorrelated between replications and the K � K measurement covariance matrix of each
replication is assumed to be �EK

= �2
EUEK

. From equation (129),

�YNK = �E +�fZNK = �2
EUENK + �2

xUfZNK = �2
EUYNK (130)

where NK �NK covariance matrix �fZNK
is given by

�fZNK
= �2

xUfZNK
= �2

xH
TUfZK

H (131)

From equation (131), UYNK
can be written as

UYNK
= UENK

+ �UfZNK
(132)

where � is de�ned in equation (125).
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As shown in the appendix, the inverse ofNK �NK matrix UYNK
can be expressed in terms

of K �K matrices UfZK
andUEK

. De�ne K �K matrix B as

B �
�
UEK + (N � 1)�UfZK

�
�1
UfZK (133)

and K � K matrix A as

A =
�
UEK

+ �UfZK
[IK � (N � 1)B]

�
�1

(134)

If the inverse matrices contained in equations (133) and (134) exist, then Mz � Mz moment
matrix QNK = ZTNKU

�1
YNK

ZNK, de�ned in terms of NK � Mz matrix ZNK , and NK � NK

matrix UYNK , can be computed in terms of K �Mz matrix ZK and K �K matrices IK , B, and
A as

QNK = NZT
K[IK � (N � 1)B]AZK (135)

12.4. Analysis of Variance for Estimation of Bias and Precision Uncertainties

A test of signi�cance for bias uncertainty due to calibration standard error or modeling
error and an estimate of the corresponding standard error are obtained by analysis of variance
techniques, as shown in detail in the appendix. Assume as null hypothesis that the calibration
bias error is zero; then matrix UNK equals INK in equation (124). By using equation (27),
NK �NK matrix 
NK becomes


NK = ZNKQ
�1
NKZ

T
NK =

1

N
HT
KH (136)

where the K �K matrix 
K is de�ned as


K � ZK(Z
T
KZK)

�1ZT
K (137)

The NK� 1 residual vector be has zero expected value andNK�NK covariance matrix �2WNK,
given in equation (26) as

WNK = INK �
NK (138)

As shown in the appendix, the residual vector be can be expressed as

be = WNK�E (139)

where NK � 1 error vector �E is normally distributed with covariance matrix �2INK. Let b�n
denote the K � 1 residual vector at the nth replication, which has zero expected value and
covariance matrix �2WK , given in equation (26) as

WK = IK �
K (140)
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Thus, be is partitioned into N; (K � 1) subvectors

beT =
�beT1 beT2 : : : beTN �T (141)

Let �eK denote the mean value of residual vector ben averaged overN replications; that is,

�eK =
1

N

NX
n=1

ben =
1

N
Hbe =

1

N
HWNK�E (142)

The total residual sum of squares can be partitioned as follows:

SSE � beTbe =

NX
n=1

beTnben =N �eT
K
�eK +

NX
n=1

(ben � �eK)T(ben � �eK) (143)

As shown previously, SSE=�
2 is chi-square distributed with NK �Mz degrees of freedom, and

the standard error of the regression given by

SE =

�
SSE

NK �Mz

�1=2

(144)

is an unbiased estimate of �. De�ne the �rst right-hand term of equation (143) as the sum of
squares due to bias uncertainty, which can be expressed as

SSX � N

KX
k=1

�e2k =N�eT
K
�eK =

1

N
�
T

E
WNKGHWNK�E (145)

where GH � (1=N)HTH is de�ned in the appendix and �ek is the kth element of �eK. It can
be shown that S SX=�

2 is chi-square distributed with K �Mz degrees of freedom. Variable SX ,
de�ned as

SX �

�
SSX

K �Mz

�1=2

(146)

is interpreted as the standard error due to bias uncertainty. De�ne the second right-hand term
of equation (143) as the sum of squares due to measurement uncertainty as follows:

S SM �

NX
n=1

(ben � �eK)T(ben � �eK) = �
T

E
WNK(INK �GH)WNK�E (147)

It can be shown that SSM=�
2 is chi-square distributed with NK �K degrees of freedom; the

mean value
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SM =

�
SSM

NK �K

�1=2

(148)

is interpreted as the standard error due to measurement uncertainty. Chi-square variates S2
X =�

2
E

and S2
M=�

2
E can be shown to be independent. Hence, the ratio S 2

X =S
2
M is F -distributed with

K �Mz, NK �K degrees of freedom; the test of signi�cance for bias error is as follows:

F �
S2
X

S2
M

> FK�Mz ;NK�K(�) (149)

If inequality (149) is satis�ed, then the null hypothesis is rejected; this indicates the existence
of bias error at con�dence level �. The analysis of variance is summarized in table 1.

Table 1. Analysis of Variance of Residual Sum of Squares

Source of variation Degrees of freedom Sum of squares Root-mean-square

Bias uncertainty K �Mz SSX SX

Measurement uncertainty NK �K SSM SM

Residual sum of squares NK �Mz SSE = SSX + SSM SE

12.5. Stationarity Test of Estimated Parameters

A test for stationarity of an element bcm contained in estimated parameter vector bc over N
replicated calibrations is developed in the appendix. For example, signi�cant variation of the
intercept or slope during replicated calibrations may be detected.

Let bc denote the parameter vector estimated globally overN sets ofK-point calibrations. LetbcRn denote the parameter vector estimated over the K -point data set obtained during the nth
replication and SSRn equal the corresponding residual sum of squares for n = 1; : : : ; N . De�ne

SSR =
NX
n=1

SSRn (150)

It is shown that SSR/�2
E is chi-square distributed with N(K �Mz) degrees of freedom.

To test for stationarity of parameter cm, replace the mth element of bcRn by bcm 2 bc, and
compute the resulting error sum of squares, denoted by SSGm;n , for n = 1; : : : ; N . Compute the
sum

SSGm =
NX
n=1

SSGm;n (151)

It is shown that (SSGm � SSR)=�2 is chi-square distributed with N � 1 degrees of freedom.
Therefore, the ratio [(SSGm � SSR)=(N � 1)]=fSSR=[N(K �Mz)]g is F-distributed with N � 1,
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N(K �Mz) degrees of freedom. The test of signi�cance for nonstationarity of parameter bcm is
then as follows:

T̂cm =
(SSGm � SSR)=(N � 1)

SSR=[N(K �Mz)]
> FN�1;N (K�Mz)(�) (152)

13. Examples

13.1. Calibration of Single-Input{Single-Output Nonlinear Sensor

Consider an inertial angle-of-attack sensor which senses the projection of the gravitational
force onto the aircraft model axis. At zero roll , the angle of attack sensor is accurately modeled
by the following equation:

� = f (c; �) = S sin (� � �) + b (153)

where the scalar �, the angle of attack in radians, is the independent variable z; the 3 � 1
parameter vector is given by c = [b S �]T, where b = O�set in V , S = Sensitivity in V=g,
� = Misalignment angle in radians, and � is the sensor output in V . For this example input
vector z equals applied angle � and �z denotes the uncertainty of � during calibration.

Calibrationdesignmatrix Z has dimensionK�1. Equation (153) is extended toK dimensions
as follows:

� = f (c ;Z) = S sin (z � �1)+ b1 (154)

where � denotes the K � 1 angle of attack sensor output vector, z denotes the single column
of design matrix Z, sin denotes the K � 1 vector obtained following element-by-element sine
function evaluation of the elements of (z � �1), and 1 denotes a K � 1 vector of ones.

Let �z denote the calibration angle uncertainty, and let �E denote the uncertainty of the
sensor voltage measurement with variance �2

E . Then the observed output y is given by

y = f(c; �+ �z) + �E = S sin (� + �z � �)+ b+ �E (155)

Output uncertainty �y is obtained with equations (66) and (153)

�y = S cos (z � �)�z + �E (156)

Equation (156) is extended to K dimensions as follows:

�y = S cos (z � �1) � �z + �E (157)

where cos denotes the K � 1 vector obtained following element-by-element cosine function eval-
uation of the vector z� �1, � denotes element-by-element multiplication of equally dimensioned
matrices, and �y, �z, and �E denote K � 1 vectors of uncertainties �� , ��, and �E , respectively.
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The observed calibration output vector, including measurement uncertainty and calibration in-
put uncertainty, is thus extended toK dimensions with the use of equation (153) to the following
equation:

y = � + �y = S sin (z� �1)+ b1+ �y (158)

It can be shown that the K �K covariance matrix of y is given by

�Y = cov (�y) = S2[cos (z � �1) cos (z� �1)T ] � �Z +�E (159)

where �Z and �E are the covariance matrices of �z and �E, respectively. It is seen that �Y and
U given by equation (71) are symmetric and positive de�nite.

