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Abstract

This paper illustrates how, in the presence of
systematic error, the quality of an experimental result can
be influenced by the order in which the independent
variables are set. It is suggested that in typical
experimental circumstances in which systematic errors
are significant, the common practice of organizing the set
point order of independent variables to maximize data
acquisition rate results in a test matrix that fails to
produce the highest quality research result. With some
care to match the volume of data required to satisfy
inference error risk tolerances, it is possible to accept a
lower rate of data acquisition and still produce results of
higher technical quality (lower experimental error) with
less cost and in less time than conventional test
procedures, simply by optimizing the sequence in which
independent variable levels are set.

Introduction

The testing technology community at NASA
Langley Research Center has been examining a "modern
design of experiments" (MDOE) approach to wind
tunnel testing since January 1997.1 MDOE methods
differ in many substantive ways from conventional One
Factor at a Time (OFAT) test methods that have
traditionally been used in wind tunnel testing. OFAT
practitioners attempt to hold all variables constant while
sequentially changing a single independent variable of
interest over a range of levels. The common procedure of
holding constant such variables as Mach number, control
surface deflections, Reynolds number, etc., while
monotonically varying angle of attack, is an illustration
of this method. OFAT experiment designs are popular in
wind tunnel testing because of the intuitive appeal of
their structure, and because of a common conviction
among test personnel that such designs provide early and
unambiguous indications of emerging difficulties in a
test. Perhaps the most compelling reason that OFAT
practitioners embrace this method is that it maximizes
data acquisition rate and therefore total data volume,
popular productivity metrics in late-20th century wind
tunnel testing.

Proponents of MDOE at Langley have made the case
that productivity is maximized when the tactical
objective is to acquire ample data to meet the strategic
research requirements of the test, rather than to simply
acquire as many data points as resources permit. Data
volume per se becomes a secondary consideration from
this perspective, cast in the context of inference error risk
management. The cost of data collection is likened to a
premium one pays for insurance against improper
scientific and engineering conclusions that may result
from an inadequate volume of data. One wishes
sufficient insurance that improper inferences will be
unlikely, but one is hesitant to purchase more insurance
than is necessary to drive inference error probabilities
significantly below acceptable risk thresholds. This low
data volume perspective permits the consideration of
alternative experiment designs with attractive features
that are impractical under operating constraints that
require maximum data acquisition rates.

Specifically, relaxing the requirements for
high-volume data collection permits the researcher to
consider alternative structures for the test matrix that
offer significant protection from experimental error,
while still providing data in ample volume to meet
specific test objectives. This error protection is achieved
through the processes of blocking (especially orthogonal
blocking) and randomization, techniques which are
common to formal experiment design and which will be
described and illustrated in the context of wind tunnel
testing in this paper. This enhanced protection from
experimental error and the associated potential for
inference error can produce a higher quality research
result while often also reducing the volume of data in an
experiment and the attendant costs and cycle time.
Blocking and randomization, along with the more
familiar technique of replication, will be described as
techniques to enhance the quality of research, and
illustrated in the sections that follow.

Block Effects and Orthogonal Blocking

“Block effects” arise in wind tunnel testing when
response variables (forces, moments, etc.) measured in
one “block” of time differ significantly from
measurements made in another block of time under
circumstances expected to yield identical results within
experimental error.

The most elementary form of a block effect is
illustrated in figure 1, in which there is simply a
discontinuous bias shift at the block boundary. In more
commonly occurring circumstances there could be a
continuous drift due to the superposition of systematic
errors on an otherwise unchanging response. Such a
condition could be modeled with a regression equation
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for which the intercept term is not constant but rather is a
function of time. After a sufficiently long period of time,
the mean value of the intercept term could be
significantly different in the two blocks, resulting in a
block effect.

Blocking is a method used in formal experiment
designs to defend against block effects by altering the run
order to impose a certain balance or symmetry between
the set of points acquired during one block of time and
another. This makes it possible to attribute potentially
large components of the unexplained variance to block
effects, essentially converting these components from
“unexplained” to “explained” sources of variance. This
in turn diminishes the residual unexplained variance,
increasing the precision of experimental results. If the
blocking is performed in a particularly clever way
(“orthogonal blocking,” to be described presently), it is
possible to recover the coefficients of a response function
regression model (within a possible shift of the intercept
term) as if the block effect had not occurred. Absent such
precautions, the shape of the regression curve will be
impacted by the block effect and could lead to improper
inferences about the true nature of the dependence of
response variables on independent variables of interest.
Such undetected block effects can result in inference
errors that are especially difficult to understand or correct
in a conventional OFAT experiment.

There are many potential causes of block effects in
wind tunnel testing. Consider a two-shift wind tunnel
operating schedule in which there are between-shift
differences in operating procedures or skill levels that
could cause systematic differences in the data. To block
such an experiment by shift, a new independent variable
could be introduced that takes on the value of “–1” for the
first shift, say, and “+1” for the second shift. If a
conventional regression model relating response
variables to independent variables is augmented with this
blocking variable, its coefficient is a measure of the
response change that occurs from one shift to the next. A
statistically insignificant blocking variable coefficient
would provide unbiased evidence of between-shift
uniformity, a desirable process feature.

Blocking the test matrix requires the independent
variables to be set in a prescribed fashion that may
(usually does) depart from the sequence that would
achieve the highest data collection rate. However, if the
experiment has been scaled so that the planned volume of
data ensures sufficiently low inference error probabilities
for the specific objectives, then maximum data collection

rates add little to the quality of the result. On the
contrary, insofar as a high-rate strategy precludes
blocking options, the policy of maximizing data volume
may significantly degrade the potential quality of the
research result, while adding significantly to the cost by
acquiring more data than required to make a proper
inference. Ironically, depending on the magnitude of the
block effects, it is possible for the unexplained variance
eliminated by a proper blocking scheme to result in a
greater increase in precision than the higher data volume
would have delivered. It is therefore possible to achieve
higher precision and a lower cost of data at the same time.

The result of a blocking can be illustrated with a
simple example. Consider an experiment to quantify
how rolling moment strength depends on left aileron
deflection (change in rolling moment per unit deflection
in aileron) for some model of interest. Assume that we
have reason to believe that the rolling moment is
approximately a linear function of aileron deflection over
a sufficiently small range of deflections. Assume further,
for the sake of this example, that we wish to “widen our
inductive basis” by averaging our measurements over
two levels of a second control surface, say flap
deflection. That is, we would like to know how induced
rolling moment changes depend on a unit deflection in
aileron on average over some small range of flap
deflections.

A very simple experiment design will suffice to
make an initial estimate of aileron rolling moment
strength averaged over two flap deflection angles. Since,
for the sake of this example experiment, we are only
setting two levels of each of our two variables, it is
convenient to represent the smaller and larger levels by
the coded variables “+1” for the larger value and “-1” for
the smaller. So, for example, if we plan to change aileron
deflection from 0 to 5 degrees, and flap deflection from
–3 to +3 degrees, we would assign coded variable levels
of –1 and +1, respectively, to aileron deflections of 0 and
5 degrees, and flap deflections of –3 and +3 degrees.

Assume that we have now measured rolling moment
for the four combinations of independent variables that
we are setting in this simple experiment. That is, we have
measured the rolling moment for all four combinations of
low and high aileron deflection, and low and high flap
deflection. Figure 2 is a schematic representation of the
results of the experiment, where the rolling moment
response is also represented in some scheme of coded
units to simplify the illustration.
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Figure 1. A block effect.

Figure 2. A two-level experiment in two variables.



Let us assume in figure 2 that factor “A” is aileron
deflection and factor “B” is flap deflection. To estimate
the average effect (averaged over flap deflections) of
changing aileron deflection from low to high levels, we
can simply compute the average rolling moment change
at low and high flap deflection. From the figure we see
that the rolling moment changes from 40 to 62 units when
the aileron is changed from low to high level with the flap
deflection high. The same aileron change causes the
rolling moment to change from 30 to 50 units with a low
flap angle. In the former case the aileron effect is 22 units
(62 – 40), while in the latter the effect is 20 units
(50 – 30). We thus report an average effect of 21 units.

Now consider a slight complication. Assume that
there is only enough time to acquire two of our four
points before the end of the day. Flap deflections are
changed in this model by means of actuators that are
controlled remotely; but to change the aileron deflection
it is necessary to terminate flow, open the tunnel, and
physically change to an aileron machined at a different
angle, a time-consuming process compared to changing
the flap deflection.

Because of the difficulty in changing the aileron
deflection angle, we decide to set the aileron deflection
low and acquire data for the low and high flap
configurations today. We will set the high aileron
deflection angle tomorrow morning before we start the
tunnel.

Now assume further that unbeknownst to us, the
rolling moment balance sensitivity changes over night.
This might be due to temperature changes, or any of an
uncountable number of other reasons. The effect of this
change is that rolling moment measurements on the
second day read five units lower than they would have
done without the sensitivity shift in the balance. The
resulting situation is illustrated schematically in figure 3.
Based on this data set, the aileron effect at high flap
setting is now 17 units (57 – 40) instead of 22 units, and at
low flap setting the effect is now 15 units (45 – 30)
instead of 20 as before. We therefore report an average
aileron effect of 16 units, oblivious to the five-unit
change induced by the sensitivity shift in the balance.

