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OPTIMIZATION WITH VARIABLE-FIDELITY MODELS APPLIED TO WING DESIGN

N. M. ALEXANDROV*, R. M. LEWIS!, C. R. GUMBERT, L. L. GREEN, AND P. A. NEWMANT

Abstract disciplines in a multidisciplinary environment by allevi-
ating the expense of relying exclusively on high-fidelity

~ This work discusses an approach, the Approximgysdels, while taking advantage of well-established engi-
tion Management Framework (AMF), for solving Opt"neering approximation concepts.

mization problems that involve computationally expen- Computational models of varying fidelity have been
sive simulations. AMF aims to maximize the use of lowe(jseq in engineering design for a long tifT8 A survey on
fidelity, cheaper models in iterative procedures with ogye yse of approximations in structural optimization can
casional, but systematic, recourse to higher-fidelity, mMqgg found in Barthelemy and HaftéaRecent overviews
expensive models for monitoring the progress of the @ 5gorithms for aerodynamic analysis and optimization
gorithm. The method is globally convergent to a solutiqty, pe found e.g., in Jame&amd Newman et 4. Pro-
of the original, high-fidelity problem. Three versions ofeqyres for using variable-fidelity models, however, have
AMF, based on three nonlinear programming algorithMseen |argely based on heuristics, and convergence to a so-
are demonstrated on a 3D aerodynamic wing optimizatigfion of the highest-fidelity optimal design problem has
problem and a 2D airfoil optimization problem. In both,ot peen guaranteed, in general. Until recently, with a
cases Euler analysis solved on meshes of various refipgy exceptiong;? the analysis had focused on the ques-
ment provides a suite of variable-fidelity models. Preling,y of convergence to a solution of the surrogate prob-
inary results indicate threefold savings in terms of highsy, 10,11 p e to improvements in the numerical modeling
fidelity analyses in case of the 3D problem and twofold -hniques and the increased availability of high-fidelity
savings for the 2D problem. analyses, optimization with variable-fidelity approxima-
tions has become a subject of much interest in the past
Key Words: Approximation concepts, approximatiorfew yearst?—14
management, model management, surrogate optimiza-A number of methods for managing models and ap-
tion, aerodynamic optimization, nonlinear programmingroximations of varying fidelity have been recently in-

wing design troduced and analyzed. These include methods that use
AMS Subject Classification: 65K05, 49M37 sensitivitied> 8 and methods that do nét. This paper
begins a computational investigation of the practical ef-
Introduction fectiveness of the methods'#*8on problems of aerody-

_ . _ _ _ namic design optimization.
Many physical phenomena in engineering design can For the purposes of the present work, the optimal de-

be described by computational models of high physiign problem is represented by the following nonlinear
cal fidelity or numerical accuracy. However, the use @fogramming problem (NLP):

high-fidelity models, such as the Navier-Stokes equations

or those based on fine computational meshes, in itera- minimize f(z)
tive procedures can be prohibitively expensive. On the subjectto g¢g(z) <0 (1)
other hand, the use of corresponding lower-fidelity mod- [<z<u

els alone does not guarantee improvement for higher- . _ o
fidelity design. This paper discusses an approach tMéerez are the design variables, the objectjvand the
aims to facilitate design optimization and integration ¢fector-valued constraintsare smooth (i.e., continuously
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Figure 1: Conventional optimization vs. AMF

differentiable) nonlinear functions, and< = < wu de- fidelity model occasionally, based on a set of systematic
notes bound constraints on design variables. criteria. The salient features of AMF are as follows.
This work concerns a general approach for con-
trolling the use of variable-fidelity models—the first- ® Although a lower-fidelity model may not capture
order trust-region Approximation Management Frame- & particular feature of the physical phenomenon to
work (AMF)—in solving problem (1). the same degree of accuracy (or at all) as its higher-
The conceptual distinction between AMF and conven-  fidelity counterpart, a lower-fidelity model may still
tional optimization is depicted in Figure 1. On the left, in ~ have satisfactory predictive properties for the pur-
conventional optimization, the optimizer and the analy-  Poses of finding a good direction of improvement
sis software exchange information as follows. The anal-  for the higher-fidelity model.
ysis supplies the optimizer with objective and constraint . )
function and derivative informationf, V f, g, Vg, while » AMF replaces the local, Taylor series approxima-
the optimizer produces new values of the design variables  tions of the conventional optimization by general
« for re-analysis. The optimizer uses the function and ~ Nonlinear models required to satisfy a set of first-
derivative information to build local approximations—  Order consistency conditions defined later in the pa-
usually first or second-order Taylor series—internally. If ~ Per- In principle, AMF is capable of handling ar-
evaluating the problem functions and derivatives involves ~ Pitrary models, provided the easily imposed consis-
a simulation of high accuracy but high computational cost ~ €ncy conditions are satisfied.
(e.g., the Navier-Stokes equations), repeated consultations |n particular, AMF is not limited to the use of al-