The least-squares estimate of parameter vector c is obtained by minimization of the following
quadratic form given in equation (75):

SSQ = [y � b1 � S sin (z � �1)]TU�1
Y [y � b1 � S sin (z � �1)] (160)

The K � 3 Jacobian matrix of f(c; Z) is found to be the following:

Fc(c; z) = [1 sin (z � �1) � S cos (z � �1)] (161)

The least-squares estimated coe�cient vector bc is obtained by solving the following 1� 3 system
of nonlinear equations:

h(c ;Z) = [y � b1 � S sin (z � �1)]TU�1[Fc(c; Z)]

= e(c ;Z)TU�1[Fc(c;Z)] = 0 (162)

where e(c; Z) = [y � b1 � S sin (z � �1)]. The standard error of the regression is given by

SY =

(
[y �bb1 � bS sin (z � b�1)]TU�1[y �bb1 � bS sin (z � b�1)]

K � 3

)1=2

(163)

which provides an unbiased estimate of �E .

From equation (161), equation (162) may be partitioned as follows:

h(c; Z) = [eT(c; Z)U�1
1 eT(c;Z)U�1

sin (z� �1) �SeT(c;Z)U�1
cos (z � �1)] (164)

Then matrix R = [@h(c;Z)=@c], given in equation (81), is found to be

R = FT
c (c ;Z)U

�1Fc(c ;Z) +HE (165)
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where

HE =

2666664
0 0 0

0 0 �eT(c;Z)U�1
cos (z � �1)

0 �eT(c;Z)U�1
cos (z � �1) SeT(c ;Z)U�1

sin(z � �1)

3777775 (166)

The covariance matrix of bc, denoted by �c = �2
YQ

�1
c can now be computed with equation (86).

The three-dimensional con�dence ell ipsoid for bc is given by equation (98); calibration con�dence
intervals and prediction intervals for predicted output voltages are given by equations (102) and
(105), respectively.

Following calibration, con�dence intervals and prediction intervals for inferred input angles,
given observed angle of attack sensor output voltages are now obtained. For this system, a
unique inverse function of f(c; �) exists for values of � in the interval [��=2; �=2], given by

b� = arcsin

 
� �bbbS

!
� b� (167)

Con�dence and prediction intervals for � are obtained by dividing equations (102) and (105),
respectively, by the gradient of f (c ; �) with respect to �, where

@f(c; �)

@�
= S cos (�� �) (168)

The desired 95 percent calibration con�dence interval for angle � is then

j� � b�(bc)j � tK�3(0:95)SY�ŷ(�)bS cos (� + b�) (169)

where �̂y(z) is de�ned in equation (104). Similarly, the 95 percent prediction interval for new
measurement �0 is obtained as

j�0 � b�0(bc)j � tK�3(0:95)SY

�
�2ŷ(�0) + �2

0=�
2
Y

�1=2
bS cos (�0 + b�) (170)

where b�0(bc) denotes the predicted value of new measurement �0 inferred from measured output
y0 by means of equation (167).

13.2. Two-Input{Two-Output Linear Instrument

Consider a two-input{two-output linear process|for example, a two-component strain-gauge
balance|with 1� 2 input vector x = [x1 x2] , 3 � 1 extended input vector zT = [1 x1 x2], 2� 1
output vector y = [y1 y2], and measurement error vector �E = [�1 �2] . Coe�cient matrix C is
given by
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C = [c.1 c.2] =

2
664
c01 c02

c11 c12

c21 c22

3
775 (171)

where c.n = [c0n c1n c2n]
T for n = 1; 2.

For a single observation, the output is given by y = zTC + �E. During calibration, K

calibration input vectors are applied, represented by the following K � 3 design matrix Z:

Z =

2
6666664

1 x11 x12

1 x21 x22

...
...

...

1 xK1 xK2

3
7777775

(172)

Measurement uncertainty is represented by K � 2 measurement error matrix EE, where

EE = [�E.1�E.2] =

2
6666664

�11 �12

�21 �22

...
...

�K 1 �K2

3
7777775

(173)

The K�K covariance matrix for error vectors �E.m and �E.n, form and n= 1 and 2, respectively,
is denoted by �Emn

.

For K calibration measurements, the K �N output matrix Y is given by

Y = (Z+ �Z)C + EE (174)

where K �Mz input error matrix �Z is given by

�Z = [0 �x.1�x.2] =

2
666664

0 �x11 �x12

0 �x21 �x22

...
...

...

0 �xK1 �xK2

3
777775

(175)

The 2 � 2 covariance matrix of input error vectors �x.i and �x.j is denoted by �xij
.

�x ij
=

2
4 �Xij;11 �Xij;12

�Xij;12 �Xij;22

3
5 (176)
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Let input vector x be random with zero-mean uncertainty �x = [�x1 �x2 ] . Then extended input
vector zT has uncertainty �

T
z = [0 �x1

�x2
]; K � 3 design matrix Z has uncertainty matrix EZ,

whose rows �Zi and �Zj have 3 � 3 covariance matrix �Zij , where

�Zij
= E

h
�Zi

�
T
Zj

i2664
0 0 0
0 �Xij;11

�Xij;12

0 �Xij;12
�Xij;22

3775 (177)

Consider process outputs y1 and y2 separately; subscripts are omitted in the following computa-
tions. The total error vector �Y , expressed as �Y = EZc + �E , expands into

�Y =

266666664

�x11c1 + �x12c2 + �1

�x21c1 + �x22c2 + �2

...

�xK1
c1 + �xK2

c2 + �K

377777775
(178)

The covariance between elements �yi and �yj of total error vector �y is given by

cov (�yi ; �yj) = cT�Zij c + �ij = c21�Xij;11
+ c1c2�Xij;12

+ c22�Xij;22
+ �ij (179)

The con�dence interval at level 1� � for estimated coe�cient vector bc is expressed as a three-
dimensional ell ipsoid as

(c � bc)TQ(c � bc) � 3S2F3;K�3(�) (180)

The ellipsoid can be characterized as follows: Since Q is symmetric, it is unitarily similar to a
real diagonal matrix �; in particular Q = PT�P, where � consists of the eigenvalues of Q and
P is unitary; that is, PPT = I . Matrix P consists of the set of orthonormal eigenvectors of Q.
Apply the transformation  =Pc to coe�cient vector c. The con�dence ellipsoid then simpli�es
to the form


T� = �1(1 � b1)

2 + �2(2 � b2)2 + �3(3 � b3)
2 � 3S2F3;K�3(�) (181)

Let � denote the ith eigenvalue of Q . It is readily seen that the ith vertex of the ellipsoid is
located at distance

di =

s
3S2F3;K�3(�)

�i

(182)

from point bc in the direction of the corresponding eigenvector, that is, the ith column of P.
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The uncertainty of the regression function, which is dependent upon extended input vector
z, is expressed by the calibration con�dence interval at level of inequality (34):

jy � by j � (zTQ�1z)1=2StK�3(�)

� (�11 + 2�12x1 + 2�13x2 + �22x
2
1 + 2�23x1x2 + �33x

2
2)

1=2StK�3(�) (183)

where �ij is the ijth element of Q�1.

After calibration, apply input z0 andmake a single new measurement, where the measurement
uncertainty is �0. The prediction interval for output by0 is obtained as follows with equation (39):

jy � by0 j � �
�2
0

�2
+ zT0Q

�1z0

�1=2

StK�3(�)

=

�
�2
0

�2
+ �11 + 2�12x1 + 2�13x2 + �22x

2
1 + 2�23x1x2 + �33x

2
2

�1=2

S tK�3(�) (184)

Con�dence and prediction intervals for inferred inputs are obtained as follows: let 1 � 2
vector �y = [�y1 �y2] denote the simultaneous two-dimensional calibration con�dence interval
or prediction interval de�ned in equations (183) and (184) that corresponds to observed output
vector y0. Let �x denote the uncertainty (calibration con�dence interval or prediction interval)
of inferred input vector x0 corresponding to observed output y0. Then �x is given by

�x0 = �y0
bC�1

12 (185)

where

bC12 =

"bc11 bc12bc21 bc22
#

(186)

14. Concluding Remarks

A generalized statistical treatment of uncertainty analysis for instrument calibration and
application has been developed. Techniques for propagation of measurement uncertainties
through experimental data reduction equations and for presentation of �nal engineering test
data results, which are well-established in the literature, have not been presented. Instead, the
emphasis has been on rigorous development of the correct statistical treatment of correlated
measurement uncertainties, correlated calibration standard uncertainties, nonlinear mathemati-
cal instrument models, and replicated calibrations, for which only heuristic approaches had been
available. Correlated bias errors may produce signi�cant magni�cation of the uncertainties of
the calibration standard.

The e�ects of mathematical modeling error upon bias uncertainties have been quanti�ed. A
design �gure of merit has been established to assess the e�ects of experimental design on both
precision and bias uncertainties during calibration. Generally, predicted output variance due to
precision errors is minimized by calibrating only at zero and full-scale loads, whereas predicted
output variance due to modeling error is minimized by uniformly spacing test points throughout
the operating envelope of the instrument.

