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Abstract

This work discusses an approach, the Approxima-
tion Management Framework (AMF), for solving opti-
mization problems that involve computationally expen-
sive simulations. AMF aims to maximize the use of lower-
fidelity, cheaper models in iterative procedures with oc-
casional, but systematic, recourse to higher-fidelity, more
expensive models for monitoring the progress of the al-
gorithm. The method is globally convergent to a solution
of the original, high-fidelity problem. Three versions of
AMF, based on three nonlinear programming algorithms,
are demonstrated on a 3D aerodynamic wing optimization
problem and a 2D airfoil optimization problem. In both
cases Euler analysis solved on meshes of various refine-
ment provides a suite of variable-fidelity models. Prelim-
inary results indicate threefold savings in terms of high-
fidelity analyses in case of the 3D problem and twofold
savings for the 2D problem.

Key Words: Approximation concepts, approximation
management, model management, surrogate optimiza-
tion, aerodynamic optimization, nonlinear programming,
wing design
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Introduction

Many physical phenomena in engineering design can
be described by computational models of high physi-
cal fidelity or numerical accuracy. However, the use of
high-fidelity models, such as the Navier-Stokes equations
or those based on fine computational meshes, in itera-
tive procedures can be prohibitively expensive. On the
other hand, the use of corresponding lower-fidelity mod-
els alone does not guarantee improvement for higher-
fidelity design. This paper discusses an approach that
aims to facilitate design optimization and integration of

disciplines in a multidisciplinary environment by allevi-
ating the expense of relying exclusively on high-fidelity
models, while taking advantage of well-established engi-
neering approximation concepts.

Computational models of varying fidelity have been
used in engineering design for a long time.1–3 A survey on
the use of approximations in structural optimization can
be found in Barthelemy and Haftka.4 Recent overviews
of algorithms for aerodynamic analysis and optimization
can be found, e.g., in Jameson5 and Newman et al.6 Pro-
cedures for using variable-fidelity models, however, have
been largely based on heuristics, and convergence to a so-
lution of the highest-fidelity optimal design problem has
not been guaranteed, in general. Until recently, with a
few exceptions,7–9 the analysis had focused on the ques-
tion of convergence to a solution of the surrogate prob-
lem.10, 11 Due to improvements in the numerical modeling
techniques and the increased availability of high-fidelity
analyses, optimization with variable-fidelity approxima-
tions has become a subject of much interest in the past
few years.12–14

A number of methods for managing models and ap-
proximations of varying fidelity have been recently in-
troduced and analyzed. These include methods that use
sensitivities15–18 and methods that do not.19 This paper
begins a computational investigation of the practical ef-
fectiveness of the methods in15–18on problems of aerody-
namic design optimization.

For the purposes of the present work, the optimal de-
sign problem is represented by the following nonlinear
programming problem (NLP):

minimize f(x)
subject to g(x) ≤ 0

l ≤ x ≤ u,
(1)

wherex are the design variables, the objectivef and the
vector-valued constraintsg are smooth (i.e., continuously
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Figure 1: Conventional optimization vs. AMF

differentiable) nonlinear functions, andl ≤ x ≤ u de-
notes bound constraints on design variables.

This work concerns a general approach for con-
trolling the use of variable-fidelity models—the first-
order trust-region Approximation Management Frame-
work (AMF)—in solving problem (1).

The conceptual distinction between AMF and conven-
tional optimization is depicted in Figure 1. On the left, in
conventional optimization, the optimizer and the analy-
sis software exchange information as follows. The anal-
ysis supplies the optimizer with objective and constraint
function and derivative information,f,∇f, g,∇g, while
the optimizer produces new values of the design variables
x for re-analysis. The optimizer uses the function and
derivative information to build local approximations—
usually first or second-order Taylor series—internally. If
evaluating the problem functions and derivatives involves
a simulation of high accuracy but high computational cost
(e.g., the Navier-Stokes equations), repeated consultations
with analysis required by the optimizer are expensive.

Now suppose one also has a suite of less accurate but
also less expensive approximate models or surrogates∗ of
the same phenomenon. A lower-fidelity model of the ob-
jective is denoted by{af(x)} and lower-fidelity model
of the constraints by{ag(x)}. The associated sensitiv-
ities with respect to the design variables are{∇af (x)}
and{∇ag(x)}.

The right-hand side of Figure 1 depicts informa-
tion exchange between the optimizer and the analy-
ses in a conceptual AMF scheme. Here the opti-
mizer receives the function and sensitivity information
af (x),∇af (x), ag(x),∇ag(x) from the lower-fidelity
model to build internal local models (Taylor series). Ex-
pensive, high-fidelity computations proceed outside the
optimization loop and serve to re-calibrate the lower-

fidelity model occasionally, based on a set of systematic
criteria. The salient features of AMF are as follows.

