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ANALYTICAL AND COMPUTATIONAL PROPERTIES OF DISTRIBUTED APPROACHES TO MDO

NATALIA M. ALEXANDROV * AND ROBERT MICHAEL LEWIS'

Abstract the work. For the purposes of this paper we view MDO
as comprising a subset of the broader design problem that
Historical evolution of engineering disciplines and thean be expressed as a nonlinear programming problem.
complexity of the MDO problem suggest that disciplinary MDO problems are distinguished by the complexity of
autonomy is a desirable goal in formulating and sol¥he constituent disciplinary analyses. Due to the required
ing MDO problems. We examine the notion of discispecialized knowledge, the disciplines have evolved into
plinary autonomy and discuss the analytical propertieswiftually autonomous subjects, and have developed inde-
three approaches to formulating and solving MDO propendently, in large measure. Justifiably, significant re-
lems that achieve varying degrees of autonomy by diszarch effort has been and continues to be expended on
tributing the problem along disciplinary lines. Two of thelisciplinary modeling and solution techniques and, in
approaches—Optimization by Linear Decomposition amdany cases (e.g., structural optimization), on the disci-
Collaborative Optimization—are based on bilevel optplinary optimization methods. Analysis codes usually
mization and reflect what we call a structural perspectivto take up most of the computational effort. However,
The third approach, Distributed Analysis Optimization, ihe multidisciplinary synthesis scheme, realized via the
a single-level approach that arises from what we call DO problem formulation, is equally important. It in-
algorithmic perspective. The main conclusion of the pfluences, and may determine, not only how many times
per is that disciplinary autonomy may come at a price: the expensive analysis codes will have to be executed, but
the bilevel approaches, the system-level constraints intedso whether the resulting problem can be efficiently im-
duced to relax the interdisciplinary coupling and enabidemented and solved—or solved at all—by available op-
disciplinary autonomy can cause analytical and computimization algorithms. Therefore, optimization problem
tional difficulties for optimization algorithms. The singleformulation holds profound computational consequences
level alternative we discuss affords a more limited degris the overall MDO process. The present work continues
of autonomy than that of the bilevel approaches, but witthe effortin [1, 2] aimed at furthering the understanding of
out the computational difficulties of the bilevel methodsthe analytical properties and computational implications
of MDO problem formulations and at proposing efficient
Key Words: Autonomy, bilevel optimization, distributedsolution methods based on this understanding.
optimization, multidisciplinary optimization, multilevel — Because of the complexity and expense of the con-
optimization, nonlinear programming, problem integratituent analyses, most efforts in dealing with system-

tion, system synthesis atic MDO problem formulation focus on methods that
aim at affording the user the maximum disciplinary au-
Introduction tonomy. In this paper, we examine some notions of au-

tonomy and consider three broad classes of MDO prob-
We examine the mathematical statement of multidiem formulations—two bilevel optimization formulations

ciplinary optimization (MDO) problems or, more specifand one single-level, distributed analysis formulation—
ically, the formulation of MDO problems as optimizadin light of disciplinary autonomy, as well as the conse-
tion problems and the consequences of problem formauences of the techniques used for attaining autonomy via
lation for the practical solution of the resulting computatistributing the disciplinary subproblems.
tional problem by optimization algorithms. This distinc- The recurring theme of this and related papers [2—4] is
tion between problem formulations and algorithms uséke strong influence of the analytical features of problem
for solving the resulting optimization problems underligermulation on the ability of nonlinear programming
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Figure 1: Disciplinary analysis in isolation
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Figure 2: Flow of information in multidisciplinary analysis

algorithms to solve the problem reliably and efficientlyhosesharedby both disciplines. Thdisciplinary design
The specific conclusion of this work is that disciplinaryariables/; andly arelocal to Disciplines 1 and 2, re-
autonomy may comes at a price: In the bilevel approactspectively. We use; to represent the totality of outputs
we discuss, the system-level constraints introduced to fiem a given discipline. These outputs include all data
lax the interdisciplinary coupling and enable disciplinarhat are passed to the other discipline as parameters and,
autonomy can cause analytical and computational diffiessibly, quantities passed to design constraints and ob-
culties for optimization algorithms. The single-level altejectives. Parametefs are derived from the analysis out-
native, Distributed Analysis Optimization (DAO), affordgutsa;, j # i, of the other discipline, and are not directly
a more limited degree of autonomy than do the bilevel amanipulated by the designer in Disciplifen our aeroe-
proaches, but without the computational difficulties of tHastic example, for instance, the input from structures
bilevel methods. Details of the implementation for thi® aerodynamics would include the wing shape, while the
formulation may be found in the companion paper [4]. input p, from aerodynamics to structures would include
the aerodynamic loads.

The two-discipline model problem The disciplinary input-output relations have the func-

tional form
For simplicity, we present our discussion for a two- ai = Ai(s, i, pi).

discipline model problem. The disciplines might rep-
resent the aeroelastic interaction between aerodynanib§ disciplinary analysed; and A, are assumed to be
(Discipline 1) and structural analysis (Discipline 2) for ixdependently solvable. That is, we assume that, given
wing in steady-state flow. Our description of the mod@pPpropriate values of inputs, i1, p1) to Discipline 1, we
problem closely follows that in [2, 3] because we wish tan compute the disciplinary output via the Discipline
maintain a uniform notation in the description of MDG analysis
problem formulations. ar = Ai(s,l1,p1).