33



Calibration con�dence intervals and prediction intervals of a new measurement, for both the

predicted output and the inferred input, are obtained as functions of the applied load. Previously,

instrument uncertainties were typically speci�ed as constant error bands or as a �xed percentage

of the full-scale input.

Replicated calibration is necessary to obtain adequate statistical sampling, to test for

nonstationarity, and to test for signi�cant bias uncertainty. Analyses of variance of the regression

residual sum of squares have been applied to obtain individual estimated values of the standard

error due to bias uncertainty and the standard error due to precision uncertainty.

Additional associated uncertainty analyses are in progress which apply the results of this

document to the force sensor modeled by a linear function, the strain-gauge balance modeled

by a second-degree multivariate polynomial, and the inertial model attitude sensor in pitch and

roll modeled by a nonlinear coordinate transformation. The techniques have also been applied

to calibration of a skin friction balance modeled by a quadratic polynomial.
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Appendix

Mathematical Derivations

A1. Preliminaries

A1.1. Extended Least-Squares Analysis. Let the instrument calibrationdata input-output
relationship be expressed in matrix form as follows:

y = Zc + �E (187)

where Z is the K � Mz calibration design matrix, c is the Mz � 1 parameter vector, y is the
K � 1 output observation vector, and �E is the K � 1 random measurement error vector with
zero mean and K �K covariance matrix �E. It is assumed that �E can be expressed as

�E = �
2
E
U (188)

where K �K matrix U is symmetric and positive de�nite and measurement variance �2
E
is to

be determined. Then U can be decomposed into the matrix product

U = PPT (189)

where K � K matrix P is a nonsingular lower triangular matrix (ref. 12). For notational

convenience let P�T � [P�1 ]
T
.

A1.2. Lemmas and Theorems.

The following simple propositions, used frequently in the development, are proven for later
use. A matrix is said to be diagonalizable if it is similar to a diagonal matrix.

Lemma 1. U�1 = P�TP�1

Proof:

U(P�TP�1) = PP
T
P�TP�1

= P(P�1P)TP�1 = PP�1 = IK (190)

where IK is the K �K identity matrix.

QED

Lemma 2. Matrix A is idempotent if and only if it is diagonalizable and its eigenvalues are
either 0 or 1.

Proof of Su�ciency: By hypothesis A2=A. It is well-known from linear algebra (ref. 12) that
the eigenvalues of A must satisfy the scalar equation �2 = �, from which it follows that � = 0
or � = 1. In reference 11, A is shown to be diagonalizable.

QED Su�ciency
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Proof of Necessity: By hypothesis the eigenvalues ofA are either 0 or 1. Since A is diagonalizable
a nonsingular matrix � exists such that A = � IA��1 and IA is a diagonal matrix of zeros and
ones. It is clear that IAIA = IA: Therefore, AA = A:

QED Necessity

Lemma 3. If matrices A and B have dimension N � M and M � N , respectively, then
tr(AB) = tr (BA).

Proof:

tr (AB) =
NX

n=1

(AB)
nn

=
NX

n=1

MX

m=1

anmbmn

=
MX

m=1

NX

n=1

bmnanm =
MX

m=1

(BA)
mm

= tr (BA) (191)

QED

Lemma 4. If square matrix A is diagonalizable, then tr (A) = tr (�), where � is the diagonal
matrix of eigenvalues of A.

Proof: By hypothesis there exists nonsingular matrix � such that A= ����1 (ref. 12). By using
Lemma 3,

tr(A) = tr (����1) = tr (��1��) = tr (�) (192)

QED

Lemma 5. For N �N matrices A and B, tr (A + B) = tr (A) + tr (B) .

Proof:

tr(A+ B) =
NX

n=1

(ann + bnn) =
NX

n=1

ann +
NX

n=1

bnn

= tr (A)+ tr (B) (193)

QED

Lemma 6. If matrix A is idempotent, then rank (A) = tr (A).
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Proof: By Lemma 2,A is diagonalizable and its eigenvalues are either 0 or 1. Then, by Lemma 4,
tr(A) = tr (�), where � is the diagonal matrix of eigenvalues. Hence, rank (A) = tr (A).

QED

Lemma 7. If K �K matrix A is idempotent, then IK �A is idempotent with rank K � rA,
where rA = rank (A):

Proof:

(IK �A)(IK �A) = IK � 2A+AA = IK �A

By Lemmas 5 and 6, rank (IK � A) = K � rA .

QED

Theorem 1. Let SSW = �TW� where 1 �N vector � is normally distributed with covariance
matrix �E = �2

EIN andW is anN�N symmetric matrix with rank r . ThenS SW=�
2
E is chi-square

distributed with r degrees of freedom and expected value r if and only if W is idempotent.

Proof of Necessity: Since W is idempotent, by Lemma 2 its eigenvalues are either 0 or 1. Hence,
there exists anN �N matrix � such that

W = �TIW� (194)

where �T� = IN , and IW is diagonal with r ones and N � r zeros. Note that IW = IWIW . Let
�W = IW��. Then

�TW�W = �T�TIW�� = �TW� = S SW (195)

Moreover,

��W
= E

�
�W�TW

�
= IW��E�

TIW

= �2
EIW��TIW = �2

EIW (196)

Therefore, �W=�E is normally distributed with covariance matrix IW . Thus, SSW=�2
E equals the

sum of squares of r independent unit variance normal variates, and therefore SSW=�2
E is chi-

square distributed with r degrees of freedom (ref. 7). The expected value of SSW is obtained by
using Lemma 3 and equations (195) and (196) to yield

E [S SW ] = E
�
tr (�TW�W)

�
= E

�
tr(�W�TW)

�

= tr (��W
) = �2 tr (IW) = �2r (197)

QED Necessity
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Proof of Su�ciency: By hypothesis SSW =�2
E is chi-square distributed with r degrees of freedom

and, hence, equals the sum of squares of r independent zero-mean, unit-variance normal variates.
Symmetric matrix W can be written as

W = �T�W� (198)

where N � N diagonal matrix �W contains r nonzero elements since W has rank r . De�ne
�W � �1=2

W
��, where the elements of diagonal matrix �1=2

W
equal the square roots of the

corresponding elements of �W . Note that �W contains r nonzero elements. Then

�TW�W = �T�T�W�� = �TW� = S SW (199)

But
��W

= E [�W�TW ] = �1=2
W ��E�

T�1=2
W = �2

E�
1=2
W ��T�1=2

W = �2
E�W (200)

If any nonzero element of �W does not equal 1, the hypothesis that S SW=�
2
E equals the sum of

squares of r independent unit-variance normal variates is contradicted. Hence, diagonal matrix
�W contains only ones and zeros, and by Lemma 2, W is idempotent.

QED Su�ciency

Theorem 2 (ref. 10). Let �T� = � qm , for 1 �m � M , where 1�N random vector � is normally
distributed with covariance matrix IN , qm = �TQm�, and nonnegative inde�nite N �N matrix
Qm is symmetric with rank rm. Then the variables qm are independent chi-square distributed
random variables if and only if

P
rm = N , for 1 � m � M .

Proof of Necessity: By Theorem 1, �T� is chi-square distributed. Also, by hypothesis

�T� =
MX

m=1

�TQm� =
MX

m=1

qm (201)

where Qm has rank rm and

MX

m=1

rm = N (202)

Since Qm is symmetric and nonnegative inde�nite with rank rm , it can be expressed in the form

Qm = PTm�mPm (203)

where Pm is orthonormal and �m is diagonal, containing rm positive elements and (N � rm)
zero elements on the diagonal. After rearranging its elements, matrix Qm can be written in
partitioned form as
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Qm =
h
PT
rm

PT
sm

i2
4
�rm 0

0 0

3
5
2
4
Prm

Psm

3
5 =PT

rm
�rmPrm (204)

where N�N matrixPT
m = [PT

rm
PT
sm
]; Prm has dimension rm�N; Psm has dimension (N�rm)�N ,

and �rm has dimension rm � rm. De�ne rm �N matrix Rrm as

Rrm � �1=2
rm
Prm (205)

It is seen that Rrm has rank rm and thatRT
rm
Prm = Qm. Also de�ne rm � 1 vector �m as

�m � Rrmx (206)

where x is an arbitrary N � 1 normally distributed random vector with covariance matrix IN.
Then, inner product qm = �Tm�m = xTQmx forms N �N matrix Rr from the set of M matrices
Rrm as

Rr =

2
64
R r1
...

RrM

3
75 (207)

It follows from equation (202) thatRr has rank N and is therefore nonsingular. Construct N� 1
vector � from subvectors �1 ; : ::; �M de�ned in equation (206) as

� =

2
4

�1
...