• Although a lower-fidelity model may not capture
a particular feature of the physical phenomenon to
the same degree of accuracy (or at all) as its higher-
fidelity counterpart, a lower-fidelity model may still
have satisfactory predictive properties for the pur-
poses of finding a good direction of improvement
for the higher-fidelity model.

• AMF replaces the local, Taylor series approxima-
tions of the conventional optimization by general
nonlinear models required to satisfy a set of first-
order consistency conditions defined later in the pa-
per. In principle, AMF is capable of handling ar-
bitrary models, provided the easily imposed consis-
tency conditions are satisfied.

In particular, AMF is not limited to the use of al-
gebraic, Taylor series, or response surface approx-
imations. Analyses of variable mesh resolution or
of variable physical fidelity (such as Navier-Stokes
and Euler codes) can be used as variable-fidelity
function evaluators in AMF.

• In AMF-based algorithms, the bulk of the com-
putational expense involves calculations based on
lower-fidelity models in iterations of optimization
or search procedures.

• AMF is based on the trust-region methodology,20, 21

which can be described as an adaptive move limit
strategy for improving the global behavior of op-
timization algorithms based on local models. The
trust-region methodology ensures the convergence

∗Some authors make distinctions in the use of the terms “models”, “surrogates”, and “approximations.” For simplicity, the terms are used
interchangeably here.
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of the AMF scheme to a solution of the higher-
fidelity problem by providing a measure of the sur-
rogate’s predictive behavior, a criterion for updat-
ing the surrogate, and a systematic response to sit-
uations in which an optimization phase performed
using a surrogate gives either an incorrect or a poor
prediction of the higher-fidelity model’s actual be-
havior.

The proposed AMF methods have strong theoretical prop-
erties and have been tested on small, closed-form prob-
lems. The framework’s generality means, however, that it
admits not only a wide range of models, but also an ex-
tensive set of rules for governing parts of AMF. The rules
do not influence the fact of convergence, but they strongly
influence the algorithm’s efficiency. Moreover, the perfor-
mance of the algorithm will also be problem-dependent.
Hence, much computational experience is needed both to
validate the concept and to arrive at an advantageous set
of rules for the use of approximations within a specific
instance of AMF. This study intends to demonstrate the
concept of AMF on two aerodynamic optimization prob-
lems. In addition, the study begins the accumulation of
the necessary computational experience that should re-
sult in further practical implementations of AMF, both for
single-discipline and multidisciplinary design optimiza-
tion (MDO).

The paper is organized as follows. The next section
briefly describes the three AMF under study. The compu-
tational demonstration is then described. The paper con-
cludes with lessons learned to date and some mention of
ongoing work.

AMF under Study

There are, in principle, as many possible AMF as there
are optimization algorithms, because AMF may be de-
fined as a mechanism for a systematic alternation between
the available models within an optimization procedure. A
detailed discussion of the algorithms and analysis of the
entire class of first-order AMF for constrained optimiza-
tion can be found in Alexandrov and Lewis.22

In this section, three AMF are described, and the rea-
sons for their selection are discussed. The first AMF is
based on an augmented Lagrangian approach, the second
on a multi-level optimization algorithm, and the third on
an SQP approach. In the remainder of the paper, the sub-
scripts “c” and “+” denote the current and the new iterate,
respectively.

Augmented Lagrangian-based AMF

The augmented Lagrangian method for constrained
optimization allows for an immediate extension of the un-
constrained AMF to constrained problems. The underly-

ing algorithm is the augmented Lagrangian approach as
implemented in Conn, Gould, and Toint.23

In this method, the explicit nonlinear inequality con-
straints of problem (1) are converted to equalities by intro-
ducing nonnegative artificial (slack) variablesz to define
the equality constraints

h(x, z) ≡ g(x) + z,

which gives rise to the following equivalent formulation:

minimize
x,z

f(x)

subject to h(x, z) = 0
l ≤ x ≤ u

z ≥ 0.

