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ROBUSTNESS OF FLEXIBLE SYSTEMS

WITH COMPONENT-LEVEL

UNCERTAINTIES

Peiman G. Maghami �

NASA Langley Research Center, Hampton, VA 23681

Robustness of 
exible systems in the presence of model uncertainties at the
component level is considered. Speci�cally, an approach for formulating robustness
of 
exible systems in the presence of frequency and damping uncertainties at the
component level is presented. The synthesis of the components is based on a
modi�cations of a controls-based algorithm for component mode synthesis. The
formulation deals �rst with robustness of synthesized 
exible systems. It is then
extended to deal with global (non-synthesized ) dynamic models with component-level
uncertainties by projecting uncertainties from component levels to system level. A
numerical example involving a two-dimensional simulated docking problem is worked
out to demonstrate the feasibility of the proposed approach.

Introduction

Component mode synthesis is a well established
area in modeling of 
exible systems 1�6. There are
several advantages of modeling via component mode
synthesis. These include: (1) It allows much inde-
pendence in the design and analysis of components,
i.e., the work can be performed by di�erent groups or
organizations. A good example is the International
Space Station which are built by di�erent companies
in several countries. (2) It increases the power
of existing �nite-element analysis and design, by
allowing it to handle excessively large problems; (3)
It allows a direct synthesis of substructure test data.
This is particularly useful for very large structural
systems (such as the International Space Station)
that cannot be tested as a whole. It can also be
used as a part of an experimental veri�cation tool
for substructures before deployment as a connected
structure, for example, to provide uncertainty mod-
els for the component dynamics.

In applications of robust control to 
exible sys-
tems, uncertainty models have been typically as-
sumed or de�ned for the combined (full-up) system.
This approach is acceptable so long as these un-
certainties (in terms of structures and levels) have
been veri�ed through experimental work. However,
this is not the case in many situations. A good
example is where ground testing of the assembled
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structure is not possible, i.e., only component-based
testing is feasible. In such cases, reliable uncertainty
models can only be de�ned for the components.
Consequently, methods are needed to provide for
robust design and analysis of 
exible systems with
the uncertainty de�ned at the component levels.
In this paper, robustness of 
exible systems with

component level uncertainties are addressed. First,
robustness of a synthesized system to uncertainties
in the frequency and damping of its components
is considered. The approach used for component
synthesis is based on a slight modi�cation of the
control-based synthesis algorithm by Maghami and
Lim.7 The synthesized plant in transformed coordi-
nates is placed in a Linear Fractional Transformation
(LFT) form for robust design and analysis. Next,
a formulation is also presented through which the
uncertainties at the component level can be ex-
tended to system level uncertainties for design or
analysis. This is quite useful in situations wherein
while a global model of the assembled system is avail-
able, uncertainties are de�ned for the components
only. The proposed approach is applied to a two-
dimensional problem involving the docking of two
components in space.

Substructure Synthesis

Assume that two 
exible systems are connected
as shown in Fig. 1. These systems may represent
two components of a larger 
exible body (such as
spacecraft or aircraft), or they may represent two
self-suÆcient systems that have joined for a speci�c
purpose, such as two spacecraft docking. Following
the approach of Maghami and Lim,7 the interface
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forces and moments (between the two components)
may be considered as control input forces. A block
diagram for the system is illustrated in Fig. 2.
Here, each of the component plants are represented
by P1 and P2, respectively. Associated with each
component model, there is uncertainty in the Linear
Fractional Transformation (LFT) form, representing
parametric and nonparametric uncertainties in the
component models. The controller, Ks, denotes the
controller that synthesizes the combined dynamics
of two components in a joined con�guration. The
state-space representation of the dynamics of the
components is

component 1

_x1 = A1x1 +B1u+H1p1 +E1w1 (1)

y1 = C1x1 (2)

z1 = F1x1 (3)

yp1 = L1x1 +Du1u+Dp1p1 (4)