(By “appropriate” we mean input values for which the
Problem components analysis is defined.) Continuing with our aeroelastic il-

We assume that each disciplinary subsystem is baé%%}ration, given valuep, for the shape of the wing, we

on a disciplinary analysis, depicted as the input-output &n compute the flow; around it. Likewise, given ap-

lation in Fig. 1 propriate values of inputés, 2, p2) to Discipline 2, we

Each discipline takes as its input a set of design vafisSume we can compute the disciplinary outpyias

ables(s, ;) and parametens, and produces a set of anal-
ysis outputsz;. The system-level design variablesare

ag = A2(8,127p2)-
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min  f(s,a,az)
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s.t. gi(s,l1,a1) >0
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Figure 3: Flow of information in multidisciplinary optimization

In our example, given values of the aerodynamic lgagls the MDA at a solution, the most natural formulation, ar-

we can compute the structural responge guably, is to impose an optimizer over the MDA. We will
use this formulation to represent the original problem, i.e.,
Multidisciplinary analysis the problem one ideally wishes to solve. The flow of in-

formation in this formulation is depicted in Fig. 3. Its
The coupled multidisciplinary analysis system (MDAphathematical statement is

reflects the physical requirement that a solution simulta- .
min f(s7a‘l(sall7l2)aa2(svl1512))

neously satisfy the two disciplinary analyses. The input sil1 .l
parameter®; to each discipline are now required to cor- s.t. gi(s,l1,a1(s,11,02)) >0 ®3)
respond to some (or all) of the outputs from the other 92(8,l2,a2(s,11,12)) >0

disciplinary analysis. This is depicted in Fig. 2. ] o

We write the multidisciplinary analysis system as Where, given(s,ly,l»), we solve the multidisciplinary
simultaneous system of equations. Givenls,l;), we analysis system (1)—(2) for the disciplinary analysis out-
putsas (s, l1,l2) andas(s,l1,l2). The functionf repre-

have e
sents the system-level objective.
ar = Ai(s,lh,a2) (1) To facilitate the discussion of one of the distributed
ay = Au(s,la,a1). (2) optimization approaches (collaborative optimization), we

_ _ . . _ have chosen a simplified model problem: each of the con-
Solvmg' th.e flrst equation rgsults in the analyS|S_OUtpL§ﬁ'ainthi explicitly depends only on a single discipline’s
a of Discipline 1, and solving the second equation prgnalysis outputs. There is no constraint that involves
duces the analysis outputs of Discipline 2. The multi- andq, jointly. The constraintg;, g» are thugdisciplinary
disciplinary analysis thus implicitly defines andas as gesign constraintsssociated solely with Disciplines 1
functions of(s, 1, l2): and 2, respectively. This choice of design constraints sim-
plifies the exposition, but is not essential. A complete de-
scription of collaborative optimization, without the sim-

Solving the coupled equations (1)—(2) leads to a fudlifying assumption, is given in [2].
multidisciplinary analysis, in which the coupled disci-
plines give a physically consistent (and thus meaning-  Two perspectives on problem formulation
ful) result. The disciplinary responses describe part
of the behavior of the system. Again, if Discipline 1 rep- Most approaches to formulating MDO problems are
resents aerodynamic analysis of the flow around a winptivated by the wish for computational autonomy of the
and Discipline 2 represents structural analysis of the wirgiisciplinary subsystems, by the need for computational ef-
the MDA reflects the interaction between the flow fieldiciency, and by a desire to simplify problem synthesis.
which affects the shape of the wing, and the shape of the The philosophy we call thestructural perspective
wing, which affects the flow field. starts with the multidisciplinary system description and
poses an optimization problem that is thought to corre-
spond to certain physical or organizational characteristics
of the problem. For instance, many approaches to solving
We now couple the two disciplines in connection witMDO problems assume that the problem is to be decom-
a design optimization problem. Given the need to satigfpsed along disciplinary lines and that it is desirable to

a)p = al(s,ll,lg), ag = ag(s,ll,lg).

A fully integrated formulation
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treat the disciplinary subproblems with as much auton-Formulations reflecting the structural perspective

omy as possible, coordinating the solutions of the subsys- ) ) ) _

tem problems in some manner that will result in a solu- !N this section we give reformulations of our two-
tion to the overall system design problem. Solution of tliScipline model problem in terms of OLD and CO. One
resulting system-level problem is then attempted by (&-0ur aimsis to give a careful presentation with complete
ing available optimization software. In the structural peRotationindicating the exact functional dependence of the
spective, then, the physical structure of the problem a¥@fious quantities (e.g., system-level consistency condi-

organizational considerations are the main driving forcE@ns) on the local and system-level design variables. De-
behind the choice of problem formulation. tail in notation helps clarify some of the salient character-

o . . istics of these problem formulations.
Optimization by Linear Decomposition (OLD), or

“hierarchical decomposition” [5—-12], reflects the struc- laborative Optimization
tural perspective, as does the approach that has (;g_a orative Dp atio
cently received attention under the name Collaborative again, in the interests of unified notation, the descrip-