(2)

The associated augmented Lagrangian is

L(x, z, λ; µ) ≡ f(x) + λT h(x, z) +
1
2µ

‖ h(x, z) ‖2
2 ,

whereλ is the vector of Lagrange multipliers, andµ > 0
is the penalty parameter. For appropriate values ofµ and
λ, minimization ofL solves problem (2). However, since
the appropriate values ofµ andλ are not knowna priori,
an iterative approach is devised that solves an augmented
Lagrangian subproblem while updatingµ andλ. The con-
ventional augmented Lagrangian approach is described in
the following pseudo-code:

Initialize (xc, zc), λc, µc

Do until convergence:
With (xc, zc) as the initial point and fixedλc, µc,
solve the following subproblem for(x+, z+):

minimize
x,z

L(x, z; λc, µc)

subject to l ≤ x ≤ u
z ≥ 0

Set(xc, zc) = (x+, z+)
Updateλc andµc

End do

The corresponding augmented Lagrangian-based AMF
uses a subproblem that minimizes notL but its modelaL

c ,
which yields the following AMF:

Initialize (xc, zc), λc, µc

Do until convergence:
Compute the high-fidelityL and∇L at (xc, zc)
Select an approximationaL

c to L, with
aL

c (xc, zc, λc; µc) = L(xc, zc, λc; µc) and
∇aL

c (xc, zc, λc; µc) = ∇L(xc, zc, λc; µc)
Do until convergence:

Solve approximately for(x+, z+):
minimize

x,z
aL

c (x, z; λc, µc)

subject to l ≤ x ≤ u
z ≥ 0

‖ xc − x ‖∞ ≤ ∆c

‖ zc − z ‖∞ ≤ ∆c
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End do
ComputeR = L(xc,zc,λc;µc)−L(x+,z+,λc;µc)

L(xc,zc,λc;µc)−aL
c (x+,z+,λc;µc)

Update∆c and(xc, zc), based on the value ofR
Updateλc andµc

End do

Minimizing aL
c is itself an iterative procedure that now

uses approximations (e.g., Taylor series) to the lower-
fidelity modelaL

c . See reference22 for further details.
The conditions on the modelaL

c are known as the first-
order consistency conditions. They are imposed by a cor-
rection technique introduced by Chang et al.24 This tech-
nique corrects a low-fidelity versionφlo of a function so
that it agrees to first-order with a given high-fidelity ver-
sionφhi. This is done by defining the scale factorβ

β(x) =
φhi(x)
φlo(x)

.

Given the current design variablesxc, one builds a first-
order modelβc of β aboutxc:

βc(x) = β(xc) + ∇β(xc)T (x − xc).

The local model ofβ is then used to scaleφlo to obtain a
better approximationa(x) of φhi:

φhi(x) = β(x)φlo(x) ≈ a(x) ≡ βc(x)φlo(x).

The corrected approximationa(x) has the properties that
a(xc) = φhi(xc) and∇a(xc) = ∇φhi(xc).

The augmented Lagrangian-based AMF is relatively
easy to implement and can be proven to work reliably un-
der reasonable assumptions. The underlying framework
is well understood and is a basis for a number of popular
codes. The expected difficulties are also those of the un-
derlying optimization algorithm—augmented Lagrangian
methods can converge slowly, depending on howλ is es-
timated, and they are also subject to ill-conditioning asµ
approaches0.

MAESTRO-based AMF

Another AMF is based on a class of multilevel algo-
rithms for large-scale constrained trust-region optimiza-
tion (MAESTRO).25–27 This AMF is of interest due
to MAESTRO’s convergence properties and a natural
structure for MDO problems with arbitrary couplings.
The reader is referred to Alexandrov18 for details of the
MAESTRO-based AMF. A brief description follows.

The present version of the underlying MAESTRO ap-
proach deals with problem (1) by converting the explicit
inequalities into equalities via squared slacks:

minimize
x,z

f(x)

subject to h(x, z) ≡ g(x) + z2 = 0.
(3)

Because the current demonstration problems have one dis-
cipline and a small number of variables, only the bilevel
MAESTRO procedure will be described here.

If (xc, zc) is the current iterate, a model of the con-
straintsah

c is first selected that satisfies the following con-
sistency conditions for the constraints at that point:

ah
c (xc, zc) = h(xc, zc) (4)

∇ah
c (xc, zc) = ∇h(xc, zc).

A substeps1 = (sx
1 , sz

1) is computed that approximately
minimizes that model within a trust region. The process
of computing the substep is itself an iterative procedure.
Next, a modelaf

c of the objective function or the La-
grangian is selected that satisfies the consistency condi-
tions at the just computed point:

af
c (xc + sx

1) = f(xc + sx
1) (5)

∇af
c (xc + sx

1) = ∇f(xc + sx
1).

The substeps2 = (sx
2 , sz

2) is computed in another loop to
approximately minimize the model in another trust region.
The total trial stepsc is the sum of the two substeps. The
step is evaluated using a merit function (the augmented
Lagrangian or thè2 penalty function).

The consistency conditions can be relaxed, but that
line of reasoning will not be pursued here, because, given
any two models, the conditions are easily enforced by us-
ing the correction techniques due to Chang, et al.24 The
consistency conditions are not enforced within each opti-
mization sweep.