with analySiS requirEd by the Optimizer are expenSive. gebraiC, Ta_y|0r series, or response surface approx-
Now suppose one also has a suite of less accurate but imations. Analyses of variable mesh resolution or

also less expensive approximate models or surrotjafes of variable physical fidelity (such as Navier-Stokes

the same phenomenon. A lower-fidelity model of the ob-  and Euler codes) can be used as variable-fidelity

jective is denoted by{af(x)} and lower-fidelity model function evaluators in AMF.

of the constraints bya9(z)}. The associated sensitiv-

ities with respect to the design variables dfa/ (x)} e In AMF-based algorithms, the bulk of the com-

and{Va9(z)}. putational expense involves calculations based on
The right-hand side of Figure 1 depicts informa- lower-fidelity models in iterations of optimization

tion exchange between the optimizer and the analy- or search procedures.

ses in a conceptual AMF scheme. Here the opti-

mizer receives the function and sensitivity information e AMF is based on the trust-region methodold§y:
al(z),Val (x),a9(x), Va9 (x) from the lower-fidelity which can be described as an adaptive move limit
model to build internal local models (Taylor series). Ex- strategy for improving the global behavior of op-
pensive, high-fidelity computations proceed outside the timization algorithms based on local models. The
optimization loop and serve to re-calibrate the lower-  trust-region methodology ensures the convergence

*Some authors make distinctions in the use of the terms “models”, “surrogates”, and “approximations.” For simplicity, the terms are used
interchangeably here.
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of the AMF scheme to a solution of the highering algorithm is the augmented Lagrangian approach as
fidelity problem by providing a measure of the suimplemented in Conn, Gould, and Toff#.

rogate’s predictive behavior, a criterion for updat- In this method, the explicit nonlinear inequality con-
ing the surrogate, and a systematic response to sitraints of problem (1) are converted to equalities by intro-
uations in which an optimization phase performedlicing nonnegative artificial (slack) variableso define
using a surrogate gives either an incorrect or a pabe equality constraints

prediction of the higher-fidelity model's actual be- L o
havior. (z,2) = g(z) + 2,

The proposed AME methods have strong theoretical pr(%hich gives rise to the following equivalent formulation:
erties and have been tested on small, closed-form prob- minimize f(x)

lems. The framework’s generality means, however, that it e

admits not only a wide range of models, but also an ex- subject to hl(? aZ:)<:u0 (2)
tensive set of rules for governing parts of AMF. The rules 2>0

do not influence the fact of convergence, but they strongly
influence the algorithm’s efficiency. Moreover, the perfoffhe associated augmented Lagrangian is
mance of the algorithm will also be problem-dependent. 1
Hence, much computational experience is needed both to(z, z, A; 1) = f(z) + A h(z, 2) + o I h(zx, 2) ||§ ,
validate the concept and to arrive at an advantageous set H
of rules for the use of approximations within a specifi¥hereA is the vector of Lagrange multipliers, apd> 0
instance of AMF. This study intends to demonstrate tifethe penalty parameter. For appropriate values ahd
concept of AMF on two aerodynamic optimization prob?lv minimization of L solves problem (2). However, since
lems. In addition, the study begins the accumulation #¥€ appropriate values gfand are not knowra priori,
the necessary computational experience that should ga.terative approach is devised that solves an augmented
sult in further practical implementations of AMF, both fok-@grangian subproblem while updatingndA. The con-
single-discipline and multidisciplinary design optimizatentional augmented Lagrangian approach is described in
tion (MDO). the following pseudo-code:

The paper is organized as follows. The next section |nitialize (Zes 2e)s Ao fhe
briefly describes the three AMF under study. The compu- po until convergence:
tational demonstration is then described. The paper con- With (., z.) as the initial point and fixed., .,
cludes with lessons learned to date and some mention of  gplve the following subproblem fdr:., , 2. ):

ongoing work. minimize L(z, 2; A, ftc)

subjectto <z <u

AMF under Study Z>0

There are, in principle, as many possible AMF as there Set(xe, zc) = (v, 24)
are optimization algorithms, because AMF may be de- Update. and .
fined as a mechanism for a systematic alternation betweenENd do

the available models within an optimization procedure. fhe corresponding augmented Lagrangian-based AMF

detailed discussion of the algorithms and analysis of thees a subproblem that minimizes dabut its modek”,
entire class of first-order AMF for constrained optimizayhich yields the following AMF:

tion can be found in Alexandrov and Lewfs.