Optimization (CO) [13-16]. The underlying idea ofion of CO closely follows that in [2, 3]. To reformulate
Collaborative Optimization—the notion of decouplings) ajong the lines of CO, we introduce new disciplinary
the disciplines by introducing interdisciplinary consisjesign variables , o, that relax the coupling between
tency constraints, while minimizing a measure of intéfre supsystems through the shared system design vari-
disciplinary inconsistency in disciplinary subproblems—ap|es;. The variables; serve as local copies (at the level
appeared previously in [17-19] and [10-12,20,21]. 5 the disciplinary subproblems) of the shared variables
OLD, the disciplines are given the autonomous task pf general, Greek letters will denote new, auxiliary vari-
minimizing disciplinary design infeasibility (the lower-gp|es designed to serve at the subproblem level as copies
level disciplinary problem) while maintaining systemgs shared quantities.

level cqnsigtency_. .'I_'he system-level problem is_ to.drive CO is a bilevel approach in which a system-level co-
the design infeasibility to zero. In CO, the situation is rg;dination problem attempts to optimize the system-level

versed: the disciplines are given the autonomous taskyfective resulting in the following system-level problem:
minimizing system-level inconsistency while maintaining

disciplinary design feasibility. In both approaches, opti- min  f(s,t1,t2)
mization of the system-level objective, subject to inter- *b1,kz (4)
L . . . s. t. C(S,tl,tg)zo,
disciplinary consistency, is performed in the system-level
problem. where there areN interdisciplinary consistency con-
Multilevel approaches lead to multilevel nonlineastraintsC' = {ci,. .., cny} which we describe presently.

programs, which are well known to be difficult to solvghe system-level problem controls the system-level de-
[22]. This is a drawback of the purely structural perspegign variabless and interdisciplinary coupling variables
tive. In contrast, thelgorithmic perspectivéakes as its (t1,t2), which are system-level target values for the disci-
starting point the abilities (and inabilities) of optimizatiomlinary inputs and outputs; andas.

algorithms, and seeks to formulate the MDO problem so The system-level problem issues design targets
that the resulting optimization problem can be solved rés, t1, t2) to the constituent disciplines. In the lower-level
liably and efficiently by conventional optimization techproblems, the disciplines design to match these targets,
niques. The problem is stated as the most general N&p,follows. In Discipline 1, we are givefs,t;,t2) and
examined for structure and gradually reformulated to coeemputes (s, t1,t2) andli(s,t1,t2) as solutions of the
form to organizational features as much as possible wifaHowing minimization problem in(o, 1,):

out sacrificing solubility by available algorithms. This ap-

proach is exemplified, for instance, in [23, 24]. 571"{11 3ot —=s 12+l ai(on, i t2) =t [?] 5)
These two approaches to formulating MDO problems S. t. g1(o1,l1,a1(o1,11,t2)) > 0,

are obviously interrelated, and the distinction is arguably ) ) o o
subjective since it is rooted in the methodology use§nerea: is computed in this disciplinary optimization
However, as we discuss, one can run into trouble if oREPPIem via the disciplinary analysis

ignores the analytical and computational nature of the re-

sulting optimization problem. o = Ai(o1, h, ta).

In the remainder of the paper, we contrast OLD ard general, we use overbars (e.g:, /1) to indicate op-
CO with DAO as representatives of these two perspdiznal solutions of subsystem problems as a function of
tives. DAO is treated in more detail in a companion papsystem-level variables. In the disciplinary subproblem
[4]. (5), the system-level variablds, t1,t2) serve either as
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parameters or targets that we try to match. An analogous(s, t1,t2) = a1(G1(s,t1,t2),l1(s,t1,2),t2) — 1
problem for Discipline 2 defines solution® (s, t1,t2)  ¢y(s, ¢4, t5)
andly(s, t1,t2) of the problem

aa(s,t1,t2) — s

ca(s,t1,ta) = ax(Fa(s,t1,t2),la(s, 1, t2), t1) — ta.
DL“{L 3 [ o2 = s 12+ | az(o2, la, t1) — t2 ||?] ) We denote this formulation CQo indicate that the quan-
st 92(02, 12, az (03, la, 1)) > 0. tities in the system-level constraints are not sums of
squares. Note thdt,, co) are associated with Discipline
Again, as is computed via the disciplinary analysis 1, while (c3, ¢4) are associated with Discipline 2.
In either CQ or CO,, we will call a value of the
az = Az (02,12, 11). system-level variable, t1, t2) realizablefor Discipline

Following the terminology of OLD, we refer to the disci-i if the optimal objective value in the corresponding dis-

X S . . . _ciplinary optimization problem (5) or (6) is zero. Real-
plinary objectives in CO as discrepancy functions, sinC .
. Zable values of the system-level variables correspond to
they measure the discrepancy between system-level dar-