Now consider the identical situation, except for a
change in the order in which we set the flap and aileron
deflection angles. That is, assume that we acquire only
two configurations at the end of the day, and then acquire
the other two the next day, just as before. And just as
before, assume that the balance sensitivity has changed
by exactly the same amount. But this time on the first day
we set low flap plus high aileron for one of the

configurations we test and high flap plus low aileron for
the other day-one configuration. On day two we set the
high flap plus high aileron configuration and the low flap
plus low aileron configuration, as in figure 4. Referring
to figure 4, the aileron effect at high flap is now 17 units
(57 – 40), and at low flap it is 25 units (50 – 25). The
aileron effect averaged over flap deflections is thus
0.5 � (17 + 25) = 21 units, exactly as if the balance
sensitivity had NOT shifted!

This very simple demonstration has important
implications for the experimenter. In one case a
significant change in the measurement system resulted in
a serious error in the response variable estimate and in the
other case the identical change had no effect on the result
at all. The only difference in the two cases was the order
in which the independent variable levels were set. The
second case resulted in a better answer, notwithstanding
the fact that it may have taken longer on average per data
point to set the control surfaces in that order.

The implication is clear: not all test matrices are
equivalent, even if they both have the identical set points.
When there are systematic errors, the order of execution
is critical. The next section describes an experiment to
determine whether systematic errors that can induce
block effects are present or not in a wind tunnel
experiment, and what their magnitudes are relative to
ordinary random error. But before we seek evidence of
systematic error, let us return to our simple example to
examine how the set-point order defends us from such
errors.

Figure 5 shows the two test matrices, but with a third
variable added to “A” (aileron) and “B” (flap.) The third
variable, labeled “Day,” is called a blocking variable. In
this example the blocking variable takes on two levels
just as the aileron and flap variables did, and just as we
did for those variables, we can conveniently code the
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Figure 3. Block Effect affecting variable A. Figure 4. Block Effect with no effect on variable A.

Figure 5. Confounding of block effects.



blocking variable. Here, “–1” corresponds to the first
“block” or “day” of the experiment and “+1” corresponds
to the second block/day.

One of the reasons that it is convenient to represent
experiments such as this one in terms of coded values is
that it facilitates the calculation of the effects. To
quantify the “A” (aileron) effect, for example, we simply
multiply the column of signs under the “A” variable in
the matrix with the corresponding response variable
measurements. To account for the fact that we have
multiple estimates (in this case, two estimates) of each
effect, we divide the product of signs and responses by
the number of “+” signs in each column. The “A” effect
for the matrix in figure 2 is then, simply:

� � � � � � � �
A �

� � � � � � � � � � �
�

1 30 1 40 1 50 1 62

2
21

Note in figure 5 that the “A” effect in the matrix on
the left has identically the same sign pattern as the
blocking variable. This means that it is impossible to
distinguish between effects due to a change from one
level of “A” to another, and effects due to a change from
one block to another. We say that in such circumstances
the aileron effect is “confounded” with the block
effect—the two cannot be distinguished. There is no way
to know with this matrix whether a change in rolling
moment was due to the change in aileron deflection angle
or just due some change (such as the sensitivity shift) that
occurred from one day to the next. So if aileron effects
are important to us, this is a very poor design unless we
have some reason to know that there will be no change
overnight of a magnitude that will be important to us.
This is virtually impossible to guarantee.

In the matrix on the right of figure 5, the sign pattern
for the block effect is not confounded with either of the
main effects. Instead, it is confounded with the AB
interaction effect, the sign pattern for which is obtained
by multiplying corresponding signs for the A and B main
effects. This means that we are unable to quantify the AB
interaction unambiguously in this instance, but we are
able to estimate the main effects clear of any block
effects. The AB interaction is a measure of how the level
of one variable affects the response change in another.
For example, if a unit change in aileron deflection caused
a different change in rolling moment for one flap setting
than another, we would say that there was an interaction
between the flap and aileron deflections. The interaction
in a simple two-level design such as this one is defined as
the average difference between the “A” effect measured
at “high B” and the “A” effect measured at “low B.” The
effect is the same if A and B are reversed in the
definition. So from figure 2, for example, it is easy to see
that the AB interaction has a numerical value of “1” in
this example, which is small compared to the main
effects. If our discipline knowledge had informed us that
the interaction effect was likely to be small or
unimportant as in this case, we might be willing to
surrender our ability to quantify it unambiguously in
order to free the more interesting main effects from
confounding by block effects. Note that this decision is
not in the least bit dependent on our knowledge that block
effects actually do exist, or what their magnitude will be

if they do exist. By confounding the block effects with a
single (relatively uninteresting) column in our design
matrix, we guarantee that the effects represented by the
other columns are free of block effects.

The reason that confounding with one column frees
all the others from block effects has to do with a
particular property of the design used in this example.
We can represent each column in the design matrix as an
n-dimensional vector, where “n” is the number of data
points acquired (four in this case). From analytical
geometry we know that the cosine of the angle included
between two vectors is proportional to the sum of the
products of corresponding elements. For the design in
this example, the sum of the products in all
corresponding rows is zero. The geometric interpretation
is that the vectors represented by the corresponding
columns are at right angles. That is, they are orthogonal
to each other. This is the case for all pairs of columns in
the example design, so the design is said to be
orthogonal. In such a design, changes in an effect
corresponding to one column will have no influence on
any of the other effects. This orthogonality property is
extraordinarily useful in the design of experiments,
providing protection from block effects that may or may
not be present, and may or may not be serious if they are
present. Yet wind tunnel researchers seldom utilize
orthogonal blocking to account for otherwise
unexplained variance.

Block effects can occur at any time, but there are
certain recurring situations in which the prudent designer
will probably want to consider orthogonal blocking
whenever it is possible. For example, it is a good idea to
arrange shift changes to occur on block boundaries.
There are innumerable potential block effects associated
with shift changes, including procedural differences
from one crew to the next (notwithstanding good faith
efforts to ensure uniformity). There are also differences
in skill level and experience, differential learning and
fatigue effects, and so on. It is important to realize that
between-shift blocking does not entail an indictment of
one shift or the other, nor does it represent a declaration
that important differences actually do exist from one shift
to the next. It is simply a means of removing this
concern, insofar as possible, from the long list of possible
sources of inference error in an experiment.

In formally designed experiments conducted at
Langley Research Center, we schedule as many planned
disruptions as possible to coincide with block
boundaries. For example, if an all-hands meeting occurs
during the day, we schedule it to coincide with block
boundaries to defend against subtle response shifts that
may occur from the time the tunnel operation is stopped
until it is started again. Wind-off zeros and model
inversions to quantify flow angularity changes all occur
on block boundaries in our formally designed
experiments, and of course end-of-day operations are
scheduled to coincide with block boundaries so that any
overnight effects can be minimized.

Block effects can occur over arbitrary periods of
time and are not limited to such obvious units as “shifts”
and overnight breaks. We therefore incorporate
orthogonal blocks in our formal designs at Langley even
if they do not correspond to some obvious break point.
The intent is to minimize the effects of changes that may
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have occurred from one block of time to the next,
independent of any specific reason we might have for
suspecting such changes. As we will see in the next
section, the systematic variations that occur in a facility
as complex and as energetic as a wind tunnel tend to be
large compared to the random errors associated with our
very high-precision measurement systems. Their
existence and magnitude justifies orthogonal blocking
over relatively short periods of time.

Two important points are appropriate before leaving
this simple illustration of orthogonal blocking. The first
is that in an actual experiment as simple as this one, in
which only two variables are in play, it would be unusual
for the interaction effects to be so uninteresting that we
would be willingly confound them with block effects.
We would probably rely on other tactics to defend
against systematic error, to be discussed below. There
are practical two-level factorial designs in which many
more than two variables are in play, however, and the
potential exists to confound block effects with
interactions of much higher order than two-way, which
truly are unlikely to be of interest. One example is a
configuration study in which the objective is simply to
identify which among a very large number of candidate
variables has an important influence on responses of
interest to us. Even a modest configuration study will
frequently have a half dozen or more variables to
investigate. In general, the higher the order of the
interaction, the less likely it is that such an interaction
exists. When they do exist, as a general rule the
highest-order interactions may be relied upon to have
magnitudes small enough that they can be safely ignored
in the presence of main effects and lower-order
interactions, which tend to be larger. In a six-variable
experiment, for example, main effects and some two-way
interactions will almost certainly be of interest, and
certain three-way interactions may be as well. Some
four-way interactions might also be detectable. It is
likely that five-way interactions and the single six-way
interaction will be small or non-existent, and the designer
may therefore wish to consider using them in blocking
schemes to defend against systematic errors.

The second point to be made before leaving this
example is that there are designs that are structurally
more complex than the simple two-level factorial designs
discussed here. These designs involve multiple levels of
each independent variable, for example, as is necessary
to develop response models higher than simple
first-order. As will be illustrated, orthogonal blocking
schemes are available for these more elaborate designs as
well.