In this section, three AMF are described, and the rea-
sons for their selection are discussed. The first AMF is
based on an augmented Lagrangian approach, the second
on a multi-level optimization algorithm, and the third on
an SQP approach. In the remainder of the paper, the sub-
scripts “c” and “+" denote the current and the new iterate,
respectively.

Initialize (x., z¢), Ac, pe
Do until convergence:
Compute the high-fidelity. andV L at (z., z.)
Select an approximationf to L, with
af (Tey Zes A fte) = L(®e, Ze, Acs 1) @nd
VaCL(xC, Zey Aci fe) = VL(Zey ey Acs fe)
Do until convergence:
Solve approximately fofz, z4):

. minimize L ey fhe
Augmented Lagrangian-based AMF 2 ac (2,25 A, fe)

subject to <z <u
The augmented Lagrangian method for constrained 2>0
optimization allows for an immediate extension of the un- | ze—z | <A
constrained AMF to constrained problems. The underly- | ze — 2 || <A
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End do Because the current demonstration problems have one dis-

ComputeR = LL((T’CZZjf))_—aLL((Tx:ZZ:AAl;)) cipline and a small number of variables, only the bilevel

UpdateA, and(z., z;),bésedc on the value g MAESTRO procedure will be described here.

Update). and . If (z.,z.) is the current iterate, a model of the con-
End do straintsa!” is first selected that satisfies the following con-

sistency conditions for the constraints at that point:

Minimizing ol is itself an iterative procedure that now
uses approximations (e.g., Taylor series) to the lower- a(ze,2¢e) = h(xe 2e) (4)
fidelity modela’. See referenéfor further details. Va'(ze,ze) = Vh(xe, 2e).

The conditions on the modef are known as the first- o ‘
order consistency conditions. They are imposed by a cprsubsteps; = (s¥,s%) is computed that approximately
rection technique introduced by Chang et‘This tech- minimizes that model within a trust region. The process
nique corrects a low-fidelity versiogy, of a function so of computing the substep is itself an iterative procedure.
that it agrees to first-order with a given high-fidelity veNext, a modela/ of the objective function or the La-
siongni. This is done by defining the scale factor grangian is selected that satisfies the consistency condi-
tions at the just computed point:

By = 28
9o(@) af(@e+s7) = flae+s]) (5)
Given the current design variables, one builds a first- Val(ve+sY) = Vf(ve+sy).

order mode)3.. of 3 aboutz..:
The substep, = (s, s3) is computed in another loop to

Be(x) = plxe) + VB(x)T (x — ). approximately minimize the modelin another trust region.
_ ) The total trial step.. is the sum of the two substeps. The
The local model of3 is then used to scalg, to obtain a gtep) is evaluated using a merit function (the augmented
better approximation(x) of ¢n;: Lagrangian or thé, penalty function).
N - _ The consistency conditions can be relaxed, but that
oni(@) = B(z)g0(x) ~ alz) = fe(@)d0(). line of reasoning will not be pursued here, because, given
The corrected approximatiar(z) has the properties thatany two models, the conditions are easily enforced by us-
a(ze) = ¢ni(x.) andVa(z,) = Voni(x.). ing the correction techniques due to Chang, ét aThe
The augmented Lagrangian-based AMF is relativef@nsistency conditions are not enforced within each opti-
easy to implement and can be proven to work reliably ufization sweep.
der reasonable assumptions. The underlying framework This algorithm for computing the trial step is a special
is well understood and is a basis for a number of popukise of the MAESTRO class with the distinction that the
codes. The expected difficulties are also those of the §pRUSS-Newton model of the constraints and the quadratic
derlying optimization algorithm—augmented Lagrangiafiodel of the objective or the Lagrangian have been re-
methods can converge slowly, depending on hoiw es- Pplaced by general, first-order models that satisfy the con-
timated, and they are also subject to ill-conditioning:assistency conditions (4) and (5).