B : sirable designs. A design is desirable if the optimal ob-
gets for disciplinary inputs and outputs and the closest val-". . R L
ect‘tlve value in the disciplinary optimization problem for

ues that can be obtained by disciplinary designers with L ciplinei is zero. This means that Discipliriean ex-

violating disciplinary design constraints. . ;
Thegintrodpuctioz of d%sciplinary minimization sub-a.Ctly match th(_e s_ysfcem-level_mput-outpu_t targets without
problems of the form (5)—(6) is a distinctive characteriV'Olatmg the disciplinary design constraints. In general,

tic of CO. The subproblems can be solved autonomousﬁgll.e.re will be many regllng_le values.of the sy§tem-level
variables for a given discipline. A poilf, ¢1, t2) is fea-

By solving the subproblems, we eliminate the disciplinar . .
. . Ible for the system-level problem when it is realizable for
design variableg; from the system-level problem, an ) o
lﬁll the constituent disciplines.

decouple the calculation of the disciplinary analysis o
putsa;. Information from the solutions of the disciplinary =~ = _ .
problems (5)—(6) is then used to define the system-leGptimization by Linear Decomposition
consistency constraints. The type of system-level con-
straints used gives rise to a specific instance of CO.
The first instance of CO we discuss is the one in Whi(f

OLD [5-12] maintains interdisciplinary consistency
t the system level while seeking to minimize the viola-

n of the disciplinary design constraints at the subsys-
CO has been most frequently presented (e.g., [13,14, level. In this respect, OLD and CO complement one
17]). In this formulation, the consistency condition is tgnother '

drive to zero the value of the target mismatch objective in In the lower-level problems, the disciplines use their
subproblems (5)—(6). At the system-level, the interdisq' ’
plinary consistency constraints are simply the optimal v
ues of the objectives in (5)—(6). That is, the consisten
constraints” = (¢1, ¢2) are defined as

ycal design degrees of freedom to minimize the violation
f the disciplinary design constraints, subject to matching
fie target value for the disciplinary output that is fed into
that discipline. This is effected as follows. In Discipline
1, we are given(s,t;,t,) and computé, (s,t;,t;) as a

Lo 2 2
ci(s i t2) = 5 [l 71(s,t1,t2) — s [|*+ solution of the following minimization problem iR:
| a1(G1(s,t1,t2), li(s, tr, t2), ta) — t1 ||I’] (7) rr}in ci(s,li,t1,t2) ©)
1

1., _ S.t. ty = ai(s,l,ta),
eals,trt) = 5 [l Fals,tr, 1) — s P+ | b
The analysis output; is computed in this disciplinary

_ 7 2
| az(G2(s, t1,t2), l2(s, t1,t2),t1) — t2 |I*] , (8) optimization problem via the disciplinary analysis

where the bars over,, s, 11,5 indicate that these val- ar = Ay (s, ly,t2).

ues are the results of solving the disciplinary optimizatianOte that in the disciplinary subproblem (9), the system-

subproblems for the given value of the system-level va[L . . .
) ) X vel variableq s, t1,t2) serve as parameters in the disci-
ables. We call this version GOQwhere the subscript “2" g5 1, t2) P

plinary optimization problem.
refers to the fagt that the are sums of squar_es. . The disciplinary objective; is any function with the
An alternative to the system-level consistency con

tions (7)—(8), giving rise to the second instance of C é?llowmg property:

is to match the system-level variables directly with their ~ Forany(s, t1,?2), we have

subsystem counterparts computed in subproblems (5)—(6). ci(s, 1y, t1,t2) <0
The consistency constrainfs= (cy, ..., c4) are _ s
if and only if g1(s,l1,a1(s,l1,t2)) > 0 for
Cl(s,tl,tg) = 5’1(8,t1,t2) — S all Iy Satisfyingal(s, ll,tg) —t1 =0.
5
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. . . _ 1 .
Ideally, we also would like:; to be continuously differ- ., (s 7, ¢, ¢,) = = lnzexp(_g%(é,’12’@(8712,151))).
entiable. Following [11], we refer te, as adiscrepancy 7
function (15)
There is an analogous problem for Discipline 2. Givan this relaxation, we are approximating the disciplinary
(s,t1,t2), we computes (s, t1,t2) as a solution of the fol- realizable sets with sets that are smoothly bounded and
lowing minimization problem irs: which are strictly inside the realizable sets. This is good,
min - ca(s, b, t1, 2) since it means the approximation errs on the side of feasi-
l2 (10) bility.
S.t. ty = (l2(0’2,l2,t1).

Again, as is computed via the disciplinary analysis Hybrids

az = As(s, 1z, 11). There are also formulations that combine elements of

The Subpr0b|ems (9)_(10) can be solved a@LD and CO [11, 12] In these hybrids, the goal of the
tonomously. As in CO, we eliminate the disciplinary délisciplinary subproblems is to minimize the discrepancy
sign variabled; from the system-level problem via thdn both the system-level targets for the disciplinary inputs
solution of the disciplinary subproblems. and outputs as well as the disciplinary design infeasibility.

The optimal value of the objective in the disciplinarfRecall thep-norm: ifv = (v',-- -, v™), then
problems (9)—(10) defines the system-level consistency
constraints;. The resulting system-level problem is

. ) i lolly = |
min f(s,a1(s,li(s,t1,t2),t2), a(s, la(s, t1,t2), t1)) b
S,t1,t2 _
s. t. Cl(S,Zl(S,tl,tQ),tl,lfg) <0
ca(s,la(s,t1,t2),t1,t2) < 0. The case» = oo corresponds to the max-norm
(12) ‘
For OLD, we call a value of the system-level variables | vll,= max |7 |.