Systematic Errors

Block effects resulting from systematic errors have
the consequence that the result of an experiment is
dependent on the order in which the independent variable
levels are set, as illustrated with the simple example of
the previous section. The order of independent variables
is virtually never selected in late 20th century wind tunnel
testing to defend against systematic errors. Rather, the
order is set sequentially to maximize data acquisition rate
and therefore total data volume, two popular productivity
measures (popular, but misguided, by modern

experiment design standards). The implicit assumption,
therefore, is that conditions exist in wind tunnel testing
for which the result is independent of the order in which
the data points are acquired, so that it is not necessary to
optimize run order to ensure research quality. That is, the
common assumption is that wind tunnels can be
considered to be in a state of statistical control in which
sample means are time invariant, at least for short periods
over which important data sets are acquired. In this
section we present the results of an experiment that was
designed to examine this assumption, introduced by
some comments about the general nature of systematic
errors.

There are practical distinctions between systematic
errors and random errors that are especially important in
the design of experiments. Because random errors tend
to be distributed equally above and below some (possibly
biased) estimate of the true mean value, their effects can
be canceled by replication over periods of time for which
the mean is stable. As discussed earlier, the common
practice of setting independent variables sequentially
implicitly assumes a state of statistical control. Absent a
stationary environment, however, this sequential
set-point strategy maximizes the confounding of
independent variable effects with systematic variations,
as suggested by the simple block effects demonstration in
the previous section.

Systematic errors have other perverse influences on
research quality besides their resistance to replication
and their penchant for confounding the true effects of
independent variable changes. Most of the theory of
errors, upon which we depend to quantify precision
intervals and to make unbiased estimates of population
parameters, is based upon certain assumptions about the
independence of errors that are simply invalid in the
presence of systematic variations. For example, if some
unknown source of error persists over time and has the
effect of increasing the numerical value of measurements
above the true value, then two sequential measurements
will not be independent of each other. This is because the
source of systematic error ensures that whenever there is
a positive error in the first measurement, it is much more
likely that the error in the second measurement will be
positive than negative.

This, incidentally, is a key weakness in the OFAT
strategy of “holding all else constant” while independent
variables are examined one at a time. There will be
inevitable experimental errors associated with all of the
variables that are “held constant.” Even though the test
matrix may specify a particular Mach number during an
OFAT polar, for example, in truth the Mach number will
always be set either slightly above or slightly below the
true specified Mach number, due to inevitable set point
errors and other causes. If the net effect of these errors is
positive for a particular response variable—drag, for
example—then the drag measurements made at each and
every angle of attack will be biased high because of the
constant Mach error caused by “holding Mach number
constant.” There is no opportunity for this particular
contribution to the error to cancel out as additional data
points are acquired. The variance is not inversely
proportional to the total number of data points under such
circumstances, for example, and there are other such
assumptions underlying the computation of standard
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precision intervals that are no longer valid. Since these
errors will not be independent, the independent
measurement assumptions upon which regression and
other curve-fitting strategies are based will be invalid
also.

Given the significant potential of systematic errors
to make mischief in experimental research, it ought to be
surprising that they tend to receive so much less attention
than random errors. There are two practical explanations
for why this is so. The first is that by their nature
systematic errors are much more difficult to detect than
random errors, whose presence is forced upon our
consciousness with every replicate that we acquire. The
low-profile nature of systematic errors aids and abets the
darker angels within us, supporting tendencies for some
researchers to avoid going out of their way to find
trouble. “See no evil” can be a seductive philosophy
when options for dealing with potential problems are
limited. Much more attention also tends to be lavished
upon random errors than upon systematic errors because
of the relatively greater arsenal of established defense
measures available to counter random errors, or at the
very least, to quantify them reliably. The normal
distribution, the Central Limit Theorem, the power of
replication—all of these factors provide aid to the
experimentalist in coping with random errors for which
there are few systematic error counterparts. Too often
systematic errors are removed from the analysis “by
assumption.” Absent any hard evidence that systematic
errors are afoot, the OFAT practitioner often simply
“assumes” statistical stationarity. After all, what other
practical alternatives are available in an OFAT design?
Even if such an assumption is not made explicitly, it is
made implicitly whenever there are no overt actions
taken to defend against systematic errors.

An experiment was recently conducted to examine
the relative contributions of systematic and random
errors to the total unexplained variance in a wind tunnel.
This experiment was one element of a larger effort to
demonstrate modern experiment design methods in a
landing stability configuration test. The principal results
of the parent landing stability experiment will be
reported elsewhere, but the analysis of variance
incorporated in the design is relative to the data quality
issues of the present paper and will be summarized here.

The design of the landing stability configuration test
entailed selecting the smallest number of configuration
combinations necessary to quantify the effects of a
number of configuration variables on certain landing
stability response variables of interest for a flight
configuration described simply as a “Generic Winged
Body.” The test was conducted during November 1999,
in the ViGYAN Low Speed Wind Tunnel in Hampton,
VA.

A nominal landing configuration was replicated at
randomly selected times a total of seven times during the
eight-day period in which data were acquired in this
experiment. For each of the seven replicated
configurations, a total of 30 randomly ordered
combinations of angle of attack and sideslip angle were
acquired in the range of 10� to 14� for angle of attack and
–4� to +4� for sideslip. Eight of these model attitude
combinations were replicates of the 12� angle of attack
and 0� sideslip angle that represented a nominal landing
attitude for this vehicle. There were thus a total of 56
replicates of each of the response variables measured.
These variables were the stability axis and body axis
force and moment coefficients of a standard six-element
balance. The seven nominally identical groups of eight
replicates were displaced in time by periods of a few
hours to a few days, while the eight within-configuration
replicates were all acquired within about a 15-minute
period. Table I represents the lift coefficient data for
these 56 replicates.

A one-way analysis of variance (ANOVA) was
conducted to compare the variance of column means
with within-column variance to quantify the ratio of
“relatively long-term” between-column variance
(hours/days) with “relatively short-term” within-column
variance (15 � 1 minutes). Such an analysis was
performed for all six standard force and moment
components in both stability axis and body axis
coordinate systems. Table II is the ANOVA table for the
analysis of the lift data appearing in Table I.

Within-column sums of squares are computed by
squaring the difference between each point and its
column mean and summing all 56 of these squared
deviations. Between-column sums of squares are
computed by squaring the difference between each
column’s mean lift coefficient and the average of all 56
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Run 2 Run 7 Run 31 Run 34 Run 36 Run 58 Run 64

0.1918 0.1902 0.1911 0.1915 0.1920 0.1951 0.1894

0.1882 0.1893 0.1889 0.1894 0.1892 0.1931 0.1878

0.1902 0.1902 0.1917 0.1913 0.1920 0.1948 0.1879

0.1904 0.1909 0.1921 0.1913 0.1907 0.1986 0.1912

0.1903 0.1904 0.1908 0.1921 0.1902 0.1974 0.1889

0.1913 0.1913 0.1919 0.1916 0.1927 0.1990 0.1909

0.1915 0.1921 0.1921 0.1917 0.1922 0.2001 0.1909

0.1907 0.1910 0.1927 0.1908 0.1910 0.2024 0.1897

Table I: Seven groups of eight lift coefficient replicates



lift coefficients, summing those seven squared
deviations, and multiplying the sum by the number of
rows (8) to reflect the entire sample size of 7 � 8 = 56 lift
coefficient replicates. There are 8 – 1 = 7 degrees of
freedom within each column (one df lost to compute the
column mean) and there are 7 columns, for a total of 49
within-column degrees of freedom. Similarly, there are
7 – 1 = 6 between-column degrees of freedom.

Mean square errors (MSE in Table II) are computed
by dividing the sum of squares, SS, by the degrees of
freedom, df. The mean square error, or variance, is a
measure of the variability associated with a given source,
averaged over the degrees of freedom associated with
that source. The degrees of freedom represent the
minimum number of points required to estimate the sum
of squares, given the mean.

The ratio of between-column to within-column
variances is recorded in the ANOVA table as the F
statistic. In Table III the F statistic is seen to have a value
of 23.2 for these lift coefficient data. That is, the variance
associated with differences in time of the order of hours
to days is over 23 times greater than the average variance
experienced over a 15-minute period.

While this suggests a significantly greater variance
over the longer period of time than the shorter, it is not
impossible that this large ratio might be due to chance
variations in the data that caused the denominator to be
smaller than usual and the numerator to be larger than
usual for this one data set. The F statistic follows a
known probability distribution, which facilitates an
upper-tailed significance test for the computed F statistic.
The exact shape of the F distribution is different for each
unique combination of numerator and denominator
degrees of freedom, but critical values are tabulated for
various df combinations and various significance levels.
For six between-column df and 49 within-column df, the
critical F statistic associated with a significance level of
0.01 is 3.2. That is, under the null hypothesis that no
difference exists between within- and between-column
(i.e., short- and long-duration) variances, there is only a
1% probability that their ratio would exceed 3.2 by pure
chance when there were as many as 6 between-column df
and 49 within-column df. Since the computed F statistic
of 23.2 exceeds this critical value, we infer that there is
less than a 1% probability that no difference exists
between long-term and short-term variance for these
data, and we reject the null hypothesis, accepting the
alternative hypothesis that longer-term variations are in
fact greater than shorter term variations. Confidence in
our inference is bolstered by the p-statistic listed in the
ANOVA table, which represents the probability of an F
ratio as large as 23.2 occurring by chance under the null
hypothesis. The very small number for this probability
gives us further confidence to reject the null hypothesis

and conclude that long-term variations are significantly
greater than short-term variations in the data set we have
analyzed.