approaches. Since the underlying algorithm belongs to the MAE-
STRO class, this AMF will converge to a critical point
MAESTRO-based AMF of the high-fidelity problem under the assumptions that

lead to convergence of the underlying class. This means
Another AMF is based on a class of multilevel algdinding the substeps; ands, that will satisfy the suffi-
rithms for large-scale constrained trust-region optimizaient decrease conditions necessary for establishing con-
tion (MAESTRO)?>27 This AMF is of interest due vergence.
to MAESTRO’s convergence properties and a natural Implementing a MAESTRO-based AMF is more la-
structure for MDO problems with arbitrary couplingsborious than the augmented Lagrangian-based AMF. The
The reader is referred to Alexandf8vor details of the benefits are greater efficiency and the expected incorpora-
MAESTRO-based AMF. A brief description follows.  tion of MDO problems in the near future.
The present version of the underlying MAESTRO ap-
proach deals with problem (1) by converting the explic§op-pased AMF
inequalities into equalities via squared slacks:

o Sequential Quadratic Programming (SQP) methods
minimize f(z) (3) '€ apopular class of methods for solving nonlinear pro-

subjectto h(w,z) = g(x) + 22 = 0. gramming problems. An overview of these algorithms can
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be found in Gill, Murray, and Wright® There are many commercial software. The drawbacks of the approach are
variants of SQP. IfB. denotes an approximation to theot obvious at this point.
Hessian of the objective functiofy one conventional ap-

proach to solving problem (1) is the following: Computational Demonstrations

Initialize ..
Do until convergence:
Solve the following subproblem for, = = — x.:
minimize V£ (z. + s)'s+ 3sTB.s

The computational demonstrations are intended to
validate the effectiveness of AMF. The ability to trans-
fer the computational load onto the lower-fidelity, cheaper
computations, and thereby reduce the overall computa-
subjectto  g(z.) + Vg(z.)Ts <0 tional cost, will depend on the predictive qualities of the

I<z<u surrogates. Note that even though the surrogate mod-
Updatez. els may not be good approximators of the higher-fidelity
End do models for the purposes of analysis, they may possess

i o . suitable predictive properties for the purposes of opti-
Typically, the objective function in the SQP subprolyi;ation. That is, an approximation may not capture all

lem is a quadratic approximation to the problem Lgne jmportant properties of a higher-fidelity function, but
grangian. Globalization strategies, such as line searchqfay still produce a step that will lead to a satisfactory
trust-region approaches, are then used to insure the robiysisrovement (decrease or increase) in the merit function

ness of the algorithm. _ _ for the higher-fidelity problem.
An SQP-based AMF studied here is based on the algo-

. . ) ) ) f&® favorable when the lower-fidelity model can provide
are given by a single analysis execution (i.e., when th%{q

. . ) ong sequence of steps with satisfactory directions of
is no natural multilevel structure in the p“’b'e_m)- ., ... descent for the higher-fidelity merit function before the
Let P(x; 1) be a merit function for the high-fidelity o fielity model has to be re-calibrated. The relation-
problgm. In the work d_escrlbed hene,ls the!l, penalty ship is not favorable when the lower-fidelity model does
function, but other choices are possible. The SQP-ba%% satisfactorily capture the trends in the objective and

AMFis: constraints computed using the higher-fidelity model on a

Initialize z., . significant region of the feasible region.

Do until convergence: The AMF approaches could suffer from an over-
Select approximations/ anda?, with reliance on the low-fidelity models if the lower-fidelity
al (z) = f(ze); Val (z.) = Vf(z.) and surrogate does not predict the behavior of the higher fi-
ad(z.) = g(xe); Vad(z,) = Vg(xe). delity model adequately. In this case, the AMF will be
Solve approximately fos = = — . forced to take only a few steps using the surrogate infor-

minimize al (ze + 5) mation before having to resort to re-calibrating the model,

which, in effect, means optimization with high-fidelity

i g g Tg < .
subjectto ag(zc) + Vag(ze)"s <0 models. Thus, in the worst case, the AMF approach re-

<zr< . o ) ST
I lsﬂ x - Z verts to conventional optimization with the high-fidelity
End do oo = ¢ models.
ComputeP (z. + s.) ) )
UpdateA. andz., u. based on the value d? Computational Experiments
End do