component 2

_x2 = A2x2 +B2u+H2p2 +E2w2 (5)

y2 = C2x2 (6)

z2 = F2x2 (7)

yp2 = L2x2 +Du2u+Dp2p2 (8)

where Ai; i = 1; 2 denote the state matrices for each
of the components. Matrices Bi, Hi, Ei, Ci, Fi,
and Li, i = 1; 2, represent the in
uence matrices for
interface inputs, non-interface inputs, uncertainty
outputs, interface outputs, uncertainty inputs, and
non-interface output for each component, respective-
ly. The matrices Du1 , Dp1 , Du2 , and Dp2 , represent
feedthrough matrices associated with non-interface
outputs of each component; x1 and x2 denote the s-
tate vectors of the components; y1 and y2 denote the
interface output vectors, including the displacements
and velocities at the interface from each component;
yp1 and yp2 denote the non-interface output vectors
components which includes performance outputs as
well as measurement outputs for local feedback
control; z1 and z2 denote the uncertainty input
vectors; p1 and p2 represent the non-interface inputs
which include exogenous disturbances as well as
control inputs for local feedback control; and w1

and w2 denote the uncertainty output vector. The
in
uence matrices Ei and Fi; i = 1; 2 corresponding
to component uncertainties will be de�ned later.
Now, the derivation in Ref.7 is followed to obtain

the synthesized dynamics of the combined system.
However, in this paper, the interface output vector
includes the interface velocity vector as well as the
displacement vector at the interface. The motivation
behind including the displacement vectors is to avoid
the super
uous rigid-body mode that may come
about from the previous formulation. Let Nc denote
an orthonormal basis for the right null space of�
C1 �C2

�
, i.e.,
�
C1 �C2

�
Nc = 0 (9)

and let Rc denote an orthonormal complement to
Nc. Transform the combined system via an orthog-
onal similarity transformation, such that�

x1
x2

�
=
�
Nc Rc

�� �

�

�
(10)

Then, the dynamics of the combined system in
transformed coordinates becomes

_� = Â1�+ Ĥ1p+ Ê1w (11)
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z �

�
z1
z2

�
= F̂1� (12)

yp �

�
yp1
yp2

�
= N̂1�+ D̂1p (13)

where p =

�
p1
p2

�
, w =

�
w1

w2

�
, and

F̂1 =

�
F1 0
0 F2

�
Nc (14)

N̂1 =

�
L1 0
0 L2

�
Nc �

�
Du1

Du2

�
B̂�12 Â3 (15)

D̂1 =

�
Dp1 0
0 Dp2

�
�

�
Du1

Du2

�
B̂�12 Ĥ2 (16)

and�
Â1 Â2

Â3 Â4

�
=
�
Nc Rc

�T � A1 0
0 A2

� �
Nc Rc

�
(17)

�
B̂1

B̂2

�
=
�
Nc Rc

�T � B1

B2

�
(18)

�
Ĥ1

Ĥ2

�
=
�
Nc Rc

�T � H1 0
0 H2

�
(19)

�
Ê1

Ê2

�
=
�
Nc Rc

�T � E1 0
0 E2

�
(20)

Model Uncertainty

The synthesized dynamics of the combined system
is illustrated in Fig. 3. Here, the plant P ,
representing the system dynamics, is given as8<

:
_�
yp
z

9=
; =

2
4 Â1 Ĥ1 Ê1

N̂1 D̂1 0

F̂1 0 0

3
5
8<
:

�

p

w

9=
; (21)

The uncertainty block, � include uncertainties from
both components, i.e.,

� =

�
�1 0
0 �2

�
(22)

The uncertainties represented by � may include
parametric and nonparametric uncertainties in each
of the components. Parametric uncertainties in-
clude uncertainties in modal frequencies, damping
ratios, and mode shapes of the components. The
nonparametric uncertainties considered here are the
unmodeled dynamics of the components, which
would typically be due to the truncated modes of the
components. In this paper, parametric uncertainties
in the component models in the form of frequency
and damping uncertainties are considered.