�M

3
5 = R rx (208)

It follows that

xTx =
MX
m=1

xTQmx =
MX
m=1

�Tm�m = �T� = xTRT
r R rx (209)

Since equation (209) holds for arbitrary vector x , it follows that RT
r Rr = IN = RrR

T
r and,

hence, Rr is orthonormal. The covariance matrix of � is found to be

�� = E
�
��T

�
=R r E

�
xxT

�
RT

r = RrR
T
r = IN (210)

Therefore, the covariance matrix of �m equals Im . It then follows from Theorem 1 that random
variable qm = �Tm�m is chi-square distributed with rm degrees of freedom. Moreover, since Rr is
orthonormal, the set of random variables qm is mutually independent.

QED Necessity
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Proof of Su�ciency: Construct matrixR r and vector � as before. By hypothesis, the elements �m
are mutually independent with chi-square distributed inner products; thus, covariance matrix ��

contains r =�rm ones on the diagonal and zeros elsewhere. Since xTx is chi-square distributed
with N degrees of freedom, it follows from equation (209) that �T� is l ikewise distributed. Hence,
rank �� equals N and N = r .

QED Su�ciency

A1.3. Linear Least-Squares Estimation.

From equation (187), note that the expected value of y is given by

E [y] = Zc (211)

De�ne K � 1 transformed observation vector v as

v �P�1y (212)

Equation (187) now becomes

v = P�1Zc +P�1�E = P�1Zc + �v (213)

where K � 1 vector �v � P�1�E . Immediately the expected value of v is

�v � E [v] = P�1Zc (214)

Then the K � K covariance matrix of v (which equals the covariance matrix of �v as well),
denoted by �v, is obtained with the help of equations (188) and (189) as

�v � E [(v � �v)(v � �v )
T ] = P�1

E [�E�
T
E ]P

�T

= P�1�EP
�T = �2EP

�1PPTP�T = �2EIK (215)

Thus the elements of v and of �v are uncorrelated.

Based on transformed output observation vector v, the desire is to estimate the value of
parameter vector c, denoted by bc , which minimizes the sum of squaresSSQ given by the following
inner product:

SSQ = (v � �v)
T(v � �V) = (v �P�1Zc)T(v �P�1Zc) (216)

Note that equation (216) may be rewritten as

S SQ = (y � Zc)TP�TP�1(y �Zc) = (y �Zc)TU�1(y �Zc) (217)
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It is well-known (ref. 7) that the least-squares value bc which minimizes equation (216) is obtained
as follows:

bc = [(P�1Z)T(P�1Z)]�1(P�1Z)Tv = (ZTP�TP�1Z)�1ZTP�Tv

= (ZTU�1Z)�1ZTP�Tv = Q�1ZTP�Tv (218)

where Mz �Mz generalized moment matrix Q of the experimental design is de�ned as

Q � ZTU
�1
Z (219)

It is to be noted thatQT = Q. With the help of equations (213), (214), and (218) the expected
value of bc is found to be an unbiased estimate of c as follows:

E [bc] =Q�1ZTP�T
E [v] = Q�1ZTU�1Zc

=Q�1Qc = c (220)

The covariance matrix of bc is found by �rst combining equations (213) and (218) to obtain

bc � c = Q�1ZTP�T(P�1Zc + �v) � c = Q�1ZTU�1Zc +Q�1ZTP�T
�v � c

= Q�1Qc +Q�1ZTP�T
�v � c = Q�1ZTP�T

�v (221)

It is seen that bc�c is normally distributed since �v is normally distributed. From equations (219)
and (221) it follows thatMz �Mz covariance matrix �bc is given by

�bc = E
�
(bc � c)(bc � c)T� = Q�1ZTP�T

E [�v�
T
v ] = P�1ZQ�1

= �2
E
Q�1ZTU�1ZQ�1 = �2

E
Q�1QQ

�1 = �2
E
Q�1 (222)

De�ne K � 1 predicted output vector bv by

bv � P�1Zbc (223)

and de�ne K � 1 residual vector bev � v � bv. Using equations (213), (218), and (223) yields

bev = v � bv = v �P�1ZQ�1ZTP�Tv

=
�
IK �P

�1ZQ�1ZTP�T
�
(P�1Zc + �v)

=
�
IK �P

�1ZQ�1ZTP�T
�
�v =WK�v (224)

where K �K matrix WK is de�ned as

WK � IK �
K (225)

and K � K matrix 
K is de�ned as
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K � (P�1Z)Q�1(P�1Z)T (226)

An integer subscript will be appended as needed to distinguish the dimension of matrices U,
W, 
, Z, Q , and I for nonreplicated and replicated experimental designs.

It is seen that 
K is both symmetric and idempotent as follows:


K
K =
�
P�1ZQ�1ZTP�T

� �
P�1ZQ�1ZTP�T

�
=P�1ZQ�1ZTU�1ZQ�1ZTP�T

=P�1ZQ�1QQ�1ZTP�T = P�1ZQ�1ZTP�T = 
K (227)

Also, using Lemmas 3, 4, and 6,

rank (
K) = tr (P�1ZQ�1ZTP�T) = tr
�
Q�1ZTP�TP�1Z

�
= tr (Q�1Q) = MZ (228)

Then by Lemma 7, WK is idempotent with rank K �Mz.

It is seen that bev is normally distributed. From equation (224), the expected value of bev is
zero. The covariance matrix of bev then is found by using equations (215) and (224) as follows:

�b�v = E
�bevbeTv

�
= WK E

�
�v�

T
v

�
WT

K

= �2
EWKW

T
K = �2

EWK (229)

The Mz � K covariance matrix of bc and bev is shown to be zero (ref. 7), and with the help of
equation (215),

cov (bc;bev) = E
�
(bc � c)beTv

�
=Q�1ZTP�T

E
�
�v�

T
v

� �
IK �P

�1ZQ�1ZTP�T
�

= �2
E

�
Q�1ZTP�T

�Q�1ZTP�T
�
= 0 (230)

Thus bc and bev are uncorrelated and independent.

The residual sum of squares SSE, de�ned as the sum of squares of the elements of residual
vector bev, is obtained with the help of equation (224) as

SSE � beTvbev = �
T
vW

T
KWK�v = �

T
vWK�v (231)

E [SSE] = �2
E(K �Mz) (232)

From equation (228) and Theorem 1, S SE=�
2
E is chi-square distributed with K �Mz degrees of

freedom and expected value K � Mz :
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Therefore SE , denoted the standard error, is de�ned as

SE �

�
SSE

K �Mz

�1=2

(233)

Note that SE is an unbiased estimate of �E .

A con�dence ellipsoid for bc is now obtained. Evaluate the quadratic form

SSC = (c � bc)TQ(c � bc)
with equation (221) to yield

SSC = (c � bc)TQ(c � bc) = �
T
vP

�1ZQ�1ZTP�T
�v = �

T
v
K�v (234)

Recall that K � K matrix 
K was shown by equation (228) to be idempotent with rank Mz.
Then by Theorem 1, it follows that SSC=�2

E is chi-square distributed with Mz degrees of freedom
and expected value Mz. Since bc � c and bev are independent, SSC and SSQ are independent.
Hence, the ratio F = [SSC=(�2

EMz)]=fSSE= [�2
E(K � Mz)]g is F-distributed with Mz; K � Mz

degrees of freedom (ref. 6). Therefore, a con�dence interval for bc at level � is given by the
following inequality:

(c �bc)TQ(c� bc) � MzS
2
EFMz ;K �Mz

(�) (235)

where Fi;j(�) is the 1�� tail of the F-distribution with i; j degrees of freedom and SE is de�ned
in equation (233). The quadratic form of equation (235) de�nes an ellipsoid in Mz dimensional
hyperspace termed the con�dence ellipsoid.

Given Mz � 1 input vector z, the corresponding predicted scalar output by is given by

by(z) = zTbc (236)

From equation (220), the expected value of by(z) equals zTc. With equations (222) and (236),
the variance of by(z) is obtained as follows:

�2
ŷ
(z) � E(fby(z) � E [by(z)]g2) = E f[zT(c � bc)]2g

= E [zT(c � bc)(c � bc)Tz] = zTE [(c � bc)(c � bc)T ]z
= zT�ĉz = �2

Ez
TQ�1z (237)

Then the normally distributed variate �by(z)= ��E(zTQ�1z)1=2
�
has zero mean and unit variance,

where �by = y�by. Recall that S 2
SE=�

2
E is chi-square distributed with K �Mz degrees of freedom.

Then the ratio t de�ned as follows has Student's t-distribution with K �Mz degrees of freedom
(ref. 7):

t =
�by(z)= ��E(zTQ�1z)1=2

�
SSE= [�E(K �Mz)1=2]

(238)
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Combine equations (233), (237), and (238) to obtain the calibration output con�dence interval
de�ned by the following inequality:

jy � by j � (zTQ�1z)1=2SE tK�Mz (�=2) (239)

where tn(�) is the �-percentile of the two-tailed t-distribution with n degrees of freedom.