Similar analyses of variance were made for all six
standard force and moment components both in body
axis and stability axis coordinate systems. The results are
displayed in figures 6 and 7. Because there was the same
number of within- and between-column degrees of
freedom in all cases (49 and 6, respectively), the critical F
statistic for 0.01 significance is 3.2 in all cases.

Note in figures 6 and 7 that without exception, every
response variable displayed an F statistic greater than 3.2
and therefore significantly more variation over the longer
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Figure 6. Stability axis block effect F statistics.

Blocks of hours/days. F = 3.2 critical at 0.01 level.

Source of Variance SS df MSE F Fcrit (0.01) p

Between-Column 3.36E-04 6 5.59E-05 23.2 3.2 8.88E-13

Within-Column 1.18E-04 49 2.41E-06

Total 4.54E-04 55

Table II. One-way ANOVA table for lift coefficient data

Figure 7. Body axis block effect F statistics. Blocks

of hours/days. F = 3.2 critical at 0.01 level.



term (hours/days) than the shorter term (15 minutes).
Unless both the short-term and the long-term variations
occur symmetrically about the same mean over the
period for which replicates are acquired, the mechanisms
responsible for the greater long-term variance will cause
simple replication to have a different impact than if only
short-term variations were present. A likely outcome is
that not as much of the longer-term variance will be
canceled by replication. The uncanceled long-term
variance component will comprise a kind of rectification
error, resulting in a net positive or negative bias.

Having partitioned the variance of the entire
ensemble of data into long-term and short-term
components, it is possible to estimate the relative
contribution of each. The within-column and
between-column sums of squares add to produce the total
sum of squares that would be obtained by adding the
squared differences between each of the 56 points and the
56-point mean. Likewise, the within-column and
between-column degrees of freedom sum to the total
degrees of freedom given the mean (49 + 6 = 56 – 1 = 55).
The variances, representing the ratios of the sums of
squares to the degrees of freedom, do not add, however.
That is, the total variance of the 56-point ensemble of
replicates is not simply the sum of the within- and
between-column variances. This complicates what
would otherwise be a straightforward calculation of the
relative contribution of each variance component to the
total, but numerous measures exist for estimating this.
One of the most common metrics is “	2”, the “statistical
power” metric.2 It is computed by the following formula:

� �
	2 �

� �

�

SS df MSE

MSE SS

effect effect

total

(1)

The statistical power ranges from 0 to 1 and is
interpreted as the portion of the total variance that is

explained by a particular effect (e.g., block effects). The
contribution of block effects on the order of
hours-to-days to the total unexplained variance is
represented graphically in figures 8 and 9 for stability
axis and body axis forces and moments.

Strictly speaking, the statistical power formula is
intended for “fixed effects” models, in which the levels
of the between-column variable are specifically selected
values. The current experiment involves a “random
effects” design in which those levels (elapsed time from
start of experiment) were selected at random. While the
mathematical calculations are the same in fixed effect
and random effect designs, the interpretation of the
results are different. In this case we are not free to
generalize the specific numerical values of our variance
component computations to all other cases of block
effects, but must apply them only to the specific block
durations of this experiment. Nonetheless, the trend
across all response variables of significant block effects
suggests that short-term and long-term variance differs
significantly, which suggests further that systematic
variations cannot be discounted.

A further refinement of the one-way ANOVA study
was made possible by the fact that the eight replicates
acquired within each column in Table I were actually
acquired in two blocks of four. For reasons dictated by
an element of the experiment to be reported elsewhere
than this paper, the 30 combinations of angle of attack
and sideslip acquired for each model configuration were
grouped into three blocks containing 9, 9, and 12 points.
The first four of the within-column replicates in each
column of Table I were acquired at random in the first
block of nine points and the second group of four was
likewise acquired at random within the second nine-point
block. There was no delay in the acquisition of the first
block and the second, which required an average of 15
minutes total. The elapsed time between block centers
was therefore on the order of 5–10 minutes.
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Figure 8. Long term (hours/days) stability axis block effect contributions to unexplained variance.
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Since each column in Table I features two blocks, it
is possible to perform a two-way analysis of variance on
this data set. This enables us to partition the variance of
the entire 56-point ensemble into further components. In
addition to the between-column block effects studied
previously, it is possible with a two-way ANOVA to
quantify the within-column block effects as well. These
are the contributions to the total variance due to any
systematic (“DC”) shift that might occur in the
approximately 5–10 minute period that elapsed between
the two within-column blocks. Furthermore, since there
are replicates within each of the in-column blocks, it is
possible to estimate a third component of the total
variance due to the interaction of within-column and
between-column blocks.

The computations required in a two-way ANOVA
are straightforward extensions to the one-way ANOVA
computations described above. They are, however
somewhat more involved and tedious and will not be
described here. Any introductory statistics text can be
consulted for the computational details; see, for example,
reference 3.

The two-way ANOVA table for the lift coefficient
data of Table I appears in Table III. Interpretations are
analogous to those provided above for the one-way
ANOVA. Note that the F statistic for between-column
blocks is 32.8 for the two-way ANOVA, compared to
23.2 for the one-way case. In the two-way ANOVA the
unexplained variance is partitioned into three component
parts. One is the variance component due to short-term
block effects, the second is the interaction component,
and the third is the remainder, unattributable to any
specific source. Thus, the two-way ANOVA has
explained part of the previously unexplained variance,
resulting in a smaller unexplained variance component.
The between-column variance is a larger multiple of this
reduced unexplained variance. That is, the short-term
blocking has increased the precision with which effects
such as the between-column block effects can be
detected. Note that the F statistic involves a ratio of mean
square errors (variances) and recall that the mean square
error is inversely proportional to the number of data
points. This means that the increase in F from 23.2 to
32.8 achieved by short-term blocking represents an
increase in precision that would require a data volume
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Sources of Variance SS df MSE F Fcrit (0.01) p

Between-Column Blocks 3.36E-04 6 5.59E-05 32.8 3.3 2.46E-14

Within-Column Blocks 2.54E-05 1 2.54E-05 14.9 7.3 0.0004

Interaction 2.10E-05 6 3.50E-06 2.1 3.3 0.08

Total Block Effects 3.82E-04 13

Pure Error 7.16E-05 42

Total 4.54E-04 55

Table III. Two-way ANOVA table for lift coefficient data

Figure 9. Long term (hours/days) body axis block effect contributions to unexplained variance.
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increase by a factor of 32.8/23.2 = 1.41 to achieve by
simple replication. This is one way that formally
designed experiments achieve equivalent precision
results with significantly less data than conventional
OFAT designs.

Also note that the F statistic for the within-column
block effect of 14.9 exceeds its critical value of 7.3,
implying that for this data set, even short-term block
effects are statistically significant at the 0.01 level. That
is, we can say with at least 99% confidence that the
change in mean lift coefficient values between two
blocks of replicates acquired 5–10 minutes apart is
greater than the within-block differences due to ordinary
chance variations. The implications of this result are
very important for the design of experiments. It suggests
that sample means are not stable even over periods as
short as a few minutes. Under such circumstances, the
quality of experimental results depends on the order that
independent variable levels are set. Setting independent
variable levels in sequential order, even over a period of a
few minutes, will result in an efficient confounding of

independent variable effects with the systematic errors
responsible for the block effects.

The interaction F statistic is not greater that its 0.01
significance critical value. This means that for lift
coefficient, we cannot say with at least 99% confidence
that the short-term (5–10 minute) block-to-block shifts
are different in such short-term block pairs acquired
hours-to-days apart.

The one-way ANOVA results have already shown
that long-term (hrs/days) block effects exist for all of the
response variables examined. See figures 6 and 7.
Figures 10 and 11 display the ratio of measured F statistic
to critical F statistic for the short-term block effects
(5–10 minutes) and the short/long interactions, for
stability axis and body axis forces and moments.
Statistically significant effects have ratios greater than
one.

Figures 10 and 11 reveal that significant short-term
block effects (5–10 minutes) were detected for the
coefficients of lift, drag, and normal force. Marginally
significant short-term effects (at the 0.01 level) were
observed for pitching moment and stability axis yawing
moment. No significant block effects were observed in
this data set for axial force, side force, body-axis yawing
moment, or rolling moment in either coordinate system.

Significant (0.01) interaction effects were observed
for drag, for pitching moment, and for yawing moment in
both coordinate systems. This means that short-term
block effects were larger at certain times during the
experiment than at others for these response variables.
No significant interactions were observed for lift or for
any of the body-axis forces, nor were there interactions
for rolling moment in either coordinate system.

There are a large number of possible sources of the
systematic variation detected in an experiment. It is not
really practical to identify all of them, or to correct all
that are identified. The blocking techniques described in
this paper, along with randomization methods to be
described presently, provide substantial defenses against
the effects of such systematic errors, whether they are
known or unknown.

Figures 12 and 13 illustrate for stability axis and
body axis forces and moments the relative contributions
of short-term block effects to the total variance observed
in the nominally 15-minute period in which the eight
within-column points were acquired in each column of
Table I. These were computed using equation 1 for the
statistical power of each block effect.

The longer-term block effects (hrs/days) of figures 8
and 9 clearly dominate the total variance. The short-term
block effects in figures 12 and 13 contribute much less to
the total short-term variance, with pure error due to
ordinary chance variations representing the majority of
the variance.