This algorithm for computing the trial step is a special
case of the MAESTRO class with the distinction that the
Gauss-Newton model of the constraints and the quadratic
model of the objective or the Lagrangian have been re-
placed by general, first-order models that satisfy the con-
sistency conditions (4) and (5).

Since the underlying algorithm belongs to the MAE-
STRO class, this AMF will converge to a critical point
of the high-fidelity problem under the assumptions that
lead to convergence of the underlying class. This means
finding the substepss1 ands2 that will satisfy the suffi-
cient decrease conditions necessary for establishing con-
vergence.

Implementing a MAESTRO-based AMF is more la-
borious than the augmented Lagrangian-based AMF. The
benefits are greater efficiency and the expected incorpora-
tion of MDO problems in the near future.

SQP-based AMF

Sequential Quadratic Programming (SQP) methods
are a popular class of methods for solving nonlinear pro-
gramming problems. An overview of these algorithms can
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be found in Gill, Murray, and Wright.28 There are many
variants of SQP. IfBc denotes an approximation to the
Hessian of the objective functionf , one conventional ap-
proach to solving problem (1) is the following:

Initialize xc

Do until convergence:
Solve the following subproblem forsc = x − xc:

minimize
s

∇f(xc + s)T s + 1
2sT Bcs

subject to g(xc) + ∇g(xc)T s ≤ 0
l ≤ x ≤ u

Updatexc

End do

Typically, the objective function in the SQP subprob-
lem is a quadratic approximation to the problem La-
grangian. Globalization strategies, such as line search or
trust-region approaches, are then used to insure the robust-
ness of the algorithm.

An SQP-based AMF studied here is based on the algo-
rithm just outlined. It has been selected for the study as an
alternative to MAESTRO in the case of single-discipline
optimization, where the objective and constraint values
are given by a single analysis execution (i.e., when there
is no natural multilevel structure in the problem).

Let P (x; µ) be a merit function for the high-fidelity
problem. In the work described here,P is thel1 penalty
function, but other choices are possible. The SQP-based
AMF is:

Initialize xc, µc

Do until convergence:
Select approximationsaf

c andag
c , with

af
c (xc) = f(xc); ∇af

c (xc) = ∇f(xc) and
ag

c(xc) = g(xc); ∇ag
c(xc) = ∇g(xc).

Solve approximately fors = x − xc:
minimize

s
af

c (xc + s)

subject to ag
c(xc) + ∇ag

c(xc)T s ≤ 0
l ≤ x ≤ u

‖ s ‖∞ ≤ ∆c

End do
ComputeP (xc + sc)
Update∆c andxc, µc based on the value ofP

End do

Details and analysis of the implementation can be found
in.22 Briefly, the approach has a number of benefits. The
SQP-based AMF is relatively easy to implement and con-
verges very rapidly once it is near a solution. It han-
dles the inequality constraints directly and enjoys the ef-
ficiency of SQP methods. By choosing∆c sufficiently
large, it can be arranged for the first iteration to go to a so-
lution of the lower-fidelity problem. This feature must be
obtained by pre-processing in the other approaches. The
SQP-based AMF also allows for an easy incorporation of

commercial software. The drawbacks of the approach are
not obvious at this point.

Computational Demonstrations

The computational demonstrations are intended to
validate the effectiveness of AMF. The ability to trans-
fer the computational load onto the lower-fidelity, cheaper
computations, and thereby reduce the overall computa-
tional cost, will depend on the predictive qualities of the
surrogates. Note that even though the surrogate mod-
els may not be good approximators of the higher-fidelity
models for the purposes of analysis, they may possess
suitable predictive properties for the purposes of opti-
mization. That is, an approximation may not capture all
the important properties of a higher-fidelity function, but
it may still produce a step that will lead to a satisfactory
improvement (decrease or increase) in the merit function
for the higher-fidelity problem.

The computational tests include both the case when
the relationship between the various levels of models is
favorable and the case when it is not. The relationship
is favorable when the lower-fidelity model can provide
a long sequence of steps with satisfactory directions of
descent for the higher-fidelity merit function before the
lower-fidelity model has to be re-calibrated. The relation-
ship is not favorable when the lower-fidelity model does
not satisfactorily capture the trends in the objective and
constraints computed using the higher-fidelity model on a
significant region of the feasible region.

The AMF approaches could suffer from an over-
reliance on the low-fidelity models if the lower-fidelity
surrogate does not predict the behavior of the higher fi-
delity model adequately. In this case, the AMF will be
forced to take only a few steps using the surrogate infor-
mation before having to resort to re-calibrating the model,
which, in effect, means optimization with high-fidelity
models. Thus, in the worst case, the AMF approach re-
verts to conventional optimization with the high-fidelity
models.