(s, t1,t2) realizablefor Disciplinei if the optimal objec-

tive value in the corresponding disciplinary optimizatiofthe disciplinary subproblem for Discipline 1 is

problem (9) or (10) is less than or equal to zero. As in

CO, realizable values of the system-level variables corre- min ¢y (s, Iy, 11, t2),

spond to desirable designs: if the optimal objective value h

in the disciplinary optimization problem for Disciplirie

less than or equal to zero, then this means that DiscipIiW

1 can exactly match the system-level input-output targets .

without violating the disciplinary design constraints. A¢1(Sl1,t1,12) = (Z(max(ovgi(svlhal(svlht?))))p

point (s, t1,t2) is feasible for the system-level problem J

when it is realizable for all the constituent disciplines. +] a1(s,li(s,t1,t2),t2) —t1) Hg)l/”. (16)
One choice of discrepancy function is

Qere the discrepancy function is

) ) The discrepancy function and subproblem for Disci-
c1(s,ly, tr,t2) = Y _(min(0,g](s, 11, a1(s,11,%2))))*>  pline 2 are similar. The cases= 1,2 andp = oo are of

J greatest interest.
_ i (%2) One can also envision variants of CO along similar
co(s, I, t, ta) = Z(mm(O,gQ(S, l2;a2(s,12,11))))"- Jines. For instance, one could consider alternative norms
Y (13) for the mismatch between the system-level targets and the

disciplinary values of those variables. In place of (5), one

. Lo 1 4
This objective is smooth({*). Also note that; > 0, so might choose

the system-level constraiat < 0 is tacitly an equality
constraintc; = 0. Another choice of discrepancy func-

T . ) ) ) —s|2+ | a ly,t2) —t1 ||
tion is a relaxation of the problem via the Kreisselmeier- 1,1 [” 7 I+ arlon, by t2) = ta ”p}

Steinhauser [25] (KS) approximation ofax; (g7) (with s. t. g1(o1,l1,a1(01,11,t2)) > 0,
g} denoting thej-th component of the constraint vector o o )
gqj): and a similar problem for Discipline 2. As with OLD, the

casep = 1,2 andp = oo are of greatest interest, with
cr(s, 1y, b1, ts) = 1lnzea:p(—g{(é’,l1,a1(8,l1,t2))) p = 2 being the discrepancy function discussed in our
p ‘ earlier description of CO. The analytical properties of the

(14) hybrid methods are similar to those of the CO and OLD.

J
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Analytical properties feasible regions. Unfortunately, it is generally the case

) ) that the solution of the system-level problem is such a
The two bilevel approaches considered here have agint. The discontinuity occurs because one or more of

alytical features that can have significant consequenggs gisciplinary design constraints become active at these
for computation. As we discuss, the constraints in ﬂﬂ)%ints. (This is a manifestation of the well-known phe-

system-level problem are of a nature that can make {igmenon of the nondifferentiable dependence of the solu-
system-level problem difficult to solve using conventionghns of nonlinear programs on parameters when the set of
optimization algorithms. These features, in tumn, derigive constraints changes.) Because of the discontinuity

from the multilevel nature of the formulations and the ng; the constraint Jacobian, the usual Lagrange multiplier
ture of the disciplinary subproblems used to eliminate theie qoes not hold.

disciplinary design variables.

. e We emphasize that these effects necessarily take place
One encounters the foI_Iowmg ) difficulties in theat problem solutions. That s, either the system-level prob-
system-level problems associated with OLD and CO. lem is smooth at a solution, as in the case ohd®which
e If the system-level consistency constraints af@se it does not have Lagrange multipliers, or the system-
smooth, then Lagrange multipliers do not exist fdgvel problem is not smooth at a solution, as in the case
the system-level problem in the case of £@nd of CO;. The only exception to this situation occurs in
OLD with the discrepancy function (12)—(13).  the rare event that none of the design constraints are bind-
. ing at the solution. It is precisely the feature of £that
e In some of the formulations, the system-level coRmgothes out the problem—the vanishing of the system-
straints have discontinuous derivatives at the solidye| constraint Jacobian—that assures that the Lagrange
tion of the system-level problem. This is the casgyltipliers do not exist. In CQ the Lagrange multipliers
for instance, for CQ. do exists, but at the expense of the constraint derivative

The precise mathematical statements and proofs of theiggontinuity.
results appear elsewhere [2, 3]. We give here a sketch of These analytical features mean that conventional,
what is going on, and explain how these difficulties arignooth optimization algorithms will generally have in-
from the nature of the system-level constraints and taeeasing difficulty as they approach the solution to the
bilevel nature of the approaches. problem. Worse yet, optimization algorithms may give
bogus answers that are difficult to identify as such since
Analytical properties of CO. First, consider the system-the usual first-order conditions that characterize stationary
level equality constraints in CO These constraints vanpoints do not hold and computing system-level constraint
ish on the feasible region. Now, suppose the feasible grivatives is prone to large error near the solution.
gioq is an open set, as it is generally. Then, if these con- Nymerical experiments on simple (convex) prob-
straints are smooth (and they can be shown to be) then|tigis confirm that these analytical features can make the
constraint Jacobian must vanish on the feasible regio”s;'/%tem-level problem in collaborative optimization diffi-
C(s, 11, 2) is the set of system-level constraints, then theyjt 1o solve [2]. Numerical difficulties with CO were
usual first-order necessary condition characterizing a $Reviously noted in [27] and later in [28, 29]; we believe
lution is that there exist multipliers for which these analytical features may explain these earlier obser-