The question arises as to how great the contribution
must be to have an important influence on overall
variance estimates. Interpretations of statistical power
calculations (equation 1) generally follow Cohen2, who
provides the following rules of thumb according to
reference 4: Large effects have an 	2 value of 15% or
greater. Medium effects have an 	2 value of about 6%.
Small effects have 	2 value of 1%. By these standards,
the short-term block effects found to be statistically
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Figure 10. Short term (5-10 min) and short/long

interaction F statistics for stability axis block effects.

Figure 11. Short term (5–10 min) and short/long

interaction F statistics for body axis block effects.



significant at the 0.01 level are all classified as medium
to large effects.

This investigation of systematic errors can be
summarized as follows: Significant block effects were
detected for the full spectrum of stability axis and body
axis forces and moments over periods of hours-to-days.
A substantial number of response variables displayed
significant block effects over much shorter
periods—periods as short as 5–10 minutes. Insofar as the
order that independent variables are set can influence the
quality of experimental results when block effects are
present, these results suggest that run order is important
even over periods of time as short as a few minutes.

While the details of block effects are likely to vary from
tunnel to tunnel, and possibly from test to test within a
tunnel or even from time to time within a test, these
results suggest clearly that systematic errors cannot
simply be assumed not to exist. Their presence motivates
the development of explicit measures to defend against
them, such as the orthogonal blocking technique
illustrated earlier in this paper. The concept of
orthogonal blocking illustrated in the simple two-level
factorial design of the previous section will be extended
in the next section to more complex designs required for
wind tunnel response surface modeling.
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Figure 12. Short term (5–10 min) stability axis block effect contributions to unexplained variance.
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Figure 13. Short term (5–10 min) body axis block effect contributions to unexplained variance.
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Blocking for Higher-Order Models

The two-level factorial design considered earlier
accommodated orthogonal blocking by confounding
uninteresting high-order interaction terms with block
effects. Such designs are useful in a broad array of
applications but are limited in one important respect: The
fact that they feature only two levels of each independent
variable means that response models developed from
data acquired with such designs can only accommodate
first-order and mixed first-order terms. For example, in
the two-variable, two-level factorial design described
earlier, with variables A and B, it is possible to develop
response models featuring the linear A and B terms and a
second-order interaction term, AB. The pure quadratic
terms (A2 and B2) cannot be quantified, however,
because to do so requires at least three levels of the
independent variables.

A useful extension to the two-level factorial design,
accommodating full second-order response models, is
due to Box and Wilson.5 The Box-Wilson, or Central
Composite Design (CCD), is illustrated in figure 14 for
the case of two variables.

The four data points comprising the “square” in
figure 14 are two-level factorial design points of the kind
considered earlier. They are at the four points defined by
all combinations of the “+1” and “–1“ coded variables.
There are also a number of “center points” in this design,
which are replicates of the point at coordinate (0,0) in the
coded variable inference space of figure 14. Finally,
there are four so-called “star points” arranged on the axes
of the coded-variable coordinate system. While there is
no restriction in principal on the distance these points can
be from the center, there are important advantages if they
are at the same distance as the corner points in the
“square.” In that case the “square points” and “star
points” lie on a circle with a radius of square root of two
in coded units.

One of the advantages of the equiradial design
established by adjusting the star point distances from the
center to be the same as the corner points in a
two-variable CCD is that this facilitates orthogonal
blocking with two blocks that we will refer to as the “star
block” and the “square block.” The star block consists of
the four star points plus half the center points, and the
“square block” consists of the four corner points plus the
other half of the center points. One can add or subtract a
constant from every response variable measurement in
the star block, and add or subtract a constant of the same
or different magnitude to every response measurement in
the square block, and the regression coefficients obtained
by fitting a second-order model will be identical to the
ones computed without the bias shifts.

This property means that a blocking variable that
takes on a value of –1 for the square block, say, and +1
for the star block will be orthogonal to all the regressors
in the second-order design matrix. The consequence of
this is that any shift in response measurements made in
one block relative to those made in the other will have no
impact on the numerical value of the regression
coefficients. In other words, an experiment blocked in
this way will result in the same regression coefficients in
the presence of block effects as would have been
obtained with a statistically stationary measurement

environment (no block effects). This has important
practical consequences for the design of experiments.
Oftentimes the scale of an experiment is simply too great
to permit all data to be acquired under homogeneous
conditions. As was illustrated in the previous section, it
may not even be possible to assume that homogeneous
conditions will exist much longer than a few minutes in
real-world wind tunnel environments. The possibility of
orthogonal blocking in such circumstances is of great
practical utility in that it can minimize the adverse
consequences of block effects on the fidelity of response
surface models produced from data acquired under
non-stationary conditions.

This orthogonal blocking feature of the Box-Wilson
design is largely responsible for its great popularity as a
design for second-order models. We utilized a slight
variation of this design in the Generic Winged Body
study for which systematic errors were estimated, as
reported earlier in this paper. In our variation there were
eight center points rather than the four illustrated in
figure 14; however, this does nothing to diminish the
orthogonal blocking of the Box-Wilson. The only
requirement for orthogonal blocking in an equiradial
two-variable Box-Wilson is that we assign an equal
number of center points to each of the two blocks. (This
imposes the obvious constraint that there be an even
number of center points in the design.) In our case there
were four center points assigned to each block, as
described previously.

Table IV displays the Box-Wilson design we
employed with angles of attack and sideslip as the two
variables. This design was implemented for each
configuration studied in the Generic Winged Body
experiment. Lift coefficient values are included in Table
IV for one particular configuration.

Alpha and beta in Table IV correspond to angle of
attack and angle of sideslip. Both are represented in
engineering units and in coded values. Block 1 is the
square block, with its blocking variable coded with a
value of “–1.” Block 2 is the star block, with its blocking
variable coded as “+1.”

An ordinary linear regression was performed on the
data in Table IV, fitting the measured lift coefficient data
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Figure 14. Box-Wilson design in two variables.



to a full second-order response surface model in the two
model attitude variables, as follows:

C b b A b B b AB b A b BL � � � � � �0 1 2 12 11

2

22

2 (2)

In this case the b values are the regression
coefficients and A and B represent angle of attack and
angle of sideslip, respectively. Table V.a. displays the
numerical values of the coefficients and the uncertainty
in estimating them.

The last two columns in Table V.a. give equivalent
information about the quality of the regression
coefficient estimate. The column of t-statistics describes
the coefficients as a multiples of the standard error
(“one-sigma” value) in estimating them. This indicates
how many “standard deviations” the estimate of the
regression coefficient is away from zero. Larger values
impart higher confidence that the regression coefficient
is “real”; that is, that the non-zero value of the regression
coefficient is not due simply to experimental error. Note
the very large value for the t-statistic corresponding to
the linear angle of attack term, for example, indicating a
very strong linear component in the dependence of lift
coefficient on angle of attack.

The right-most column represents the probability
that a t-statistic as large as the one determined for a given
term in the model could have occurred just by chance,
given the uncertainty in estimating the regression

coefficient. Values less than 0.05 suggest less than a 5%
probability of a chance occurrence due simply to noise,
or conversely, greater than 95% confidence that the
regression coefficient is non-zero. We will adopt the
popular convention of retaining in the model only those
terms for which we have at least 95% confidence that the
regression coefficient is non-zero. In this case we would
drop the AB interaction term and the pure quadratic term
for angle of attack and fit a reduced second-order model
with terms as in Table V.b. This represents our best
estimate of a second-order response model for CL.

We can partition the variance of the entire ensemble
of lift coefficient data in Table IV into explained and
unexplained components via an analysis of variance,
where “explained” variance refers to differences in the
lift data that we can predict, or “explain”, by a model with
terms as in Table V.b. If we have included genuine
replicates in the design of the experiment, as we have
done in the case of our CCD via the center points, we can
further partition the unexplained variance into “pure
error” and “lack of fit” components.

The unexplained variance results in uncertainty in
the estimates made using the regression model. The
pure-error component of the unexplained variance is due
to ordinary chance variations in the data—“experimental
error.” The lack of fit component results from an
inadequate model. If the true CL response model
contained significant third-order terms, for example, then
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SET POINT CODED
CL

ELAPSED

TIME, MinBLOCK ALPHA BETA BLOCK ALPHA BETA

1 12 0 -1 0 0 0.53788 0.0

1 10 4 -1 -1 1 0.45030 1.1

1 12 0 -1 0 0 0.53735 1.4

1 14 4 -1 1 1 0.63367 2.0

1 12 0 -1 0 0 0.53987 3.2

1 14 -4 -1 1 -1 0.62933 3.4

1 12 0 -1 0 0 0.53904 5.0

1 10 -4 -1 -1 -1 0.44622 7.1

2 9.17 0 1 -1.414 0 0.41021 8.2

2 12 0 1 0 0 0.53767 8.9

2 12 -5.66 1 0 -1.414 0.54388 10.0

2 12 0 1 0 0 0.53956 11.2

2 12 5.66 1 0 1.414 0.54906 12.3

2 12 0 1 0 0 0.53930 13.8

2 14.83 0 1 1.4142 0 0.66577 14.1

2 12 0 1 0 0 0.54066 15.3

Table IV. Box-Wilson design with lift coefficient data



a second-order model would not provide an adequate fit
to the data. This would be revealed in the analysis of
variance in the form of a lack-of-fit component of the
unexplained variance that was large compared to the
pure-error component. Insignificant lack of fit is a
necessary (although not sufficient) condition for an
adequate response model.