The tests described in this paper investigate a specific
Details and analysis of the implementation can be foubype of variable-fidelity modeling—that in which per-
in.2? Briefly, the approach has a number of benefits. Tierming a single type of analysis (aerodynamic analysis
SQP-based AMF is relatively easy to implement and cousing the Euler equations) on a variety of related meshes
verges very rapidly once it is near a solution. It hafrovides variable-fidelity models. In this case, the finer
dles the inequality constraints directly and enjoys the éhe mesh, the higher the model fidelity and computational
ficiency of SQP methods. By choosindy,. sufficiently expense.
large, it can be arranged for the first iteration to go to a so- It will be significantly more difficult to determine the
lution of the lower-fidelity problem. This feature must bsuitability of the AMF concept when the variable-fidelity
obtained by pre-processing in the other approaches. Thedels are represented by different physical models, such
SQP-based AMF also allows for an easy incorporation a$ Navier-Stokes versus Euler, and particularly in extreme
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cases of varying the model fidelity, for instance, Naviefor the problems under study, the lower-fidelity functions
Stokes versus a linear panel code. It is likely that tlbtained on coarser meshes provide an excellent approx-
framework will prove infeasible for some model combiimation (with respect to descent characteristics) to those
nations. The accumulation of numerical experience in themputed on finer meshes. This is a most favorable con-
simpler case of variable-resolution models based on a giition for AMF. However, one must also investigate cases
gle physical model will provide a necessary foundatiomhere the lower-fidelity problem does not capture the
for a study of the more difficult case of different physicdligh-fidelity descent behavior well. Some of the response
models. surfaces provide such a test case.

The initial experiments are conducted only for two In the experiments, surfaces based on data computed
design variables in order to visualize the algorithmby executing analyses on finer meshes represents high-
progress easily and completely. fidelity functions, while those based on data obtained

The problems were first solved in a single-fidelitfrom analyses on coarser meshes serve as low-fidelity
mode by using well-known commercial optimization soffunctions. Again, the response surfaces are used in the
waré', such as NPSOE and PORT® in order to obtain experiments solely to reduce the computational cost to a
a baseline number of function evaluations or iteratiop®int where testing and debugging are practical.
to find an optimum. The problems were then solved in Three types of response surfaces were used:

a single-fidelity mode with research implementations of _ _ _ o S
methods on which AMF are based to obtain a baseline for1- Two-dimensional, uniform, variation diminishing
comparison with AMF. The problems were finally solved  SPlines (obtained from the PORpackage);

with the AMF.

In the study of the two demonstration problems, a
number of interesting issues concerning the quality and3, Cubic polynomial response surfaces (coded locally
selection of models arose. Initially, computations were  jth assistance from the R$&package).
done on arbitrary meshes of different sizes with no rela-
tion between the meshes. While sufficiently fine meshieer all three AMF, the consistency conditions were en-
should, in principle, produce consistent functions, tiferced via the scaling technique in Chang et‘alThis
meshes were too coarse (even the finest one) to obséegdnique was found to provide an excellent correction
this effect. Instead, objectives and constraints compusstategy for the lower-fidelity model in all cases.
on unrelated meshes could have wildly disparate trends Performance of AMF’s is evaluated in terms of the ab-
and features, a phenomenon observed by other invesgilute number of calls to the high and low-fidelity func-
gators®® This difficulty was remedied by using coarsetion and sensitivity calculations and the number of “equiv-
meshes that were proper subsets of the finest mesh. alent” high-fidelity computations. The latter are easily

Initial tests were conducted using the actual functi@btained because both analysis codes use multigrid tech-
evaluations obtained by executing the analysis softwanégues, where this metric is commonly computed.

An examination of the problem functions revealed that Finally, a conscious effort was made to implement
they exhibited benign behavior, insofar as the objectividee AMF in a straightforward manner, without any “fine-
and constraints in the present study are smooth and vietying”, in order to obtain a proof of concept. As will be
nearly convex. However, function and gradient evaludiscussed later, significantimprovements in efficiency can
tion is very expensive even for the small number of dékely be made.