A2. E�ects of Process Modeling Error

Consider a process f(c; z) modeled as a linear function of extended input vector z

f(c; z) = zc (240)

whereas the actual functional relationship is

f(c; z) = zc + (z) (241)

where (z) is the modeling error. Let the system be calibrated with calibration design Z in
accordance with equation (187) based on the linear model in equation (240). The observed
calibration output is then

y = Zc + (Z)+ �E (242)

where (Z) denotes the K � 1 vector of modeling errors

(z) =

2
664
(z1)

...

(zK)

3
775 (243)

Estimated coe�cient vector bc is obtained from equations (218) and (242) as follows:

bc = Q�1ZTU�1y = Q�1ZTU�1 [Zc + (Z) + �E ]

= c +Q� 1ZTU�1[(Z) + �E] (244)

The expected value of bc is seen to be

E [bc] = c +Q�1ZTU�1
(Z) (245)

Predicted output vector by becomes

by = Zbc = Zc + ZQ�1ZTU�1[(Z) + �E ] (246)
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It follows from equation (246) that the expected value of predicted output vector by is given by

E [by] = Zc + ZQ�1ZTU�1
(Z) (247)

Combine equations (242) and (246) with (225) to obtain residual vector bev as

bev � v � bv =P�1(y � by) = P�1
�
IK �ZQ

�1ZTP�TP�1
�
[(Z) + �E]

=
�
IK � P�1ZQ�1ZTP�T

�
[P�1

(Z) + �v ] =WK[P
�1
(Z) + �v] (248)

The expected value of bev is seen to be

E [bev] = WKP
�1
(Z) (249)

After combining equations (215), (248), and (249), the covariance matrix of bev is found to be

�bev � Ef[bev � E(bev)][bev � E(bev)]Tg = �2
EWK (250)

Since WK is idempotent, the residual sum of squares is obtained from equation (248) as follows:

SSE � beTvbev = [P�1
(Z) + �v]

TWK[P
�1
(Z) + �v] (251)

Because WK has rank K �Mz, the expected value of S SE is

E [S SE ] = (K �Mz)�
2
E + (Z)TP�TWKP

�1
(Z) (252)

Note that SE = [S SE=(K � Mz)]
1=2 is no longer an unbiased estimate of � when modeling error

(z) is nonzero.

Consider arbitrary input vector z. The corresponding output y , obtained with equation (241),
is

y = f (c ; z) = zc + (z) (253)

The predicted output is by = zbc. Prediction error �y is then

�y � y � by = (z) �ZQ�1
ZTU�1[(Z) + �E] (254)

The expected mean-square prediction error is obtained from equation (254) as

�2by(z) = E [�by2] = [(z)� zQ�1ZTU�1
(Z)]2 + �2

Ez
TQ�1z (255)
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A3. Nonlinear Least-Squares Estimation With Input Uncertainty

Let c denote the Mc� 1 parameter vector; (z+ �z), the 1�Mz stochastic input vector, where
z is the 1 �Mz nominal input vector and �z is the 1 �Mz stochastic input uncertainty vector;
�E , the measurement uncertainty, a zero-mean random variable. Then the process output is of
the form

y = f(c; z + �z) + �E = f(c; z)+ �y (256)

The uncertainty �yk of the kth observation is then

�yk = �fzk + �Ek (257)

where

�fzk = fz(c ; zk)�zk (258)

and the 1 �Mz vector fz(c; zk) is de�ned as

fz(c ; zk) �

�
@f(c;zk)

@z

�
(259)

De�ne K � 1 error vector �fz as

�fz � [�fz1 : : : �fzK]T (260)

It is seen that �fz is given by

�fz =

2
664
fz(c ; z1)�zT1

...
fz(c; zK )�z

T
K

3
775 (261)

Note that subscript z is appended to indicate that �f depends on the entire design matrix Z.
The K �K covariance matrix of �fz is given by

�fz � E [�fz�f
T
z ] (262)

The K � 1 output vector y is obtained by extending scalar equation (256) to the following K � 1
vector equation

y = f(c;Z)+ �y (263)

where Z is the K�Mz designmatrix, and �y is the K�1 zero-mean combined output uncertainty
vector given by
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�y = �fz + �E (264)

and �y has K � K combined output covariance matrix �Y which can be expressed as

�Y = �fz +�E (265)

The assumption is that �Y can be expressed in the form of equation (188), namely �Y = �2
Y U,

where U satis�es the conditions of equation (189), with transformed K � 1 output vector v
de�ned in equation (213), and equation (263) becomes

v = P�1f (c;Z)+ �v (266)

where K � 1 uncertainty vector �v = P�1�y andK �K matrix P is de�ned as in equation (189).
The expected value of �v is zero, and the expected value of v is

�v � E [v] = P�1f (c;Z) (267)

The K �K covariance matrix of �v, denoted by �v , then becomes

�v = E [�v�vT ] =P�1
E [�y�yT ]P�T = �2

YP
�1UP

�T = �2
Y IK (268)

It is seen that �v is uncorrelated and normally distributed whenever �y is normally
distributed. As in equation (216) de�ne the sum of squares as

SSQ � (v � �v)
T(v � �v ) = [v �P�1f (c ;Z)]T[v �P�1f (c ;Z)] (269)

To minimize S SQ (ref. 13) compute its gradient with respect to c and equate the resultant 1�Mc

set of equations to zero as follows:

h �
1

2

�
@SSQ

@c

�
= [v �P�1f (c;Z)]TP�1

�
@f

@c
(c;Z)

�

= [v � P�1f (c;Z)]TP�1Fc = 0 (270)

where h is a function of independent arguments v, c , and Z and has dimension 1 � Mc,
[v �P�1f (c;Z)] is K � 1, P is K � K , and K �Mc matrix Fc is de�ned as

Fc �

�
@f

@c
(c; Z)

�
=

2
666666666664

@f1(c;z1 )

@c1

: : :
@f1(c;z1)

@cMc

... : : :
...

@fK (c;zK )

@c1
: : :

@fK (c;zK )

@cMc

3
777777777775

(271)
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Finally 0 denotes a 1�Mc vector of zeros. Equation (270) is solved numerically forbc by Newton-
Raphson iteration or similar method. Necessary conditions for the existence of a solution are
now obtained.

To obtain the uncertainty of bc denoted by �bc, compute the total di�erential of equation (270)
and equate to zero as follows:

�h = �vT
�
@h

@v

�
+ �bcTR = 0 (272)

where K �Mc matrix [@h=@v] is seen to equal

�
@h

@v

�
= P

�1
Fc (273)

and the Mc � Mc matrix R is de�ned as

R �

�
@h

@c

�
=

2
666666664

@2SSQ

@c2
1

: : :
@2SSQ

@c1 @cMz

... : : :
...

@2SSQ

@c1 @cMz

: : :
@2SSQ

@c2
Mz

3
777777775

(274)

A necessary condition for the existence of a solution to equation (270) for bc and to equation (272)
for �bc is that matrix R be nonsingular in some open interval about bc (ref. 11).

To evaluate R di�erentiate equation (270) with respect to c as indicated to obtain

R = F
T

c
P
�T
P
�1
Fc + [v �P�1 f(c; Z)]TP�1


 Fcc = F
T

c
U
�1
Fc +HE (275)

where HE is de�ned as

HE � [v �P�1
f (c;Z)]TP�1 
 Fcc (276)

The Mc �Mc�K array Fcc is de�ned as the partial derivative ofMc �K array FT

c
with respect

to vector c; that is,

Fcc �

�
@FT

c
(c ;Z)

@ c

�
(277)

where the ijkth element of Fcc(c; Z) equals the second partial derivative of the kth element of
function f (c;Z) with respect to ci and cj as follows:

fcc;ijk =
@2fk(c; zk)

@ci @cj
(278)
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for 1 � i; j � Mc , and 1 � k � K . The 
 operator denotes formation of the inner product of
1 � K row vector [v �P�1f (c;Z)]TP�1 with each K � 1 column of array Fcc . Thus the ijth
element of Mc �Mc matrix HE is given by

hE;ij =
�
v �P�1f(c; Z)

�T
P�1Fcc; ij = eTv P

�1Fcc; ij (279)

for 1 � i; j � Mc, where Fcc;ij denotes the ijth (K � 1) column of array Fcc, and
ev = v �P�1f (c;Z). After least-squares estimation of vectorbc, vector ev becomes residual vector
bev de�ned subsequently. If norm k bev k is small, matrix HE can be neglected in equation (275).
Then R is closely approximated by

R � FTc U
�1Fc (280)

Note that matrix R has rank Mc, i .e., is nonsingular, only if rank (Fc) = Mc. Combine
equations (272) and (273) and solve for Mc � 1 uncertainty vector �bc to yield

�bc = �R�1FT
c P

�T�v (281)

From equation (281), �bc has zero mean and covariance matrix as follows:

�ĉ = R�1FTc P
�T�vP

�1FcR
�1

= �2
YR

�1FT
c U

�1FcR
�1 = �2

Y Q
�1
c (282)

where Mc �Mc matrix Qc equals

Qc =
�
R�1FT

cU
�1FcR

�1
��1

(283)

Note that satisfaction of the approximation in equation (280) is a su�cient condition, but not
necessary, for the existence of matrix Qc. Equation (280) implies that

Qc � R (284)

A3.1. Residual Sum of Squares.