Computational Experiments

The tests described in this paper investigate a specific
type of variable-fidelity modeling—that in which per-
forming a single type of analysis (aerodynamic analysis
using the Euler equations) on a variety of related meshes
provides variable-fidelity models. In this case, the finer
the mesh, the higher the model fidelity and computational
expense.

It will be significantly more difficult to determine the
suitability of the AMF concept when the variable-fidelity
models are represented by different physical models, such
as Navier-Stokes versus Euler, and particularly in extreme
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cases of varying the model fidelity, for instance, Navier-
Stokes versus a linear panel code. It is likely that the
framework will prove infeasible for some model combi-
nations. The accumulation of numerical experience in the
simpler case of variable-resolution models based on a sin-
gle physical model will provide a necessary foundation
for a study of the more difficult case of different physical
models.

The initial experiments are conducted only for two
design variables in order to visualize the algorithms’
progress easily and completely.

The problems were first solved in a single-fidelity
mode by using well-known commercial optimization soft-
ware†, such as NPSOL29 and PORT,30 in order to obtain
a baseline number of function evaluations or iterations
to find an optimum. The problems were then solved in
a single-fidelity mode with research implementations of
methods on which AMF are based to obtain a baseline for
comparison with AMF. The problems were finally solved
with the AMF.

In the study of the two demonstration problems, a
number of interesting issues concerning the quality and
selection of models arose. Initially, computations were
done on arbitrary meshes of different sizes with no rela-
tion between the meshes. While sufficiently fine meshes
should, in principle, produce consistent functions, the
meshes were too coarse (even the finest one) to observe
this effect. Instead, objectives and constraints computed
on unrelated meshes could have wildly disparate trends
and features, a phenomenon observed by other investi-
gators.31 This difficulty was remedied by using coarser
meshes that were proper subsets of the finest mesh.

Initial tests were conducted using the actual function
evaluations obtained by executing the analysis software.
An examination of the problem functions revealed that
they exhibited benign behavior, insofar as the objectives
and constraints in the present study are smooth and very
nearly convex. However, function and gradient evalua-
tion is very expensive even for the small number of de-
sign variables under consideration here. Because the un-
derlying problem was benign but expensive to compute,
it was decided to accumulate generous amounts of data
and to replace the actual functions with a number of ac-
curate response surfaces. It should be emphasized that
the use of response surfaces isnot an integral part of the
approach, and is not even one of the focuses of this study.
Response surfaces were introduced strictly to facilitate the
testing, because they approximate the trends of the actual
test functions so well at a tiny fraction of the computa-
tional cost.

An additional benefit of using response surfaces later
became apparent. In particular, graphics will show that

for the problems under study, the lower-fidelity functions
obtained on coarser meshes provide an excellent approx-
imation (with respect to descent characteristics) to those
computed on finer meshes. This is a most favorable con-
dition for AMF. However, one must also investigate cases
where the lower-fidelity problem does not capture the
high-fidelity descent behavior well. Some of the response
surfaces provide such a test case.

In the experiments, surfaces based on data computed
by executing analyses on finer meshes represents high-
fidelity functions, while those based on data obtained
from analyses on coarser meshes serve as low-fidelity
functions. Again, the response surfaces are used in the
experiments solely to reduce the computational cost to a
point where testing and debugging are practical.

Three types of response surfaces were used:

1. Two-dimensional, uniform, variation diminishing
splines (obtained from the PORT30 package);

2. Kriging (implemented locally);

3. Cubic polynomial response surfaces (coded locally
with assistance from the RSG32 package).

For all three AMF, the consistency conditions were en-
forced via the scaling technique in Chang et al.24 This
technique was found to provide an excellent correction
strategy for the lower-fidelity model in all cases.

Performance of AMF’s is evaluated in terms of the ab-
solute number of calls to the high and low-fidelity func-
tion and sensitivity calculations and the number of “equiv-
alent” high-fidelity computations. The latter are easily
obtained because both analysis codes use multigrid tech-
niques, where this metric is commonly computed.

Finally, a conscious effort was made to implement
the AMF in a straightforward manner, without any “fine-
tuning”, in order to obtain a proof of concept. As will be
discussed later, significant improvements in efficiency can
likely be made.