sign variables under consideration here. Because the un-

derlying problem was benign but expensive to compute, 3D Wing Problem

it was decided to accumulate generous amounts of data

and to replace the actual functions with a number of ac- Optimization Problem.  The first demonstration
curate response surfaces. It should be emphasized gigblem is a three-dimensional aerodynamic wing opti-
the use of response surfaces an integra| part of the mization. The wing consists of a single trapezoidal panel
approach, and is not even one of the focuses of this stugth a rounded tip. It is parameterized by fifteen vari-
Response surfaces were introduced strictly to facilitate thles, five of which describe the planform, five of which
testing, because they approximate the trends of the ac@ggcribe the root section shape, and five of which describe
test functions so well at a tiny fraction of the computdbe tip section shape. The wing and some of the associ-
tional cost. ated parameters are depicted in Figure 2. Currently, the

An additional benefit of using response surfaces laf#0 design variables are the tip chord and the tip trailing-
became apparent. In particular, graphics will show th@@ige setback. The objective functig(r) is the negative

2. Kriging (implemented locally);

TThe use of names of commercial software in this paper is for accurate reporting and does not constitute an official endorsement, either expressed
or implied, of such products by the National Aeronautics and Space Administration.
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Figure 2: The 3D wing problem
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lift-to-drag coefficient ratio—C},/Cp. Several artificial Since the analysis uses a multigrid solution process, the
constraints are imposed in lieu of multidisciplinary conrPU time per converged function evaluation is essen-
straints. Purely geometric constraints ensure a minimdtiadly linear in the number of grid points, resulting in
leading edge radius and a minimum thickness. “Aerodgn eight-fold difference in execution time between adja-
namic” constraints are: cent levels of fidelity. For example, on an Ultra 1 Sun
) o . workstation, a single function and constraint evaluation
1. Alower boundon total lifCz x S, inlieu ofamin- o the 922517 mesh takes eight minutes, and the
imum payload requiremeng(is the semispan wing 1 93, 49,33 mesh analysis takes about an hour, without
planform areay); computing derivatives.

2. An upper bound o’ (pitching moment coeffi-
cient), in lieu of a trim constraint; Discussion of Numerical Results Figure 3 depicts

_ o the level sets of the objective functions and active
3. An upper bound of (rolling moment coefficient), constraints obtained by performing analyses on the
in lieu of a maximum bending moment. 193x49x33 and 9%25x17 meshes. The shaded re-

The aerodynamic analysis code used for this studyg,::%?irs1 tza(;e i?fiiziltti)\lleez. a':nc:jr itzig?rc;zn?(,:tse %bsgrgﬁjgiii’:r%n'
CFL3D.ADII,® a version of CFL3B* obtained via the L pictea.

. e ~marked by black squares. Note that this problem has a
ADIFOR automatic differentiation todf. The surface ge f %/Forable structure for AMF. Although the optima are at
iffe

ometry was computed based on the problem paramet . o . L
via so?‘ltware that%ses the RAPID tecr?niq?lﬁeThz AD- rent locations, the low-fidelity and high-fidelity ob-
%?tive and constraints have similar trends.

IFOR generated analysis code includes the capability Initial testing on this problem was done with

computing the gradients. The volume mesh and as.sci\ﬁIAESTRO-based AMF and with function values ob-

ated gradients needed for CFL3D are generated using a .
ADIC? generated version of CSCMDO. t%uned directly from CFL3D.ADII on the 19349x33

Two variable-fidelity models and associated corEJeSh for high-fidelity and 9%25x17 for low fidelity.

straints are generated by performing the CFL3D ADJrIor the case studied, none of the constraints were active.
analysis on meshes of increased refinement: he analysis count was as follows. To obtain a solution on

the low-fidelity mesh alone, using non-AMF MAESTRO,

1. 97x25x17 (low fidelity) and required 17 function and 17 sensitivity calls. Solution

S with the high-fidelity mesh alone was attempted but not

2. 193x49x33 (high fidelity). completed, due to the expense of direct function and der-
7
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193x49x33 mesh, CL/CD, CLxS, CM 97x25x17 mesh, CL/CD, CLxS, CM
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Figure 3: High-fidelity vs. low-fidelity objectives and active constraints: level sets of actual functions

ivative evaluations. However, it is reasonable to assusteaints. Moreover, the low-fidelity polynomial model is
that the solution would not have taken fewer iteratiom®t a good approximation to the high-fidelity polynomial
than that on the low-fidelity mesh. The MAESTRO-basadodel, as the Figure 6 demonstrates. Thus, the spline and
AMF required 18 low-fidelity functions, 18 low-fidelity kriging approximations model the situation in which the
sensitivities, 7 high-fidelity functions, and 7 high-fidelityelationship between the high and low-fidelity approxima-
sensitivities, for a total of + 18/8 = 9 1/4 equivalent tions is favorable, while the cubic polynomial approxima-
high-fidelity functions and as many sensitivities. Thus thimn models the situation when the relationship is not as
increase in efficiency is approximately twofold, both ifavorable.

the number of function and sensitivity computations.