As for calibration design matrix Z and estimated parameter vector bc, de�ne K � 1 predicted
output vector bv as

bv = P�1f(bc; Z) = P�1 [f (c;Z)+ Fc�bc ]
= P�1

�
f(bc; Z) � FcR�1FT

cP
�T�v

�
= P�1f (c;Z)�
F�v (285)

where


F �
�
P�1Fc

�
R�1

�
P�1Fc

�T
(286)

As before, K � 1 residual vector bev is de�ned as
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bev � v � bv =P�1[f(c; Z) � f(bc; Z)] + �v (287)

Let �fc � f (c;Z) � f(bc; Z), which is closely approximated by �fc = Fc(c; Z)�bc. Then
equation (287) can be expressed in di�erential form as

bev = P
�1
Fc(c;Z)�bc + �v (288)

Combine equations (281), (286), and (288) to obtain

bev =
�
IK �P

�1
FcR

�1
F
T

c
P
�T

�
�v = WFK

�v (289)

where

WFK
� IK �
F (290)

SubscriptK, appended to denote the matrix dimension, is treated as an index. If approximation
in equation (280) holds, then 
F is idempotent as is shown in the following equation:


F
F = P
�1
FcR

�1
F
T

c
P
�T
P
�1
FcR

�1
F
T

c
P
�T

= P
�1
FcR

�1
�
F
T

c
U

�1
Fc

�
R
�1
F
T

c
P
�T

= P
�1
FcR

�1
F
T

c
P
�T = 
F (291)

By using Lemmas 2, 3, and 6,

rank (
F) = tr
�
P
�1
FcR

�1
F
T

c
P
�T

�
= tr

�
R

�1
F
T

c
P
�T
P
�1
Fc

�

= tr
�
R
�1
F
T

c
U

�1
Fc

�
= tr (R�1

R) = Mc (292)

Therefore, by Lemma 7, WFK
is idempotent with rank K �Mc.

The covariance matrix of bev is given by

�ê
v
= �2YWFK

(293)

and the residual sum of squares SSE is given by

SSE = beT
v
bev = �vTWFK

�v (294)

Then by Theorem 1, SSE is chi-square distributed with K � Mc degrees of freedom and with
expected value

E (SSE) = (K� Mc)�
2
Y (295)

An unbiased estimate of �Y is provided by standard error S Y , where
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SY =

�
SSE

K �Mc

�1=2

(296)

A con�dence interval for �Y at con�dence level � is given by

(K �Mc)1=2SY
�(1+�)=2

� �Y �
(K �Mc)1=2SY

�(1��)=2

(297)

where �� is the � percentile value of the chi-square distribution with K �Mc degrees of freedom.

A3.2. Con�dence Intervals.

A con�dence ellipsoid is now obtained for bc . Let
SSC � (c � bc)TQC(c � bc) = �vTP�1FcR

�1QcR
�1FT

c P
�T�v

= �vTP�1FcR
�1FT

cP
�T�v = �vT
F�v (298)

Because 
F is idempotent, SSC=�2
Y is chi-square distributed with Mc degrees of freedom by

Theorem 1. Hence, the ratio F = [SSC=�
2
EMc]=fSSE=[�2

E(K � Mc)]g is F-distributed with
Mc; K �Mc degrees of freedom (ref. 7). Then the con�dence ellipsoid at level � for bc is de�ned
by

(c � bc)TQc(c �bc) � McS
2
Y FMc ;K�Mc

(�) (299)

For arbitrary input vector z, the corresponding predicted scalar output denoted by by(z) is
by(z) � f(bc; z) (300)

The uncertainty of by(z) due to calibration uncertainty alone is obtained with equation (281) as

�by = y � by = f (c; z)� f(bc; z)
=

�
@f (bc ; z)
@ c

�
�bc = �f Tc (c; z)R�1FTc P

�1�v (301)

where Mc � 1 gradient vector fc(c; z) is de�ned as

fc(c; z) =

�
@f(c;z)

@c

�
(302)

It follows that �by is normally distributed with zero expected value. Then the expected value ofby(z) is
E [by(z)] = f (c ; z) (303)
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The variance of predicted output by(z), denoted the variance function, is obtained from equa-
tion (301) as follows:

�2
ŷ
(z) � E [�by �by] = f Tc (c; z)R

�1
FT
cP

�1
E [�v �vT ]P�TFcR

�1fc(c; z)

= �2bY f Tc (c ; z)R�1
FT
cU

�1
FcR

�1fc(c; z)

= �2bY f Tc (c ; z)Q�1

C
fc(c; z) (304)

If the approximation in equation (280) holds, then equation (304) simpli�es to

�2
ŷ(z) = �2

Y f
T
c (c; z)R

�1
fc(c; z) (305)

The normally distributed variate �by(z)=��Y hfTc (c; z)Q�1

c
fc(c ; z)

i1=2�
has zero-mean and unit

variance. It was shown previously that SSE=�2
Y is chi-square distributed with K �Mc degrees

of freedom when the approximation in equation (280) holds. Then the ratio t de�ned below has
Student's t-distribution with K �Mc degrees of freedom.

t =
�by(z)=n�Y �fTc (c; z)Q�1

C fc(c ; z)
�1=2o

SSE= [�Y (K �Mc)1=2]
(306)

Then the output prediction con�dence interval at � con�dence level is given by

jy � by j � [f Tc (bc; z)Q�1
C fc(bc; z)]1=2SY tK�Mc (�=2) (307)

where tn(�) is the � percentile value of the two-tailed t-distribution with n degrees of freedom.

A4. Analysis of Replicated Calibrations

In the following development, subscripts K and NK are appended to matrices I, Z, Q , U,
and 
 to distinguish between single calibrations (K observations) and replicated calibrations
(NK observations). Consider an arbitrary K�Mz experimental design matrix ZK for calibration
of a single- output sensor, which is replicated N times. The sets of input loading uncertainties
are seen to be intercorrelated among replications. The NK �Mz replicated experimental design
ZNK is

ZNK =

2
6664
ZK

ZK

...
ZK

3
7775 =HTZK (308)

where K �NK replication matrix H is de�ned as

H � [ IK IK : : : IK ] (309)
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The following properties of H are used in the subsequent development. The K � K matrix
productHHT equals

HH
T = NIK (310)

and NK � NK matrix product HTH equals

H
T
H =

2
6664

IK IK : : : IK

IK IK : : : IK
...

... : : :
...

IK IK : : : IK

3
7775 (311)

For any K �K matrix A, the NK �NK matrix productHT
AH equals

H
T
AH =

2
6664

A A : : : A

A A : : : A
...

... : : :
...

A A : : : A

3
7775 (312)

Let DNK be anNK �NK block diagonal matrix constructed from K � K matrix A as

DNK =

2
6664

A 0K : : : 0K

0K A : : : 0K
...

... : : :
...

0K 0K : : : A

3
7775 (313)

where 0K is a K �K matrix of zeros. Then it follows that

HDNKH
T = NA (314)

A4.1. Single-Input{Single-Output Process With Uncorrelated Uncertainties.

OverN replicated calibrations, let the elements ofNK�1 measurement uncertainty vector �E
be uncorrelatedwith NK�NK covariance matrix �2

EINK, and let the unknownbias uncertainties
of a single replication due to the calibration standard be uncorrelated with covariance matrix
�2
xIK . Since the loading sequence is replicated, then

cov (zkm; zlm) = �2
x (jk � lj = nK ; n=1; : : : ; N�1;m=1; : : : ;Mz)

= 0 (Otherwise) (315)

where zkm is the mth element of vector zk and k = 1; : : : ; NK . Thus, from equation (311), the
NK �NK covariance matrix of design matrix Z is given by

�Z = �2
xH

T
H (316)
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Similarly, the NK �NK measurement uncertainty covariance matrix is given by

�E = �2
EINK = �2

E

2
6664

IK 0K : : : 0K
0K IK : : : 0K
...

... : : :
...