Vf (5,1, t2) + VO(s, b1, 1)\ = 0, (17) vations, as well.

whereVC is the transpose of the Jacobian of the systef\balytical properties of OLD. If one chooses the dis-
level constraints. HowevelVC(s,t1,t) = 0 for all crepancy function (12)-(13) in OLD, one obtains a
feasible(s, t1,3), so (17) can hold at a solution only ifSyStem-level problem for which Lagrange multipliers do
Vf(s,t1,t2) = 0. As a consequence, Lagrange multiplPOt exist, as in CQ@. The reason is the same: the system-
ers for the CQ system-level problem do not exist unleslevel constraints vanish on open sets, in general, and this
the solution of the system-level problem is also an uncdh€ans that the constraint Jacobians vanish.
strained stationary point of, which is rarely the case. ~ One can use nonsmooth discrepancy functions, as in
Thus, the system-level problem (4) that results in,C@16). This leads to nonsmooth constraints in the system-
fails to satisfy the standard first-order necessary conlgivel problem, as in CQ which necessitates specialized
tions (Karush—Kuhn-Tucker or KKT conditions [26]) tha@ptimization techniques, as discussed in [12].
characterize solutions.

The system-level constraints in G@an be shown Algorithmic consequences
to have discontinuous first derivatives for values of the
system-level targets that correspond to disciplinary de- The nonexistence of Lagrange multipliers for the
signs on the boundary of one or more of the disciplinasystem-level problem can cause trouble for methods that
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rely on the KKT conditions, such as sequential quadratig constraints provide no hint that one is near the bound-
programming or feasible directions methods (see, for iary of the feasible region because the constraint Jacobian
stance, the discussion in [2]). Moreover, the nonexisteriseero there. In the absence of any information about the
of multipliers is caused by the fact that the constraint Jaeundary of the feasible region, the problem appears un-
cobians vanish on the interior of the realizable sets. Thenstrained and one ends up leaving the feasible region.
fact that the constraint Jacobians vanish can cause adtlie system-level problem is an odd equality constrained
tional numerical problems in the solution of the systenoptimization problem. The feasible region defined by the
level problem. Unfortunately, these difficulties arise @&quality constraints is generally an open set. Usually if
realizable points, which are the designs that make tbee has only equality constraints, the feasible region is a
most sense for the underlying engineering problem. ypersurface, and all the constraints are binding at a solu-
order to be assured that conventional optimization metton. This is not the case with the system-level constraints
ods will work at all reliably to approach a solution of théhat vanish on the interior of realizable sets.
system-level problem, one needs to introduce mechanisms
to stay safely away from the realizable sets of designg formulation reflecting the algorithmic perspective
This seems counterintuitive, but is a consequence of the
consistency constraints that result from the attempts to re- Starting with the fully integrated approach (3), we can
move the disciplinary design variables from the systeriprmulate the MDO problem in a way that respects the re-
level problem, and the system-level constraints that ensgeirements of conventional nonlinear programming anal-
In the case of nonsmooth system-level constraints, #@S and algorithms and avoids the analytical difficulties
discontinuities in the constraint Jacobians commonly oef the bilevel approaches we have discussed. Hence this
cur at solutions. This also causes problems for smod@mulation represents the algorithmic perspective.
optimization techniques applied to the system-level prob- One such class of approaches appears in [23, 24, 30],
lems. In [12] the authors sketch an algorithm for han¥here it is called either the “in-between” or “individual
ing the nonsmoothness that arises in the hybrid OLD a#scipline feasible” (or IDF) approach. The latter name is
proach_ In eﬁect’ their a|gorithm approximates the genéﬁnfortunate Since |t SuggeStS that the fOI’mulation insureS
alized derivative of the nonsmooth (but Lipschitz) equeflesigns that satisfy the disciplinary design constraints,
ity constraints. The authors report satisfactory results withereas it really refers to the fact that the analysis outputs

this approach, though they note that there is a potential & consistent with (*feasible with respect to”) the disci-
failure. plinary analyses, though not the multidisciplinary analy-