3D Wing Problem

Optimization Problem. The first demonstration
problem is a three-dimensional aerodynamic wing opti-
mization. The wing consists of a single trapezoidal panel
with a rounded tip. It is parameterized by fifteen vari-
ables, five of which describe the planform, five of which
describe the root section shape, and five of which describe
the tip section shape. The wing and some of the associ-
ated parameters are depicted in Figure 2. Currently, the
two design variables are the tip chord and the tip trailing-
edge setback. The objective functionf(x) is the negative

†The use of names of commercial software in this paper is for accurate reporting and does not constitute an official endorsement, either expressed
or implied, of such products by the National Aeronautics and Space Administration.
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Figure 2: The 3D wing problem

lift-to-drag coefficient ratio,−CL/CD. Several artificial
constraints are imposed in lieu of multidisciplinary con-
straints. Purely geometric constraints ensure a minimum
leading edge radius and a minimum thickness. “Aerody-
namic” constraints are:

1. A lower bound on total liftCL×S, in lieu of a min-
imum payload requirement (S is the semispan wing
planform area);

2. An upper bound onCM (pitching moment coeffi-
cient), in lieu of a trim constraint;

3. An upper bound onCl (rolling moment coefficient),
in lieu of a maximum bending moment.

The aerodynamic analysis code used for this study is
CFL3D.ADII,33 a version of CFL3D34 obtained via the
ADIFOR automatic differentiation tool.35 The surface ge-
ometry was computed based on the problem parameters
via software that uses the RAPID technique.36 The AD-
IFOR generated analysis code includes the capability for
computing the gradients. The volume mesh and associ-
ated gradients needed for CFL3D are generated using a
ADIC37 generated version of CSCMDO.

Two variable-fidelity models and associated con-
straints are generated by performing the CFL3D.ADII
analysis on meshes of increased refinement:

1. 97×25×17 (low fidelity) and

2. 193×49×33 (high fidelity).

Since the analysis uses a multigrid solution process, the
CPU time per converged function evaluation is essen-
tially linear in the number of grid points, resulting in
an eight-fold difference in execution time between adja-
cent levels of fidelity. For example, on an Ultra 1 Sun
workstation, a single function and constraint evaluation
on the 97×25×17 mesh takes eight minutes, and the
193×49×33 mesh analysis takes about an hour, without
computing derivatives.

Discussion of Numerical Results. Figure 3 depicts
the level sets of the objective functions and active
constraints obtained by performing analyses on the
193×49×33 and 97×25×17 meshes. The shaded re-
gions are infeasible. For the current, subsonic case, con-
straintCl is inactive and is not depicted. Solutions are
marked by black squares. Note that this problem has a
favorable structure for AMF. Although the optima are at
different locations, the low-fidelity and high-fidelity ob-
jective and constraints have similar trends.

Initial testing on this problem was done with
MAESTRO-based AMF and with function values ob-
tained directly from CFL3D.ADII on the 193×49×33
mesh for high-fidelity and 97×25×17 for low fidelity.
For the case studied, none of the constraints were active.
The analysis count was as follows. To obtain a solution on
the low-fidelity mesh alone, using non-AMF MAESTRO,
required 17 function and 17 sensitivity calls. Solution
with the high-fidelity mesh alone was attempted but not
completed, due to the expense of direct function and der-
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Figure 3: High-fidelity vs. low-fidelity objectives and active constraints: level sets of actual functions

ivative evaluations. However, it is reasonable to assume
that the solution would not have taken fewer iterations
than that on the low-fidelity mesh. The MAESTRO-based
AMF required 18 low-fidelity functions, 18 low-fidelity
sensitivities, 7 high-fidelity functions, and 7 high-fidelity
sensitivities, for a total of7 + 18/8 = 9 1/4 equivalent
high-fidelity functions and as many sensitivities. Thus the
increase in efficiency is approximately twofold, both in
the number of function and sensitivity computations.

It was at that time that, despite a promising start, it
was decided to postpone further studies with MAESTRO-
based AMF because the test problem structure was inap-
propriate for the MAESTRO approach, given that the ob-
jective and constraint evaluations can be obtained only as
a result of analysis, and there are few constraints and de-
sign variables. MAESTRO-based AMF will be tested at a
later date on an bona fide MDO problem.

Computing with direct analyses was so laborious
and time-consuming that at that stage it was also de-
cided to build response surfaces out of the accumulated
193×49×33 and 97×25×17 data and to continue test-
ing using these substitutes for the CFD analyses.

Figures 4, 5, and 6 show the resulting level sets of the
response surface substitutes for the the objective and ac-
tive constraints obtained from the same CFL3D.ADII data
used to generate the level sets of the actual functions in
Figure 3. While the objective functions are approximated
well in all response surfaces, it is obvious that the spline
and kriging approximations do well with constraints but a
straightforward cubic polynomial response surface does
not provide a good approximation to the problem con-

straints. Moreover, the low-fidelity polynomial model is
not a good approximation to the high-fidelity polynomial
model, as the Figure 6 demonstrates. Thus, the spline and
kriging approximations model the situation in which the
relationship between the high and low-fidelity approxima-
tions is favorable, while the cubic polynomial approxima-
tion models the situation when the relationship is not as
favorable.