It was at that time that, despite a promising start, |6
was decided to postpone further studies with MAESTR@tructed via kriging. Conventional optimization required
base(_j AMF because the test problem structure was ingp-o. 1y ations of the high-fidelity objective and constraint
propnate for the MAESTRO qpproach, given t_hat the Oeélues, and 27 evaluations of the high-fidelity objective
jective and constraint evaluations can be obtained only constraint sensitivities. The augmented Lagrangian

a result of analysis, and there are few constraints and & : : P 2
. ) ! ) F required 6 evaluations of the high-fidelity objective
sign variables. MAESTRO-based AMF will be tested t&hd constraint values, 6 evaluations of the high-fidelity

Iateédate OtT‘ an b_c:r?a(;‘_lde lVIDO Iproblem. labori objective and constraint sensitivities, 51 evaluations of the
d t(') mputing wit tlrrf(t: ?ntﬁ ytsef Wa?t so fa IO o 8w—fidelity objective and constraint values, and 36 evalu-
and time-consuming that at that stageé it was also Ogyq g of the low-fidelity objective and constraint sensitiv-

cided 1o build response surfaces out of the accumula}ﬁ s. Since the low-fidelity analyses take 1/8 of the time

193x49x33 and 9% 25x17 data and to continue test- . . :
; . ) of the high-fidelity analyses, the augmented Lagrangian
ing using these substitutes for the CFD analyses. g y y 9 grang

. ; equired the equivalent work 6f+51/8 = 12 3/8 evalu-
Figures 4, 5, and 6 s_how the resulting Ieyel ;ets of t flons of the high-fidelity objective and constraint values,
response surface substitutes for the the objective and

tive constraints obtained from the same CFL3D.ADI.I dagﬁqeit?\r/s gﬁ% Eor} gtrla/iites\(/:rl:g{?itl/a;ﬂ'essf)f the high-fidelity
used to generate the level sets of the actual functions'i

Figure 3. While the objective functions are approximated The SQP-based approach yielded similar improve-
well in all response surfaces, it is obvious that the splifieents in performance. Conventional optimization, ap-
and kriging approximations do well with constraints butRlied to a cubic polynomial substitute for the CFD anal-
straightforward cubic polynomial response surface dogsis, required 31 high-fidelity functions and 31 high-
not pro\/ide a good approximation to the pr0b|em Coﬁdelity sensitivities. Optimization using the SQP-based

The augmented Lagrangian-based AMF was applied
a response surface substitute for the CFD analysis con-
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Figure 4: High-fidelity vs. low-fidelity objectives and active constraints: level sets of kriging approximation
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Figure 5: High-fidelity vs. low-fidelity objectives and active constraints: level sets of spline approximation
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Figure 6: High-fidelity vs. low-fidelity objectives and active constraints: level sets of cubic polynomial approximation
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Full CFD analysis| Kriging | Spline | Polynomial
Augmented Lagrangian AME 3.0/2.6
SQP AMF 28/2.8| 3.0/3.0
MAESTRO AMF 1.9/1.9

Table 1: Wing optimization problem: Summary of improvement factor due to the AMF in function (first number) and
sensitivity (second number) computations.

maximum
thickness
e B
maximum V
camber f \ — ¥

Figure 7: The 2D airfoil problem

AMF required 4 high-fidelity functions and 51 low-ure 9 shows that the spline response surface provides an
fidelity functions, for a total of4 + 51/8 = 10 3/8 excellent approximation to the actual functions.
equivalent high-fidelity functions and as many sensitivi- The time per analysis on the 2585 mesh requires
ties. For a spline substitute for the CFD analysis, coapproximately four times the analysis time on the £23
ventional optimization required 21 high-fidelity functionsnesh. On an SGI Octane workstation, the actual CPU
and as many sensitivities. The SQP-based AMF requittades are approximately 8 and 2 minutes, respectively, it-
4 high-fidelity functions, 4 high-fidelity sensitivities, 28erating from free-stream conditions.