We note that OLD has been proposed in connecti8i¥- o . .
with an algorithm for its solution (e.g., [7, 8]). The algo- To avoid this confusion, we use the term Distributed

rithm attempts to avoid the expense of performing Suﬁnalysis _Optimization to refer to a general class of meth-
system optimization problems every time a constraint 8fiS that includes the IDF approach from [23, 24, 30]. In
a constraint derivative is required for the solution of tHiS formulation, we treat the implicit interdisciplinary
system-level optimization problem. Instead, [7, 8] pr&_on5|st<_ancy con_stramts in _the mult|d|smpln_1ary analysis
pose an approach that could be viewed as analogou@?oeXp“C't eqqallty constraints in the optimization prob-
sequential quadratic or linear programming (SQP or SU/®M- The fully integrated approach (3) becomes
respectively). In this approach, the system-level problem min f(s,t1,t2)

is solved with linearized constraints; i.e., for each design S’ll’sl‘z’t“’” (5.00.11) > 0

cycle, the constraint value and constraint derivative are s gus it =

L . 18
held constant. The distinction from SQP or SLP is that the 92(s,12,t2) 2 0 (18)
objective is used instead of its quadratic or linear model. t1 = ai(s,l1,12)
However, this algorithm will still suffer from the analyti- b2 = ax(s, l1, 1),
cal features of OLD discussed previously. where
Another peculiarity of the system-level problems
P y y P ai(s,li,t2) = Ai(s,li,t2)

arises in connection with the system-level equality con-
straints that vanish identically on the interior of the fea- az(s,l2,t1) = As(s,l2, ).

sible region. If one starts an equality constrained Opfietajls of the formulation may be found in the companion
mization algorithm at a feasible point, even very near Haper [4].

optimal solution, one will frequently immediately leave

the feasible region, and the remaining iterates will woknalytical properties of DAO. The DAO formulations
their way back towards the solution through a sequenceesifjoy the same smoothness and stability properties as the
infeasible designs. This behavior was observed in [2, 18]|ly integrated formulation (3). There is no difficulty
for instance. This occurs because the system-level equath Lagrange multipliers or nonsmoothness.
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Algorithmic consequences of DAO.The DAO formula- both the coupling variables, t; and the disciplinary de-
tions have a larger number of optimization variables thaign variables,, o, as in OLD. However, the elimination
does the fully integrated formulation (3). The increass ¢, ¢to is accomplished via the objective in the subsys-
in the number of optimization variables depends on tlbem optimization problems, rather than through equality
bandwidth of the interdisciplinary coupling. Because thmnstraints in the subsystem optimization problems, a re-
analytical properties of DAO are the same as those of tlagation of the approach in OLD.
fully integrated approach, performance of optimization al- CO, on the other hand, eliminates the disciplinary de-
gorithms applied to DAO will not suffer as a consequeneggn variables; , I, in DAO via (5)—(6), but does not elim-
of reformulation. inate the coupling variables, to. Like DAO, the multi-
DAO formulations possess another attractive algorittisciplinary analysis is enforced via the system-level con-
mic feature. Optimization algorithms are frequently sestraints.
sitive to the quality of derivative information. Because
the multidisciplinary analyses are not usually computed Consequences of disciplinary autonomy
to a high degree of accuracy, computing finite difference
derivatives of an integrated multidisciplinary analysis is As we mentioned, disciplinary autonomy is generally
an error prone procedure. Therefore, methods that desirable in an approach to formulating and solving MDO
ply on MDA for function evaluations may not be ablgroblems. It is useful to distinguish between two types of
to obtain sufficiently accurate derivatives. Because DA@sciplinary autonomy in the context of MDO. First, au-
formulations do not require multidisciplinary analyses tmnomy of integration or implementation is the extent to
be performed, the sensitivity of optimization algorithmwhich the problem can be implemented in a decentralized
with respect to the convergence of MDA is not an issumanner. Second, autonomy of execution is the extent to
for DAO. Thus, the numerical performance of optimizawhich the calculations that arise in the optimization are
tion algorithms may improve compared to solving MDAdecoupled.

based formulations. Autonomy of integration—the ability to implement
the requisite computational modules independently along
Relationship among the methods the lines of the disciplines—is an attractive feature in a

formulation. However, if one begins with a multidis-

All the approaches we discuss here can be viewgglinary analysis, the implementation of the fully inte-
from the perspective of eliminating various subsets gfated formulation (3) may require extensive interaction
variables from the DAO formulation. Begin with the DA%mong discip"nary experts, since the under|ying ana|y_
approach: sis may have been put together in a way that might not
be quite appropriate for the purposes of optimization, and

min (s, t1,t2) may require a degree of re-assembly. For instance, one

s,l1,l2,t1,t2

s. t. g1(s,11,t1) >0 needs to develop a sensitivity capability that involves the
g2(8,1l2,t2) > 0 (19) MDA.
t = ai(s, 11, t2) The bilevel methods we have discussed exhibit auton-

omy of integration. Moreover, single-level optimization
formulations can also exhibit autonomy of integration if
If we eliminatet;, t, as independent variables from (19properly implemented. This is the case of the DAO ap-

ty = az(s,l2,t1).

by always requiring proach, as discussed in the companion paper [4].
One goal of autonomy of execution may be to sim-
tv = ai(s,li,t2) plify the computational process by distributing the dis-
ty = as(s,ly,ty), ciplinary computations. However, the main aim of this

autonomy is usually expressed as the goal of conforming

then we obtain the fully integrated approach (3), since wedisciplinary organizational procedures. In other words,
are requiring our designs to satisfy the multidisciplinaiyywould be useful if the disciplinary organizations could
analysis consistency equations (1)—(2). perform their disciplinary design activities independently,