The augmented Lagrangian-based AMF was applied
to a response surface substitute for the CFD analysis con-
structed via kriging. Conventional optimization required
37 evaluations of the high-fidelity objective and constraint
values, and 27 evaluations of the high-fidelity objective
and constraint sensitivities. The augmented Lagrangian
AMF required 6 evaluations of the high-fidelity objective
and constraint values, 6 evaluations of the high-fidelity
objective and constraint sensitivities, 51 evaluations of the
low-fidelity objective and constraint values, and 36 evalu-
ations of the low-fidelity objective and constraint sensitiv-
ities. Since the low-fidelity analyses take 1/8 of the time
of the high-fidelity analyses, the augmented Lagrangian
required the equivalent work of6+51/8 = 12 3/8 evalu-
ations of the high-fidelity objective and constraint values,
and6 + 36/8 = 10 1/2 evaluations of the high-fidelity
objective and constraint sensitivities.

The SQP-based approach yielded similar improve-
ments in performance. Conventional optimization, ap-
plied to a cubic polynomial substitute for the CFD anal-
ysis, required 31 high-fidelity functions and 31 high-
fidelity sensitivities. Optimization using the SQP-based
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Figure 4: High-fidelity vs. low-fidelity objectives and active constraints: level sets of kriging approximation
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Figure 5: High-fidelity vs. low-fidelity objectives and active constraints: level sets of spline approximation
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Figure 6: High-fidelity vs. low-fidelity objectives and active constraints: level sets of cubic polynomial approximation
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Full CFD analysis Kriging Spline Polynomial
Augmented Lagrangian AMF 3.0 / 2.6
SQP AMF 2.8 / 2.8 3.0 / 3.0
MAESTRO AMF 1.9 / 1.9

Table 1: Wing optimization problem: Summary of improvement factor due to the AMF in function (first number) and
sensitivity (second number) computations.

maximum
camber

maximum
thickness

Figure 7: The 2D airfoil problem

AMF required 4 high-fidelity functions and 51 low-
fidelity functions, for a total of4 + 51/8 = 10 3/8
equivalent high-fidelity functions and as many sensitivi-
ties. For a spline substitute for the CFD analysis, con-
ventional optimization required 21 high-fidelity functions
and as many sensitivities. The SQP-based AMF required
4 high-fidelity functions, 4 high-fidelity sensitivities, 28
low-fidelity analyses, and 28 low-fidelity sensitivities, or
a total of4 + 28/8 = 7 1/2 equivalent high-fidelity func-
tions and as many sensitivities.

Both the augmented Lagrangian-based AMF and the
SQP-based AMF produced consistent improvements in
efficiency compared to non-AMF versions of the same
codes. Improvements in efficiency due to each AMF are
summarized in Table 1. Furthermore, the performance of
the SQP-based AMF can be improved by reducing the
amount of optimization done using the low-fidelity ap-
proximation.

2D Airfoil Problem

Optimization Problem. In this problem, the objec-
tive function is the negative lift-to-drag coefficient ratio,
−CL/CD, and the single nonlinear constraint is that on
the pitching moment coefficientCM . Figure 7 depicts
the two design variables, maximum camber and maxi-
mum thickness. Function and constraint values are ob-
tained with the FLOMG code38 evaluated on a 129×33
mesh and a 257×65 mesh, with the former currently pro-
viding the lowest level of fidelity. Figure 8 depicts the
level sets obtained directly from FLOMG on the 129×33
and 257×65 meshes, respectively. This problem also has
structure favorable for AMF. While the optima are at dif-
ferent locations, both the low-fidelity functions exhibit the
same general trends as do the high-fidelity functions. Fig-

ure 9 shows that the spline response surface provides an
excellent approximation to the actual functions.

The time per analysis on the 257×65 mesh requires
approximately four times the analysis time on the 129×33
mesh. On an SGI Octane workstation, the actual CPU
times are approximately 8 and 2 minutes, respectively, it-
erating from free-stream conditions.

Discussion of Numerical Results. Again, the AMF
consistently yielded improvements in efficiency com-
pared to non-AMF versions of the same codes. However,
since the airfoil problem is a 2D problem, the gains in rel-
ative efficiency are somewhat smaller (though still very
good) than those observed for the 3D wing problem be-
cause the relative costs of the low- and high-fidelity cal-
culations are smaller for the 2D calculations.