Table VI is the ANOVA table corresponding to the
model in Table V.b. The model F statistic is a measure of
signal to noise ratio. A large model F implies that the
explained variance is large compared to the unexplained
variance and that the range of response values that were
fit in the regression is large compared to the experimental
error. Small F values occur when the regression simply
fits noise. In Table VI the explained variance exceeds the
unexplained or residual variance by a factor of more than

8000, indicating ample signal to noise ratio. Numbers in
the right-most column represent the probability of
obtaining the corresponding F statistic simply by chance,
given the level of experimental error. Small values for
the model term imply adequate signal-to-noise.

The lack-of-fit F statistic represents the ratio of
lack-of-fit error variance to pure error variance. In this
case there is over three times as much lack-of-fit as pure
error, a troubling result that suggests the model is not
entirely adequate. This conclusion is reinforced by the
p-statistic in the right-most column, which is only
marginally above our 0.05 significance threshold. This
indicates that we may not be on very firm ground in
claiming an adequate fit to our CL model.

We now repeat the regression analysis, but this time
we fit the lift coefficient data to a full second-order model
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Source
Sum of

Squares
DF Mean Square F Value Prob > F

Model 6.63E-02 3 2.21E-02 8066.23 < 0.0001

Residual 3.29E-05 12 2.74E-06

Lack of Fit 2.33E-05 5 4.65E-06 3.38 0.072

Pure Error 9.63E-06 7 1.38E-06

Cor Total 6.64E-02 15

Table VI. ANOVA table for unblocked CL model.

Factor
Coefficient

Estimate
DF Standard Error

t for H0

Coeff=0
Prob > |t|

Intercept 5.389E-01 1 5.48E-04

A-AoA 9.099E-02 1 5.48E-04 165.970 < 0.0001

B-Sideslip 1.967E-03 1 5.48E-04 3.587 0.0050

A
2 -1.051E-03 1 5.48E-04 -1.917 0.0842

B
2 3.188E-03 1 5.48E-04 5.815 0.0002

AB 6.350E-05 1 7.75E-04 0.082 0.9363

Table V.a. Regression coefficients for full unblocked CL response model.

Factor
Coefficient

Estimate
DF Standard Error

t for H0

Coeff=0
Prob > |t|

Intercept 5.384E-01 1 5.07E-04

A-AoA 9.099E-02 1 5.85E-04 155.428 < 0.0001

B-Sideslip 1.967E-03 1 5.85E-04 3.359 0.0057

B
2 3.188E-03 1 5.86E-04 5.445 0.0001

Table V.b. Regression coefficients for reduced unblocked CL response model.



in A and B that is augmented with the blocking variable,
Z, and its regression coefficient, d:

C b b A b B b AB b A b B dZL � � � � � � �0 1 2 12 11

2

22

2 (3)

The regression coefficients and their uncertainties
are presented in Table VII.a.

As in the unblocked case, the coefficient for the AB
interaction term is not statistically significant at the 0.05
level and is dropped from the model. Fitting the data to a
model without this interaction term produces the
coefficients in Table VII.b.

Note that the pure quadratic angle of attack term that
was not statistically significant at the 0.05 level in the
unblocked model is now significant and is retained in the
model. The reason is that the portion of the total variance
that is due to the block effect was “unexplained” in the
previous model, while in the current model it has been
explained by attributing it to the block effect. By
removing a portion of the unexplained variance, the
blocking has resulted in a smaller residual unexplained
variance and thus a higher precision in the estimates of
candidate regression model coefficients. In this
particular case, this has resulted in our being able to infer

with the requisite 95% confidence that a relatively small
pure quadratic angle of attack term is in fact real. In the
unblocked case we lacked the precision to confidently
identify this small effect as real.

The coefficients for blocks 1 and 2 in Table VII.b.
indicate that a block effect has produced an average
change in the intercept term of 0.0008 between blocks.
That is, the estimated response surface is riding on a “DC
term” that can differ by 0.0016, depending on which
block of time you wish to consider. Whether such an
uncertainty in the intercept term of the model is
important depends on the precision requirements of the
researcher. In the relatively common situation in which
the total budget for all sources of error in lift coefficient is
0.001, this block effect would represent 160% of the
entire error budget.

Note from the last column in Table IV that the
elapsed time to acquire both blocks of data was only
about 15 minutes, so that the two block “centers” were on
the order of 5–10 minutes apart. This suggests that
systematic errors of unknown origin can induce
substantial error in a relatively short period of time if
there are no defenses provided against them in the design
of the experiment.
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Factor Coefficient Estimate DF Standard Error
t for H0

Coeff=0
Prob > |t|

Intercept 5.39E-01 1 4.47E-04

Block 1 -0.0008 1

Block 2 0.0008

A-AoA 9.10E-02 1 4.24E-04 214.66 < 0.0001

B-Sideslip 1.97E-03 1 4.24E-04 4.64 0.001

A
2 -1.05E-03 1 4.24E-04 -2.48 0.033

B
2 3.19E-03 1 4.24E-04 7.52 < 0.0001

Table VII.b. Regression coefficients for reduced, blocked CL response model.

Factor Coefficient Estimate DF Standard Error
t for H0

Coeff=0
Prob > |t|

Intercept 5.39E-01 1 4.47E-04

Block 1 -0.0008

Block 2 0.0008

A-AoA 9.10E-02 1 4.47E-04 203.76 < 0.0001

B-Sideslip 1.97E-03 1 4.47E-04 4.40 0.002

A
2 -1.05E-03 1 4.47E-04 -2.35 0.043

B
2 3.19E-03 1 4.47E-04 7.14 < 0.0001

AB 6.35E-05 1 6.31E-04 0.10 0.922

Table VII.a. Regression coefficients for full blocked CL response model.



Table VIII is the ANOVA table corresponding to the
model in Table VII.b.

The impact of blocking the experiment can be
assessed by comparing the ANOVA table for the blocked
and unblocked cases. The lack of fit F statistic for the
unblocked case was 3.38, indicating that lack of fit was a
considerably greater source of unexplained variance than
the pure error due to ordinary chance variations in the
data. After blocking this ratio drops to 1.05. The
corresponding p-statistic of 0.456 is comfortably above
our 0.05 significance threshold for goodness of fit. This
suggests that much of the lack of fit in the unblocked case
can be attributed to efforts to fit the lift data only to angle
of attack and angle of sideslip, when in fact a third
important variable—the blocking variable—was also
changing during the data acquisition. That is, we tried to
fit across a block boundary for which there was a
significant shift in the lift measurements due to some
unknown systematic error, without taking that shift into
account in the model.

Note the substantial increase in the model F
statistic—from 8066 for the unblocked case to 11541 for
the blocked case. The ratio of these F statistics is
proportional to the ratio of unexplained variances, which
vary inversely with the number of data points. The ratio
of F statistics—11541/8066 = 1.43—thus represents the
increase in data volume necessary to achieve the same
level of precision by replication that was achieved by
simply blocking the experiment. We would have had to
acquire 43% more data to achieve the same precision that
the blocked experiment provided, or, conversely, by
blocking the experiment we could achieve the same
precision as the unblocked case with only about 70% of
the data.

The enhanced precision provided by blocking
allows the regression terms of the model to be identified
with much higher confidence. This is reflected in the
larger t-statistics (or equivalently, the smaller
p-statistics) for the blocked vs. unblocked cases. As
noted previously, the increased precision made the
difference in being able to even resolve one of the model
terms. By being able to say with confidence that a small
pure quadratic angle of attack term exists, not only are we
able to make better lift predictions with our model, but
we gain potentially valuable insights into the underlying
physics as well.

The enhanced precision due to blocking is also
reflected in the root mean square residual errors. The
blocked/unblocked ratio is 70%, meaning that all
precision-interval error bars attached to predictions made
in the blocked case will be 70% of the corresponding
unblocked case. The tighter error bars mean the quality
of the prediction model is greater in the blocked case.

Residuals were computed by subtracting predicted
values based on the blocked and unblocked models from
the actual measured values for lift in Table IV. The
average magnitude of the unblocked residuals was
0.00130, compared to 0.00077 for the blocked case. That
is, the blocked residuals were only 77/130 = 59% the size
of the unblocked residuals on average.

To summarize this illustration of orthogonal
blocking for a second-order response surface model, the
act of blocking the experiment resulted in a substantial
increase in the precision of the experimental result, and
an improved insight into the structure of the underlying
response relationship. These substantive gains were
achieved largely at “no extra cost.” That is, the precision
enhancement did not require the specification of
additional replicates, but merely a reordering of the
sequence in which the data were acquired. Moreover,
these improvements did not rely upon “assigning causes”
to the systematic error; indeed, the cause for the
systematic variation from block to block remains
unknown. Needless to say, it was not necessary to
eliminate the cause of the systematic error, or to correct
for it through some calibration scheme that depends on
understanding and predicting the systematic variations.
The same orthogonal blocking technique would have
eliminated the block effect no matter how large it was, or
what the cause of it was.