0K 0K : : : IK

3
7775 (317)

Noting that �2
E > 0 and �2

x � 0, de�ne combined output covariance matrix �Y as

�Y � �E +�Z = �2
EINK + �2

xH
TH = �2

EUNK (318)

where

UNK = INK + �HTH =

2
66666664

(�+ 1)IK �IK : : : �IK

�IK (�+ 1)IK : : : �IK

...
... : : :

...

�IK �IK : : : (� + 1)IK

3
77777775

(319)

and

� =
�2
x

�2
E

(320)

It is readily shown that

U�1
NK = INK � �H

TH =

2
66666664

(1 � �)IK ��IK : : : ��IK

��IK (1 � �)IK : : : ��IK

...
... : : :

...

��IK ��IK : : : (1 � �)IK

3
77777775

(321)

where

� =
�

N� + 1
(322)

Then Mz �Mz generalized moment matrix QNK is obtained with the help of equation (310) as
follows:

QNK = ZTNKU
�1
NKZNK = ZTKH(INK � �HTH)HTZK

= N(1�N�)ZTKZK (323)
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Combine equations (320), (322), and (323) to yield

QNK =
�2
E

(�2
E=N) + �2

x

ZTKZK (324)

Note from equation (324) that the portion of calibration uncertainty due to calibration standard
bias errors is not reduced by replication, whereas that due to measurement errors decreases
roughly as N�1=2.

For the analysis of variance tests presented subsequently in the null hypothesis the input
uncertainty is assumed to be zero. Then �x = 0 and matrix UNK equals INK ; consequently, P
equals INK in equation (189). For this special case, equations (308), (310), and (323) imply that

QNK = ZTNKZNK = ZTKHH
TZK = NZTKZK = NQK (325)

From equations (226) and (325), NK �NK matrix 
NK is given by


NK = ZNKQ
�1
NKZ

T
NK =

1

N
HT
KH (326)

where K �K matrix 
K is


K = ZKQ
�1
K Z

T
K (327)

As shown in equations (226) and (228), 
K and 
NK are symmetric and idempotent with
rank MZ .

A4.2. General Multi-Input|Single-Output Process.

Consider a general multi-input{single-output nonlinear process calibrated by using experi-
mental design ZK replicated N times as before. The K � 1 output uncertainty vector of a single
replication, denoted by �yK, is given by equation (264). Then for N replications NK� 1 output
uncertainty vector �yNK is given by

�yNK = HT�fZ+ �E (328)

where K � 1 vector �fZ is given by equation (261) with K�K covariance matrix �fZK
= �2

xUfZK
,

given in equation (262), and where NK � 1 measurement uncertainty vector �E has NK �NK
covariance matrix �E = �2

EUENK
. The measurement uncertainty is assumed uncorrelated

between replications and the K � K measurement covariance matrix of each replication is
assumed to be �EK = �2

EUEK . Then

UENK
=

2
666664

UEK
0K : : : 0K

0K UEK
: : : 0K

...
... : : :

...

0K 0K : : : UEK

3
777775

(329)

and from equation (328),
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�YNK
= �E +�fZNK

= �
2
E
UENK

+ �
2
x
UfZNK

= �
2
E
UYNK

(330)

where NK �NK covariance matrix �fZNK is given by

�fZNK
= �

2
x
UfZNK

= �
2
x
HTUfZK

H (331)

From equation (330), UYNK
can be expanded into

UYNK = UENK + �UfZNK =

2
666664

UENK
+ �UfZK

�UfZK
: : : �UfZK

�UfZK
UEK

+ �UfZK
: : : �UfZK

...
... : : :

...

�UfZK
�UfZK

: : : UEK
+ �UfZK

3
777775

(332)

where � is de�ned in equation (320).

The inverse of NK � NK matrix UYNK
can be computed in terms of K � K matrices UfZK

and UEK
as follows. De�ne K �K matrix B as

B � [UEK + (N � 1)�UfZK ]
�1UfZK (333)

and K � K matrix A as

A �

�
UEK

+ �UfZK
[IK � (N � 1)B]

	
�1

(334)

If the inverse matrices of equations (333) and (334) exist, then U�1
YNK

can be shown to be given
by

U�1
YNK

= DNK �H
TBAH =

2
6664

A �BA : : : �BA

�BA A : : : �BA
...

... : : :
...

�BA �BA : : : A

3
7775 (335)

where NK�NK block-diagonal matrix DNK is constructed fromN replications ofK�K matrix
(A + BA) as

DNK =

2
6664

A+BA 0K : : : 0K
0K A+BA : : : 0K
...

... : : :
...

0K 0K : : : A+ BA

3
7775 (336)

For the linear case Mz �Mz moment matrix QNK can now be computed in terms of K � K

matrices as follows:
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QNK = ZTNKU
�1
YNK

ZNK = (ZTKH)U�1
YNK

(ZTKH)T (337)

It can readily be seen from equations (314), (335), and (336) that

HU
�1
YNK

HT = H(DNK �H
TBAH)HT = N [IK � (N � 1)B]A (338)

Hence for the linear case,

QNK = NZTK[IK � (N � 1)B]AZK (339)

For the nonlinear case, a single replication of experimental design ZK , evaluation of equa-
tion (271) yields K � Mc matrix FcK . Then over N replications of ZK , with design matrix
ZNK given by equation (308), equation (271) yields NK �Mc matrix FcNK = HTFcK . If equa-
tion (275) holds, it follows from equation (338) that

R � FTcNKU
�1
YNK

FcNK = FTcKHU
�1
YNK

HTFcK

= NFTcK [IK � (N � 1)B]AFcK (340)

Equation (340) permits computation of con�dence and prediction intervals for replicated cali-
bration data in terms ofK�K matrices; thereby, required computer storage and computational
resources are reduced when N is large.

With reference to equations (188) and (189), the analysis of variance null hypothesis assumes
that if matrix UYNK

= INK ; then matrix P = INK. If equation (280) holds, then for the null
hypothesis Mc �Mc matrix R becomes

R � FTcNKFcNK = FTcKHH
TFcK

= NFTcKFcK (341)

It follows that NK �NK matrix 
FNK
, given in equation (286), is given by


FNK
= FcNKR

�1FTcNK =
1

N
HTFcK(F

T
cK
FcK)

�1FTcKH

=
1

N
HT
FKH (342)

where K �K matrix 
FK is obtained from equation (286) as


FK = FcK(F
T
cK
FcK)

�1FTcK (343)

As shown in equation (291), matrices 
FK
and 
FNK

are symmetric and idempotent with
rank Mc.
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A4.3. Analysis of Variance of Replicated Calibrations.

Analysis of variance of replicated calibrations provides tests of signi�cance for the presence
of bias uncertainty due to input loading errors or mathematical modeling errors, as well as for
nonstationarity of estimated parameters. The analysis of variance is developed in this section
with single-input{single-output process notation. Note that similar results are obtained for the
general multi-input{single output case by replacing 
NK, 
K, WNK , WK, and Mz by 
FNK

,

FK

, WFNK
, WFK, andMc , respectively.

Let the null hypothesis (ref. 7) assume that input loading uncertainties and modeling errors
are zero and thatNK � 1 measurement uncertainty vector �E has NK �NK covariance matrix
�E = �2EINK. Then NK � NK matrices U and P are both equal to INK and do not appear
in the following equations. Transformed output vector v is equal to and replaced by observed
output vector y.

The K �K matrix WK is de�ned in equation (225) as

WK = IK �
K (344)

Matrix WFK
is de�ned similarly in equation (290). After N replications K �K matrix WK

expands to NK �NK matrix WNK given as

WNK = INK �
NK (345)

where matrices 
NK and 
FNK are in equations (326) and (342) and has rank Mz. Since 
NK

is idempotent, then by Lemma 7 matrix WNK is idempotent with rank NK �Mz .

For use in the development, de�ne NK �NK matrix GH as

GH �
1

N
HTH =

1

N

2
664
IK IK : : : IK
...

... : : :
...

IK IK : : : IK

3
775 (346)

It is readily seen that GH is idempotent with rank K . By Lemma 7, matrix INK � GH is
idempotent with rank NK � K .

Next GH is shown to be a two-sided identity of any matrix of the form 1=NHTAH, in
particular 
NK . Indeed, from equations (326) and (342),

GH
NK =
1

N2
HTHHT


K
H =

1

N
HT


K
H = 
NK

=
1

N2
HT
KHH

TH = 
NKGH (347)

From equations (345) and (347),

GHWNK =WNKGH (348)
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Therefore, NK �NK matrix productWNKGHWNK , to be used later, is idempotent. Also, it is
seen that

WNKGHWNK = (INK �
NK)GH(INK �
NK) = (GH �
NK)(INK �
NK)

= GH �
NK (349)

Since GH has rank K and
NK has rank Mz , it follows from Lemmas 5 and 6 and equation (349)
that product WNKGHWNK has rank K �Mz . Note thatK �Mz > 0.