∆

P
p yp

zw

Fig. 3 Block Diagram of the Synthesized System

Uncertainty in Frequency and Damping

If, as typically done, a modal model of the
components are used to describe their dynamics,
then uncertainties in modal frequency and damping
are embedded in the elements of the component state
matrices A1 and A2. Consider the �rst component,
and assume that there are n1 distinct uncertainties
associated with the A1. Then, one may write

A1 ! A1 +

n1X
i=1

QiÆi (23)

where matrix Qi represents the in
uence matrix for
the Æi uncertainty. Now, the in
uence matrices E1

and F1 (see Eqs. (1) and (3)) may be obtained from
decomposition of matrices Qi; i = 1; : : : ; n1. Factor
each matrix as

Qi = E1iF1i (24)

where E1i 2R
n�ri , E1i 2R

ri�n, and ri denotes the
rank of Qi. Singular Value Decomposition (SVD) is
a good way of performing this factorization. Then,
the in
uence matrices E1 and F1 may be written as

E1 =
�
E11 E12 : : : E1n1

�
(25)

F1 =

2
6664

F11
F12
...

F1n1

3
7775 (26)

With matrices E1 and F1 de�ned, the synthesized
system represented by Eq. (21) is in suitable form
for robustness analysis or control design.

Component Uncertainty at System Level

In some applications, it may be the case that
an overall model of the combined structure is
available either from full-up structural analysis or
system identi�cation, i.e., no component synthesis
is required to generate the model. However, the
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model uncertainty is de�ned at the component level,
where substantially more e�ort is typically spent
for modeling, testing, and veri�cation. In order to
perform robustness analysis or robust control design,
the uncertainty formulation has to rede�ned at the
system level. Assume, without any loss of generality,
that the overall model at the system level is in a real
modal form. Then, the model of the system may be
written as8<

:
_xs
yp
z

9=
; =

2
4 As Hs Es

Ns Ds 0
Fs 0 0

3
5
8<
:

xs
p

w

9=
; (27)

Here, As has the following form

As =

2
66664

As1 0 : : : 0

0
. . . : : : 0

...
. . .

...
0 : : : 0 Asm

3
77775 (28)

with

Asi =

�
�iR ��iI
�iI �iR

�
(29)

where �iR and �iI denote the real and imaginary
part of the ith eigenvalue pair of the system. Here,
we assume that the eigenvalues are ordered from
smallest to the largest. From component synthesis,
we know that the �rst m eigenvalues of matrix Â1

should closely match the eigenvalues of the As. m
is typically chosen as the number of system modes
that are within half the bandwidth of the component
dynamics. Let matrix � denote a real similarity
transformation through which matrix Â1 is put in
real modal form, with eigenvalue blocks in increasing
order, and let 	 = ��1. Such a transformation may
be obtained from the complex eigenvectors of Â1 by
collecting the real and imaginary parts of the eigen-
vectors corresponding to complex conjugate pairs of
eigenvalues. Applying this similarity transformation
to the system in Eq. (21) gives

8<
:

_

yp
z

9=
; =

2
4 	Â1� 	Ĥ1 	Ê1

N̂1� D̂1 0

F̂1� 0 0

3
5
8<
:




p

w

9=
;
(30)

Comparing the system in Eq. (30) with that given
by Eq. (27), and keeping in mind that the �rst m
eigenvalues of the two systems should match, it is
observed that the uncertainties at the component
level can not be put exactly in the same structure
at the system level, mainly due to the additional

u , y 
11

u , y 
22

15 m 5 m

Component No. 1 Component No. 2

Fig. 4 Components of the Free-Free Problem

dynamics in the synthesized model that is neglected.
However, a reasonable approximation may be made
by choosing Es and Fs as