The block effect translates into an uncertainty in the
absolute accuracy of the response estimates, in that it
essentially shunts what would otherwise be distortions in
the shape of the response surface into some uncertainty in
the true intercept term of the model. Blocking results in a
properly shaped response surface positioned above a
constant “DC” reference level that splits the difference
between the reference levels in the two separate blocks.
Absent any a-priori knowledge of which block represents
the “true” reference level, this is about the best one can
hope to do in the presence of systematic variations. The
coefficient of the blocking variable contributes to an
understanding and quantification of the bias error
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Source
Sum of

Squares
DF Mean Square F Value Prob > F

Block 9.68E-06 1 9.68E-06

Model 6.63E-02 4 1.66E-02 11541.20 < 0.0001

Residual 1.44E-05 10 1.44E-06

Lack of Fit 5.91E-06 4 1.48E-06 1.05 0.456

Pure Error 8.47E-06 6 1.41E-06

Cor Total 6.64E-02 15

Table VIII. ANOVA table for blocked CL model.



associated with systematic variations in the facility. The
total uncertainty associated with a model prediction
should include both the reduced precision error due to
blocking, plus a bias error component that reflects the
uncertainty in the intercept term.

Randomization

Blocking, and in particular, orthogonal blocking, has
been introduced as an effective defense against
systematic variations that may occur in an experiment.
However, for blocking to be the most effective, it is
necessary to identify the block boundaries. Certain
obvious candidates such as change of shift or end of day
have been discussed. Blocking on arbitrary time
intervals has also been demonstrated as a defense against
block effects that may or may not occur over those
intervals. The question arises as to how to cope with
systematic variations when block boundaries are
unknown, or that may occur within the boundaries of a
particular block. Randomization—the act of setting the
levels of independent variables in random order—is an
effective technique for dealing with within-block
systematic variations, as will be illustrated in this section.

Randomization is used in modern experiment design
to ensure that changes in response variables are related
unambiguously to changes in the independent variables
that influence them and that extraneous sources of
variation are eliminated. Proponents of the OFAT
method try to meet this requirement by holding
everything constant except one variable, but this
approach relies on assumptions of statistically stationary
test conditions that are often violated at the precision
level required by modern wind tunnel tests. That is, even
though the OFAT practitioner changes no other variable
except the one under investigation at a particular phase of
the test, other covariate variables are often in fact
changing with time. Temperatures vary, instruments
drift, flow angularity wanders, the data system gradually
requires recalibration, and so on. As a result, the OFAT
practitioner does not “hold everything constant,” despite
the best of intentions, and substantial systematic errors
occur in time throughout the experiment.

The OFAT practitioner is made vulnerable to these
systematic errors when he implements the high data-rate
strategies dictated by current notions of “productivity” in
wind tunnel testing. High data rate operations require
independent variable levels to be changed sequentially in
time in order to maximize data volume—it generally
takes less time to move to another independent variable a
short distance away and in the same direction as the last
change than to change independent variables in any other
pattern. However, sequentially changing the
independent variables causes responses of the system
under study to vary systematically with time just as the
systematic errors do, guaranteeing an efficient
confounding of the effects of interest with the systematic
errors.

Given the perceived need for sequential level
changes in the independent variables to ensure
“productivity,” the OFAT practitioner is limited to a data
quality assurance strategy that depends on identifying
and either eliminating or correcting for significant
sources of systematic variation that occurs during an

experiment. That is, the OFAT practitioner depends
upon “statistical control”—a state in which sample
means are stable (time-independent)—to obtain high
quality research results. Absent statistical control,
response changes induced by systematically varying the
independent variables will be correlated with any other
time-varying response change, including all systematic
errors. Under those circumstances, true but subtle
independent variable effects induced by systematic
set-point changes cannot be distinguished from
experimental error components that are also changing
systematically with time.

Unfortunately, statistically stationary conditions are
difficult to achieve in a research environment as complex
and energetic as a modern wind tunnel, as the analysis of
variance in representative wind tunnel test results
presented earlier in this paper demonstrates. Even in the
unlikely event that every detected component of
systematic error could be identified as to its source, and
every source could be either removed or accounted for by
some correction factor, there is no way to know if other
sources exist that have simply not yet been detected.
Furthermore, there can be no assurances that the existing
corrections are stable with time. On the contrary, many
almost surely will not be.

Ronald Fisher was the first to recognize that the
simple device of randomizing the order in which
independent variable levels are set in an experiment
liberates the researcher from the need to establish a state
of statistical control as a prerequisite for high-quality
research results. He notes that randomization procedures
provide relief “from the anxiety of considering and
estimating the magnitude of the innumerable causes by
which . . . data may be disturbed.”6 Numerous
subsequent researchers have commented on the virtues of
randomization since Fisher introduced it in the 1920s.
For example, Brown and Melamed7 say, “Randomization
procedures mark the dividing line between modern and
classical experimentation and are of great practical
benefit to the experimenter . . . for they provide relief . . .
from the classical difficulties of trying to hold everything
constant without ever being certain that this has been
achieved. [Randomization] provides no absolute
guarantee, of course, but it has been judged superior to
any alternative yet devised, and its possibility in
experimental work is part of what distinguishes
experiments, in the strict sense of the word, from
quasi-experiments and surveys.” Cochran and Cox8

compare randomization to an insurance policy,
describing it as “a precaution against disturbances that
may or may not occur and that may or may not be serious
if they do occur.”

When independent variable set points are
randomized, this de-couples the true effects of the
independent variable changes from response changes due
simply to systematic error. The systematic errors now
cause the response variables to change one particular
way in time, while the randomized set-point changes
cause the response variables to change in a completely
uncorrelated way. The systematic error variations are
thus segregated from the true effects of independent
variable changes.

Randomization physically induces the state of
statistical independence among data points that is a

17

American Institute of Aeronautics and Astronautics



prerequisite for so many simplifications and
conveniences in analyzing experimental data.
Specifically, important distributional properties assumed
to characterize certain sample statistics such as the mean
and the standard deviation are only truly imparted to
those statistics when the data are independent. For
example, the mean of a finite sample of data is an
unbiased estimate of the general population mean only if
the individual observations in the sample are
independent. Likewise, the variance in the distribution
of sample means is only inversely proportional to the
volume of data acquired in the special circumstance of
independence among the individual data points. This
latter condition is the foundation of all error control
strategies that are based upon replication. This is one of
the greatest practical reasons that systematic errors are so
difficult to eliminate. They do not feature the
conveniently symmetrical fluctuations about a mean of
zero that enable us to cancel them by replication, as we
can do with random errors that are identically and
independently distributed. However, randomizing the
order in which the independent variables are set tends to
induce in systematic errors the same convenient features
that make it so much easier to cope with random errors.
The remainder of this section will illustrate the effect of
randomization for a case in which substantial systematic
error is present (several multiples of the entire error
budget).

We start with figure 15, which is a graph of lift
coefficient as a function of angle of attack at zero sideslip
angle based on the model with regression coefficients
given in Table VII.b. The fit of this model to the data is
believed to be quite good, displaying no significant lack
of fit error, ample signal to noise ratio, small root mean
square residual errors, and small measured residuals. A
detailed analysis of residual patterns was performed that
is beyond the scope of this paper. However, that analysis
also suggests the model is adequate for estimating lift
coefficient over the range of angles of attack and sideslip
for which data were acquired. The apparent good quality
of this model notwithstanding, there will certainly be
some error in model predictions, however small.
Nonetheless, for the purpose of this discussion of
randomization, we will assume that figure 15 represents
that most elusive of all commodities in experimental
research—Mother Nature’s true response function. That
is, we will assume that figure 15 represents what the
researcher would observe in the absence of all error.

Now imagine that over the relatively short period of
time it takes to acquire these data, a significant
systematic error manifests itself as in figure 16. The
effect of this error is that measured lift coefficients
acquired earlier are biased below their true value
(negative error component) and measurements made
later are biased higher than their true value. This error
could be the result of drift in the instrumentation or the
data system or it might be the result of flow angularity
changes induced by thermal expansion or contraction of
the facility, or it could be the algebraic sum of these plus
an uncountable number of other causes. The source or
sources of the error is unimportant for the purpose of this
discussion; all that is relevant is that the error exists and is
substantial. In this case we assume that the entire error
budget for lift coefficient is �0.001. The
root-mean-square systematic error over the period of data
acquisition is 0.0043, which is greater than the entire
error budget by more than a factor of four on average, and
approaches nine times this error budget for some points
acquired late in the series.

Figure 17 shows the original, error-free, lift curve
and the lift curve adjusted for the systematic error of
figure 16, side by side. This comparison reveals one of
the most insidious features of systematic error, which is
the difficulty in detecting it. Even though one of these
figures is error-free and the other contains errors that
exceed the entire budget by several hundred percent, it is
difficult to identify which curve contains the error and
which one does not. This is true even though the
magnitude and specific time dependence of the error is
known. It would be virtually impossible to estimate the
magnitude of such a systematic error, or even to detect it,
without this knowledge. This tends to refute arguments
advanced by OFAT practitioners that setting sequential
independent variables is a necessary prerequisite for
identifying subtle errors as an experiment progresses.
The errors in one of the curves in figure 17 are anything
but subtle, and yet they are virtually undetectable. (It is
the curve on the right in figure 17 that has the systematic
errors, incidentally.) The only hope that the OFAT
practitioner has is that systematic errors will have the
courtesy not to visit themselves upon him during the data
acquisition period. The earlier analysis of variance in the
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Figure 15. Lift coefficient response function, assumed

to be error free for sake of discussion.