Estimated Mz � 1 parameter vector bc, NK � 1 predicted output vector by, and NK � 1
residual vector be are obtained with equations (218), (223), and (224), respectively, for a linear
process, and equations (270), (285), and (289), respectively, for a nonlinear process. Recall from
equation (224) that be can be expressed as

be = WNK�E (350)

with zero expected value and NK �NK covariance matrix �2WNK .

Let ben denote the K � 1 residual vector at the nth replication, which has zero expected
value and covariance matrix �2WK . Then residual vector be can be partitioned into N , K � 1
subvectors as shown below:

beT =
hbeT1 beT2 : : : beTN iT (351)

Let �eK denote the mean value of the set of residual vectors ben averaged overN replications; that
is,

�eK =
1

N

NX
n=1

ben = 1

N
Hbe =

1

N
HWNK�E (352)

The residual sum of squares, denoted by SSE , is de�ned in equation (231) as

S SE � beTbe = �
T
EWNK�E (353)

By Theorem 1, S SE is chi-square distributed with NK �Mz degrees of freedom; the standard
error of the regression given by

SE =

�
SSE

NK �Mz

�1=2

(354)

is an unbiased estimate of �.
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Residual sum of squares SSE can be partitioned into the following sum of quadratic forms:

S SE = beTbe = beTWNKGHWNKbe + beT (INK �WNKGHWNK)be (355)

By using equations (348) and (350) and the fact thatWNK is idempotent, SSE can be expressed
as

S SE = �
T

E
WNKGHWNK�E + �

T

E
WNK (INK �GH)WNK�E (356)

Denote the �rst right-hand term in equation (355) by S SX as follows:

SSX � beTWNKGHWNKbe = �
T

E
WNKGHWNK�E (357)

which follows from equation (350) and the fact that WNK is idempotent. Then S SX can be
expressed as

S SX = �
T

E
WNKGHWNK�E = N�eT

K
�eK (358)

which follows from equations (350), (352), and (357). It has been shown that WNKGHWNK

is idempotent with K � Mz degrees of freedom. Therefore, it follows from equation (358) and
Theorem 1 that SSX=�2E is chi-square distributed with K �Mz degrees of freedom. De�ne the
root-mean-square value of SSX as

SX �

�
SSX

K �Mz

�1=2

(359)

Variable SX is interpreted as the standard error due to bias uncertainty.

Consider next the second right-hand term of SSE in equation (355). De�ne SSM as

SSM �

KX
k=1

NX
n=1

(benk � �ek)
2 =

NX
n=1

(ben � �ek)T(ben � �eK) (360)

where benk is the kth element of K � 1 residual vector ben, and �ek is the kth element of K � 1
vector �ek . Variable S SM is seen to equal the sum of squares about the means of the set of N
residual vectors ben each of dimension K � 1. It follows from the de�nition of H that

SSM =

NX
n=1

(ben � �eK)T(ben � �eK) = (be �HT
�eK)T(be �HT

�eK) (361)

De�ne NK � 1 vector eM as follows and use equations (350) and (352) to obtain the result

eM � be �HT
�eK = be � 1

N
H
T
Hbe = (INK � GH)be

= (INK � GH)WNK�E (362)
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By using equations (360) to (362),

SSM = eT
M
eM = �

T

E
WNK(INK �GH)WNK�E (363)

Comparison of equations (356) and (363) shows that SSM equals the second right-hand term of
SSE. Moreover, it is clear that matrix product

WNK(INK �GH)WNK = WNK �WNKGHWNK

is idempotent and, by Lemmas 5 and 6, has rank NK �K , since WNK has rank NK �Mz , and
WNKGHWNK has rank K �Mz. By Theorem 1, S SM=�

2
E is chi-square distributed with NK �K

degrees of freedom. Variable SSM can be interpreted as the portion of residual sum of squares
SSE due to measurement uncertainty. The root-mean-square value

SM =

�
SSM

NK �K

�1=2

(364)

is interpreted as an estimate of the standard deviation �E of the measurement uncertainty.

It follows from Theorem 2 that SSX and SSM are independent. Therefore, the ratio
TXM

= [S SX=(K � Mz)]=[S SM=(NK � K)] is F -distributed with K �Mz , NK �K degrees of
freedom. The test of signi�cance for the existence of distinct input loading biases is as follows.
Assume as the null hypothesis that input loading bias error and modeling error are zero. Form
the expression

TXM =
SSX=(K � Mz)

SSM=(NK �K )
> FK�Mz ; NK�K (�) (365)

If inequality (365) is satis�ed, then the null hypothesis that both input loading bias error and
modeling error equal zero is rejected at con�dence level �.

A4.4. Stationarity Test of Estimated Parameters.

A test is developed for nonstationarity of estimated individual parameter bcm 2 bc over N
replicated calibrations. Let bcRn denote the parameter vector estimated at the nth replication by
a K-point regression, with residual sum-of-squares SSRn, for n = 1; : : : ; N. De�ne

SSR =
NX
n=1

SSRn (366)

Let bc denote the parameter vector estimated by anNK-point global regression over the complete
set of N replicated calibrations. To test for stationarity of parameter cm replace the mth
element of bcRn by bcm 2 bc and compute resulting the error sum-of-squares, denoted by SSGm;n for
n = 1; : : : ;N . Compute SSGm =

P
SSGm;n for n = 1, ... , N . The ratio (SSGm � SSR)=SSR

is subsequently shown to be F-distributed and thereby provides a test of signi�cance for
nonstationarity of the estimated value of cm over the N replicated calibrations.
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The null hypothesis assumes that calibration standard errors and modeling errors are zero
and that estimated parameter vector bcRn is stationary over the N replications. Let NK � 1
measurement error vector �E be partitioned among the N replications as [�TE1 : ::�

T
EN

]T , where �En

denotes the K � 1 measurement error vector at the nth replication. Also, let �bcRn
denote the

uncertainty of the nth estimated parameter vector, which is obtained from equation (281) as

�bcRn
= �R�1FTc �En (367)

The uncertainty of element bcRm;n 2 bcRn is seen to be

�bcRm;n
= �pTmF

T
c �En (368)

where pTm is the mth row of R�1. Similarly, the uncertainty of globally estimated parameter
vector bcG is given by

�bcG = �
1

N
R�1FT

c H�E (369)

and the uncertainty of element bcGm 2 bcG is

�bcGm = �
1

N
pTmF

T
c H�E (370)

The residual vector of the nth replication, denoted by beRn
, is found by using equation (288) as

beRn
= Fc�bcRn + �En (371)

Replace bcRm;n
by bcGm

in equation (371) to obtain the error vector of the nth replication
computed with the globally estimated value of parameter cm, which is denoted by beGm;n

. From
equations (368) to (371), the di�erence between error vectors beGm;n

and beRn is given by

beGRm;n
= fcmp

T
mF

T
c

�
�En �

1

N
H�E

�
(372)

where fcm is the mth column of Fc .

Let NK � 1 error vector beGRm
=
hbeTGR

m;1
: :: beTGRm;N

iT
, which can then be expressed in terms

of NK � 1 measurement error vector �E as

beGRm
=

�
IA �

1

N
HTAH

�
�E (373)

where K �K matrix A = fcmp
T
mF

T
c and NK �NK block diagonal matrix IA is de�ned as
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IA =

2
664
A 0 : : : 0

0 A : : : 0
...

... : : :
...

0 0 : : : A

3
775 (374)

It is seen that the inner product beTGRmbeGRm equals (SSGm�S SR). Clearly A has rank 1. It follows
from equation (280) that pTmF

T
c fcm = 1. Hence,

AA = fcmp
T
mF

T
c fcmp

T
mF

T
c = fcmp

T
mF

T
c = A

and A is idempotent. It can then be seen that IA is idempotent with rank N , since A is
idempotent with rank 1. Thus IA � 1=NHTAH is idempotent with rank (N � 1), and therefore
the inner product beTGRmbeGRm can be expressed as

S SGm � SSR = beTGRm
beGRm = �

T
E

�
IA �

1

N
HTAH

�
�E (375)

It follows from Theorem 1 that SSGm � S SR is chi-square distributed with N � 1 degrees of
freedom.

The residual sum of squares of the nth replicated regression, SSRn = �
T
En
WK�En , has been

shown as chi-square distributed with K �Mz degrees of freedom. Because the error vectors �En
are mutually independent, it follows from equation (366) and Theorem 2 that the total replicated
sum of squares SSR is chi-square distributed with N(K �Mz) degrees of freedom. Therefore, if
the following inequality is satis�ed

Tcm =
(SSGm � SSR)=(N� 1)

SSR=[N(K �Mz)]
> F(N�1); N(K�Mz)(�) (376)

then the null hypothesis that parameter cm is stationary is rejected at con�dence level �.
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