Es = 	1Ê1 ; Fs = F̂1�1 (31)

where 	1 and �1 denote partitions formed from
the �rst 2 � m rows and 2 � m columns of 	
and �, respectively. With Es and Fs de�ned, the
global system is prepared for robust design and
analysis. It should be noted that if more than
one rigid-body mode are present in the system
(e.g., space applications), then it would be unlikely
that the a rigid-body mode in Â1 would have a
exact corresponding mode in As. This is because
the eigenvectors corresponding to rigid-body modes
(with repeated eigenvalues at zero) are not unique.
One way to handle this is to replace the partition
in matrices As, Hs, and Ns, corresponding to the
rigid-body modes, with those of 	Â1�, 	Ĥ1, and
N̂1�, respectively. This note also applies to repeated

exible modes, except in many of such cases unique
eigenvectors may exist.

Numerical Results

The proposed approach for robust design and
analysis under component-level uncertainty models
is applied to a two-component planar problem shown
in Figure 4. Here, a docking scenario involving two

exible space systems is considered. The two sys-
tems are modeled as planar free-free Euler-Bernoulli
beams. The material and geometric properties of
the system were chosen to provide considerable
modal content in the low-mid frequency range, to
make the synthesis and control design task more
challenging, and are provided in Table 1. It is
assumed that in the docked con�guration component
no. 1 would provide attitude and position control for
the combined system.
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Table 1. Geometric and structural properties

Property Comp. 1 Comp. 2 Whole

Length 15 5 20
Mass/Length 6.775 6.775 6.775
Rigidity, EI 36458.3 36458.3 36458.3
No. of modes 20 20 20

Control Design

The control design for component no. 1 is brie
y
described. As shown in Fig. 4, there are two
control inputs available for this component. There
is a torque wheel at the third of the length (x=5m)
and there is a thruster at the middle of the beam
(x=7.5m) to provide attitude and position control.
Collocated with these actuators are attitude and
position sensors, providing measurement for the
feedback loop. Here, sensors and actuators dynamics
are not considered. The control design was based on
the H1 synthesis. The performance requirements
were de�ned in terms of the weighted output sen-
sitivity transfer function from disturbances to the
measurement sensors. The weighting function was

chosen as Wp =
0:002(s+100)

(s+0:0001)(s+10) for each channel to

provide good disturbance rejection at low to mid
frequencies as well as to provide integral action to
minimize steady-state errors. Uncertainty in the
system model, in the form of unstructured input
multiplicative, was used. The weighting function,
used to scale or distribute the uncertainty, was

chosen as Wu = (s+50)
(s+500) to emphasize model un-

certainty in the mid-high frequency range. A 10-
order model of the beam, which included the �rst
three 
exible modes, were used in the control design.
The controller was synthesized using the "hinfsyn"
routine of �-Analysis and Synthesis Toolbox.8 The
H1 design converged at a 
 value of 0.942 (i.e., all
the design requirements were met), and resulted in
a 16th-order controller. Figure 5 provides a bode
plot of the controller. This controller was later used
in robustness analysis of the system in the docked
con�guration.

Robustness Analysis

Here, the two components were assumed to be
in a docked con�guration. Each of the components
was modeled using the �rst 20 modes (including two
rigid-body modes and 18 
exible modes), resulting
in a 40th-order state space model for each of the
substructures. The 20 modes used were deemed
suÆcient to provide a basis for describing the �rst
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Fig. 5 Bode Plot for the H1 Controller for

Component No. 1

20 modes of the combined structure. The com-
bined structure was also modeled globally (without
synthesis) as a 20-m long beam using its �rst 20
modes, resulting in a 40th-order state space model.
This model was used for validation of the synthesis
approach and is referred to as the truth model.