low-fidelity analyses, and 28 low-fidelity sensitivities, or

atotal of4 4 28/8 = 7 1/2 equivalent high-fidelity func-  piscussion of Numerical Results Again, the AMF
tions and as many sensitivities. consistently yielded improvements in efficiency com-
Both the augmented Lagrangian-based AMF and tpared to non-AMF versions of the same codes. However,
SQP-based AMF produced consistent improvementssince the airfoil problem is a 2D problem, the gains in rel-
efficiency compared to non-AMF versions of the samgive efficiency are somewhat smaller (though still very
codes. Improvements in efficiency due to each AMF ag@od) than those observed for the 3D wing problem be-
summarized in Table 1. Furthermore, the performancegfuse the relative costs of the low- and high-fidelity cal-
the SQP-based AMF can be improved by reducing tBalations are smaller for the 2D calculations.
amount of optimization done using the low-fidelity ap- In tests done directly with FLOMG, MAESTRO re-

proximation. quired 34 iterations (each included an evaluation of the
objective and constraints and their sensitivities) on the
2D Airfoil Problem high-fidelity 257x65 mesh. The MAESTRO-based AMF

required 20 iterations on the 1233 mesh and 9 iter-

Optimization Problem. In this problem, the objec- ations on the 25¥65 mesh. A reasonable comparison
tive function is the negative lift-to-drag coefficient ratiois made by considering that 20 iterations on the 239
—C1/Cp, and the single nonlinear constraint is that amesh are equivalent to 5 iterations on the 6% mesh.
the pitching moment coefficien®,;. Figure 7 depicts Therefore, MAESTRO with AMF took 14 equivalent iter-
the two design variables, maximum camber and maxitions.
mum thickness. Function and constraint values are ob- The augmented Lagrangian-based AMF was applied
tained with the FLOMG cod® evaluated on a 12833 to a spline substitute for the CFD analysis. Conven-
mesh and a 25765 mesh, with the former currently protional optimization (using analytical derivatives) required
viding the lowest level of fidelity. Figure 8 depicts th&8 evaluations of the high-fidelity objective and constraint
level sets obtained directly from FLOMG on the 2283 values, and 21 evaluations of the high-fidelity objective
and 25% 65 meshes, respectively. This problem also haed constraint sensitivities. The augmented Lagrangian
structure favorable for AMF. While the optima are at difAMF required 6 evaluations of the high-fidelity objective
ferentlocations, both the low-fidelity functions exhibitthand constraint values, 6 evaluations of the high-fidelity
same general trends as do the high-fidelity functions. Figpjective and constraint sensitivities, 50 evaluations of the
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Figure 8: High-fidelity vs. low-fidelity objectives and active constraints: level sets of actual functions
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Figure 9: High-fidelity vs. low-fidelity objectives and active constraints: level sets of spline approximation

Full CFD analysis| Spline
Augmented Lagrangian AMK 3.1/1.6
SQP AMF 22122
MAESTRO AMF 24124

Table 2: Airfoil optimization problem: Summary of improvement factor due to the AMF in function (first number)
and sensitivity (second number) computations.

low-fidelity objective and constraint values, and 30 evalof the high-fidelity analyses, the augmented Lagrangian
ations of the low-fidelity objective and constraint sensitivequired the equivalent work 6f+50/4 = 18 1/2 evalu-
ities. Since the low-fidelity analyses take 1/4 of the timetions of the high-fidelity objective and constraint values,
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and6+30/4 = 13 1/2 evaluations of the high-fidelity ob-formulations that rely on multidisciplinary analysis. A
jective and constraint sensitivities. These numbers yieldriant of the augmented Lagrangian approach may have
approximately threefold improvement in the number ofierit in the multidisciplinary setting as well. The MAE-
equivalent evaluations. STRO approach is also promising for multidisciplinary

The SQP-based approach yielded similar improveroblems. The AMF idea will also be applied to aerody-
ments in performance. Conventional optimization, apamic optimization with transonic flows; these problems
plied to the spline substitute for the CFD analysis requiréfiould more fully exercise the AMF idea. Also to be ex-
19 high-fidelity function and sensitivity calls, each. Optiamined are hierarchies of approximation based on models
mization using the SQP-based AMF required only 4 highther than variable levels of discretization, such as direct
fidelity and 19 low-fidelity function and sensitivity callsresponse surface approximation of the high-fidelity model
each, for a total oft + 19/4 = 8 3/4 equivalent high- using kriging. Finally, the integration of the AMF idea in
fidelity analyses. The 2D airfoil optimization results aréwultidisciplinary problems will be studied.
summarized in Table 2.
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