OLD can be viewed as taking the further step of elinwith the help of some targets passed from the system co-
inating the disciplinary design variablés [/, as indepen- ordinator.
dent variables from the optimization problem, in addition Autonomy of execution is a question of the inter-
to eliminatingt, , t2. This elimination is accomplished viadisciplinary coupling in the problem. There is the de-
the subsystem problems (9)—(10). Thus, in OLD, multjree to which the calculations can be performed indepen-
disciplinary analysis is performed at each iteration. Thiently across the disciplines. There is also the question
hybrid methods can also be viewed as trying to eliminaséwhether the disciplinary design variables can be elimi-
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nated from the system-level problem. e MDO systems are inherently coupled. Decoupling
The bilevel approaches we have discussed possess is performed by introducing local copies of the cou-
a certain degree of execution autonomy, because the pling variables at the subsystem level. However, the
system-level optimizer does provide the disciplinary prob-  coupling must be restored, at least at the solution of
lems with targets for disciplinary outputs and, possibly,  the overall MDO problem. Some of the constraints
for the shared variables, while allowing each disciplinary ~ thatrestore coupling have a form that will cause dif-
optimization problem to manipulate its set of local design ficulties for conventional optimization algorithms.
variables. However, the disciplinary subproblems are not
disciplinary design optimization in the single-discipline As we have discussed, the techniques by which the
sense. That is, the subproblem objective functions are bilével methods described here decompose MDA can
disciplinary objectives, such as lift, drag, or weight. Irecause practical difficulties for computational optimiza-
stead, the subsystem objectives serve to minimize thetion. For this reason it is preferable to decompose MDA
consistency among the disciplinary analyses (as in C®y, means of a DAO formulation, if possible. This is es-
or, disciplinary design infeasibility (as in OLD). pecially so because true disciplinary design autonomy is
Elimination of the disciplinary design variables frormot achieved by the bilevel methods in question, i.e., the
the system-level problem is the most attractive featuresfbproblem objectives are not disciplinary objectives, but
the bilevel formulations. However, as we have discusssgyve to attain MDA at solutions. On the other hand, DAO
the elimination of the disciplinary design variables leadsrmulations do not eliminate the local disciplinary vari-
to system-level problems that have analytical features thhtes from the system-level optimization problem, and, in
can cause trouble for conventional numerical algorithnfact, increase the number of design variables. Whether
In contrast, the single-level formulations (3) and (18) ddis is a difficulty depends on the specific problem and
not eliminate the local variables from the system-level ofite optimization method used. Recent advances in large-
timization problem. This feature is the price single-levektale optimization algorithms lead us to believe that the
optimization formulations pay for robust solution by corpresence of the local variables in the system-level prob-

ventional nonlinear programming algorithms. lem may not present a lasting difficulty.
Formulations that decompose the MDA, as do CO
and DAO, have two significant drawbacks. First, the in- Concluding remarks

termediate iterates or designs will not necessarily satisfy

the multidisciplinary analysis (1)—(2) until a solution is Bilevel optimization formulations arise naturally in an
reached. In contrast, the solution process of the fully iattempt to treat problem complexity, size, and expense
tegrated formulation (3) and OLD will always have iterby allowing for disciplinary autonomy of implementation
ates that satisfy the multidisciplinary analysis, and thasd execution. Any method that yields a system-level
are physically realizable, even if the optimization has roblem with equality constraints that represent the dis-
be stopped without having attained an optimum. ciplinary feasible regions will suffer from the difficulties

Second, distributed formulations are difficult to treav€ have discussed. If the constraints are smooth, then La-
in optimization under uncertainty—the area that is bgrange multipliers will not exist. On the other hand, the
coming increasingly important in engineering desigfystem-level constraints may be nonsmooth. Moreover,
This is because one introduces independent auxiliary vafie system-level constraints, if they are explicitly equali-
ables that may need to match random variables whose §& (as in CO) or implicitly equalities (as in OLD with the
tistical properties are not knowanpriori. The fully inte- discrepancy function (12)—(13)), do not reveal the pres-
grated formulation can incorporate uncertainty in a natgce of the boundary of the feasible region. These fea-
ral manner. This feature is discussed in more detail elééres will confuse constrained optimization algorithms, as
where. we have discussed.

Despite the drawbacks of the distributed formulations Thus, elimination of the disciplinary design variables
outlined above, autonomy is an attractive feature. Whep@mes at the price of a system-level problem with unde-
considering a problem formulation that aims for discsirable analytical features that may cause trouble for com-
plinary autonomy, one should consider the following techutation. The distributed formulation we currently con-
nical challenges: sider as a viable alternative decomposes MDA but does

not eliminate local variables from the system-level prob-

e Variables local to disciplinary subsystems frdem. On a positive side, DAO does not suffer from the

quently enter into the disciplinary problem deanalytical and computational drawbacks of the bilevel op-
scription as a part of an inequality constraint sysimization formulations. We conjecture that the most vi-
tem. Eliminating inequalities from the system-levedble approaches to solving MDO problems will combine
problem in a robust manner is difficult. conventional problem formulations with specialized opti-
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mization algorithms. Several alternatives are being c(it0] Jaroslaw Sobieszczanski-Sobieski. Two alternative
rently considered.
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