Table 2. Natural frequencies

Mode No. True Synthesized

1 0 0
2 0 0
3 0.0410 0.0414
4 0.1131 0.1158
5 0.2217 0.2264
6 0.3665 0.3676
7 0.5475 0.5500
8 0.7647 0.7809
9 1.0181 1.0389
10 1.3077 1.3108
11 1.6335 1.6437
12 1.9955 2.0425
13 2.3938 2.4466
14 2.8282 2.8344
15 3.2988 3.3251
16 3.8056 3.9045
17 4.3488 4.4533
18 4.9278 4.9389
19 5.5432 5.6002
20 6.1948 6.3764

Using the procedure outlined in Eqs. (11)-(13),
the dynamics of the two components were synthe-
sized (combined). Table 2 compares the natural
frequencies of the synthesized model vs. that of
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Fig. 6 Robust Stability � Plot for the Synthe-

sized System

the validation (truth) model. Comparison of the
frequencies indicate a good match between the two
models.
Now, both the synthesized model as well as the

truth model were assessed against uncertainties in
the frequencies and damping of the two components.
Speci�cally, it was assumed that there is a �ve
percent uncertainty associated with the frequency of
the �rst mode in each component. Furthermore, it
was assumed that there is a 15 percent uncertainty
associated with the damping of the �rst mode in
each component. The inherent structural damping
ratio used for each of the component were chosen at
0.5 percent. The damping ratio used for the truth
model was based on the values obtained from the
synthesized model.
First, robust stability of the synthesized model

was assessed. Following Eq. (23), the coeÆ-
cients Qi for the four uncertainty terms in the
state matrices of the components, corresponding to
frequency and damping in their �rst mode, were
de�ned and factored according to Eq. (24). Note
that the uncertainties were assumed to be distinct,
real scalars. Using the system de�ned in Eq.
(21) (with appropriate input/output matrices for
the uncertainties) together with the H1 controller
designed for component no. 1, a robust stability
analysis was performed with aid of the "mu" routine
of �-Analysis and Synthesis Toolbox.8 A Mu plot
of the closed-loop system is provided in Fig. 6,
where it is observed that the structured singular
value � is less than one for all frequencies. Therefore,
the synthesized system with the H1 controller is
robustly stable.
Next, robust stability of the truth model against

the same uncertainties in the component models
was assessed. The �rst task was to approximately
translate the uncertainties from the component level
to the system level. This was performed by trans-
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Fig. 7 Robust Stability � Plot for the Truth

System

forming the state matrix of the synthesized system
to real modal form, with eigenvalues in increasing
order on the diagonal. Then, Eq. (31) was used to
determine the in
uence matrices at the system level,
and the truth model given by Eq. (26) was used in
robust stability analysis. Again, the H1 controller
designed for component no. 1 was the controller
used in the robustness analysis of the closed-loop
truth model. A Mu plot of the closed-loop system
is provided in Fig. 7, where it is observed that the
structured singular value � is less than one for all
frequencies. Comparing Figs. 6 and 7, it is observed
the Mu plots for the synthesized and truth systems
match each other reasonably well. This validates
the approximate characterization of the uncertainty
at the system level from component level de�nitions.

Concluding Remarks

Robustness of 
exible systems in the presence
of model uncertainties at the component level was
considered. Speci�cally, an approach for formulating
robustness of 
exible systems in the presence of fre-
quency and damping uncertainties at the component
level was presented. A controls-based algorithm for
component mode synthesis was followed and modi-
�ed to avoid to super
uous modes that may come
about in the dynamics. First, robustness of synthe-
sized systems was formulated in a Linear Fractional
Transformation framework. The formulation was
then extended to deal with global (non-synthesized )
dynamic models with component-level uncertainties
by projecting uncertainties from component levels to
system level. A numerical example involving a two-
dimensional simulated docking problem was worked
out to demonstrate the feasibility of the proposed
approach. The results demonstrated the e�ective-
ness of the robustness formulation in transformed co-
ordinates and the eÆcacy of the projection approach
to translate uncertainties from their component-level
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structures to system-level structures.
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