In tests done directly with FLOMG, MAESTRO re-
quired 34 iterations (each included an evaluation of the
objective and constraints and their sensitivities) on the
high-fidelity 257×65 mesh. The MAESTRO-based AMF
required 20 iterations on the 129×33 mesh and 9 iter-
ations on the 257×65 mesh. A reasonable comparison
is made by considering that 20 iterations on the 129×33
mesh are equivalent to 5 iterations on the 257×65 mesh.
Therefore, MAESTRO with AMF took 14 equivalent iter-
ations.

The augmented Lagrangian-based AMF was applied
to a spline substitute for the CFD analysis. Conven-
tional optimization (using analytical derivatives) required
58 evaluations of the high-fidelity objective and constraint
values, and 21 evaluations of the high-fidelity objective
and constraint sensitivities. The augmented Lagrangian
AMF required 6 evaluations of the high-fidelity objective
and constraint values, 6 evaluations of the high-fidelity
objective and constraint sensitivities, 50 evaluations of the
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Figure 8: High-fidelity vs. low-fidelity objectives and active constraints: level sets of actual functions
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Figure 9: High-fidelity vs. low-fidelity objectives and active constraints: level sets of spline approximation

Full CFD analysis Spline
Augmented Lagrangian AMF 3.1 / 1.6
SQP AMF 2.2 / 2.2
MAESTRO AMF 2.4 / 2.4

Table 2: Airfoil optimization problem: Summary of improvement factor due to the AMF in function (first number)
and sensitivity (second number) computations.

low-fidelity objective and constraint values, and 30 evalu-
ations of the low-fidelity objective and constraint sensitiv-
ities. Since the low-fidelity analyses take 1/4 of the time

of the high-fidelity analyses, the augmented Lagrangian
required the equivalent work of6+50/4 = 18 1/2 evalu-
ations of the high-fidelity objective and constraint values,
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and6+30/4 = 13 1/2 evaluations of the high-fidelity ob-
jective and constraint sensitivities. These numbers yield
approximately threefold improvement in the number of
equivalent evaluations.

The SQP-based approach yielded similar improve-
ments in performance. Conventional optimization, ap-
plied to the spline substitute for the CFD analysis required
19 high-fidelity function and sensitivity calls, each. Opti-
mization using the SQP-based AMF required only 4 high-
fidelity and 19 low-fidelity function and sensitivity calls,
each, for a total of4 + 19/4 = 8 3/4 equivalent high-
fidelity analyses. The 2D airfoil optimization results are
summarized in Table 2.

Concluding Remarks and Future Directions

In the preliminary experiments discussed here, the
Approximation Management Frameworks (AMF) yielded
about a threefold improvement in computational cost for
the 3D wing design problem, and a twofold improvement
for the 2D airfoil problem. It is believed that greater im-
provements can be achieved. No “fine tuning” of the AMF
approaches has yet been done, and there is room for im-
provement in the interaction between all the pieces. In
particular, currently the inner subproblem of minimizing
the low-fidelity model is probably being solved to an un-
necessarily high degree of accuracy. Because the analysis
of the algorithms requires the subproblem solution to pro-
ceed only as far as needed to ensure sufficient improve-
ment in the merit function of the hi-fidelity problem, the
subproblems are almost certainly being over-solved. The
efficiency can thus be significantly improved if it is deter-
mined how to terminate the inner subproblem as soon as
it produces the necessary decrease. This question is under
investigation.

The efficacy of the AMF depends on the ability of
the lower-fidelity model to predict the descent (or ascent)
trends in the higher-fidelity model. It was found that even
when this prediction was not favorable, as in the case
of the cubic polynomial substitute, the first-order scaling
technique due to Chang et al. provided an effective cor-
rection for the lower-fidelity model to ensure following
the high-fidelity trends.

While these initial experiments are very promising,
much work remains on further details of the implemen-
tation, as well as conclusions and practical guidance for
using AMF for the selected modeling. The work includes
study of the proper amount of optimization in the AMF
subproblems and the consequences for overall efficiency
of the interaction of the various levels of optimization in
the AMF. The relative efficiency of AMFs based on differ-
ent underlying optimization algorithms will also be stud-
ied. At this point the SQP-based AMF is the most promis-
ing for the single discipline problems and for problem

formulations that rely on multidisciplinary analysis. A
variant of the augmented Lagrangian approach may have
merit in the multidisciplinary setting as well. The MAE-
STRO approach is also promising for multidisciplinary
problems. The AMF idea will also be applied to aerody-
namic optimization with transonic flows; these problems
should more fully exercise the AMF idea. Also to be ex-
amined are hierarchies of approximation based on models
other than variable levels of discretization, such as direct
response surface approximation of the high-fidelity model
using kriging. Finally, the integration of the AMF idea in
multidisciplinary problems will be studied.
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