Figure 16. Systematic error in lift coefficient.



Generic Winged Body study suggests that such hopes are
likely to be in vain, unfortunately. Systematic errors are
in fact a common feature in experimental research, and
conditions that are statistically stationary at the precision
levels required in modern wind tunnel testing seem to be
especially elusive.

As mentioned earlier in this section, Ronald Fisher
first proposed randomization as a solution to the
insidious problem of substantial but virtually
undetectable systematic errors in experimental research.
He made this proposal in the 1920s while performing
research at the Rothampsted Agricultural Research
Station outside of London. Fisher was engaged in
experiments to assess the effectiveness of various
candidate materials and methods for improving
agricultural yield. While it was clear when a plot of
ground dressed with some experimental fertilizer
produced a higher yield of potatoes than another plot
dressed in the conventional way, for example, it was
never entirely clear that the fertilizer difference was the
cause of any observed difference in yield. Despite the
best efforts to enforce uniformity, one could never be
certain over the course of a growing season that both
plots of land received precisely the same rainfall, or that
the slopes of the two fields caused precisely the same
amount of water to be retained. Uniformity in soil
richness could not be guaranteed, nor that infestations of
various pests would affect both the experimental plot and
the control plot equally. In short, there was no way to
attribute a difference in yield to the treatment under
study, or to myriad other factors that could systematically
influence it.

Fisher’s simple but effective solution was to assign
both control and experimental treatments to a number of
different plots at random, rather than to a single plot each.
While plot-to-plot variability in clay content was
inevitable, for example, there was no reason to believe
that all of the plots dressed with experimental fertilizer
would be sandy and all of the control plots heavy with
clay or vice versa, if the two treatments were assigned

completely at random to a number of different fields.
The same could be said for all other factors. The solution
was not to enforce uniformity (“statistical control”), but
rather to ensure balance in the design. If the fertilizer
treatment comprised the only systematic difference
between two equal numbers of otherwise randomly
assigned plots, then while some plot-to-plot variance was
inevitable, the only explanation for a difference in
average yield between the two treatments would be the
treatments themselves. All other factors would average
out.

Wind tunnel research involves units of time as a
perfectly analogous counterpart to Fisher’s plots of
ground. By assigning levels of the independent variables
that interest us (angle of attack, say) to different blocks of
time at random, factors that might decrease a response
early and increase it later on (such as the systematic error
of figure 16) will be just as likely to increase the response
at a particular independent variable reading as decrease it
there. The net effect averaged over a sufficient number
of measurements is that the errors will balance and cancel
out.

To illustrate this, we will examine how Fisher’s
randomization idea affects the contaminated lift
coefficient data in the right side of figure 17. Figure 18
represents a number of samples taken from the
contaminated curve with the angle of attack levels set at
random. Each sample is comprised of a fixed component
due to the true lift coefficient corresponding to the angle
of attack at which the measurement was made, plus a
component due to the error varying systematically with
time. If a particular angle of attack were set relatively
early, the variable component of the measurement would
subtract from the fixed component, and the measurement
would lie somewhat below the true curve. This is
because the systematic error causes negative errors early.
If the next highest angle of attack happened to be set late,
say, then it would lie somewhat above the true curve
because late in the data acquisition period the systematic
error is causing positive errors. By assigning angles of
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Figure 17. CL with and without substantial systematic error (over four times entire error budget on RMS basis and

approaching a factor of nine for some individual points).



attack to periods of time selected at random, we assure
that everywhere along the curve, the measured values are
just as likely to overshoot as undershoot the true curve.

Examine figure 19 to see this with the lift data of this
example. The very same data points acquired with angle
of attack set in random order and plotted as a function of
time in figure 18 are plotted as a function of angle of
attack in figure 19. Each angle of attack had the same
chance of being acquired early, when systematic errors
were negative, as late, when they were positive. The
result is that there is a random distribution of errors above
and below the true curve. When angles of attack were
acquired systematically with time, the errors were not
independent. If the error suffered at the previous angle of
attack was positive, the error of the next angle of attack is
likely also to be positive. In the case of randomized angle
of attack settings, however, the direction of the previous
error provides no information about the direction of the
next error. That is, randomization enforces the

all-important state of statistical independence on the
errors that they would not otherwise have.

The difference between setting angle of attack in
random order when there are systematic errors present
and setting it sequentially in time can be seen in figure
20. On the left is the result of setting angle of attack
sequentially in time. You can see that systematic error
effects are completely indistinguishable from angle of
attack effects. This is because both are correlated with
time. The actual shape of the response function is
distorted. The slope is wrong and the quadratic term will
likewise be corrupted by the systematic error, which
generates a general misrepresentation of the response
dependence on the variables changed sequentially in
time.
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Figure 19. CL as a function of angle of attack. Angle

of attack levels set in random sequence in the

presence of systematic error.

Figure 20. CL as a function of angle of attack. Angle of attack levels set sequentially vs. randomly.

Figure 18. CL as a function of time. Angle of attack

levels set in random sequence in the presence of

systematic error.



On the right of figure 20, randomizing the setting
order for angle of attack has produced a set of data with
some scatter, but about the true curve. The basic
underlying form of the response function is faithfully
reproduced, albeit with some scatter about the true line.
The scatter results from the effective conversion of
systematic error to an additional component of random

error. If the resulting precision is insufficient to satisfy
design criteria, ordinary replication can be used to
achieve arbitrarily high precision, since statistical
independence of the errors has been induced by
randomization.

Figure 21 displays the residuals from figure 20; that
is, the difference between measured points and the true
lift curve. The effect of randomization is most clear in
this figure. For the case in which angle of attack levels
were set sequentially in time, the error is obviously
systematic and there is no statistical independence from
one level to the next. For the randomized angle of attack
case the errors are randomly distributed and independent
of each other.

The random nature of the distribution of errors in
figure 21 implies that arbitrarily high levels of precision
can be achieved simply by replication. The independent
nature of the errors is a necessary prerequisite for
assuring that fundamental assumptions upon which
regression analysis depends, for example, are satisfied.

Figure 22 shows the error associated with the best fit
of the data acquired by randomizing angle of attack.
Because the randomization converted the systematic
errors to random errors distributed more or less
uniformly around the true lift curve, the difference
between the best fit and true lift curves are very small
compared to the original systematic error. The bulk of
the residuals are within the 0.001 error budget for lift,
notwithstanding the fact that the pre-randomization
systematic error featured a root mean square error of
0.0043. Figure 23 compares the pre- and
post-randomization error directly. In addition to being
much smaller in magnitude, the fitting error is random,
with all of the attendant conveniences.

Figure 24 compares the RMS systematic error with
the RMS fitting error after randomizing the independent
variables. The 0.0043 RMS systematic error is a factor of
five times greater than the 0.0008 RMS
post-randomization fitting error.

Concluding Remarks

Experimental results can depend sensitively on the
order in which data are acquired when systematic errors
are present. This provides opportunities for increasing
the quality of research by optimizing the test matrix
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Figure 21. Distribution of errors about True CL curve.

Angle of attack levels set sequentially and in random

order.

Figure 22. Response model lack of fit error.

Comparison of fitted model with true response curve.

Figure 23. Effect of large systematic error with and

without randomizing the independent variable.

Figure 24. Root mean square lift coefficient errors,

sequential and randomized angle of attack run order.



design to take advantage of this fact. An analysis of
variance in a recent wind tunnel test revealed substantial
systematic errors over periods so short that statistically
stationary conditions could not be said to exist for
periods longer than a few minutes. Under these
conditions, blocking, randomization, and replication
were seen to increase research quality significantly. In a
recent wind tunnel test precision levels were increased by
blocking over periods as short as 5–10 minutes, by
amounts that would have required over 40% more data to
achieve by simple replication alone. Conversely,
blocking provided the means to achieve comparable
precision levels with approximately 70% of the data
volume. Randomization was shown to reduce RMS
systematic errors significantly, and to induce statistical
independence in the experimental data. The latter is a
prerequisite for regression theory and for certain
distributional assumptions to be valid, including the
assumption that sample means represent unbiased
estimates of general population means.

This paper also suggests that late 20th century
concepts of productivity in wind tunnel testing, based on
maximum data collection rate, work at cross-purposes to
high research quality objectives. The sequential setting
of independent variable levels demanded by high-rate
data collection strategies guarantees the greatest possible
confounding of independent variable effects with
systematic errors. The only way for high-speed data
collection methods to address this problem is to achieve a
state in which experimental results are independent of the
order that data are acquired. Such a statistically
stationary state is difficult to guarantee, simply because
of the impossibility of proving a negative. No matter
how much effort is devoted to ridding the experimental
environment of systematic variations, it can never be
possible to know that there are no more such errors still in
play.

The techniques of randomization, blocking, and
replication have been used successfully in a broad range
of applications since these methods were codified in the
formal experiment design methodology first proposed by
Fisher and his colleagues in the early part of the 20th

century. They are rooted in a sound theoretical basis and
have had the benefit of decades of practical experience in
numerous industrial, medical, agricultural, scientific, and
engineering applications. Adopting these methods to
wind tunnel testing is believed to represent a low risk
proposition by which substantial improvements can be
made in the quality of aeronautical research. Significant
first-mover advantages may accrue to those who embrace
these methods early.
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